rt2500usb.c 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2500usb
  19. Abstract: rt2500usb device specific routines.
  20. Supported chipsets: RT2570.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/usb.h>
  28. #include "rt2x00.h"
  29. #include "rt2x00usb.h"
  30. #include "rt2500usb.h"
  31. /*
  32. * Register access.
  33. * All access to the CSR registers will go through the methods
  34. * rt2500usb_register_read and rt2500usb_register_write.
  35. * BBP and RF register require indirect register access,
  36. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  37. * These indirect registers work with busy bits,
  38. * and we will try maximal REGISTER_BUSY_COUNT times to access
  39. * the register while taking a REGISTER_BUSY_DELAY us delay
  40. * between each attampt. When the busy bit is still set at that time,
  41. * the access attempt is considered to have failed,
  42. * and we will print an error.
  43. * If the usb_cache_mutex is already held then the _lock variants must
  44. * be used instead.
  45. */
  46. static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
  47. const unsigned int offset,
  48. u16 *value)
  49. {
  50. __le16 reg;
  51. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  52. USB_VENDOR_REQUEST_IN, offset,
  53. &reg, sizeof(u16), REGISTER_TIMEOUT);
  54. *value = le16_to_cpu(reg);
  55. }
  56. static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
  57. const unsigned int offset,
  58. u16 *value)
  59. {
  60. __le16 reg;
  61. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
  62. USB_VENDOR_REQUEST_IN, offset,
  63. &reg, sizeof(u16), REGISTER_TIMEOUT);
  64. *value = le16_to_cpu(reg);
  65. }
  66. static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
  67. const unsigned int offset,
  68. void *value, const u16 length)
  69. {
  70. int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
  71. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
  72. USB_VENDOR_REQUEST_IN, offset,
  73. value, length, timeout);
  74. }
  75. static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
  76. const unsigned int offset,
  77. u16 value)
  78. {
  79. __le16 reg = cpu_to_le16(value);
  80. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  81. USB_VENDOR_REQUEST_OUT, offset,
  82. &reg, sizeof(u16), REGISTER_TIMEOUT);
  83. }
  84. static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
  85. const unsigned int offset,
  86. u16 value)
  87. {
  88. __le16 reg = cpu_to_le16(value);
  89. rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
  90. USB_VENDOR_REQUEST_OUT, offset,
  91. &reg, sizeof(u16), REGISTER_TIMEOUT);
  92. }
  93. static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
  94. const unsigned int offset,
  95. void *value, const u16 length)
  96. {
  97. int timeout = REGISTER_TIMEOUT * (length / sizeof(u16));
  98. rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
  99. USB_VENDOR_REQUEST_OUT, offset,
  100. value, length, timeout);
  101. }
  102. static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
  103. {
  104. u16 reg;
  105. unsigned int i;
  106. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  107. rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
  108. if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
  109. break;
  110. udelay(REGISTER_BUSY_DELAY);
  111. }
  112. return reg;
  113. }
  114. static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
  115. const unsigned int word, const u8 value)
  116. {
  117. u16 reg;
  118. mutex_lock(&rt2x00dev->usb_cache_mutex);
  119. /*
  120. * Wait until the BBP becomes ready.
  121. */
  122. reg = rt2500usb_bbp_check(rt2x00dev);
  123. if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
  124. ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
  125. mutex_unlock(&rt2x00dev->usb_cache_mutex);
  126. return;
  127. }
  128. /*
  129. * Write the data into the BBP.
  130. */
  131. reg = 0;
  132. rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
  133. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  134. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
  135. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  136. mutex_unlock(&rt2x00dev->usb_cache_mutex);
  137. }
  138. static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
  139. const unsigned int word, u8 *value)
  140. {
  141. u16 reg;
  142. mutex_lock(&rt2x00dev->usb_cache_mutex);
  143. /*
  144. * Wait until the BBP becomes ready.
  145. */
  146. reg = rt2500usb_bbp_check(rt2x00dev);
  147. if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
  148. ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
  149. return;
  150. }
  151. /*
  152. * Write the request into the BBP.
  153. */
  154. reg = 0;
  155. rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
  156. rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
  157. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
  158. /*
  159. * Wait until the BBP becomes ready.
  160. */
  161. reg = rt2500usb_bbp_check(rt2x00dev);
  162. if (rt2x00_get_field16(reg, PHY_CSR8_BUSY)) {
  163. ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
  164. *value = 0xff;
  165. mutex_unlock(&rt2x00dev->usb_cache_mutex);
  166. return;
  167. }
  168. rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
  169. *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
  170. mutex_unlock(&rt2x00dev->usb_cache_mutex);
  171. }
  172. static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
  173. const unsigned int word, const u32 value)
  174. {
  175. u16 reg;
  176. unsigned int i;
  177. if (!word)
  178. return;
  179. mutex_lock(&rt2x00dev->usb_cache_mutex);
  180. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  181. rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
  182. if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
  183. goto rf_write;
  184. udelay(REGISTER_BUSY_DELAY);
  185. }
  186. mutex_unlock(&rt2x00dev->usb_cache_mutex);
  187. ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
  188. return;
  189. rf_write:
  190. reg = 0;
  191. rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
  192. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
  193. reg = 0;
  194. rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
  195. rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
  196. rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
  197. rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
  198. rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
  199. rt2x00_rf_write(rt2x00dev, word, value);
  200. mutex_unlock(&rt2x00dev->usb_cache_mutex);
  201. }
  202. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  203. #define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
  204. static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
  205. const unsigned int word, u32 *data)
  206. {
  207. rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
  208. }
  209. static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
  210. const unsigned int word, u32 data)
  211. {
  212. rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
  213. }
  214. static const struct rt2x00debug rt2500usb_rt2x00debug = {
  215. .owner = THIS_MODULE,
  216. .csr = {
  217. .read = rt2500usb_read_csr,
  218. .write = rt2500usb_write_csr,
  219. .word_size = sizeof(u16),
  220. .word_count = CSR_REG_SIZE / sizeof(u16),
  221. },
  222. .eeprom = {
  223. .read = rt2x00_eeprom_read,
  224. .write = rt2x00_eeprom_write,
  225. .word_size = sizeof(u16),
  226. .word_count = EEPROM_SIZE / sizeof(u16),
  227. },
  228. .bbp = {
  229. .read = rt2500usb_bbp_read,
  230. .write = rt2500usb_bbp_write,
  231. .word_size = sizeof(u8),
  232. .word_count = BBP_SIZE / sizeof(u8),
  233. },
  234. .rf = {
  235. .read = rt2x00_rf_read,
  236. .write = rt2500usb_rf_write,
  237. .word_size = sizeof(u32),
  238. .word_count = RF_SIZE / sizeof(u32),
  239. },
  240. };
  241. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  242. #ifdef CONFIG_RT2500USB_LEDS
  243. static void rt2500usb_led_brightness(struct led_classdev *led_cdev,
  244. enum led_brightness brightness)
  245. {
  246. struct rt2x00_led *led =
  247. container_of(led_cdev, struct rt2x00_led, led_dev);
  248. unsigned int enabled = brightness != LED_OFF;
  249. unsigned int activity =
  250. led->rt2x00dev->led_flags & LED_SUPPORT_ACTIVITY;
  251. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) {
  252. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  253. MAC_CSR20_LINK, enabled);
  254. rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
  255. MAC_CSR20_ACTIVITY, enabled && activity);
  256. }
  257. rt2x00usb_vendor_request_async(led->rt2x00dev, USB_SINGLE_WRITE,
  258. MAC_CSR20, led->rt2x00dev->led_mcu_reg);
  259. }
  260. #else
  261. #define rt2500usb_led_brightness NULL
  262. #endif /* CONFIG_RT2500USB_LEDS */
  263. /*
  264. * Configuration handlers.
