skge.c 89 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/config.h>
  27. #include <linux/kernel.h>
  28. #include <linux/module.h>
  29. #include <linux/moduleparam.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/etherdevice.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/pci.h>
  34. #include <linux/if_vlan.h>
  35. #include <linux/ip.h>
  36. #include <linux/delay.h>
  37. #include <linux/crc32.h>
  38. #include <asm/irq.h>
  39. #include "skge.h"
  40. #define DRV_NAME "skge"
  41. #define DRV_VERSION "0.6"
  42. #define PFX DRV_NAME " "
  43. #define DEFAULT_TX_RING_SIZE 128
  44. #define DEFAULT_RX_RING_SIZE 512
  45. #define MAX_TX_RING_SIZE 1024
  46. #define MAX_RX_RING_SIZE 4096
  47. #define PHY_RETRIES 1000
  48. #define ETH_JUMBO_MTU 9000
  49. #define TX_WATCHDOG (5 * HZ)
  50. #define NAPI_WEIGHT 64
  51. #define BLINK_HZ (HZ/4)
  52. #define LINK_POLL_HZ (HZ/10)
  53. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  54. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  55. MODULE_LICENSE("GPL");
  56. MODULE_VERSION(DRV_VERSION);
  57. static const u32 default_msg
  58. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  59. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  60. static int debug = -1; /* defaults above */
  61. module_param(debug, int, 0);
  62. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  63. static const struct pci_device_id skge_id_table[] = {
  64. { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940,
  65. PCI_ANY_ID, PCI_ANY_ID },
  66. { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B,
  67. PCI_ANY_ID, PCI_ANY_ID },
  68. { PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE,
  69. PCI_ANY_ID, PCI_ANY_ID },
  70. { PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU,
  71. PCI_ANY_ID, PCI_ANY_ID },
  72. { PCI_VENDOR_ID_SYSKONNECT, 0x9E00, /* SK-9Exx */
  73. PCI_ANY_ID, PCI_ANY_ID },
  74. { PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T,
  75. PCI_ANY_ID, PCI_ANY_ID },
  76. { PCI_VENDOR_ID_MARVELL, 0x4320, /* Gigabit Ethernet Controller */
  77. PCI_ANY_ID, PCI_ANY_ID },
  78. { PCI_VENDOR_ID_MARVELL, 0x5005, /* Marvell (11ab), Belkin */
  79. PCI_ANY_ID, PCI_ANY_ID },
  80. { PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD,
  81. PCI_ANY_ID, PCI_ANY_ID },
  82. { PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032,
  83. PCI_ANY_ID, PCI_ANY_ID },
  84. { PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064,
  85. PCI_ANY_ID, PCI_ANY_ID },
  86. { 0 }
  87. };
  88. MODULE_DEVICE_TABLE(pci, skge_id_table);
  89. static int skge_up(struct net_device *dev);
  90. static int skge_down(struct net_device *dev);
  91. static void skge_tx_clean(struct skge_port *skge);
  92. static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  93. static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  94. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  95. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  96. static void yukon_init(struct skge_hw *hw, int port);
  97. static void yukon_reset(struct skge_hw *hw, int port);
  98. static void genesis_mac_init(struct skge_hw *hw, int port);
  99. static void genesis_reset(struct skge_hw *hw, int port);
  100. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  101. static const int rxqaddr[] = { Q_R1, Q_R2 };
  102. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  103. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  104. /* Don't need to look at whole 16K.
  105. * last interesting register is descriptor poll timer.
  106. */
  107. #define SKGE_REGS_LEN (29*128)
  108. static int skge_get_regs_len(struct net_device *dev)
  109. {
  110. return SKGE_REGS_LEN;
  111. }
  112. /*
  113. * Returns copy of control register region
  114. * I/O region is divided into banks and certain regions are unreadable
  115. */
  116. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  117. void *p)
  118. {
  119. const struct skge_port *skge = netdev_priv(dev);
  120. unsigned long offs;
  121. const void __iomem *io = skge->hw->regs;
  122. static const unsigned long bankmap
  123. = (1<<0) | (1<<2) | (1<<8) | (1<<9)
  124. | (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16)
  125. | (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23)
  126. | (1<<24) | (1<<25) | (1<<26) | (1<<27) | (1<<28);
  127. regs->version = 1;
  128. for (offs = 0; offs < regs->len; offs += 128) {
  129. u32 len = min_t(u32, 128, regs->len - offs);
  130. if (bankmap & (1<<(offs/128)))
  131. memcpy_fromio(p + offs, io + offs, len);
  132. else
  133. memset(p + offs, 0, len);
  134. }
  135. }
  136. /* Wake on Lan only supported on Yukon chps with rev 1 or above */
  137. static int wol_supported(const struct skge_hw *hw)
  138. {
  139. return !((hw->chip_id == CHIP_ID_GENESIS ||
  140. (hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0)));
  141. }
  142. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  143. {
  144. struct skge_port *skge = netdev_priv(dev);
  145. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  146. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  147. }
  148. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  149. {
  150. struct skge_port *skge = netdev_priv(dev);
  151. struct skge_hw *hw = skge->hw;
  152. if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  153. return -EOPNOTSUPP;
  154. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  155. return -EOPNOTSUPP;
  156. skge->wol = wol->wolopts == WAKE_MAGIC;
  157. if (skge->wol) {
  158. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  159. skge_write16(hw, WOL_CTRL_STAT,
  160. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  161. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  162. } else
  163. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  164. return 0;
  165. }
  166. static int skge_get_settings(struct net_device *dev,
  167. struct ethtool_cmd *ecmd)
  168. {
  169. struct skge_port *skge = netdev_priv(dev);
  170. struct skge_hw *hw = skge->hw;
  171. ecmd->transceiver = XCVR_INTERNAL;
  172. if (iscopper(hw)) {
  173. if (hw->chip_id == CHIP_ID_GENESIS)
  174. ecmd->supported = SUPPORTED_1000baseT_Full
  175. | SUPPORTED_1000baseT_Half
  176. | SUPPORTED_Autoneg | SUPPORTED_TP;
  177. else {
  178. ecmd->supported = SUPPORTED_10baseT_Half
  179. | SUPPORTED_10baseT_Full
  180. | SUPPORTED_100baseT_Half
  181. | SUPPORTED_100baseT_Full
  182. | SUPPORTED_1000baseT_Half
  183. | SUPPORTED_1000baseT_Full
  184. | SUPPORTED_Autoneg| SUPPORTED_TP;
  185. if (hw->chip_id == CHIP_ID_YUKON)
  186. ecmd->supported &= ~SUPPORTED_1000baseT_Half;
  187. else if (hw->chip_id == CHIP_ID_YUKON_FE)
  188. ecmd->supported &= ~(SUPPORTED_1000baseT_Half
  189. | SUPPORTED_1000baseT_Full);
  190. }
  191. ecmd->port = PORT_TP;
  192. ecmd->phy_address = hw->phy_addr;
  193. } else {
  194. ecmd->supported = SUPPORTED_1000baseT_Full
  195. | SUPPORTED_FIBRE
  196. | SUPPORTED_Autoneg;
  197. ecmd->port = PORT_FIBRE;
  198. }
  199. ecmd->advertising = skge->advertising;
  200. ecmd->autoneg = skge->autoneg;
  201. ecmd->speed = skge->speed;
  202. ecmd->duplex = skge->duplex;
  203. return 0;
  204. }
  205. static u32 skge_modes(const struct skge_hw *hw)
  206. {
  207. u32 modes = ADVERTISED_Autoneg
  208. | ADVERTISED_1000baseT_Full | ADVERTISED_1000baseT_Half
  209. | ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half
  210. | ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half;
  211. if (iscopper(hw)) {
  212. modes |= ADVERTISED_TP;
  213. switch(hw->chip_id) {
  214. case CHIP_ID_GENESIS:
  215. modes &= ~(ADVERTISED_100baseT_Full
  216. | ADVERTISED_100baseT_Half
  217. | ADVERTISED_10baseT_Full
  218. | ADVERTISED_10baseT_Half);
  219. break;
  220. case CHIP_ID_YUKON:
  221. modes &= ~ADVERTISED_1000baseT_Half;
  222. break;
  223. case CHIP_ID_YUKON_FE:
  224. modes &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
  225. break;
  226. }
  227. } else {
  228. modes |= ADVERTISED_FIBRE;
  229. modes &= ~ADVERTISED_1000baseT_Half;
  230. }
  231. return modes;
  232. }
  233. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  234. {
  235. struct skge_port *skge = netdev_priv(dev);
  236. const struct skge_hw *hw = skge->hw;
  237. if (ecmd->autoneg == AUTONEG_ENABLE) {
  238. if (ecmd->advertising & skge_modes(hw))
  239. return -EINVAL;
  240. } else {
  241. switch(ecmd->speed) {
  242. case SPEED_1000:
  243. if (hw->chip_id == CHIP_ID_YUKON_FE)
  244. return -EINVAL;
  245. break;
  246. case SPEED_100:
  247. case SPEED_10:
  248. if (iscopper(hw) || hw->chip_id == CHIP_ID_GENESIS)
  249. return -EINVAL;
  250. break;
  251. default:
  252. return -EINVAL;
  253. }
  254. }
  255. skge->autoneg = ecmd->autoneg;
  256. skge->speed = ecmd->speed;
  257. skge->duplex = ecmd->duplex;
  258. skge->advertising = ecmd->advertising;
  259. if (netif_running(dev)) {
  260. skge_down(dev);
  261. skge_up(dev);
  262. }
  263. return (0);
  264. }
  265. static void skge_get_drvinfo(struct net_device *dev,
  266. struct ethtool_drvinfo *info)
  267. {
  268. struct skge_port *skge = netdev_priv(dev);
  269. strcpy(info->driver, DRV_NAME);
  270. strcpy(info->version, DRV_VERSION);
  271. strcpy(info->fw_version, "N/A");
  272. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  273. }
  274. static const struct skge_stat {
  275. char name[ETH_GSTRING_LEN];
  276. u16 xmac_offset;
  277. u16 gma_offset;
  278. } skge_stats[] = {
  279. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  280. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  281. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  282. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  283. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  284. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  285. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  286. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  287. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  288. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  289. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  290. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  291. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  292. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  293. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  294. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  295. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  296. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  297. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  298. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  299. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  300. };
  301. static int skge_get_stats_count(struct net_device *dev)
  302. {
  303. return ARRAY_SIZE(skge_stats);
  304. }
  305. static void skge_get_ethtool_stats(struct net_device *dev,
  306. struct ethtool_stats *stats, u64 *data)
  307. {
  308. struct skge_port *skge = netdev_priv(dev);
  309. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  310. genesis_get_stats(skge, data);
  311. else
  312. yukon_get_stats(skge, data);
  313. }
  314. /* Use hardware MIB variables for critical path statistics and
  315. * transmit feedback not reported at interrupt.
  316. * Other errors are accounted for in interrupt handler.