  265. */
  266. static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
  267. struct rt2x00_intf *intf,
  268. struct rt2x00intf_conf *conf,
  269. const unsigned int flags)
  270. {
  271. unsigned int bcn_preload;
  272. u16 reg;
  273. if (flags & CONFIG_UPDATE_TYPE) {
  274. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  275. /*
  276. * Enable beacon config
  277. */
  278. bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
  279. rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
  280. rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
  281. rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
  282. 2 * (conf->type != IEEE80211_IF_TYPE_STA));
  283. rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
  284. /*
  285. * Enable synchronisation.
  286. */
  287. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  288. rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
  289. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  290. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  291. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
  292. rt2x00_set_field16(&reg, TXRX_CSR19_TBCN,
  293. (conf->sync == TSF_SYNC_BEACON));
  294. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
  295. rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
  296. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  297. }
  298. if (flags & CONFIG_UPDATE_MAC)
  299. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
  300. (3 * sizeof(__le16)));
  301. if (flags & CONFIG_UPDATE_BSSID)
  302. rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
  303. (3 * sizeof(__le16)));
  304. }
  305. static int rt2500usb_config_preamble(struct rt2x00_dev *rt2x00dev,
  306. const int short_preamble,
  307. const int ack_timeout,
  308. const int ack_consume_time)
  309. {
  310. u16 reg;
  311. /*
  312. * When in atomic context, we should let rt2x00lib
  313. * try this configuration again later.
  314. */
  315. if (in_atomic())
  316. return -EAGAIN;
  317. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  318. rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, ack_timeout);
  319. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  320. rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
  321. rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
  322. !!short_preamble);
  323. rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
  324. return 0;
  325. }
  326. static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
  327. const int basic_rate_mask)
  328. {
  329. rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
  330. }
  331. static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
  332. struct rf_channel *rf, const int txpower)
  333. {
  334. /*
  335. * Set TXpower.
  336. */
  337. rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  338. /*
  339. * For RT2525E we should first set the channel to half band higher.
  340. */
  341. if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  342. static const u32 vals[] = {
  343. 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
  344. 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
  345. 0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
  346. 0x00000902, 0x00000906
  347. };
  348. rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
  349. if (rf->rf4)
  350. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  351. }
  352. rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
  353. rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
  354. rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
  355. if (rf->rf4)
  356. rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
  357. }
  358. static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
  359. const int txpower)
  360. {
  361. u32 rf3;
  362. rt2x00_rf_read(rt2x00dev, 3, &rf3);
  363. rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
  364. rt2500usb_rf_write(rt2x00dev, 3, rf3);
  365. }
  366. static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
  367. struct antenna_setup *ant)
  368. {
  369. u8 r2;
  370. u8 r14;
  371. u16 csr5;
  372. u16 csr6;
  373. rt2500usb_bbp_read(rt2x00dev, 2, &r2);
  374. rt2500usb_bbp_read(rt2x00dev, 14, &r14);
  375. rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
  376. rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
  377. /*
  378. * Configure the TX antenna.
  379. */
  380. switch (ant->tx) {
  381. case ANTENNA_HW_DIVERSITY:
  382. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
  383. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
  384. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
  385. break;
  386. case ANTENNA_A:
  387. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
  388. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
  389. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
  390. break;
  391. case ANTENNA_SW_DIVERSITY:
  392. /*
  393. * NOTE: We should never come here because rt2x00lib is
  394. * supposed to catch this and send us the correct antenna
  395. * explicitely. However we are nog going to bug about this.
  396. * Instead, just default to antenna B.
  397. */
  398. case ANTENNA_B:
  399. rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
  400. rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
  401. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
  402. break;
  403. }
  404. /*
  405. * Configure the RX antenna.
  406. */
  407. switch (ant->rx) {
  408. case ANTENNA_HW_DIVERSITY:
  409. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
  410. break;
  411. case ANTENNA_A:
  412. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
  413. break;
  414. case ANTENNA_SW_DIVERSITY:
  415. /*
  416. * NOTE: We should never come here because rt2x00lib is
  417. * supposed to catch this and send us the correct antenna
  418. * explicitely. However we are nog going to bug about this.
  419. * Instead, just default to antenna B.
  420. */
  421. case ANTENNA_B:
  422. rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
  423. break;
  424. }
  425. /*
  426. * RT2525E and RT5222 need to flip TX I/Q
  427. */
  428. if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
  429. rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  430. rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
  431. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
  432. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
  433. /*
  434. * RT2525E does not need RX I/Q Flip.
  435. */
  436. if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
  437. rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
  438. } else {
  439. rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
  440. rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
  441. }
  442. rt2500usb_bbp_write(rt2x00dev, 2, r2);
  443. rt2500usb_bbp_write(rt2x00dev, 14, r14);
  444. rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
  445. rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
  446. }
  447. static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
  448. struct rt2x00lib_conf *libconf)
  449. {
  450. u16 reg;
  451. rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
  452. rt2500usb_register_write(rt2x00dev, MAC_CSR11, libconf->sifs);
  453. rt2500usb_register_write(rt2x00dev, MAC_CSR12, libconf->eifs);
  454. rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
  455. rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
  456. libconf->conf->beacon_int * 4);
  457. rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
  458. }
  459. static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
  460. struct rt2x00lib_conf *libconf,
  461. const unsigned int flags)
  462. {
  463. if (flags & CONFIG_UPDATE_PHYMODE)
  464. rt2500usb_config_phymode(rt2x00dev, libconf->basic_rates);
  465. if (flags & CONFIG_UPDATE_CHANNEL)
  466. rt2500usb_config_channel(rt2x00dev, &libconf->rf,
  467. libconf->conf->power_level);
  468. if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
  469. rt2500usb_config_txpower(rt2x00dev,
  470. libconf->conf->power_level);
  471. if (flags & CONFIG_UPDATE_ANTENNA)
  472. rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
  473. if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
  474. rt2500usb_config_duration(rt2x00dev, libconf);
  475. }
  476. /*
  477. * Link tuning
  478. */
  479. static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
  480. struct link_qual *qual)
  481. {
  482. u16 reg;
  483. /*
  484. * Update FCS error count from register.
  485. */
  486. rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
  487. qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
  488. /*
  489. * Update False CCA count from register.
  490. */
  491. rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
  492. qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
  493. }
  494. static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
  495. {
  496. u16 eeprom;
  497. u16 value;
  498. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
  499. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
  500. rt2500usb_bbp_write(rt2x00dev, 24, value);
  501. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
  502. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
  503. rt2500usb_bbp_write(rt2x00dev, 25, value);
  504. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
  505. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
  506. rt2500usb_bbp_write(rt2x00dev, 61, value);
  507. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
  508. value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
  509. rt2500usb_bbp_write(rt2x00dev, 17, value);
  510. rt2x00dev->link.vgc_level = value;
  511. }
  512. static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
  513. {
  514. int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
  515. u16 bbp_thresh;
  516. u16 vgc_bound;
  517. u16 sens;
  518. u16 r24;
  519. u16 r25;
  520. u16 r61;
  521. u16 r17_sens;
  522. u8 r17;
  523. u8 up_bound;
  524. u8 low_bound;
  525. /*
  526. * Read current r17 value, as well as the sensitivity values
  527. * for the r17 register.
  528. */
  529. rt2500usb_bbp_read(rt2x00dev, 17, &r17);
  530. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
  531. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
  532. up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
  533. low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
  534. /*
  535. * If we are not associated, we should go straight to the
  536. * dynamic CCA tuning.
  537. */
  538. if (!rt2x00dev->intf_associated)
  539. goto dynamic_cca_tune;
  540. /*
  541. * Determine the BBP tuning threshold and correctly
  542. * set BBP 24, 25 and 61.
  543. */
  544. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
  545. bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
  546. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
  547. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
  548. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
  549. if ((rssi + bbp_thresh) > 0) {
  550. r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
  551. r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
  552. r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
  553. } else {
  554. r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
  555. r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
  556. r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
  557. }
  558. rt2500usb_bbp_write(rt2x00dev, 24, r24);
  559. rt2500usb_bbp_write(rt2x00dev, 25, r25);
  560. rt2500usb_bbp_write(rt2x00dev, 61, r61);
  561. /*
  562. * A too low RSSI will cause too much false CCA which will
  563. * then corrupt the R17 tuning. To remidy this the tuning should
  564. * be stopped (While making sure the R17 value will not exceed limits)
  565. */
  566. if (rssi >= -40) {
  567. if (r17 != 0x60)
  568. rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
  569. return;
  570. }
  571. /*
  572. * Special big-R17 for short distance
  573. */
  574. if (rssi >= -58) {
  575. sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
  576. if (r17 != sens)
  577. rt2500usb_bbp_write(rt2x00dev, 17, sens);
  578. return;
  579. }
  580. /*
  581. * Special mid-R17 for middle distance
  582. */
  583. if (rssi >= -74) {
  584. sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
  585. if (r17 != sens)
  586. rt2500usb_bbp_write(rt2x00dev, 17, sens);
  587. return;
  588. }
  589. /*
  590. * Leave short or middle distance condition, restore r17
  591. * to the dynamic tuning range.
  592. */
  593. low_bound = 0x32;
  594. if (rssi < -77)
  595. up_bound -= (-77 - rssi);
  596. if (up_bound < low_bound)
  597. up_bound = low_bound;
  598. if (r17 > up_bound) {
  599. rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
  600. rt2x00dev->link.vgc_level = up_bound;
  601. return;
  602. }
  603. dynamic_cca_tune:
  604. /*
  605. * R17 is inside the dynamic tuning range,
  606. * start tuning the link based on the false cca counter.
  607. */
  608. if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
  609. rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
  610. rt2x00dev->link.vgc_level = r17;
  611. } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
  612. rt2500usb_bbp_write(rt2x00dev, 17, --r17);
  613. rt2x00dev->link.vgc_level = r17;
  614. }
  615. }
  616. /*
  617. * Initialization functions.
  618. */
  619. static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
  620. {
  621. u16 reg;
  622. rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
  623. USB_MODE_TEST, REGISTER_TIMEOUT);
  624. rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
  625. 0x00f0, REGISTER_TIMEOUT);
  626. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  627. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
  628. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  629. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
  630. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
  631. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  632. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
  633. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
  634. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  635. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  636. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  637. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  638. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  639. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
  640. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  641. rt2500usb_register_read(rt2x00dev, MAC_CSR21, &reg);
  642. rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, 70);
  643. rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, 30);
  644. rt2500usb_register_write(rt2x00dev, MAC_CSR21, reg);
  645. rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
  646. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
  647. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
  648. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
  649. rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
  650. rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
  651. rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
  652. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
  653. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
  654. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
  655. rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
  656. rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
  657. rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
  658. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
  659. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
  660. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
  661. rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
  662. rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
  663. rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
  664. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
  665. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
  666. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
  667. rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
  668. rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
  669. rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
  670. rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
  671. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  672. return -EBUSY;
  673. rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
  674. rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
  675. rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
  676. rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
  677. rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
  678. if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
  679. rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
  680. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
  681. } else {
  682. reg = 0;
  683. rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
  684. rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
  685. }
  686. rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
  687. rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
  688. rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
  689. rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
  690. rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
  691. rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
  692. rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
  693. rt2x00dev->rx->data_size);
  694. rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
  695. rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
  696. rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
  697. rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
  698. rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
  699. rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
  700. rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
  701. rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
  702. rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
  703. rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
  704. rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
  705. rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
  706. rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
  707. rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
  708. return 0;
  709. }
  710. static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
  711. {
  712. unsigned int i;
  713. u16 eeprom;
  714. u8 value;
  715. u8 reg_id;
  716. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  717. rt2500usb_bbp_read(rt2x00dev, 0, &value);
  718. if ((value != 0xff) && (value != 0x00))
  719. goto continue_csr_init;
  720. NOTICE(rt2x00dev, "Waiting for BBP register.\n");
  721. udelay(REGISTER_BUSY_DELAY);
  722. }
  723. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  724. return -EACCES;
  725. continue_csr_init:
  726. rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
  727. rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
  728. rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
  729. rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
  730. rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
  731. rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
  732. rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
  733. rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
  734. rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
  735. rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
  736. rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
  737. rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
  738. rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
  739. rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
  740. rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
  741. rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
  742. rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
  743. rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
  744. rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
  745. rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
  746. rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
  747. rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
  748. rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
  749. rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
  750. rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
  751. rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
  752. rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
  753. rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
  754. rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
  755. rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
  756. rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
  757. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  758. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  759. if (eeprom != 0xffff && eeprom != 0x0000) {
  760. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  761. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  762. rt2500usb_bbp_write(rt2x00dev, reg_id, value);
  763. }
  764. }
  765. return 0;
  766. }
  767. /*
  768. * Device state switch handlers.