  317. */
  318. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  319. {
  320. struct skge_port *skge = netdev_priv(dev);
  321. u64 data[ARRAY_SIZE(skge_stats)];
  322. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  323. genesis_get_stats(skge, data);
  324. else
  325. yukon_get_stats(skge, data);
  326. skge->net_stats.tx_bytes = data[0];
  327. skge->net_stats.rx_bytes = data[1];
  328. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  329. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  330. skge->net_stats.multicast = data[5] + data[7];
  331. skge->net_stats.collisions = data[10];
  332. skge->net_stats.tx_aborted_errors = data[12];
  333. return &skge->net_stats;
  334. }
  335. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  336. {
  337. int i;
  338. switch(stringset) {
  339. case ETH_SS_STATS:
  340. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  341. memcpy(data + i * ETH_GSTRING_LEN,
  342. skge_stats[i].name, ETH_GSTRING_LEN);
  343. break;
  344. }
  345. }
  346. static void skge_get_ring_param(struct net_device *dev,
  347. struct ethtool_ringparam *p)
  348. {
  349. struct skge_port *skge = netdev_priv(dev);
  350. p->rx_max_pending = MAX_RX_RING_SIZE;
  351. p->tx_max_pending = MAX_TX_RING_SIZE;
  352. p->rx_mini_max_pending = 0;
  353. p->rx_jumbo_max_pending = 0;
  354. p->rx_pending = skge->rx_ring.count;
  355. p->tx_pending = skge->tx_ring.count;
  356. p->rx_mini_pending = 0;
  357. p->rx_jumbo_pending = 0;
  358. }
  359. static int skge_set_ring_param(struct net_device *dev,
  360. struct ethtool_ringparam *p)
  361. {
  362. struct skge_port *skge = netdev_priv(dev);
  363. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  364. p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
  365. return -EINVAL;
  366. skge->rx_ring.count = p->rx_pending;
  367. skge->tx_ring.count = p->tx_pending;
  368. if (netif_running(dev)) {
  369. skge_down(dev);
  370. skge_up(dev);
  371. }
  372. return 0;
  373. }
  374. static u32 skge_get_msglevel(struct net_device *netdev)
  375. {
  376. struct skge_port *skge = netdev_priv(netdev);
  377. return skge->msg_enable;
  378. }
  379. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  380. {
  381. struct skge_port *skge = netdev_priv(netdev);
  382. skge->msg_enable = value;
  383. }
  384. static int skge_nway_reset(struct net_device *dev)
  385. {
  386. struct skge_port *skge = netdev_priv(dev);
  387. struct skge_hw *hw = skge->hw;
  388. int port = skge->port;
  389. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  390. return -EINVAL;
  391. spin_lock_bh(&hw->phy_lock);
  392. if (hw->chip_id == CHIP_ID_GENESIS) {
  393. genesis_reset(hw, port);
  394. genesis_mac_init(hw, port);
  395. } else {
  396. yukon_reset(hw, port);
  397. yukon_init(hw, port);
  398. }
  399. spin_unlock_bh(&hw->phy_lock);
  400. return 0;
  401. }
  402. static int skge_set_sg(struct net_device *dev, u32 data)
  403. {
  404. struct skge_port *skge = netdev_priv(dev);
  405. struct skge_hw *hw = skge->hw;
  406. if (hw->chip_id == CHIP_ID_GENESIS && data)
  407. return -EOPNOTSUPP;
  408. return ethtool_op_set_sg(dev, data);
  409. }
  410. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  411. {
  412. struct skge_port *skge = netdev_priv(dev);
  413. struct skge_hw *hw = skge->hw;
  414. if (hw->chip_id == CHIP_ID_GENESIS && data)
  415. return -EOPNOTSUPP;
  416. return ethtool_op_set_tx_csum(dev, data);
  417. }
  418. static u32 skge_get_rx_csum(struct net_device *dev)
  419. {
  420. struct skge_port *skge = netdev_priv(dev);
  421. return skge->rx_csum;
  422. }
  423. /* Only Yukon supports checksum offload. */
  424. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  425. {
  426. struct skge_port *skge = netdev_priv(dev);
  427. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  428. return -EOPNOTSUPP;
  429. skge->rx_csum = data;
  430. return 0;
  431. }
  432. /* Only Yukon II supports TSO (not implemented yet) */
  433. static int skge_set_tso(struct net_device *dev, u32 data)
  434. {
  435. if (data)
  436. return -EOPNOTSUPP;
  437. return 0;
  438. }
  439. static void skge_get_pauseparam(struct net_device *dev,
  440. struct ethtool_pauseparam *ecmd)
  441. {
  442. struct skge_port *skge = netdev_priv(dev);
  443. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  444. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  445. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  446. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  447. ecmd->autoneg = skge->autoneg;
  448. }
  449. static int skge_set_pauseparam(struct net_device *dev,
  450. struct ethtool_pauseparam *ecmd)
  451. {
  452. struct skge_port *skge = netdev_priv(dev);
  453. skge->autoneg = ecmd->autoneg;
  454. if (ecmd->rx_pause && ecmd->tx_pause)
  455. skge->flow_control = FLOW_MODE_SYMMETRIC;
  456. else if(ecmd->rx_pause && !ecmd->tx_pause)
  457. skge->flow_control = FLOW_MODE_REM_SEND;
  458. else if(!ecmd->rx_pause && ecmd->tx_pause)
  459. skge->flow_control = FLOW_MODE_LOC_SEND;
  460. else
  461. skge->flow_control = FLOW_MODE_NONE;
  462. if (netif_running(dev)) {
  463. skge_down(dev);
  464. skge_up(dev);
  465. }
  466. return 0;
  467. }
  468. /* Chip internal frequency for clock calculations */
  469. static inline u32 hwkhz(const struct skge_hw *hw)
  470. {
  471. if (hw->chip_id == CHIP_ID_GENESIS)
  472. return 53215; /* or: 53.125 MHz */
  473. else if (hw->chip_id == CHIP_ID_YUKON_EC)
  474. return 125000; /* or: 125.000 MHz */
  475. else
  476. return 78215; /* or: 78.125 MHz */
  477. }
  478. /* Chip hz to microseconds */
  479. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  480. {
  481. return (ticks * 1000) / hwkhz(hw);
  482. }
  483. /* Microseconds to chip hz */
  484. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  485. {
  486. return hwkhz(hw) * usec / 1000;
  487. }
  488. static int skge_get_coalesce(struct net_device *dev,
  489. struct ethtool_coalesce *ecmd)
  490. {
  491. struct skge_port *skge = netdev_priv(dev);
  492. struct skge_hw *hw = skge->hw;
  493. int port = skge->port;
  494. ecmd->rx_coalesce_usecs = 0;
  495. ecmd->tx_coalesce_usecs = 0;
  496. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  497. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  498. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  499. if (msk & rxirqmask[port])
  500. ecmd->rx_coalesce_usecs = delay;
  501. if (msk & txirqmask[port])
  502. ecmd->tx_coalesce_usecs = delay;
  503. }
  504. return 0;
  505. }
  506. /* Note: interrupt timer is per board, but can turn on/off per port */
  507. static int skge_set_coalesce(struct net_device *dev,
  508. struct ethtool_coalesce *ecmd)
  509. {
  510. struct skge_port *skge = netdev_priv(dev);
  511. struct skge_hw *hw = skge->hw;
  512. int port = skge->port;
  513. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  514. u32 delay = 25;
  515. if (ecmd->rx_coalesce_usecs == 0)
  516. msk &= ~rxirqmask[port];
  517. else if (ecmd->rx_coalesce_usecs < 25 ||
  518. ecmd->rx_coalesce_usecs > 33333)
  519. return -EINVAL;
  520. else {
  521. msk |= rxirqmask[port];
  522. delay = ecmd->rx_coalesce_usecs;
  523. }
  524. if (ecmd->tx_coalesce_usecs == 0)
  525. msk &= ~txirqmask[port];
  526. else if (ecmd->tx_coalesce_usecs < 25 ||
  527. ecmd->tx_coalesce_usecs > 33333)
  528. return -EINVAL;
  529. else {
  530. msk |= txirqmask[port];
  531. delay = min(delay, ecmd->rx_coalesce_usecs);
  532. }
  533. skge_write32(hw, B2_IRQM_MSK, msk);
  534. if (msk == 0)
  535. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  536. else {
  537. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  538. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  539. }
  540. return 0;
  541. }
  542. static void skge_led_on(struct skge_hw *hw, int port)
  543. {
  544. if (hw->chip_id == CHIP_ID_GENESIS) {
  545. skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON);
  546. skge_write8(hw, B0_LED, LED_STAT_ON);
  547. skge_write8(hw, SKGEMAC_REG(port, RX_LED_TST), LED_T_ON);
  548. skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 100);
  549. skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START);
  550. switch (hw->phy_type) {
  551. case SK_PHY_BCOM:
  552. skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
  553. PHY_B_PEC_LED_ON);
  554. break;
  555. case SK_PHY_LONE:
  556. skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG,
  557. 0x0800);
  558. break;
  559. default:
  560. skge_write8(hw, SKGEMAC_REG(port, TX_LED_TST), LED_T_ON);
  561. skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 100);
  562. skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START);
  563. }
  564. } else {
  565. skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  566. skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  567. PHY_M_LED_MO_DUP(MO_LED_ON) |
  568. PHY_M_LED_MO_10(MO_LED_ON) |
  569. PHY_M_LED_MO_100(MO_LED_ON) |
  570. PHY_M_LED_MO_1000(MO_LED_ON) |
  571. PHY_M_LED_MO_RX(MO_LED_ON));
  572. }
  573. }
  574. static void skge_led_off(struct skge_hw *hw, int port)
  575. {
  576. if (hw->chip_id == CHIP_ID_GENESIS) {
  577. skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_OFF);
  578. skge_write8(hw, B0_LED, LED_STAT_OFF);
  579. skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 0);
  580. skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_T_OFF);
  581. switch (hw->phy_type) {
  582. case SK_PHY_BCOM:
  583. skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
  584. PHY_B_PEC_LED_OFF);
  585. break;
  586. case SK_PHY_LONE:
  587. skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG,
  588. PHY_L_LC_LEDT);
  589. break;
  590. default:
  591. skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 0);
  592. skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_T_OFF);
  593. }
  594. } else {
  595. skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  596. skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  597. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  598. PHY_M_LED_MO_10(MO_LED_OFF) |
  599. PHY_M_LED_MO_100(MO_LED_OFF) |
  600. PHY_M_LED_MO_1000(MO_LED_OFF) |
  601. PHY_M_LED_MO_RX(MO_LED_OFF));
  602. }
  603. }
  604. static void skge_blink_timer(unsigned long data)
  605. {
  606. struct skge_port *skge = (struct skge_port *) data;
  607. struct skge_hw *hw = skge->hw;
  608. unsigned long flags;
  609. spin_lock_irqsave(&hw->phy_lock, flags);
  610. if (skge->blink_on)
  611. skge_led_on(hw, skge->port);
  612. else
  613. skge_led_off(hw, skge->port);
  614. spin_unlock_irqrestore(&hw->phy_lock, flags);
  615. skge->blink_on = !skge->blink_on;
  616. mod_timer(&skge->led_blink, jiffies + BLINK_HZ);
  617. }
  618. /* blink LED's for finding board */
  619. static int skge_phys_id(struct net_device *dev, u32 data)
  620. {
  621. struct skge_port *skge = netdev_priv(dev);
  622. if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  623. data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
  624. /* start blinking */
  625. skge->blink_on = 1;
  626. mod_timer(&skge->led_blink, jiffies+1);
  627. msleep_interruptible(data * 1000);
  628. del_timer_sync(&skge->led_blink);
  629. skge_led_off(skge->hw, skge->port);
  630. return 0;
  631. }
  632. static struct ethtool_ops skge_ethtool_ops = {
  633. .get_settings = skge_get_settings,
  634. .set_settings = skge_set_settings,
  635. .get_drvinfo = skge_get_drvinfo,
  636. .get_regs_len = skge_get_regs_len,
  637. .get_regs = skge_get_regs,
  638. .get_wol = skge_get_wol,
  639. .set_wol = skge_set_wol,
  640. .get_msglevel = skge_get_msglevel,
  641. .set_msglevel = skge_set_msglevel,
  642. .nway_reset = skge_nway_reset,
  643. .get_link = ethtool_op_get_link,
  644. .get_ringparam = skge_get_ring_param,
  645. .set_ringparam = skge_set_ring_param,
  646. .get_pauseparam = skge_get_pauseparam,
  647. .set_pauseparam = skge_set_pauseparam,
  648. .get_coalesce = skge_get_coalesce,
  649. .set_coalesce = skge_set_coalesce,
  650. .get_tso = ethtool_op_get_tso,
  651. .set_tso = skge_set_tso,
  652. .get_sg = ethtool_op_get_sg,
  653. .set_sg = skge_set_sg,
  654. .get_tx_csum = ethtool_op_get_tx_csum,
  655. .set_tx_csum = skge_set_tx_csum,
  656. .get_rx_csum = skge_get_rx_csum,
  657. .set_rx_csum = skge_set_rx_csum,
  658. .get_strings = skge_get_strings,
  659. .phys_id = skge_phys_id,
  660. .get_stats_count = skge_get_stats_count,
  661. .get_ethtool_stats = skge_get_ethtool_stats,
  662. };
  663. /*
  664. * Allocate ring elements and chain them together
  665. * One-to-one association of board descriptors with ring elements
  666. */
  667. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
  668. {
  669. struct skge_tx_desc *d;
  670. struct skge_element *e;
  671. int i;
  672. ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
  673. if (!ring->start)
  674. return -ENOMEM;
  675. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  676. e->desc = d;
  677. if (i == ring->count - 1) {
  678. e->next = ring->start;
  679. d->next_offset = base;
  680. } else {
  681. e->next = e + 1;
  682. d->next_offset = base + (i+1) * sizeof(*d);
  683. }
  684. }
  685. ring->to_use = ring->to_clean = ring->start;
  686. return 0;
  687. }
  688. /* Setup buffer for receiving */
  689. static inline int skge_rx_alloc(struct skge_port *skge,
  690. struct skge_element *e)
  691. {
  692. unsigned long bufsize = skge->netdev->mtu + ETH_HLEN; /* VLAN? */
  693. struct skge_rx_desc *rd = e->desc;
  694. struct sk_buff *skb;
  695. u64 map;
  696. skb = dev_alloc_skb(bufsize + NET_IP_ALIGN);
  697. if (unlikely(!skb)) {
  698. printk(KERN_DEBUG PFX "%s: out of memory for receive\n",
  699. skge->netdev->name);
  700. return -ENOMEM;
  701. }
  702. skb->dev = skge->netdev;
  703. skb_reserve(skb, NET_IP_ALIGN);
  704. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  705. PCI_DMA_FROMDEVICE);
  706. rd->dma_lo = map;
  707. rd->dma_hi = map >> 32;
  708. e->skb = skb;
  709. rd->csum1_start = ETH_HLEN;
  710. rd->csum2_start = ETH_HLEN;
  711. rd->csum1 = 0;
  712. rd->csum2 = 0;
  713. wmb();
  714. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  715. pci_unmap_addr_set(e, mapaddr, map);
  716. pci_unmap_len_set(e, maplen, bufsize);
  717. return 0;
  718. }
  719. /* Free all unused buffers in receive ring, assumes receiver stopped */
  720. static void skge_rx_clean(struct skge_port *skge)
  721. {
  722. struct skge_hw *hw = skge->hw;
  723. struct skge_ring *ring = &skge->rx_ring;
  724. struct skge_element *e;
  725. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  726. struct skge_rx_desc *rd = e->desc;
  727. rd->control = 0;
  728. pci_unmap_single(hw->pdev,
  729. pci_unmap_addr(e, mapaddr),
  730. pci_unmap_len(e, maplen),
  731. PCI_DMA_FROMDEVICE);
  732. dev_kfree_skb(e->skb);
  733. e->skb = NULL;
  734. }
  735. ring->to_clean = e;
  736. }
  737. /* Allocate buffers for receive ring
  738. * For receive: to_use is refill location
  739. * to_clean is next received frame.