  769. */
  770. static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
  771. enum dev_state state)
  772. {
  773. u16 reg;
  774. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  775. rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
  776. state == STATE_RADIO_RX_OFF);
  777. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  778. }
  779. static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
  780. {
  781. /*
  782. * Initialize all registers.
  783. */
  784. if (rt2500usb_init_registers(rt2x00dev) ||
  785. rt2500usb_init_bbp(rt2x00dev)) {
  786. ERROR(rt2x00dev, "Register initialization failed.\n");
  787. return -EIO;
  788. }
  789. return 0;
  790. }
  791. static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
  792. {
  793. rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
  794. rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
  795. /*
  796. * Disable synchronisation.
  797. */
  798. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  799. rt2x00usb_disable_radio(rt2x00dev);
  800. }
  801. static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
  802. enum dev_state state)
  803. {
  804. u16 reg;
  805. u16 reg2;
  806. unsigned int i;
  807. char put_to_sleep;
  808. char bbp_state;
  809. char rf_state;
  810. put_to_sleep = (state != STATE_AWAKE);
  811. reg = 0;
  812. rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
  813. rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
  814. rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
  815. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  816. rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
  817. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  818. /*
  819. * Device is not guaranteed to be in the requested state yet.
  820. * We must wait until the register indicates that the
  821. * device has entered the correct state.
  822. */
  823. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  824. rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
  825. bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
  826. rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
  827. if (bbp_state == state && rf_state == state)
  828. return 0;
  829. rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
  830. msleep(30);
  831. }
  832. NOTICE(rt2x00dev, "Device failed to enter state %d, "
  833. "current device state: bbp %d and rf %d.\n",
  834. state, bbp_state, rf_state);
  835. return -EBUSY;
  836. }
  837. static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
  838. enum dev_state state)
  839. {
  840. int retval = 0;
  841. switch (state) {
  842. case STATE_RADIO_ON:
  843. retval = rt2500usb_enable_radio(rt2x00dev);
  844. break;
  845. case STATE_RADIO_OFF:
  846. rt2500usb_disable_radio(rt2x00dev);
  847. break;
  848. case STATE_RADIO_RX_ON:
  849. case STATE_RADIO_RX_ON_LINK:
  850. rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON);
  851. break;
  852. case STATE_RADIO_RX_OFF:
  853. case STATE_RADIO_RX_OFF_LINK:
  854. rt2500usb_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF);
  855. break;
  856. case STATE_DEEP_SLEEP:
  857. case STATE_SLEEP:
  858. case STATE_STANDBY:
  859. case STATE_AWAKE:
  860. retval = rt2500usb_set_state(rt2x00dev, state);
  861. break;
  862. default:
  863. retval = -ENOTSUPP;
  864. break;
  865. }
  866. return retval;
  867. }
  868. /*
  869. * TX descriptor initialization
  870. */
  871. static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  872. struct sk_buff *skb,
  873. struct txentry_desc *txdesc,
  874. struct ieee80211_tx_control *control)
  875. {
  876. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  877. __le32 *txd = skbdesc->desc;
  878. u32 word;
  879. /*
  880. * Start writing the descriptor words.
  881. */
  882. rt2x00_desc_read(txd, 1, &word);
  883. rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
  884. rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
  885. rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
  886. rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
  887. rt2x00_desc_write(txd, 1, word);
  888. rt2x00_desc_read(txd, 2, &word);
  889. rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
  890. rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
  891. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
  892. rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
  893. rt2x00_desc_write(txd, 2, word);
  894. rt2x00_desc_read(txd, 0, &word);
  895. rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, control->retry_limit);
  896. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  897. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  898. rt2x00_set_field32(&word, TXD_W0_ACK,
  899. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  900. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  901. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  902. rt2x00_set_field32(&word, TXD_W0_OFDM,
  903. test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
  904. rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
  905. !!(control->flags & IEEE80211_TXCTL_FIRST_FRAGMENT));
  906. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  907. rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skbdesc->data_len);
  908. rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
  909. rt2x00_desc_write(txd, 0, word);
  910. }
  911. static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
  912. struct sk_buff *skb)
  913. {
  914. int length;
  915. /*
  916. * The length _must_ be a multiple of 2,
  917. * but it must _not_ be a multiple of the USB packet size.
  918. */
  919. length = roundup(skb->len, 2);
  920. length += (2 * !(length % rt2x00dev->usb_maxpacket));
  921. return length;
  922. }
  923. /*
  924. * TX data initialization
  925. */
  926. static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  927. const unsigned int queue)
  928. {
  929. u16 reg;
  930. if (queue != RT2X00_BCN_QUEUE_BEACON)
  931. return;
  932. rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
  933. if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
  934. rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
  935. /*
  936. * Beacon generation will fail initially.
  937. * To prevent this we need to register the TXRX_CSR19
  938. * register several times.
  939. */
  940. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  941. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  942. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  943. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
  944. rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
  945. }
  946. }
  947. /*
  948. * RX control handlers
  949. */
  950. static void rt2500usb_fill_rxdone(struct queue_entry *entry,
  951. struct rxdone_entry_desc *rxdesc)
  952. {
  953. struct queue_entry_priv_usb_rx *priv_rx = entry->priv_data;
  954. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  955. __le32 *rxd =
  956. (__le32 *)(entry->skb->data +
  957. (priv_rx->urb->actual_length - entry->queue->desc_size));
  958. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
  959. int header_size = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
  960. u32 word0;
  961. u32 word1;
  962. rt2x00_desc_read(rxd, 0, &word0);
  963. rt2x00_desc_read(rxd, 1, &word1);
  964. rxdesc->flags = 0;
  965. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  966. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  967. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  968. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  969. /*
  970. * Obtain the status about this packet.
  971. */
  972. rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
  973. rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
  974. entry->queue->rt2x00dev->rssi_offset;
  975. rxdesc->ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
  976. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  977. rxdesc->my_bss = !!rt2x00_get_field32(word0, RXD_W0_MY_BSS);
  978. /*
  979. * The data behind the ieee80211 header must be
  980. * aligned on a 4 byte boundary.
  981. */
  982. if (header_size % 4 == 0) {
  983. skb_push(entry->skb, 2);
  984. memmove(entry->skb->data, entry->skb->data + 2,
  985. entry->skb->len - 2);
  986. }
  987. /*
  988. * Set descriptor pointer.
  989. */
  990. skbdesc->data = entry->skb->data;
  991. skbdesc->data_len = rxdesc->size;
  992. skbdesc->desc = entry->skb->data + rxdesc->size;
  993. skbdesc->desc_len = entry->queue->desc_size;
  994. /*
  995. * Remove descriptor from skb buffer and trim the whole thing
  996. * down to only contain data.
  997. */
  998. skb_trim(entry->skb, rxdesc->size);
  999. }
  1000. /*
  1001. * Interrupt functions.
  1002. */
  1003. static void rt2500usb_beacondone(struct urb *urb)
  1004. {
  1005. struct queue_entry *entry = (struct queue_entry *)urb->context;
  1006. struct queue_entry_priv_usb_bcn *priv_bcn = entry->priv_data;
  1007. if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
  1008. return;
  1009. /*
  1010. * Check if this was the guardian beacon,
  1011. * if that was the case we need to send the real beacon now.
  1012. * Otherwise we should free the sk_buffer, the device
  1013. * should be doing the rest of the work now.
  1014. */
  1015. if (priv_bcn->guardian_urb == urb) {
  1016. usb_submit_urb(priv_bcn->urb, GFP_ATOMIC);
  1017. } else if (priv_bcn->urb == urb) {
  1018. dev_kfree_skb(entry->skb);
  1019. entry->skb = NULL;
  1020. }
  1021. }
  1022. /*
  1023. * Device probe functions.
  1024. */
  1025. static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1026. {
  1027. u16 word;
  1028. u8 *mac;
  1029. u8 bbp;
  1030. rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
  1031. /*
  1032. * Start validation of the data that has been read.
  1033. */
  1034. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1035. if (!is_valid_ether_addr(mac)) {
  1036. DECLARE_MAC_BUF(macbuf);
  1037. random_ether_addr(mac);
  1038. EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
  1039. }
  1040. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1041. if (word == 0xffff) {
  1042. rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
  1043. rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
  1044. ANTENNA_SW_DIVERSITY);
  1045. rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
  1046. ANTENNA_SW_DIVERSITY);
  1047. rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
  1048. LED_MODE_DEFAULT);
  1049. rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
  1050. rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
  1051. rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
  1052. rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
  1053. EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
  1054. }
  1055. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
  1056. if (word == 0xffff) {
  1057. rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
  1058. rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
  1059. rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
  1060. rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
  1061. EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
  1062. }
  1063. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
  1064. if (word == 0xffff) {
  1065. rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
  1066. DEFAULT_RSSI_OFFSET);
  1067. rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
  1068. EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
  1069. }
  1070. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
  1071. if (word == 0xffff) {
  1072. rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
  1073. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
  1074. EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
  1075. }
  1076. /*
  1077. * Switch lower vgc bound to current BBP R17 value,
  1078. * lower the value a bit for better quality.
  1079. */
  1080. rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
  1081. bbp -= 6;
  1082. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
  1083. if (word == 0xffff) {
  1084. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
  1085. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1086. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1087. EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
  1088. }
  1089. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
  1090. if (word == 0xffff) {
  1091. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
  1092. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
  1093. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
  1094. EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
  1095. } else {
  1096. rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
  1097. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
  1098. }
  1099. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
  1100. if (word == 0xffff) {
  1101. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
  1102. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
  1103. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
  1104. EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
  1105. }
  1106. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
  1107. if (word == 0xffff) {
  1108. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
  1109. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
  1110. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
  1111. EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
  1112. }
  1113. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
  1114. if (word == 0xffff) {
  1115. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
  1116. rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
  1117. rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
  1118. EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
  1119. }
  1120. return 0;
  1121. }
  1122. static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1123. {
  1124. u16 reg;
  1125. u16 value;
  1126. u16 eeprom;
  1127. /*
  1128. * Read EEPROM word for configuration.
  1129. */
  1130. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1131. /*
  1132. * Identify RF chipset.
  1133. */
  1134. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1135. rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
  1136. rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
  1137. if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
  1138. ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
  1139. return -ENODEV;
  1140. }
  1141. if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
  1142. !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
  1143. !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
  1144. !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
  1145. !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
  1146. !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1147. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1148. return -ENODEV;
  1149. }
  1150. /*
  1151. * Identify default antenna configuration.
  1152. */
  1153. rt2x00dev->default_ant.tx =
  1154. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1155. rt2x00dev->default_ant.rx =
  1156. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1157. /*
  1158. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1159. * I am not 100% sure about this, but the legacy drivers do not
  1160. * indicate antenna swapping in software is required when
  1161. * diversity is enabled.
  1162. */
  1163. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1164. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1165. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1166. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1167. /*
  1168. * Store led mode, for correct led behaviour.