  740. *
  741. * if (to_use == to_clean)
  742. * then ring all frames in ring need buffers
  743. * if (to_use->next == to_clean)
  744. * then ring all frames in ring have buffers
  745. */
  746. static int skge_rx_fill(struct skge_port *skge)
  747. {
  748. struct skge_ring *ring = &skge->rx_ring;
  749. struct skge_element *e;
  750. int ret = 0;
  751. for (e = ring->to_use; e->next != ring->to_clean; e = e->next) {
  752. if (skge_rx_alloc(skge, e)) {
  753. ret = 1;
  754. break;
  755. }
  756. }
  757. ring->to_use = e;
  758. return ret;
  759. }
  760. static void skge_link_up(struct skge_port *skge)
  761. {
  762. netif_carrier_on(skge->netdev);
  763. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  764. netif_wake_queue(skge->netdev);
  765. if (netif_msg_link(skge))
  766. printk(KERN_INFO PFX
  767. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  768. skge->netdev->name, skge->speed,
  769. skge->duplex == DUPLEX_FULL ? "full" : "half",
  770. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  771. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  772. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  773. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  774. "unknown");
  775. }
  776. static void skge_link_down(struct skge_port *skge)
  777. {
  778. netif_carrier_off(skge->netdev);
  779. netif_stop_queue(skge->netdev);
  780. if (netif_msg_link(skge))
  781. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  782. }
  783. static u16 skge_xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  784. {
  785. int i;
  786. u16 v;
  787. skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  788. v = skge_xm_read16(hw, port, XM_PHY_DATA);
  789. if (hw->phy_type != SK_PHY_XMAC) {
  790. for (i = 0; i < PHY_RETRIES; i++) {
  791. udelay(1);
  792. if (skge_xm_read16(hw, port, XM_MMU_CMD)
  793. & XM_MMU_PHY_RDY)
  794. goto ready;
  795. }
  796. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  797. hw->dev[port]->name);
  798. return 0;
  799. ready:
  800. v = skge_xm_read16(hw, port, XM_PHY_DATA);
  801. }
  802. return v;
  803. }
  804. static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  805. {
  806. int i;
  807. skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  808. for (i = 0; i < PHY_RETRIES; i++) {
  809. if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  810. goto ready;
  811. cpu_relax();
  812. }
  813. printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
  814. hw->dev[port]->name);
  815. ready:
  816. skge_xm_write16(hw, port, XM_PHY_DATA, val);
  817. for (i = 0; i < PHY_RETRIES; i++) {
  818. udelay(1);
  819. if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  820. return;
  821. }
  822. printk(KERN_WARNING PFX "%s: phy write timed out\n",
  823. hw->dev[port]->name);
  824. }
  825. static void genesis_init(struct skge_hw *hw)
  826. {
  827. /* set blink source counter */
  828. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  829. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  830. /* configure mac arbiter */
  831. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  832. /* configure mac arbiter timeout values */
  833. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  834. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  835. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  836. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  837. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  838. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  839. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  840. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  841. /* configure packet arbiter timeout */
  842. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  843. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  844. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  845. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  846. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  847. }
  848. static void genesis_reset(struct skge_hw *hw, int port)
  849. {
  850. int i;
  851. u64 zero = 0;
  852. /* reset the statistics module */
  853. skge_xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  854. skge_xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  855. skge_xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  856. skge_xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  857. skge_xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  858. /* disable all PHY IRQs */
  859. if (hw->phy_type == SK_PHY_BCOM)
  860. skge_xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  861. skge_xm_outhash(hw, port, XM_HSM, (u8 *) &zero);
  862. for (i = 0; i < 15; i++)
  863. skge_xm_outaddr(hw, port, XM_EXM(i), (u8 *) &zero);
  864. skge_xm_outhash(hw, port, XM_SRC_CHK, (u8 *) &zero);
  865. }
  866. static void genesis_mac_init(struct skge_hw *hw, int port)
  867. {
  868. struct skge_port *skge = netdev_priv(hw->dev[port]);
  869. int i;
  870. u32 r;
  871. u16 id1;
  872. u16 ctrl1, ctrl2, ctrl3, ctrl4, ctrl5;
  873. /* magic workaround patterns for Broadcom */
  874. static const struct {
  875. u16 reg;
  876. u16 val;
  877. } A1hack[] = {
  878. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  879. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  880. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  881. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  882. }, C0hack[] = {
  883. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  884. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  885. };
  886. /* initialize Rx, Tx and Link LED */
  887. skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON);
  888. skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  889. skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START);
  890. skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START);
  891. /* Unreset the XMAC. */
  892. skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  893. /*
  894. * Perform additional initialization for external PHYs,
  895. * namely for the 1000baseTX cards that use the XMAC's
  896. * GMII mode.
  897. */
  898. spin_lock_bh(&hw->phy_lock);
  899. if (hw->phy_type != SK_PHY_XMAC) {
  900. /* Take PHY out of reset. */
  901. r = skge_read32(hw, B2_GP_IO);
  902. if (port == 0)
  903. r |= GP_DIR_0|GP_IO_0;
  904. else
  905. r |= GP_DIR_2|GP_IO_2;
  906. skge_write32(hw, B2_GP_IO, r);
  907. skge_read32(hw, B2_GP_IO);
  908. /* Enable GMII mode on the XMAC. */
  909. skge_xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  910. id1 = skge_xm_phy_read(hw, port, PHY_XMAC_ID1);
  911. /* Optimize MDIO transfer by suppressing preamble. */
  912. skge_xm_write16(hw, port, XM_MMU_CMD,
  913. skge_xm_read16(hw, port, XM_MMU_CMD)
  914. | XM_MMU_NO_PRE);
  915. if (id1 == PHY_BCOM_ID1_C0) {
  916. /*
  917. * Workaround BCOM Errata for the C0 type.
  918. * Write magic patterns to reserved registers.
  919. */
  920. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  921. skge_xm_phy_write(hw, port,
  922. C0hack[i].reg, C0hack[i].val);
  923. } else if (id1 == PHY_BCOM_ID1_A1) {
  924. /*
  925. * Workaround BCOM Errata for the A1 type.
  926. * Write magic patterns to reserved registers.
  927. */
  928. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  929. skge_xm_phy_write(hw, port,
  930. A1hack[i].reg, A1hack[i].val);
  931. }
  932. /*
  933. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  934. * Disable Power Management after reset.
  935. */
  936. r = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  937. skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r | PHY_B_AC_DIS_PM);
  938. }
  939. /* Dummy read */
  940. skge_xm_read16(hw, port, XM_ISRC);
  941. r = skge_xm_read32(hw, port, XM_MODE);
  942. skge_xm_write32(hw, port, XM_MODE, r|XM_MD_CSA);
  943. /* We don't need the FCS appended to the packet. */
  944. r = skge_xm_read16(hw, port, XM_RX_CMD);
  945. skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_STRIP_FCS);
  946. /* We want short frames padded to 60 bytes. */
  947. r = skge_xm_read16(hw, port, XM_TX_CMD);
  948. skge_xm_write16(hw, port, XM_TX_CMD, r | XM_TX_AUTO_PAD);
  949. /*
  950. * Enable the reception of all error frames. This is is
  951. * a necessary evil due to the design of the XMAC. The
  952. * XMAC's receive FIFO is only 8K in size, however jumbo
  953. * frames can be up to 9000 bytes in length. When bad
  954. * frame filtering is enabled, the XMAC's RX FIFO operates
  955. * in 'store and forward' mode. For this to work, the
  956. * entire frame has to fit into the FIFO, but that means
  957. * that jumbo frames larger than 8192 bytes will be
  958. * truncated. Disabling all bad frame filtering causes
  959. * the RX FIFO to operate in streaming mode, in which
  960. * case the XMAC will start transfering frames out of the
  961. * RX FIFO as soon as the FIFO threshold is reached.
  962. */
  963. r = skge_xm_read32(hw, port, XM_MODE);
  964. skge_xm_write32(hw, port, XM_MODE,
  965. XM_MD_RX_CRCE|XM_MD_RX_LONG|XM_MD_RX_RUNT|
  966. XM_MD_RX_ERR|XM_MD_RX_IRLE);
  967. skge_xm_outaddr(hw, port, XM_SA, hw->dev[port]->dev_addr);
  968. skge_xm_outaddr(hw, port, XM_EXM(0), hw->dev[port]->dev_addr);
  969. /*
  970. * Bump up the transmit threshold. This helps hold off transmit
  971. * underruns when we're blasting traffic from both ports at once.
  972. */
  973. skge_xm_write16(hw, port, XM_TX_THR, 512);
  974. /* Configure MAC arbiter */
  975. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  976. /* configure timeout values */
  977. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  978. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  979. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  980. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  981. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  982. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  983. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  984. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  985. /* Configure Rx MAC FIFO */
  986. skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  987. skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  988. skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  989. /* Configure Tx MAC FIFO */
  990. skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  991. skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  992. skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  993. if (hw->dev[port]->mtu > ETH_DATA_LEN) {
  994. /* Enable frame flushing if jumbo frames used */
  995. skge_write16(hw, SKGEMAC_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  996. } else {
  997. /* enable timeout timers if normal frames */
  998. skge_write16(hw, B3_PA_CTRL,
  999. port == 0 ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1000. }
  1001. r = skge_xm_read16(hw, port, XM_RX_CMD);
  1002. if (hw->dev[port]->mtu > ETH_DATA_LEN)
  1003. skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_BIG_PK_OK);
  1004. else
  1005. skge_xm_write16(hw, port, XM_RX_CMD, r & ~(XM_RX_BIG_PK_OK));
  1006. switch (hw->phy_type) {
  1007. case SK_PHY_XMAC:
  1008. if (skge->autoneg == AUTONEG_ENABLE) {
  1009. ctrl1 = PHY_X_AN_FD | PHY_X_AN_HD;
  1010. switch (skge->flow_control) {
  1011. case FLOW_MODE_NONE:
  1012. ctrl1 |= PHY_X_P_NO_PAUSE;
  1013. break;
  1014. case FLOW_MODE_LOC_SEND:
  1015. ctrl1 |= PHY_X_P_ASYM_MD;
  1016. break;
  1017. case FLOW_MODE_SYMMETRIC:
  1018. ctrl1 |= PHY_X_P_SYM_MD;
  1019. break;
  1020. case FLOW_MODE_REM_SEND:
  1021. ctrl1 |= PHY_X_P_BOTH_MD;
  1022. break;
  1023. }
  1024. skge_xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl1);
  1025. ctrl2 = PHY_CT_ANE | PHY_CT_RE_CFG;
  1026. } else {
  1027. ctrl2 = 0;
  1028. if (skge->duplex == DUPLEX_FULL)
  1029. ctrl2 |= PHY_CT_DUP_MD;
  1030. }
  1031. skge_xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl2);
  1032. break;
  1033. case SK_PHY_BCOM:
  1034. ctrl1 = PHY_CT_SP1000;
  1035. ctrl2 = 0;
  1036. ctrl3 = PHY_SEL_TYPE;
  1037. ctrl4 = PHY_B_PEC_EN_LTR;
  1038. ctrl5 = PHY_B_AC_TX_TST;
  1039. if (skge->autoneg == AUTONEG_ENABLE) {
  1040. /*
  1041. * Workaround BCOM Errata #1 for the C5 type.
  1042. * 1000Base-T Link Acquisition Failure in Slave Mode
  1043. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  1044. */
  1045. ctrl2 |= PHY_B_1000C_RD;
  1046. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1047. ctrl2 |= PHY_B_1000C_AHD;
  1048. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1049. ctrl2 |= PHY_B_1000C_AFD;
  1050. /* Set Flow-control capabilities */
  1051. switch (skge->flow_control) {
  1052. case FLOW_MODE_NONE:
  1053. ctrl3 |= PHY_B_P_NO_PAUSE;
  1054. break;
  1055. case FLOW_MODE_LOC_SEND:
  1056. ctrl3 |= PHY_B_P_ASYM_MD;
  1057. break;
  1058. case FLOW_MODE_SYMMETRIC:
  1059. ctrl3 |= PHY_B_P_SYM_MD;
  1060. break;
  1061. case FLOW_MODE_REM_SEND:
  1062. ctrl3 |= PHY_B_P_BOTH_MD;
  1063. break;
  1064. }
  1065. /* Restart Auto-negotiation */
  1066. ctrl1 |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1067. } else {
  1068. if (skge->duplex == DUPLEX_FULL)
  1069. ctrl1 |= PHY_CT_DUP_MD;
  1070. ctrl2 |= PHY_B_1000C_MSE; /* set it to Slave */
  1071. }
  1072. skge_xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, ctrl2);
  1073. skge_xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, ctrl3);
  1074. if (skge->netdev->mtu > ETH_DATA_LEN) {
  1075. ctrl4 |= PHY_B_PEC_HIGH_LA;
  1076. ctrl5 |= PHY_B_AC_LONG_PACK;
  1077. skge_xm_phy_write(hw, port,PHY_BCOM_AUX_CTRL, ctrl5);
  1078. }
  1079. skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ctrl4);
  1080. skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl1);
  1081. break;
  1082. }
  1083. spin_unlock_bh(&hw->phy_lock);
  1084. /* Clear MIB counters */
  1085. skge_xm_write16(hw, port, XM_STAT_CMD,
  1086. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1087. /* Clear two times according to Errata #3 */
  1088. skge_xm_write16(hw, port, XM_STAT_CMD,
  1089. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  1090. /* Start polling for link status */
  1091. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1092. }
  1093. static void genesis_stop(struct skge_port *skge)
  1094. {
  1095. struct skge_hw *hw = skge->hw;
  1096. int port = skge->port;
  1097. /* Clear Tx packet arbiter timeout IRQ */
  1098. skge_write16(hw, B3_PA_CTRL,
  1099. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1100. /*
  1101. * If the transfer stucks at the MAC the STOP command will not
  1102. * terminate if we don't flush the XMAC's transmit FIFO !