  1169. */
  1170. #ifdef CONFIG_RT2500USB_LEDS
  1171. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1172. switch (value) {
  1173. case LED_MODE_ASUS:
  1174. case LED_MODE_ALPHA:
  1175. case LED_MODE_DEFAULT:
  1176. rt2x00dev->led_flags = LED_SUPPORT_RADIO;
  1177. break;
  1178. case LED_MODE_TXRX_ACTIVITY:
  1179. rt2x00dev->led_flags =
  1180. LED_SUPPORT_RADIO | LED_SUPPORT_ACTIVITY;
  1181. break;
  1182. case LED_MODE_SIGNAL_STRENGTH:
  1183. rt2x00dev->led_flags = LED_SUPPORT_RADIO;
  1184. break;
  1185. }
  1186. /*
  1187. * Store the current led register value, we need it later
  1188. * in set_brightness but that is called in irq context which
  1189. * means we can't use rt2500usb_register_read() at that time.
  1190. */
  1191. rt2500usb_register_read(rt2x00dev, MAC_CSR20, &rt2x00dev->led_mcu_reg);
  1192. #endif /* CONFIG_RT2500USB_LEDS */
  1193. /*
  1194. * Check if the BBP tuning should be disabled.
  1195. */
  1196. rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
  1197. if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
  1198. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1199. /*
  1200. * Read the RSSI <-> dBm offset information.
  1201. */
  1202. rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
  1203. rt2x00dev->rssi_offset =
  1204. rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
  1205. return 0;
  1206. }
  1207. /*
  1208. * RF value list for RF2522
  1209. * Supports: 2.4 GHz
  1210. */
  1211. static const struct rf_channel rf_vals_bg_2522[] = {
  1212. { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
  1213. { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
  1214. { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
  1215. { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
  1216. { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
  1217. { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
  1218. { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
  1219. { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
  1220. { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
  1221. { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
  1222. { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
  1223. { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
  1224. { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
  1225. { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
  1226. };
  1227. /*
  1228. * RF value list for RF2523
  1229. * Supports: 2.4 GHz
  1230. */
  1231. static const struct rf_channel rf_vals_bg_2523[] = {
  1232. { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
  1233. { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
  1234. { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
  1235. { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
  1236. { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
  1237. { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
  1238. { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
  1239. { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
  1240. { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
  1241. { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
  1242. { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
  1243. { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
  1244. { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
  1245. { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
  1246. };
  1247. /*
  1248. * RF value list for RF2524
  1249. * Supports: 2.4 GHz
  1250. */
  1251. static const struct rf_channel rf_vals_bg_2524[] = {
  1252. { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
  1253. { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
  1254. { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
  1255. { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
  1256. { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
  1257. { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
  1258. { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
  1259. { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
  1260. { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
  1261. { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
  1262. { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
  1263. { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
  1264. { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
  1265. { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
  1266. };
  1267. /*
  1268. * RF value list for RF2525
  1269. * Supports: 2.4 GHz
  1270. */
  1271. static const struct rf_channel rf_vals_bg_2525[] = {
  1272. { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
  1273. { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
  1274. { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
  1275. { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
  1276. { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
  1277. { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
  1278. { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
  1279. { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
  1280. { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
  1281. { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
  1282. { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
  1283. { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
  1284. { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
  1285. { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
  1286. };
  1287. /*
  1288. * RF value list for RF2525e
  1289. * Supports: 2.4 GHz
  1290. */
  1291. static const struct rf_channel rf_vals_bg_2525e[] = {
  1292. { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
  1293. { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
  1294. { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
  1295. { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
  1296. { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
  1297. { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
  1298. { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
  1299. { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
  1300. { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
  1301. { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
  1302. { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
  1303. { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
  1304. { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
  1305. { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
  1306. };
  1307. /*
  1308. * RF value list for RF5222
  1309. * Supports: 2.4 GHz & 5.2 GHz
  1310. */
  1311. static const struct rf_channel rf_vals_5222[] = {
  1312. { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
  1313. { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
  1314. { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
  1315. { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
  1316. { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
  1317. { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
  1318. { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
  1319. { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
  1320. { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
  1321. { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
  1322. { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
  1323. { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
  1324. { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
  1325. { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
  1326. /* 802.11 UNI / HyperLan 2 */
  1327. { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
  1328. { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
  1329. { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
  1330. { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
  1331. { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
  1332. { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
  1333. { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
  1334. { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
  1335. /* 802.11 HyperLan 2 */
  1336. { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
  1337. { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
  1338. { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
  1339. { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
  1340. { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
  1341. { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
  1342. { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
  1343. { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
  1344. { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
  1345. { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
  1346. /* 802.11 UNII */
  1347. { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
  1348. { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
  1349. { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
  1350. { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
  1351. { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
  1352. };
  1353. static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1354. {
  1355. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1356. u8 *txpower;
  1357. unsigned int i;
  1358. /*
  1359. * Initialize all hw fields.
  1360. */
  1361. rt2x00dev->hw->flags =
  1362. IEEE80211_HW_HOST_GEN_BEACON_TEMPLATE |
  1363. IEEE80211_HW_RX_INCLUDES_FCS |
  1364. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING;
  1365. rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
  1366. rt2x00dev->hw->max_signal = MAX_SIGNAL;
  1367. rt2x00dev->hw->max_rssi = MAX_RX_SSI;
  1368. rt2x00dev->hw->queues = 2;
  1369. SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_usb(rt2x00dev)->dev);
  1370. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1371. rt2x00_eeprom_addr(rt2x00dev,
  1372. EEPROM_MAC_ADDR_0));
  1373. /*
  1374. * Convert tx_power array in eeprom.
  1375. */
  1376. txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1377. for (i = 0; i < 14; i++)
  1378. txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
  1379. /*
  1380. * Initialize hw_mode information.
  1381. */
  1382. spec->num_modes = 2;
  1383. spec->num_rates = 12;
  1384. spec->tx_power_a = NULL;
  1385. spec->tx_power_bg = txpower;
  1386. spec->tx_power_default = DEFAULT_TXPOWER;
  1387. if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
  1388. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
  1389. spec->channels = rf_vals_bg_2522;
  1390. } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
  1391. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
  1392. spec->channels = rf_vals_bg_2523;
  1393. } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
  1394. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
  1395. spec->channels = rf_vals_bg_2524;
  1396. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
  1397. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
  1398. spec->channels = rf_vals_bg_2525;
  1399. } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
  1400. spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
  1401. spec->channels = rf_vals_bg_2525e;
  1402. } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
  1403. spec->num_channels = ARRAY_SIZE(rf_vals_5222);
  1404. spec->channels = rf_vals_5222;
  1405. spec->num_modes = 3;
  1406. }
  1407. }
  1408. static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
  1409. {
  1410. int retval;
  1411. /*
  1412. * Allocate eeprom data.