  1103. */
  1104. skge_xm_write32(hw, port, XM_MODE,
  1105. skge_xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1106. /* Reset the MAC */
  1107. skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1108. /* For external PHYs there must be special handling */
  1109. if (hw->phy_type != SK_PHY_XMAC) {
  1110. u32 reg = skge_read32(hw, B2_GP_IO);
  1111. if (port == 0) {
  1112. reg |= GP_DIR_0;
  1113. reg &= ~GP_IO_0;
  1114. } else {
  1115. reg |= GP_DIR_2;
  1116. reg &= ~GP_IO_2;
  1117. }
  1118. skge_write32(hw, B2_GP_IO, reg);
  1119. skge_read32(hw, B2_GP_IO);
  1120. }
  1121. skge_xm_write16(hw, port, XM_MMU_CMD,
  1122. skge_xm_read16(hw, port, XM_MMU_CMD)
  1123. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1124. skge_xm_read16(hw, port, XM_MMU_CMD);
  1125. }
  1126. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1127. {
  1128. struct skge_hw *hw = skge->hw;
  1129. int port = skge->port;
  1130. int i;
  1131. unsigned long timeout = jiffies + HZ;
  1132. skge_xm_write16(hw, port,
  1133. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1134. /* wait for update to complete */
  1135. while (skge_xm_read16(hw, port, XM_STAT_CMD)
  1136. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1137. if (time_after(jiffies, timeout))
  1138. break;
  1139. udelay(10);
  1140. }
  1141. /* special case for 64 bit octet counter */
  1142. data[0] = (u64) skge_xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1143. | skge_xm_read32(hw, port, XM_TXO_OK_LO);
  1144. data[1] = (u64) skge_xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1145. | skge_xm_read32(hw, port, XM_RXO_OK_LO);
  1146. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1147. data[i] = skge_xm_read32(hw, port, skge_stats[i].xmac_offset);
  1148. }
  1149. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1150. {
  1151. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1152. u16 status = skge_xm_read16(hw, port, XM_ISRC);
  1153. pr_debug("genesis_intr status %x\n", status);
  1154. if (hw->phy_type == SK_PHY_XMAC) {
  1155. /* LInk down, start polling for state change */
  1156. if (status & XM_IS_INP_ASS) {
  1157. skge_xm_write16(hw, port, XM_IMSK,
  1158. skge_xm_read16(hw, port, XM_IMSK) | XM_IS_INP_ASS);
  1159. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1160. }
  1161. else if (status & XM_IS_AND)
  1162. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1163. }
  1164. if (status & XM_IS_TXF_UR) {
  1165. skge_xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1166. ++skge->net_stats.tx_fifo_errors;
  1167. }
  1168. if (status & XM_IS_RXF_OV) {
  1169. skge_xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1170. ++skge->net_stats.rx_fifo_errors;
  1171. }
  1172. }
  1173. static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1174. {
  1175. int i;
  1176. skge_gma_write16(hw, port, GM_SMI_DATA, val);
  1177. skge_gma_write16(hw, port, GM_SMI_CTRL,
  1178. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1179. for (i = 0; i < PHY_RETRIES; i++) {
  1180. udelay(1);
  1181. if (!(skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1182. break;
  1183. }
  1184. }
  1185. static u16 skge_gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1186. {
  1187. int i;
  1188. skge_gma_write16(hw, port, GM_SMI_CTRL,
  1189. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1190. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1191. for (i = 0; i < PHY_RETRIES; i++) {
  1192. udelay(1);
  1193. if (skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1194. goto ready;
  1195. }
  1196. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1197. hw->dev[port]->name);
  1198. return 0;
  1199. ready:
  1200. return skge_gma_read16(hw, port, GM_SMI_DATA);
  1201. }
  1202. static void genesis_link_down(struct skge_port *skge)
  1203. {
  1204. struct skge_hw *hw = skge->hw;
  1205. int port = skge->port;
  1206. pr_debug("genesis_link_down\n");
  1207. skge_xm_write16(hw, port, XM_MMU_CMD,
  1208. skge_xm_read16(hw, port, XM_MMU_CMD)
  1209. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1210. /* dummy read to ensure writing */
  1211. (void) skge_xm_read16(hw, port, XM_MMU_CMD);
  1212. skge_link_down(skge);
  1213. }
  1214. static void genesis_link_up(struct skge_port *skge)
  1215. {
  1216. struct skge_hw *hw = skge->hw;
  1217. int port = skge->port;
  1218. u16 cmd;
  1219. u32 mode, msk;
  1220. pr_debug("genesis_link_up\n");
  1221. cmd = skge_xm_read16(hw, port, XM_MMU_CMD);
  1222. /*
  1223. * enabling pause frame reception is required for 1000BT
  1224. * because the XMAC is not reset if the link is going down
  1225. */
  1226. if (skge->flow_control == FLOW_MODE_NONE ||
  1227. skge->flow_control == FLOW_MODE_LOC_SEND)
  1228. cmd |= XM_MMU_IGN_PF;
  1229. else
  1230. /* Enable Pause Frame Reception */
  1231. cmd &= ~XM_MMU_IGN_PF;
  1232. skge_xm_write16(hw, port, XM_MMU_CMD, cmd);
  1233. mode = skge_xm_read32(hw, port, XM_MODE);
  1234. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1235. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1236. /*
  1237. * Configure Pause Frame Generation
  1238. * Use internal and external Pause Frame Generation.
  1239. * Sending pause frames is edge triggered.
  1240. * Send a Pause frame with the maximum pause time if
  1241. * internal oder external FIFO full condition occurs.
  1242. * Send a zero pause time frame to re-start transmission.
  1243. */
  1244. /* XM_PAUSE_DA = '010000C28001' (default) */
  1245. /* XM_MAC_PTIME = 0xffff (maximum) */
  1246. /* remember this value is defined in big endian (!) */
  1247. skge_xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1248. mode |= XM_PAUSE_MODE;
  1249. skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1250. } else {
  1251. /*
  1252. * disable pause frame generation is required for 1000BT
  1253. * because the XMAC is not reset if the link is going down
  1254. */
  1255. /* Disable Pause Mode in Mode Register */
  1256. mode &= ~XM_PAUSE_MODE;
  1257. skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1258. }
  1259. skge_xm_write32(hw, port, XM_MODE, mode);
  1260. msk = XM_DEF_MSK;
  1261. if (hw->phy_type != SK_PHY_XMAC)
  1262. msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
  1263. skge_xm_write16(hw, port, XM_IMSK, msk);
  1264. skge_xm_read16(hw, port, XM_ISRC);
  1265. /* get MMU Command Reg. */
  1266. cmd = skge_xm_read16(hw, port, XM_MMU_CMD);
  1267. if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
  1268. cmd |= XM_MMU_GMII_FD;
  1269. if (hw->phy_type == SK_PHY_BCOM) {
  1270. /*
  1271. * Workaround BCOM Errata (#10523) for all BCom Phys
  1272. * Enable Power Management after link up
  1273. */
  1274. skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1275. skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1276. & ~PHY_B_AC_DIS_PM);
  1277. skge_xm_phy_write(hw, port, PHY_BCOM_INT_MASK,
  1278. PHY_B_DEF_MSK);
  1279. }
  1280. /* enable Rx/Tx */
  1281. skge_xm_write16(hw, port, XM_MMU_CMD,
  1282. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1283. skge_link_up(skge);
  1284. }
  1285. static void genesis_bcom_intr(struct skge_port *skge)
  1286. {
  1287. struct skge_hw *hw = skge->hw;
  1288. int port = skge->port;
  1289. u16 stat = skge_xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1290. pr_debug("genesis_bcom intr stat=%x\n", stat);
  1291. /* Workaround BCom Errata:
  1292. * enable and disable loopback mode if "NO HCD" occurs.
  1293. */
  1294. if (stat & PHY_B_IS_NO_HDCL) {
  1295. u16 ctrl = skge_xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1296. skge_xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1297. ctrl | PHY_CT_LOOP);
  1298. skge_xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1299. ctrl & ~PHY_CT_LOOP);
  1300. }
  1301. stat = skge_xm_phy_read(hw, port, PHY_BCOM_STAT);
  1302. if (stat & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) {
  1303. u16 aux = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  1304. if ( !(aux & PHY_B_AS_LS) && netif_carrier_ok(skge->netdev))
  1305. genesis_link_down(skge);
  1306. else if (stat & PHY_B_IS_LST_CHANGE) {
  1307. if (aux & PHY_B_AS_AN_C) {
  1308. switch (aux & PHY_B_AS_AN_RES_MSK) {
  1309. case PHY_B_RES_1000FD:
  1310. skge->duplex = DUPLEX_FULL;
  1311. break;
  1312. case PHY_B_RES_1000HD:
  1313. skge->duplex = DUPLEX_HALF;
  1314. break;
  1315. }
  1316. switch (aux & PHY_B_AS_PAUSE_MSK) {
  1317. case PHY_B_AS_PAUSE_MSK:
  1318. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1319. break;
  1320. case PHY_B_AS_PRR:
  1321. skge->flow_control = FLOW_MODE_REM_SEND;
  1322. break;
  1323. case PHY_B_AS_PRT:
  1324. skge->flow_control = FLOW_MODE_LOC_SEND;
  1325. break;
  1326. default:
  1327. skge->flow_control = FLOW_MODE_NONE;
  1328. }
  1329. skge->speed = SPEED_1000;
  1330. }
  1331. genesis_link_up(skge);
  1332. }
  1333. else
  1334. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1335. }
  1336. }
  1337. /* Perodic poll of phy status to check for link transistion */
  1338. static void skge_link_timer(unsigned long __arg)
  1339. {
  1340. struct skge_port *skge = (struct skge_port *) __arg;
  1341. struct skge_hw *hw = skge->hw;
  1342. int port = skge->port;
  1343. if (hw->chip_id != CHIP_ID_GENESIS || !netif_running(skge->netdev))
  1344. return;
  1345. spin_lock_bh(&hw->phy_lock);
  1346. if (hw->phy_type == SK_PHY_BCOM)
  1347. genesis_bcom_intr(skge);
  1348. else {
  1349. int i;
  1350. for (i = 0; i < 3; i++)
  1351. if (skge_xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
  1352. break;
  1353. if (i == 3)
  1354. mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
  1355. else
  1356. genesis_link_up(skge);
  1357. }
  1358. spin_unlock_bh(&hw->phy_lock);
  1359. }
  1360. /* Marvell Phy Initailization */
  1361. static void yukon_init(struct skge_hw *hw, int port)
  1362. {
  1363. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1364. u16 ctrl, ct1000, adv;
  1365. u16 ledctrl, ledover;
  1366. pr_debug("yukon_init\n");
  1367. if (skge->autoneg == AUTONEG_ENABLE) {
  1368. u16 ectrl = skge_gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1369. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1370. PHY_M_EC_MAC_S_MSK);
  1371. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1372. /* on PHY 88E1111 there is a change for downshift control */
  1373. if (hw->chip_id == CHIP_ID_YUKON_EC)
  1374. ectrl |= PHY_M_EC_M_DSC_2(0) | PHY_M_EC_DOWN_S_ENA;
  1375. else
  1376. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1377. skge_gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1378. }
  1379. ctrl = skge_gm_phy_read(hw, port, PHY_MARV_CTRL);
  1380. if (skge->autoneg == AUTONEG_DISABLE)
  1381. ctrl &= ~PHY_CT_ANE;
  1382. ctrl |= PHY_CT_RESET;
  1383. skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1384. ctrl = 0;
  1385. ct1000 = 0;
  1386. adv = PHY_SEL_TYPE;
  1387. if (skge->autoneg == AUTONEG_ENABLE) {
  1388. if (iscopper(hw)) {
  1389. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1390. ct1000 |= PHY_M_1000C_AFD;
  1391. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1392. ct1000 |= PHY_M_1000C_AHD;
  1393. if (skge->advertising & ADVERTISED_100baseT_Full)
  1394. adv |= PHY_M_AN_100_FD;
  1395. if (skge->advertising & ADVERTISED_100baseT_Half)
  1396. adv |= PHY_M_AN_100_HD;
  1397. if (skge->advertising & ADVERTISED_10baseT_Full)
  1398. adv |= PHY_M_AN_10_FD;
  1399. if (skge->advertising & ADVERTISED_10baseT_Half)
  1400. adv |= PHY_M_AN_10_HD;
  1401. /* Set Flow-control capabilities */
  1402. switch (skge->flow_control) {
  1403. case FLOW_MODE_NONE:
  1404. adv |= PHY_B_P_NO_PAUSE;
  1405. break;
  1406. case FLOW_MODE_LOC_SEND:
  1407. adv |= PHY_B_P_ASYM_MD;
  1408. break;
  1409. case FLOW_MODE_SYMMETRIC:
  1410. adv |= PHY_B_P_SYM_MD;
  1411. break;
  1412. case FLOW_MODE_REM_SEND:
  1413. adv |= PHY_B_P_BOTH_MD;
  1414. break;
  1415. }
  1416. } else { /* special defines for FIBER (88E1011S only) */
  1417. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1418. /* Set Flow-control capabilities */
  1419. switch (skge->flow_control) {
  1420. case FLOW_MODE_NONE:
  1421. adv |= PHY_M_P_NO_PAUSE_X;
  1422. break;
  1423. case FLOW_MODE_LOC_SEND:
  1424. adv |= PHY_M_P_ASYM_MD_X;
  1425. break;
  1426. case FLOW_MODE_SYMMETRIC:
  1427. adv |= PHY_M_P_SYM_MD_X;
  1428. break;
  1429. case FLOW_MODE_REM_SEND:
  1430. adv |= PHY_M_P_BOTH_MD_X;
  1431. break;
  1432. }
  1433. }
  1434. /* Restart Auto-negotiation */
  1435. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1436. } else {
  1437. /* forced speed/duplex settings */
  1438. ct1000 = PHY_M_1000C_MSE;
  1439. if (skge->duplex == DUPLEX_FULL)
  1440. ctrl |= PHY_CT_DUP_MD;
  1441. switch (skge->speed) {
  1442. case SPEED_1000:
  1443. ctrl |= PHY_CT_SP1000;
  1444. break;
  1445. case SPEED_100:
  1446. ctrl |= PHY_CT_SP100;
  1447. break;
  1448. }
  1449. ctrl |= PHY_CT_RESET;
  1450. }
  1451. if (hw->chip_id != CHIP_ID_YUKON_FE)
  1452. skge_gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1453. skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1454. skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1455. /* Setup Phy LED's */
  1456. ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
  1457. ledover = 0;
  1458. if (hw->chip_id == CHIP_ID_YUKON_FE) {
  1459. /* on 88E3082 these bits are at 11..9 (shifted left) */
  1460. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
  1461. skge_gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR,
  1462. ((skge_gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR)
  1463. & ~PHY_M_FELP_LED1_MSK)
  1464. | PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL)));
  1465. } else {
  1466. /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
  1467. ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
  1468. /* turn off the Rx LED (LED_RX) */
  1469. ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
  1470. }
  1471. /* disable blink mode (LED_DUPLEX) on collisions */
  1472. ctrl |= PHY_M_LEDC_DP_CTRL;
  1473. skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
  1474. if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) {
  1475. /* turn on 100 Mbps LED (LED_LINK100) */
  1476. ledover |= PHY_M_LED_MO_100(MO_LED_ON);
  1477. }
  1478. if (ledover)
  1479. skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
  1480. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1481. if (skge->autoneg == AUTONEG_ENABLE)
  1482. skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
  1483. else
  1484. skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1485. }
  1486. static void yukon_reset(struct skge_hw *hw, int port)
  1487. {
  1488. skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1489. skge_gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1490. skge_gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1491. skge_gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1492. skge_gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1493. skge_gma_write16(hw, port, GM_RX_CTRL,
  1494. skge_gma_read16(hw, port, GM_RX_CTRL)
  1495. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1496. }
  1497. static void yukon_mac_init(struct skge_hw *hw, int port)
  1498. {
  1499. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1500. int i;
  1501. u32 reg;
  1502. const u8 *addr = hw->dev[port]->dev_addr;
  1503. /* WA code for COMA mode -- set PHY reset */
  1504. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1505. chip_rev(hw) == CHIP_REV_YU_LITE_A3)
  1506. skge_write32(hw, B2_GP_IO,
  1507. (skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9));
  1508. /* hard reset */
  1509. skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), GPC_RST_SET);
  1510. skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_RST_SET);
  1511. /* WA code for COMA mode -- clear PHY reset */
  1512. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1513. chip_rev(hw) == CHIP_REV_YU_LITE_A3)
  1514. skge_write32(hw, B2_GP_IO,
  1515. (skge_read32(hw, B2_GP_IO) | GP_DIR_9)
  1516. & ~GP_IO_9);
  1517. /* Set hardware config mode */
  1518. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1519. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1520. reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1521. /* Clear GMC reset */
  1522. skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1523. skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1524. skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1525. if (skge->autoneg == AUTONEG_DISABLE) {
  1526. reg = GM_GPCR_AU_ALL_DIS;
  1527. skge_gma_write16(hw, port, GM_GP_CTRL,
  1528. skge_gma_read16(hw, port, GM_GP_CTRL) | reg);
  1529. switch (skge->speed) {
  1530. case SPEED_1000:
  1531. reg |= GM_GPCR_SPEED_1000;
  1532. /* fallthru */
  1533. case SPEED_100:
  1534. reg |= GM_GPCR_SPEED_100;
  1535. }
  1536. if (skge->duplex == DUPLEX_FULL)
  1537. reg |= GM_GPCR_DUP_FULL;
  1538. } else
  1539. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1540. switch (skge->flow_control) {
  1541. case FLOW_MODE_NONE:
  1542. skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1543. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1544. break;
  1545. case FLOW_MODE_LOC_SEND:
  1546. /* disable Rx flow-control */
  1547. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1548. }
  1549. skge_gma_write16(hw, port, GM_GP_CTRL, reg);
  1550. skge_read16(hw, GMAC_IRQ_SRC);
  1551. spin_lock_bh(&hw->phy_lock);
  1552. yukon_init(hw, port);
  1553. spin_unlock_bh(&hw->phy_lock);
  1554. /* MIB clear */
  1555. reg = skge_gma_read16(hw, port, GM_PHY_ADDR);
  1556. skge_gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1557. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1558. skge_gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1559. skge_gma_write16(hw, port, GM_PHY_ADDR, reg);
  1560. /* transmit control */
  1561. skge_gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1562. /* receive control reg: unicast + multicast + no FCS */
  1563. skge_gma_write16(hw, port, GM_RX_CTRL,
  1564. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1565. /* transmit flow control */
  1566. skge_gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1567. /* transmit parameter */
  1568. skge_gma_write16(hw, port, GM_TX_PARAM,
  1569. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1570. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1571. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1572. /* serial mode register */
  1573. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1574. if (hw->dev[port]->mtu > 1500)
  1575. reg |= GM_SMOD_JUMBO_ENA;
  1576. skge_gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1577. /* physical address: used for pause frames */
  1578. skge_gm_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1579. /* virtual address for data */
  1580. skge_gm_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1581. /* enable interrupt mask for counter overflows */
  1582. skge_gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1583. skge_gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1584. skge_gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1585. /* Initialize Mac Fifo */
  1586. /* Configure Rx MAC FIFO */
  1587. skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1588. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1589. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1590. chip_rev(hw) == CHIP_REV_YU_LITE_A3)
  1591. reg &= ~GMF_RX_F_FL_ON;
  1592. skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1593. skge_write16(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), reg);
  1594. skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
  1595. /* Configure Tx MAC FIFO */
  1596. skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1597. skge_write16(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1598. }
  1599. static void yukon_stop(struct skge_port *skge)
  1600. {
  1601. struct skge_hw *hw = skge->hw;
  1602. int port = skge->port;
  1603. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1604. chip_rev(hw) == CHIP_REV_YU_LITE_A3) {
  1605. skge_write32(hw, B2_GP_IO,
  1606. skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9);
  1607. }
  1608. skge_gma_write16(hw, port, GM_GP_CTRL,
  1609. skge_gma_read16(hw, port, GM_GP_CTRL)
  1610. & ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA));
  1611. skge_gma_read16(hw, port, GM_GP_CTRL);
  1612. /* set GPHY Control reset */
  1613. skge_gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET);
  1614. skge_gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET);
  1615. }
  1616. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1617. {
  1618. struct skge_hw *hw = skge->hw;
  1619. int port = skge->port;
  1620. int i;
  1621. data[0] = (u64) skge_gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1622. | skge_gma_read32(hw, port, GM_TXO_OK_LO);
  1623. data[1] = (u64) skge_gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1624. | skge_gma_read32(hw, port, GM_RXO_OK_LO);
  1625. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1626. data[i] = skge_gma_read32(hw, port,
  1627. skge_stats[i].gma_offset);
  1628. }
  1629. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1630. {
  1631. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1632. u8 status = skge_read8(hw, SKGEMAC_REG(port, GMAC_IRQ_SRC));
  1633. pr_debug("yukon_intr status %x\n", status);
  1634. if (status & GM_IS_RX_FF_OR) {
  1635. ++skge->net_stats.rx_fifo_errors;
  1636. skge_gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO);
  1637. }
  1638. if (status & GM_IS_TX_FF_UR) {
  1639. ++skge->net_stats.tx_fifo_errors;
  1640. skge_gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU);
  1641. }
  1642. }
  1643. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1644. {
  1645. if (hw->chip_id == CHIP_ID_YUKON_FE)
  1646. return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
  1647. switch(aux & PHY_M_PS_SPEED_MSK) {
  1648. case PHY_M_PS_SPEED_1000:
  1649. return SPEED_1000;
  1650. case PHY_M_PS_SPEED_100:
  1651. return SPEED_100;
  1652. default:
  1653. return SPEED_10;
  1654. }
  1655. }
  1656. static void yukon_link_up(struct skge_port *skge)
  1657. {
  1658. struct skge_hw *hw = skge->hw;
  1659. int port = skge->port;
  1660. u16 reg;
  1661. pr_debug("yukon_link_up\n");
  1662. /* Enable Transmit FIFO Underrun */
  1663. skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK);
  1664. reg = skge_gma_read16(hw, port, GM_GP_CTRL);
  1665. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1666. reg |= GM_GPCR_DUP_FULL;
  1667. /* enable Rx/Tx */
  1668. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1669. skge_gma_write16(hw, port, GM_GP_CTRL, reg);
  1670. skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
  1671. skge_link_up(skge);
  1672. }
  1673. static void yukon_link_down(struct skge_port *skge)
  1674. {
  1675. struct skge_hw *hw = skge->hw;
  1676. int port = skge->port;
  1677. pr_debug("yukon_link_down\n");
  1678. skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1679. skge_gm_phy_write(hw, port, GM_GP_CTRL,
  1680. skge_gm_phy_read(hw, port, GM_GP_CTRL)
  1681. & ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA));
  1682. if (hw->chip_id != CHIP_ID_YUKON_FE &&
  1683. skge->flow_control == FLOW_MODE_REM_SEND) {
  1684. /* restore Asymmetric Pause bit */
  1685. skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1686. skge_gm_phy_read(hw, port,
  1687. PHY_MARV_AUNE_ADV)
  1688. | PHY_M_AN_ASP);
  1689. }
  1690. yukon_reset(hw, port);
  1691. skge_link_down(skge);
  1692. yukon_init(hw, port);
  1693. }
  1694. static void yukon_phy_intr(struct skge_port *skge)
  1695. {
  1696. struct skge_hw *hw = skge->hw;
  1697. int port = skge->port;
  1698. const char *reason = NULL;
  1699. u16 istatus, phystat;
  1700. istatus = skge_gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1701. phystat = skge_gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1702. pr_debug("yukon phy intr istat=%x phy_stat=%x\n", istatus, phystat);
  1703. if (istatus & PHY_M_IS_AN_COMPL) {
  1704. if (skge_gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1705. & PHY_M_AN_RF) {
  1706. reason = "remote fault";
  1707. goto failed;
  1708. }
  1709. if (!(hw->chip_id == CHIP_ID_YUKON_FE || hw->chip_id == CHIP_ID_YUKON_EC)
  1710. && (skge_gm_phy_read(hw, port, PHY_MARV_1000T_STAT)
  1711. & PHY_B_1000S_MSF)) {
  1712. reason = "master/slave fault";
  1713. goto failed;
  1714. }
  1715. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1716. reason = "speed/duplex";
  1717. goto failed;
  1718. }
  1719. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1720. ? DUPLEX_FULL : DUPLEX_HALF;
  1721. skge->speed = yukon_speed(hw, phystat);
  1722. /* Tx & Rx Pause Enabled bits are at 9..8 */
  1723. if (hw->chip_id == CHIP_ID_YUKON_XL)
  1724. phystat >>= 6;
  1725. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1726. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1727. case PHY_M_PS_PAUSE_MSK:
  1728. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1729. break;
  1730. case PHY_M_PS_RX_P_EN:
  1731. skge->flow_control = FLOW_MODE_REM_SEND;
  1732. break;
  1733. case PHY_M_PS_TX_P_EN:
  1734. skge->flow_control = FLOW_MODE_LOC_SEND;
  1735. break;
  1736. default:
  1737. skge->flow_control = FLOW_MODE_NONE;
  1738. }
  1739. if (skge->flow_control == FLOW_MODE_NONE ||
  1740. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1741. skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1742. else
  1743. skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1744. yukon_link_up(skge);
  1745. return;
  1746. }
  1747. if (istatus & PHY_M_IS_LSP_CHANGE)
  1748. skge->speed = yukon_speed(hw, phystat);
  1749. if (istatus & PHY_M_IS_DUP_CHANGE)