  1413. */
  1414. retval = rt2500usb_validate_eeprom(rt2x00dev);
  1415. if (retval)
  1416. return retval;
  1417. retval = rt2500usb_init_eeprom(rt2x00dev);
  1418. if (retval)
  1419. return retval;
  1420. /*
  1421. * Initialize hw specifications.
  1422. */
  1423. rt2500usb_probe_hw_mode(rt2x00dev);
  1424. /*
  1425. * This device requires the atim queue
  1426. */
  1427. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1428. __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
  1429. /*
  1430. * Set the rssi offset.
  1431. */
  1432. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1433. return 0;
  1434. }
  1435. /*
  1436. * IEEE80211 stack callback functions.
  1437. */
  1438. static void rt2500usb_configure_filter(struct ieee80211_hw *hw,
  1439. unsigned int changed_flags,
  1440. unsigned int *total_flags,
  1441. int mc_count,
  1442. struct dev_addr_list *mc_list)
  1443. {
  1444. struct rt2x00_dev *rt2x00dev = hw->priv;
  1445. u16 reg;
  1446. /*
  1447. * Mask off any flags we are going to ignore from
  1448. * the total_flags field.
  1449. */
  1450. *total_flags &=
  1451. FIF_ALLMULTI |
  1452. FIF_FCSFAIL |
  1453. FIF_PLCPFAIL |
  1454. FIF_CONTROL |
  1455. FIF_OTHER_BSS |
  1456. FIF_PROMISC_IN_BSS;
  1457. /*
  1458. * Apply some rules to the filters:
  1459. * - Some filters imply different filters to be set.
  1460. * - Some things we can't filter out at all.
  1461. */
  1462. if (mc_count)
  1463. *total_flags |= FIF_ALLMULTI;
  1464. if (*total_flags & FIF_OTHER_BSS ||
  1465. *total_flags & FIF_PROMISC_IN_BSS)
  1466. *total_flags |= FIF_PROMISC_IN_BSS | FIF_OTHER_BSS;
  1467. /*
  1468. * Check if there is any work left for us.
  1469. */
  1470. if (rt2x00dev->packet_filter == *total_flags)
  1471. return;
  1472. rt2x00dev->packet_filter = *total_flags;
  1473. /*
  1474. * When in atomic context, reschedule and let rt2x00lib
  1475. * call this function again.
  1476. */
  1477. if (in_atomic()) {
  1478. queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->filter_work);
  1479. return;
  1480. }
  1481. /*
  1482. * Start configuration steps.
  1483. * Note that the version error will always be dropped
  1484. * and broadcast frames will always be accepted since
  1485. * there is no filter for it at this time.
  1486. */
  1487. rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
  1488. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
  1489. !(*total_flags & FIF_FCSFAIL));
  1490. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
  1491. !(*total_flags & FIF_PLCPFAIL));
  1492. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
  1493. !(*total_flags & FIF_CONTROL));
  1494. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
  1495. !(*total_flags & FIF_PROMISC_IN_BSS));
  1496. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
  1497. !(*total_flags & FIF_PROMISC_IN_BSS));
  1498. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
  1499. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
  1500. !(*total_flags & FIF_ALLMULTI));
  1501. rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
  1502. rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
  1503. }
  1504. static int rt2500usb_beacon_update(struct ieee80211_hw *hw,
  1505. struct sk_buff *skb,
  1506. struct ieee80211_tx_control *control)
  1507. {
  1508. struct rt2x00_dev *rt2x00dev = hw->priv;
  1509. struct usb_device *usb_dev = rt2x00dev_usb_dev(rt2x00dev);
  1510. struct rt2x00_intf *intf = vif_to_intf(control->vif);
  1511. struct queue_entry_priv_usb_bcn *priv_bcn;
  1512. struct skb_frame_desc *skbdesc;
  1513. int pipe = usb_sndbulkpipe(usb_dev, 1);
  1514. int length;
  1515. if (unlikely(!intf->beacon))
  1516. return -ENOBUFS;
  1517. priv_bcn = intf->beacon->priv_data;
  1518. /*
  1519. * Add the descriptor in front of the skb.
  1520. */
  1521. skb_push(skb, intf->beacon->queue->desc_size);
  1522. memset(skb->data, 0, intf->beacon->queue->desc_size);
  1523. /*
  1524. * Fill in skb descriptor
  1525. */
  1526. skbdesc = get_skb_frame_desc(skb);
  1527. memset(skbdesc, 0, sizeof(*skbdesc));
  1528. skbdesc->flags |= FRAME_DESC_DRIVER_GENERATED;
  1529. skbdesc->data = skb->data + intf->beacon->queue->desc_size;
  1530. skbdesc->data_len = skb->len - intf->beacon->queue->desc_size;
  1531. skbdesc->desc = skb->data;
  1532. skbdesc->desc_len = intf->beacon->queue->desc_size;
  1533. skbdesc->entry = intf->beacon;
  1534. /*
  1535. * mac80211 doesn't provide the control->queue variable
  1536. * for beacons. Set our own queue identification so
  1537. * it can be used during descriptor initialization.
  1538. */
  1539. control->queue = RT2X00_BCN_QUEUE_BEACON;
  1540. rt2x00lib_write_tx_desc(rt2x00dev, skb, control);
  1541. /*
  1542. * USB devices cannot blindly pass the skb->len as the
  1543. * length of the data to usb_fill_bulk_urb. Pass the skb
  1544. * to the driver to determine what the length should be.
  1545. */
  1546. length = rt2500usb_get_tx_data_len(rt2x00dev, skb);
  1547. usb_fill_bulk_urb(priv_bcn->urb, usb_dev, pipe,
  1548. skb->data, length, rt2500usb_beacondone,
  1549. intf->beacon);
  1550. /*
  1551. * Second we need to create the guardian byte.
  1552. * We only need a single byte, so lets recycle
  1553. * the 'flags' field we are not using for beacons.
  1554. */
  1555. priv_bcn->guardian_data = 0;
  1556. usb_fill_bulk_urb(priv_bcn->guardian_urb, usb_dev, pipe,
  1557. &priv_bcn->guardian_data, 1, rt2500usb_beacondone,
  1558. intf->beacon);
  1559. /*
  1560. * Send out the guardian byte.
  1561. */
  1562. usb_submit_urb(priv_bcn->guardian_urb, GFP_ATOMIC);
  1563. /*
  1564. * Enable beacon generation.