  1750. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1751. if (istatus & PHY_M_IS_LST_CHANGE) {
  1752. if (phystat & PHY_M_PS_LINK_UP)
  1753. yukon_link_up(skge);
  1754. else
  1755. yukon_link_down(skge);
  1756. }
  1757. return;
  1758. failed:
  1759. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1760. skge->netdev->name, reason);
  1761. /* XXX restart autonegotiation? */
  1762. }
  1763. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1764. {
  1765. u32 end;
  1766. start /= 8;
  1767. len /= 8;
  1768. end = start + len - 1;
  1769. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1770. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1771. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1772. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1773. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1774. if (q == Q_R1 || q == Q_R2) {
  1775. /* Set thresholds on receive queue's */
  1776. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1777. start + (2*len)/3);
  1778. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1779. start + (len/3));
  1780. } else {
  1781. /* Enable store & forward on Tx queue's because
  1782. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1783. */
  1784. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1785. }
  1786. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1787. }
  1788. /* Setup Bus Memory Interface */
  1789. static void skge_qset(struct skge_port *skge, u16 q,
  1790. const struct skge_element *e)
  1791. {
  1792. struct skge_hw *hw = skge->hw;
  1793. u32 watermark = 0x600;
  1794. u64 base = skge->dma + (e->desc - skge->mem);
  1795. /* optimization to reduce window on 32bit/33mhz */
  1796. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1797. watermark /= 2;
  1798. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1799. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1800. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1801. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1802. }
  1803. static int skge_up(struct net_device *dev)
  1804. {
  1805. struct skge_port *skge = netdev_priv(dev);
  1806. struct skge_hw *hw = skge->hw;
  1807. int port = skge->port;
  1808. u32 chunk, ram_addr;
  1809. size_t rx_size, tx_size;
  1810. int err;
  1811. if (netif_msg_ifup(skge))
  1812. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1813. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1814. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1815. skge->mem_size = tx_size + rx_size;
  1816. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1817. if (!skge->mem)
  1818. return -ENOMEM;
  1819. memset(skge->mem, 0, skge->mem_size);
  1820. if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
  1821. goto free_pci_mem;
  1822. if (skge_rx_fill(skge))
  1823. goto free_rx_ring;
  1824. if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1825. skge->dma + rx_size)))
  1826. goto free_rx_ring;
  1827. skge->tx_avail = skge->tx_ring.count - 1;
  1828. /* Initialze MAC */
  1829. if (hw->chip_id == CHIP_ID_GENESIS)
  1830. genesis_mac_init(hw, port);
  1831. else
  1832. yukon_mac_init(hw, port);
  1833. /* Configure RAMbuffers */
  1834. chunk = hw->ram_size / (isdualport(hw) ? 4 : 2);
  1835. ram_addr = hw->ram_offset + 2 * chunk * port;
  1836. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1837. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1838. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1839. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1840. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1841. /* Start receiver BMU */
  1842. wmb();
  1843. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1844. pr_debug("skge_up completed\n");
  1845. return 0;
  1846. free_rx_ring:
  1847. skge_rx_clean(skge);
  1848. kfree(skge->rx_ring.start);
  1849. free_pci_mem:
  1850. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1851. return err;
  1852. }
  1853. static int skge_down(struct net_device *dev)
  1854. {
  1855. struct skge_port *skge = netdev_priv(dev);
  1856. struct skge_hw *hw = skge->hw;
  1857. int port = skge->port;
  1858. if (netif_msg_ifdown(skge))
  1859. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1860. netif_stop_queue(dev);
  1861. del_timer_sync(&skge->led_blink);
  1862. del_timer_sync(&skge->link_check);
  1863. /* Stop transmitter */
  1864. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1865. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1866. RB_RST_SET|RB_DIS_OP_MD);
  1867. if (hw->chip_id == CHIP_ID_GENESIS)
  1868. genesis_stop(skge);
  1869. else
  1870. yukon_stop(skge);
  1871. /* Disable Force Sync bit and Enable Alloc bit */
  1872. skge_write8(hw, SKGEMAC_REG(port, TXA_CTRL),
  1873. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1874. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1875. skge_write32(hw, SKGEMAC_REG(port, TXA_ITI_INI), 0L);
  1876. skge_write32(hw, SKGEMAC_REG(port, TXA_LIM_INI), 0L);
  1877. /* Reset PCI FIFO */
  1878. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1879. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1880. /* Reset the RAM Buffer async Tx queue */
  1881. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1882. /* stop receiver */
  1883. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1884. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1885. RB_RST_SET|RB_DIS_OP_MD);
  1886. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1887. if (hw->chip_id == CHIP_ID_GENESIS) {
  1888. skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1889. skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1890. skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_STOP);
  1891. skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_STOP);
  1892. } else {
  1893. skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1894. skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1895. }
  1896. /* turn off led's */
  1897. skge_write16(hw, B0_LED, LED_STAT_OFF);
  1898. skge_tx_clean(skge);
  1899. skge_rx_clean(skge);
  1900. kfree(skge->rx_ring.start);
  1901. kfree(skge->tx_ring.start);
  1902. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1903. return 0;
  1904. }
  1905. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1906. {
  1907. struct skge_port *skge = netdev_priv(dev);
  1908. struct skge_hw *hw = skge->hw;
  1909. struct skge_ring *ring = &skge->tx_ring;
  1910. struct skge_element *e;
  1911. struct skge_tx_desc *td;
  1912. int i;
  1913. u32 control, len;
  1914. u64 map;
  1915. unsigned long flags;
  1916. skb = skb_padto(skb, ETH_ZLEN);
  1917. if (!skb)
  1918. return NETDEV_TX_OK;
  1919. local_irq_save(flags);
  1920. if (!spin_trylock(&skge->tx_lock)) {
  1921. /* Collision - tell upper layer to requeue */
  1922. local_irq_restore(flags);
  1923. return NETDEV_TX_LOCKED;
  1924. }
  1925. if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
  1926. netif_stop_queue(dev);
  1927. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1928. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  1929. dev->name);
  1930. return NETDEV_TX_BUSY;
  1931. }
  1932. e = ring->to_use;
  1933. td = e->desc;
  1934. e->skb = skb;
  1935. len = skb_headlen(skb);
  1936. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1937. pci_unmap_addr_set(e, mapaddr, map);
  1938. pci_unmap_len_set(e, maplen, len);
  1939. td->dma_lo = map;
  1940. td->dma_hi = map >> 32;
  1941. if (skb->ip_summed == CHECKSUM_HW) {
  1942. const struct iphdr *ip
  1943. = (const struct iphdr *) (skb->data + ETH_HLEN);
  1944. int offset = skb->h.raw - skb->data;
  1945. /* This seems backwards, but it is what the sk98lin
  1946. * does. Looks like hardware is wrong?
  1947. */
  1948. if (ip->protocol == IPPROTO_UDP
  1949. && chip_rev(hw) == 0 && hw->chip_id == CHIP_ID_YUKON)
  1950. control = BMU_TCP_CHECK;
  1951. else
  1952. control = BMU_UDP_CHECK;
  1953. td->csum_offs = 0;
  1954. td->csum_start = offset;
  1955. td->csum_write = offset + skb->csum;
  1956. } else
  1957. control = BMU_CHECK;
  1958. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  1959. control |= BMU_EOF| BMU_IRQ_EOF;
  1960. else {
  1961. struct skge_tx_desc *tf = td;
  1962. control |= BMU_STFWD;
  1963. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1964. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1965. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1966. frag->size, PCI_DMA_TODEVICE);
  1967. e = e->next;
  1968. e->skb = NULL;
  1969. tf = e->desc;
  1970. tf->dma_lo = map;
  1971. tf->dma_hi = (u64) map >> 32;
  1972. pci_unmap_addr_set(e, mapaddr, map);
  1973. pci_unmap_len_set(e, maplen, frag->size);
  1974. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  1975. }
  1976. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  1977. }
  1978. /* Make sure all the descriptors written */
  1979. wmb();
  1980. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1981. wmb();
  1982. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1983. if (netif_msg_tx_queued(skge))
  1984. printk(KERN_DEBUG "%s: tx queued, slot %d, len %d\n",
  1985. dev->name, e - ring->start, skb->len);
  1986. ring->to_use = e->next;
  1987. skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
  1988. if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
  1989. pr_debug("%s: transmit queue full\n", dev->name);
  1990. netif_stop_queue(dev);
  1991. }
  1992. dev->trans_start = jiffies;
  1993. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1994. return NETDEV_TX_OK;
  1995. }
  1996. static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
  1997. {
  1998. if (e->skb) {
  1999. pci_unmap_single(hw->pdev,
  2000. pci_unmap_addr(e, mapaddr),
  2001. pci_unmap_len(e, maplen),
  2002. PCI_DMA_TODEVICE);
  2003. dev_kfree_skb_any(e->skb);
  2004. e->skb = NULL;
  2005. } else {
  2006. pci_unmap_page(hw->pdev,
  2007. pci_unmap_addr(e, mapaddr),
  2008. pci_unmap_len(e, maplen),
  2009. PCI_DMA_TODEVICE);
  2010. }
  2011. }
  2012. static void skge_tx_clean(struct skge_port *skge)
  2013. {
  2014. struct skge_ring *ring = &skge->tx_ring;
  2015. struct skge_element *e;
  2016. unsigned long flags;
  2017. spin_lock_irqsave(&skge->tx_lock, flags);
  2018. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  2019. ++skge->tx_avail;
  2020. skge_tx_free(skge->hw, e);
  2021. }
  2022. ring->to_clean = e;
  2023. spin_unlock_irqrestore(&skge->tx_lock, flags);
  2024. }
  2025. static void skge_tx_timeout(struct net_device *dev)
  2026. {
  2027. struct skge_port *skge = netdev_priv(dev);
  2028. if (netif_msg_timer(skge))
  2029. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  2030. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  2031. skge_tx_clean(skge);
  2032. }
  2033. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  2034. {
  2035. int err = 0;
  2036. if(new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2037. return -EINVAL;
  2038. dev->mtu = new_mtu;
  2039. if (netif_running(dev)) {
  2040. skge_down(dev);
  2041. skge_up(dev);
  2042. }
  2043. return err;
  2044. }
  2045. static void genesis_set_multicast(struct net_device *dev)
  2046. {
  2047. struct skge_port *skge = netdev_priv(dev);
  2048. struct skge_hw *hw = skge->hw;
  2049. int port = skge->port;
  2050. int i, count = dev->mc_count;
  2051. struct dev_mc_list *list = dev->mc_list;
  2052. u32 mode;
  2053. u8 filter[8];
  2054. mode = skge_xm_read32(hw, port, XM_MODE);
  2055. mode |= XM_MD_ENA_HASH;
  2056. if (dev->flags & IFF_PROMISC)
  2057. mode |= XM_MD_ENA_PROM;
  2058. else
  2059. mode &= ~XM_MD_ENA_PROM;
  2060. if (dev->flags & IFF_ALLMULTI)
  2061. memset(filter, 0xff, sizeof(filter));
  2062. else {
  2063. memset(filter, 0, sizeof(filter));
  2064. for(i = 0; list && i < count; i++, list = list->next) {
  2065. u32 crc = crc32_le(~0, list->dmi_addr, ETH_ALEN);
  2066. u8 bit = 63 - (crc & 63);
  2067. filter[bit/8] |= 1 << (bit%8);
  2068. }
  2069. }
  2070. skge_xm_outhash(hw, port, XM_HSM, filter);
  2071. skge_xm_write32(hw, port, XM_MODE, mode);
  2072. }
  2073. static void yukon_set_multicast(struct net_device *dev)
  2074. {
  2075. struct skge_port *skge = netdev_priv(dev);
  2076. struct skge_hw *hw = skge->hw;
  2077. int port = skge->port;
  2078. struct dev_mc_list *list = dev->mc_list;
  2079. u16 reg;
  2080. u8 filter[8];
  2081. memset(filter, 0, sizeof(filter));
  2082. reg = skge_gma_read16(hw, port, GM_RX_CTRL);
  2083. reg |= GM_RXCR_UCF_ENA;
  2084. if (dev->flags & IFF_PROMISC) /* promiscious */
  2085. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2086. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2087. memset(filter, 0xff, sizeof(filter));
  2088. else if (dev->mc_count == 0) /* no multicast */
  2089. reg &= ~GM_RXCR_MCF_ENA;
  2090. else {
  2091. int i;
  2092. reg |= GM_RXCR_MCF_ENA;
  2093. for(i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2094. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2095. filter[bit/8] |= 1 << (bit%8);
  2096. }
  2097. }
  2098. skge_gma_write16(hw, port, GM_MC_ADDR_H1,
  2099. (u16)filter[0] | ((u16)filter[1] << 8));
  2100. skge_gma_write16(hw, port, GM_MC_ADDR_H2,
  2101. (u16)filter[2] | ((u16)filter[3] << 8));
  2102. skge_gma_write16(hw, port, GM_MC_ADDR_H3,
  2103. (u16)filter[4] | ((u16)filter[5] << 8));
  2104. skge_gma_write16(hw, port, GM_MC_ADDR_H4,
  2105. (u16)filter[6] | ((u16)filter[7] << 8));
  2106. skge_gma_write16(hw, port, GM_RX_CTRL, reg);
  2107. }
  2108. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2109. {
  2110. if (hw->chip_id == CHIP_ID_GENESIS)
  2111. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2112. else
  2113. return (status & GMR_FS_ANY_ERR) ||
  2114. (status & GMR_FS_RX_OK) == 0;
  2115. }
  2116. static void skge_rx_error(struct skge_port *skge, int slot,
  2117. u32 control, u32 status)
  2118. {
  2119. if (netif_msg_rx_err(skge))
  2120. printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n",
  2121. skge->netdev->name, slot, control, status);
  2122. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
  2123. || (control & BMU_BBC) > skge->netdev->mtu + VLAN_ETH_HLEN)
  2124. skge->net_stats.rx_length_errors++;
  2125. else {
  2126. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2127. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2128. skge->net_stats.rx_length_errors++;
  2129. if (status & XMR_FS_FRA_ERR)
  2130. skge->net_stats.rx_frame_errors++;
  2131. if (status & XMR_FS_FCS_ERR)
  2132. skge->net_stats.rx_crc_errors++;
  2133. } else {
  2134. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2135. skge->net_stats.rx_length_errors++;
  2136. if (status & GMR_FS_FRAGMENT)
  2137. skge->net_stats.rx_frame_errors++;
  2138. if (status & GMR_FS_CRC_ERR)
  2139. skge->net_stats.rx_crc_errors++;
  2140. }
  2141. }
  2142. }
  2143. static int skge_poll(struct net_device *dev, int *budget)
  2144. {
  2145. struct skge_port *skge = netdev_priv(dev);
  2146. struct skge_hw *hw = skge->hw;
  2147. struct skge_ring *ring = &skge->rx_ring;
  2148. struct skge_element *e;
  2149. unsigned int to_do = min(dev->quota, *budget);
  2150. unsigned int work_done = 0;
  2151. int done;
  2152. static const u32 irqmask[] = { IS_PORT_1, IS_PORT_2 };
  2153. for (e = ring->to_clean; e != ring->to_use && work_done < to_do;
  2154. e = e->next) {
  2155. struct skge_rx_desc *rd = e->desc;
  2156. struct sk_buff *skb = e->skb;
  2157. u32 control, len, status;
  2158. rmb();
  2159. control = rd->control;
  2160. if (control & BMU_OWN)
  2161. break;
  2162. len = control & BMU_BBC;
  2163. e->skb = NULL;
  2164. pci_unmap_single(hw->pdev,
  2165. pci_unmap_addr(e, mapaddr),
  2166. pci_unmap_len(e, maplen),
  2167. PCI_DMA_FROMDEVICE);
  2168. status = rd->status;
  2169. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
  2170. || len > dev->mtu + VLAN_ETH_HLEN
  2171. || bad_phy_status(hw, status)) {
  2172. skge_rx_error(skge, e - ring->start, control, status);
  2173. dev_kfree_skb(skb);
  2174. continue;
  2175. }
  2176. if (netif_msg_rx_status(skge))
  2177. printk(KERN_DEBUG PFX "%s: rx slot %d status 0x%x len %d\n",
  2178. dev->name, e - ring->start, rd->status, len);
  2179. skb_put(skb, len);
  2180. skb->protocol = eth_type_trans(skb, dev);
  2181. if (skge->rx_csum) {
  2182. skb->csum = le16_to_cpu(rd->csum2);
  2183. skb->ip_summed = CHECKSUM_HW;
  2184. }
  2185. dev->last_rx = jiffies;
  2186. netif_receive_skb(skb);
  2187. ++work_done;
  2188. }
  2189. ring->to_clean = e;
  2190. *budget -= work_done;
  2191. dev->quota -= work_done;
  2192. done = work_done < to_do;
  2193. if (skge_rx_fill(skge))
  2194. done = 0;
  2195. /* restart receiver */
  2196. wmb();
  2197. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
  2198. CSR_START | CSR_IRQ_CL_F);
  2199. if (done) {
  2200. local_irq_disable();
  2201. hw->intr_mask |= irqmask[skge->port];
  2202. /* Order is important since data can get interrupted */
  2203. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2204. __netif_rx_complete(dev);
  2205. local_irq_enable();
  2206. }
  2207. return !done;
  2208. }
  2209. static inline void skge_tx_intr(struct net_device *dev)
  2210. {
  2211. struct skge_port *skge = netdev_priv(dev);
  2212. struct skge_hw *hw = skge->hw;
  2213. struct skge_ring *ring = &skge->tx_ring;
  2214. struct skge_element *e;
  2215. spin_lock(&skge->tx_lock);
  2216. for(e = ring->to_clean; e != ring->to_use; e = e->next) {
  2217. struct skge_tx_desc *td = e->desc;
  2218. u32 control;
  2219. rmb();
  2220. control = td->control;
  2221. if (control & BMU_OWN)
  2222. break;
  2223. if (unlikely(netif_msg_tx_done(skge)))
  2224. printk(KERN_DEBUG PFX "%s: tx done slot %d status 0x%x\n",
  2225. dev->name, e - ring->start, td->status);
  2226. skge_tx_free(hw, e);
  2227. e->skb = NULL;
  2228. ++skge->tx_avail;
  2229. }
  2230. ring->to_clean = e;
  2231. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2232. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  2233. netif_wake_queue(dev);
  2234. spin_unlock(&skge->tx_lock);
  2235. }
  2236. static void skge_mac_parity(struct skge_hw *hw, int port)
  2237. {
  2238. printk(KERN_ERR PFX "%s: mac data parity error\n",
  2239. hw->dev[port] ? hw->dev[port]->name
  2240. : (port == 0 ? "(port A)": "(port B"));
  2241. if (hw->chip_id == CHIP_ID_GENESIS)
  2242. skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1),
  2243. MFF_CLR_PERR);
  2244. else
  2245. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2246. skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T),
  2247. (hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0)
  2248. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2249. }
  2250. static void skge_pci_clear(struct skge_hw *hw)
  2251. {
  2252. u16 status;
  2253. status = skge_read16(hw, SKGEPCI_REG(PCI_STATUS));
  2254. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2255. skge_write16(hw, SKGEPCI_REG(PCI_STATUS),
  2256. status | PCI_STATUS_ERROR_BITS);
  2257. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2258. }
  2259. static void skge_mac_intr(struct skge_hw *hw, int port)
  2260. {
  2261. if (hw->chip_id == CHIP_ID_GENESIS)
  2262. genesis_mac_intr(hw, port);
  2263. else
  2264. yukon_mac_intr(hw, port);
  2265. }
  2266. /* Handle device specific framing and timeout interrupts */
  2267. static void skge_error_irq(struct skge_hw *hw)
  2268. {
  2269. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2270. if (hw->chip_id == CHIP_ID_GENESIS) {
  2271. /* clear xmac errors */
  2272. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2273. skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT);
  2274. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2275. skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT);
  2276. } else {
  2277. /* Timestamp (unused) overflow */
  2278. if (hwstatus & IS_IRQ_TIST_OV)
  2279. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2280. if (hwstatus & IS_IRQ_SENSOR) {
  2281. /* no sensors on 32-bit Yukon */
  2282. if (!(skge_read16(hw, B0_CTST) & CS_BUS_SLOT_SZ)) {
  2283. printk(KERN_ERR PFX "ignoring bogus sensor interrups\n");
  2284. skge_write32(hw, B0_HWE_IMSK,
  2285. IS_ERR_MSK & ~IS_IRQ_SENSOR);
  2286. } else
  2287. printk(KERN_WARNING PFX "sensor interrupt\n");
  2288. }
  2289. }
  2290. if (hwstatus & IS_RAM_RD_PAR) {
  2291. printk(KERN_ERR PFX "Ram read data parity error\n");
  2292. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2293. }
  2294. if (hwstatus & IS_RAM_WR_PAR) {
  2295. printk(KERN_ERR PFX "Ram write data parity error\n");
  2296. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2297. }
  2298. if (hwstatus & IS_M1_PAR_ERR)
  2299. skge_mac_parity(hw, 0);
  2300. if (hwstatus & IS_M2_PAR_ERR)
  2301. skge_mac_parity(hw, 1);
  2302. if (hwstatus & IS_R1_PAR_ERR)
  2303. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2304. if (hwstatus & IS_R2_PAR_ERR)
  2305. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2306. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2307. printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
  2308. hwstatus);
  2309. skge_pci_clear(hw);
  2310. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2311. if (hwstatus & IS_IRQ_STAT) {
  2312. printk(KERN_WARNING PFX "IRQ status %x: still set ignoring hardware errors\n",
  2313. hwstatus);
  2314. hw->intr_mask &= ~IS_HW_ERR;
  2315. }
  2316. }
  2317. }
  2318. /*
  2319. * Interrrupt from PHY are handled in tasklet (soft irq)
  2320. * because accessing phy registers requires spin wait which might
  2321. * cause excess interrupt latency.
  2322. */
  2323. static void skge_extirq(unsigned long data)
  2324. {
  2325. struct skge_hw *hw = (struct skge_hw *) data;
  2326. int port;
  2327. spin_lock(&hw->phy_lock);
  2328. for (port = 0; port < 2; port++) {
  2329. struct net_device *dev = hw->dev[port];
  2330. if (dev && netif_running(dev)) {
  2331. struct skge_port *skge = netdev_priv(dev);
  2332. if (hw->chip_id != CHIP_ID_GENESIS)
  2333. yukon_phy_intr(skge);
  2334. else if (hw->phy_type == SK_PHY_BCOM)
  2335. genesis_bcom_intr(skge);
  2336. }
  2337. }
  2338. spin_unlock(&hw->phy_lock);
  2339. local_irq_disable();
  2340. hw->intr_mask |= IS_EXT_REG;
  2341. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2342. local_irq_enable();
  2343. }
  2344. static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
  2345. {
  2346. struct skge_hw *hw = dev_id;
  2347. u32 status = skge_read32(hw, B0_SP_ISRC);
  2348. if (status == 0 || status == ~0) /* hotplug or shared irq */
  2349. return IRQ_NONE;
  2350. status &= hw->intr_mask;
  2351. if ((status & IS_R1_F) && netif_rx_schedule_prep(hw->dev[0])) {
  2352. status &= ~IS_R1_F;
  2353. hw->intr_mask &= ~IS_R1_F;
  2354. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2355. __netif_rx_schedule(hw->dev[0]);
  2356. }
  2357. if ((status & IS_R2_F) && netif_rx_schedule_prep(hw->dev[1])) {
  2358. status &= ~IS_R2_F;
  2359. hw->intr_mask &= ~IS_R2_F;
  2360. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2361. __netif_rx_schedule(hw->dev[1]);
  2362. }
  2363. if (status & IS_XA1_F)
  2364. skge_tx_intr(hw->dev[0]);
  2365. if (status & IS_XA2_F)
  2366. skge_tx_intr(hw->dev[1]);
  2367. if (status & IS_MAC1)
  2368. skge_mac_intr(hw, 0);
  2369. if (status & IS_MAC2)
  2370. skge_mac_intr(hw, 1);
  2371. if (status & IS_HW_ERR)
  2372. skge_error_irq(hw);
  2373. if (status & IS_EXT_REG) {
  2374. hw->intr_mask &= ~IS_EXT_REG;
  2375. tasklet_schedule(&hw->ext_tasklet);
  2376. }
  2377. if (status)
  2378. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2379. return IRQ_HANDLED;
  2380. }
  2381. #ifdef CONFIG_NET_POLL_CONTROLLER
  2382. static void skge_netpoll(struct net_device *dev)
  2383. {
  2384. struct skge_port *skge = netdev_priv(dev);
  2385. disable_irq(dev->irq);
  2386. skge_intr(dev->irq, skge->hw, NULL);
  2387. enable_irq(dev->irq);
  2388. }
  2389. #endif
  2390. static int skge_set_mac_address(struct net_device *dev, void *p)
  2391. {
  2392. struct skge_port *skge = netdev_priv(dev);
  2393. struct sockaddr *addr = p;
  2394. int err = 0;
  2395. if (!is_valid_ether_addr(addr->sa_data))
  2396. return -EADDRNOTAVAIL;
  2397. skge_down(dev);
  2398. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2399. memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8,
  2400. dev->dev_addr, ETH_ALEN);
  2401. memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8,
  2402. dev->dev_addr, ETH_ALEN);
  2403. if (dev->flags & IFF_UP)
  2404. err = skge_up(dev);
  2405. return err;
  2406. }
  2407. static const struct {
  2408. u8 id;
  2409. const char *name;
  2410. } skge_chips[] = {
  2411. { CHIP_ID_GENESIS, "Genesis" },
  2412. { CHIP_ID_YUKON, "Yukon" },
  2413. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2414. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2415. { CHIP_ID_YUKON_XL, "Yukon-2 XL"},
  2416. { CHIP_ID_YUKON_EC, "YUKON-2 EC"},
  2417. { CHIP_ID_YUKON_FE, "YUKON-2 FE"},
  2418. };
  2419. static const char *skge_board_name(const struct skge_hw *hw)
  2420. {
  2421. int i;
  2422. static char buf[16];
  2423. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2424. if (skge_chips[i].id == hw->chip_id)
  2425. return skge_chips[i].name;
  2426. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2427. return buf;
  2428. }
  2429. /*
  2430. * Setup the board data structure, but don't bring up
  2431. * the port(s)
  2432. */
  2433. static int skge_reset(struct skge_hw *hw)
  2434. {
  2435. u16 ctst;
  2436. u8 t8;
  2437. int i, ports;
  2438. ctst = skge_read16(hw, B0_CTST);
  2439. /* do a SW reset */
  2440. skge_write8(hw, B0_CTST, CS_RST_SET);
  2441. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2442. /* clear PCI errors, if any */
  2443. skge_pci_clear(hw);
  2444. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2445. /* restore CLK_RUN bits (for Yukon-Lite) */