  1565. */
  1566. rt2500usb_kick_tx_queue(rt2x00dev, control->queue);
  1567. return 0;
  1568. }
  1569. static const struct ieee80211_ops rt2500usb_mac80211_ops = {
  1570. .tx = rt2x00mac_tx,
  1571. .start = rt2x00mac_start,
  1572. .stop = rt2x00mac_stop,
  1573. .add_interface = rt2x00mac_add_interface,
  1574. .remove_interface = rt2x00mac_remove_interface,
  1575. .config = rt2x00mac_config,
  1576. .config_interface = rt2x00mac_config_interface,
  1577. .configure_filter = rt2500usb_configure_filter,
  1578. .get_stats = rt2x00mac_get_stats,
  1579. .bss_info_changed = rt2x00mac_bss_info_changed,
  1580. .conf_tx = rt2x00mac_conf_tx,
  1581. .get_tx_stats = rt2x00mac_get_tx_stats,
  1582. .beacon_update = rt2500usb_beacon_update,
  1583. };
  1584. static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
  1585. .probe_hw = rt2500usb_probe_hw,
  1586. .initialize = rt2x00usb_initialize,
  1587. .uninitialize = rt2x00usb_uninitialize,
  1588. .init_rxentry = rt2x00usb_init_rxentry,
  1589. .init_txentry = rt2x00usb_init_txentry,
  1590. .set_device_state = rt2500usb_set_device_state,
  1591. .link_stats = rt2500usb_link_stats,
  1592. .reset_tuner = rt2500usb_reset_tuner,
  1593. .link_tuner = rt2500usb_link_tuner,
  1594. .led_brightness = rt2500usb_led_brightness,
  1595. .write_tx_desc = rt2500usb_write_tx_desc,
  1596. .write_tx_data = rt2x00usb_write_tx_data,
  1597. .get_tx_data_len = rt2500usb_get_tx_data_len,
  1598. .kick_tx_queue = rt2500usb_kick_tx_queue,
  1599. .fill_rxdone = rt2500usb_fill_rxdone,
  1600. .config_intf = rt2500usb_config_intf,
  1601. .config_preamble = rt2500usb_config_preamble,
  1602. .config = rt2500usb_config,
  1603. };
  1604. static const struct data_queue_desc rt2500usb_queue_rx = {
  1605. .entry_num = RX_ENTRIES,
  1606. .data_size = DATA_FRAME_SIZE,
  1607. .desc_size = RXD_DESC_SIZE,
  1608. .priv_size = sizeof(struct queue_entry_priv_usb_rx),
  1609. };
  1610. static const struct data_queue_desc rt2500usb_queue_tx = {
  1611. .entry_num = TX_ENTRIES,
  1612. .data_size = DATA_FRAME_SIZE,
  1613. .desc_size = TXD_DESC_SIZE,
  1614. .priv_size = sizeof(struct queue_entry_priv_usb_tx),
  1615. };
  1616. static const struct data_queue_desc rt2500usb_queue_bcn = {
  1617. .entry_num = BEACON_ENTRIES,
  1618. .data_size = MGMT_FRAME_SIZE,
  1619. .desc_size = TXD_DESC_SIZE,
  1620. .priv_size = sizeof(struct queue_entry_priv_usb_bcn),
  1621. };
  1622. static const struct data_queue_desc rt2500usb_queue_atim = {
  1623. .entry_num = ATIM_ENTRIES,
  1624. .data_size = DATA_FRAME_SIZE,
  1625. .desc_size = TXD_DESC_SIZE,
  1626. .priv_size = sizeof(struct queue_entry_priv_usb_tx),
  1627. };
  1628. static const struct rt2x00_ops rt2500usb_ops = {
  1629. .name = KBUILD_MODNAME,
  1630. .max_sta_intf = 1,
  1631. .max_ap_intf = 1,
  1632. .eeprom_size = EEPROM_SIZE,
  1633. .rf_size = RF_SIZE,
  1634. .rx = &rt2500usb_queue_rx,
  1635. .tx = &rt2500usb_queue_tx,
  1636. .bcn = &rt2500usb_queue_bcn,
  1637. .atim = &rt2500usb_queue_atim,
  1638. .lib = &rt2500usb_rt2x00_ops,
  1639. .hw = &rt2500usb_mac80211_ops,
  1640. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1641. .debugfs = &rt2500usb_rt2x00debug,
  1642. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1643. };
  1644. /*
  1645. * rt2500usb module information.
  1646. */
  1647. static struct usb_device_id rt2500usb_device_table[] = {
  1648. /* ASUS */
  1649. { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1650. { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
  1651. /* Belkin */
  1652. { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
  1653. { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
  1654. { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1655. /* Cisco Systems */
  1656. { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
  1657. { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
  1658. { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
  1659. /* Conceptronic */
  1660. { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
  1661. /* D-LINK */
  1662. { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
  1663. /* Gigabyte */
  1664. { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
  1665. { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
  1666. /* Hercules */
  1667. { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
  1668. /* Melco */
  1669. { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
  1670. { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
  1671. { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
  1672. { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
  1673. { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
  1674. /* MSI */
  1675. { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
  1676. { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
  1677. { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
  1678. /* Ralink */
  1679. { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
  1680. { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
  1681. { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
  1682. { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1683. /* Siemens */
  1684. { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
  1685. /* SMC */
  1686. { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
  1687. /* Spairon */
  1688. { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
  1689. /* Trust */
  1690. { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
  1691. /* Zinwell */
  1692. { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
  1693. { 0, }
  1694. };
  1695. MODULE_AUTHOR(DRV_PROJECT);
  1696. MODULE_VERSION(DRV_VERSION);
  1697. MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
  1698. MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
  1699. MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
  1700. MODULE_LICENSE("GPL");
  1701. static struct usb_driver rt2500usb_driver = {
  1702. .name = KBUILD_MODNAME,
  1703. .id_table = rt2500usb_device_table,
  1704. .probe = rt2x00usb_probe,
  1705. .disconnect = rt2x00usb_disconnect,
  1706. .suspend = rt2x00usb_suspend,
  1707. .resume = rt2x00usb_resume,
  1708. };
  1709. static int __init rt2500usb_init(void)
  1710. {
  1711. return usb_register(&rt2500usb_driver);
  1712. }
  1713. static void __exit rt2500usb_exit(void)
  1714. {
  1715. usb_deregister(&rt2500usb_driver);
  1716. }
  1717. module_init(rt2500usb_init);
  1718. module_exit(rt2500usb_exit);