  2446. skge_write16(hw, B0_CTST,
  2447. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2448. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2449. hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2450. hw->pmd_type = skge_read8(hw, B2_PMD_TYP);
  2451. switch(hw->chip_id) {
  2452. case CHIP_ID_GENESIS:
  2453. switch (hw->phy_type) {
  2454. case SK_PHY_XMAC:
  2455. hw->phy_addr = PHY_ADDR_XMAC;
  2456. break;
  2457. case SK_PHY_BCOM:
  2458. hw->phy_addr = PHY_ADDR_BCOM;
  2459. break;
  2460. default:
  2461. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2462. pci_name(hw->pdev), hw->phy_type);
  2463. return -EOPNOTSUPP;
  2464. }
  2465. break;
  2466. case CHIP_ID_YUKON:
  2467. case CHIP_ID_YUKON_LITE:
  2468. case CHIP_ID_YUKON_LP:
  2469. if (hw->phy_type < SK_PHY_MARV_COPPER && hw->pmd_type != 'S')
  2470. hw->phy_type = SK_PHY_MARV_COPPER;
  2471. hw->phy_addr = PHY_ADDR_MARV;
  2472. if (!iscopper(hw))
  2473. hw->phy_type = SK_PHY_MARV_FIBER;
  2474. break;
  2475. default:
  2476. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2477. pci_name(hw->pdev), hw->chip_id);
  2478. return -EOPNOTSUPP;
  2479. }
  2480. hw->mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2481. ports = isdualport(hw) ? 2 : 1;
  2482. /* read the adapters RAM size */
  2483. t8 = skge_read8(hw, B2_E_0);
  2484. if (hw->chip_id == CHIP_ID_GENESIS) {
  2485. if (t8 == 3) {
  2486. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2487. hw->ram_size = 0x100000;
  2488. hw->ram_offset = 0x80000;
  2489. } else
  2490. hw->ram_size = t8 * 512;
  2491. }
  2492. else if (t8 == 0)
  2493. hw->ram_size = 0x20000;
  2494. else
  2495. hw->ram_size = t8 * 4096;
  2496. if (hw->chip_id == CHIP_ID_GENESIS)
  2497. genesis_init(hw);
  2498. else {
  2499. /* switch power to VCC (WA for VAUX problem) */
  2500. skge_write8(hw, B0_POWER_CTRL,
  2501. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2502. for (i = 0; i < ports; i++) {
  2503. skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2504. skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2505. }
  2506. }
  2507. /* turn off hardware timer (unused) */
  2508. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2509. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2510. skge_write8(hw, B0_LED, LED_STAT_ON);
  2511. /* enable the Tx Arbiters */
  2512. for (i = 0; i < ports; i++)
  2513. skge_write8(hw, SKGEMAC_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2514. /* Initialize ram interface */
  2515. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2516. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2517. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2518. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2519. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2520. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2521. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2522. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2523. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2524. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2525. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2526. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2527. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2528. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2529. /* Set interrupt moderation for Transmit only
  2530. * Receive interrupts avoided by NAPI
  2531. */
  2532. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2533. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2534. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2535. hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
  2536. if (isdualport(hw))
  2537. hw->intr_mask |= IS_PORT_2;
  2538. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2539. if (hw->chip_id != CHIP_ID_GENESIS)
  2540. skge_write8(hw, GMAC_IRQ_MSK, 0);
  2541. spin_lock_bh(&hw->phy_lock);
  2542. for (i = 0; i < ports; i++) {
  2543. if (hw->chip_id == CHIP_ID_GENESIS)
  2544. genesis_reset(hw, i);
  2545. else
  2546. yukon_reset(hw, i);
  2547. }
  2548. spin_unlock_bh(&hw->phy_lock);
  2549. return 0;
  2550. }
  2551. /* Initialize network device */
  2552. static struct net_device *skge_devinit(struct skge_hw *hw, int port)
  2553. {
  2554. struct skge_port *skge;
  2555. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2556. if (!dev) {
  2557. printk(KERN_ERR "skge etherdev alloc failed");
  2558. return NULL;
  2559. }
  2560. SET_MODULE_OWNER(dev);
  2561. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2562. dev->open = skge_up;
  2563. dev->stop = skge_down;
  2564. dev->hard_start_xmit = skge_xmit_frame;
  2565. dev->get_stats = skge_get_stats;
  2566. if (hw->chip_id == CHIP_ID_GENESIS)
  2567. dev->set_multicast_list = genesis_set_multicast;
  2568. else
  2569. dev->set_multicast_list = yukon_set_multicast;
  2570. dev->set_mac_address = skge_set_mac_address;
  2571. dev->change_mtu = skge_change_mtu;
  2572. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2573. dev->tx_timeout = skge_tx_timeout;
  2574. dev->watchdog_timeo = TX_WATCHDOG;
  2575. dev->poll = skge_poll;
  2576. dev->weight = NAPI_WEIGHT;
  2577. #ifdef CONFIG_NET_POLL_CONTROLLER
  2578. dev->poll_controller = skge_netpoll;
  2579. #endif
  2580. dev->irq = hw->pdev->irq;
  2581. dev->features = NETIF_F_LLTX;
  2582. skge = netdev_priv(dev);
  2583. skge->netdev = dev;
  2584. skge->hw = hw;
  2585. skge->msg_enable = netif_msg_init(debug, default_msg);
  2586. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2587. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2588. /* Auto speed and flow control */
  2589. skge->autoneg = AUTONEG_ENABLE;
  2590. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2591. skge->duplex = -1;
  2592. skge->speed = -1;
  2593. skge->advertising = skge_modes(hw);
  2594. hw->dev[port] = dev;
  2595. skge->port = port;
  2596. spin_lock_init(&skge->tx_lock);
  2597. init_timer(&skge->link_check);
  2598. skge->link_check.function = skge_link_timer;
  2599. skge->link_check.data = (unsigned long) skge;
  2600. init_timer(&skge->led_blink);
  2601. skge->led_blink.function = skge_blink_timer;
  2602. skge->led_blink.data = (unsigned long) skge;
  2603. if (hw->chip_id != CHIP_ID_GENESIS) {
  2604. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2605. skge->rx_csum = 1;
  2606. }
  2607. /* read the mac address */
  2608. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2609. /* device is off until link detection */
  2610. netif_carrier_off(dev);
  2611. netif_stop_queue(dev);
  2612. return dev;
  2613. }
  2614. static void __devinit skge_show_addr(struct net_device *dev)
  2615. {
  2616. const struct skge_port *skge = netdev_priv(dev);
  2617. if (netif_msg_probe(skge))
  2618. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2619. dev->name,
  2620. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2621. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2622. }
  2623. static int __devinit skge_probe(struct pci_dev *pdev,
  2624. const struct pci_device_id *ent)
  2625. {
  2626. struct net_device *dev, *dev1;
  2627. struct skge_hw *hw;
  2628. int err, using_dac = 0;
  2629. if ((err = pci_enable_device(pdev))) {
  2630. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2631. pci_name(pdev));
  2632. goto err_out;
  2633. }
  2634. if ((err = pci_request_regions(pdev, DRV_NAME))) {
  2635. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2636. pci_name(pdev));
  2637. goto err_out_disable_pdev;
  2638. }
  2639. pci_set_master(pdev);
  2640. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
  2641. using_dac = 1;
  2642. else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2643. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2644. pci_name(pdev));
  2645. goto err_out_free_regions;
  2646. }
  2647. #ifdef __BIG_ENDIAN
  2648. /* byte swap decriptors in hardware */
  2649. {
  2650. u32 reg;
  2651. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2652. reg |= PCI_REV_DESC;
  2653. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2654. }
  2655. #endif
  2656. err = -ENOMEM;
  2657. hw = kmalloc(sizeof(*hw), GFP_KERNEL);
  2658. if (!hw) {
  2659. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2660. pci_name(pdev));
  2661. goto err_out_free_regions;
  2662. }
  2663. memset(hw, 0, sizeof(*hw));
  2664. hw->pdev = pdev;
  2665. spin_lock_init(&hw->phy_lock);
  2666. tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
  2667. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2668. if (!hw->regs) {
  2669. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2670. pci_name(pdev));
  2671. goto err_out_free_hw;
  2672. }
  2673. if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
  2674. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2675. pci_name(pdev), pdev->irq);
  2676. goto err_out_iounmap;
  2677. }
  2678. pci_set_drvdata(pdev, hw);
  2679. err = skge_reset(hw);
  2680. if (err)
  2681. goto err_out_free_irq;
  2682. printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
  2683. pci_resource_start(pdev, 0), pdev->irq,
  2684. skge_board_name(hw), chip_rev(hw));
  2685. if ((dev = skge_devinit(hw, 0)) == NULL)
  2686. goto err_out_led_off;
  2687. if (using_dac)
  2688. dev->features |= NETIF_F_HIGHDMA;
  2689. if ((err = register_netdev(dev))) {
  2690. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2691. pci_name(pdev));
  2692. goto err_out_free_netdev;
  2693. }
  2694. skge_show_addr(dev);
  2695. if (isdualport(hw) && (dev1 = skge_devinit(hw, 1))) {
  2696. if (using_dac)
  2697. dev1->features |= NETIF_F_HIGHDMA;
  2698. if (register_netdev(dev1) == 0)
  2699. skge_show_addr(dev1);
  2700. else {
  2701. /* Failure to register second port need not be fatal */
  2702. printk(KERN_WARNING PFX "register of second port failed\n");
  2703. hw->dev[1] = NULL;
  2704. free_netdev(dev1);
  2705. }
  2706. }
  2707. return 0;
  2708. err_out_free_netdev:
  2709. free_netdev(dev);
  2710. err_out_led_off:
  2711. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2712. err_out_free_irq:
  2713. free_irq(pdev->irq, hw);
  2714. err_out_iounmap:
  2715. iounmap(hw->regs);
  2716. err_out_free_hw:
  2717. kfree(hw);
  2718. err_out_free_regions:
  2719. pci_release_regions(pdev);
  2720. err_out_disable_pdev:
  2721. pci_disable_device(pdev);
  2722. pci_set_drvdata(pdev, NULL);
  2723. err_out:
  2724. return err;
  2725. }
  2726. static void __devexit skge_remove(struct pci_dev *pdev)
  2727. {
  2728. struct skge_hw *hw = pci_get_drvdata(pdev);
  2729. struct net_device *dev0, *dev1;
  2730. if(!hw)
  2731. return;
  2732. if ((dev1 = hw->dev[1]))
  2733. unregister_netdev(dev1);
  2734. dev0 = hw->dev[0];
  2735. unregister_netdev(dev0);
  2736. tasklet_kill(&hw->ext_tasklet);
  2737. free_irq(pdev->irq, hw);
  2738. pci_release_regions(pdev);
  2739. pci_disable_device(pdev);
  2740. if (dev1)
  2741. free_netdev(dev1);
  2742. free_netdev(dev0);
  2743. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2744. iounmap(hw->regs);
  2745. kfree(hw);
  2746. pci_set_drvdata(pdev, NULL);
  2747. }
  2748. #ifdef CONFIG_PM
  2749. static int skge_suspend(struct pci_dev *pdev, u32 state)
  2750. {
  2751. struct skge_hw *hw = pci_get_drvdata(pdev);
  2752. int i, wol = 0;
  2753. for(i = 0; i < 2; i++) {
  2754. struct net_device *dev = hw->dev[i];
  2755. if (dev) {
  2756. struct skge_port *skge = netdev_priv(dev);
  2757. if (netif_running(dev)) {
  2758. netif_carrier_off(dev);
  2759. skge_down(dev);
  2760. }
  2761. netif_device_detach(dev);
  2762. wol |= skge->wol;
  2763. }
  2764. }
  2765. pci_save_state(pdev);
  2766. pci_enable_wake(pdev, state, wol);
  2767. pci_disable_device(pdev);
  2768. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2769. return 0;
  2770. }
  2771. static int skge_resume(struct pci_dev *pdev)
  2772. {
  2773. struct skge_hw *hw = pci_get_drvdata(pdev);
  2774. int i;
  2775. pci_set_power_state(pdev, PCI_D0);
  2776. pci_restore_state(pdev);
  2777. pci_enable_wake(pdev, PCI_D0, 0);
  2778. skge_reset(hw);
  2779. for(i = 0; i < 2; i++) {
  2780. struct net_device *dev = hw->dev[i];
  2781. if (dev) {
  2782. netif_device_attach(dev);
  2783. if(netif_running(dev))
  2784. skge_up(dev);
  2785. }
  2786. }
  2787. return 0;
  2788. }
  2789. #endif
  2790. static struct pci_driver skge_driver = {
  2791. .name = DRV_NAME,
  2792. .id_table = skge_id_table,
  2793. .probe = skge_probe,
  2794. .remove = __devexit_p(skge_remove),
  2795. #ifdef CONFIG_PM
  2796. .suspend = skge_suspend,
  2797. .resume = skge_resume,
  2798. #endif
  2799. };
  2800. static int __init skge_init_module(void)
  2801. {
  2802. return pci_module_init(&skge_driver);
  2803. }
  2804. static void __exit skge_cleanup_module(void)
  2805. {
  2806. pci_unregister_driver(&skge_driver);
  2807. }
  2808. module_init(skge_init_module);
  2809. module_exit(skge_cleanup_module);