rt2400pci.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684
  1. /*
  2. Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
  3. <http://rt2x00.serialmonkey.com>
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation; either version 2 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program; if not, write to the
  14. Free Software Foundation, Inc.,
  15. 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. /*
  18. Module: rt2400pci
  19. Abstract: rt2400pci device specific routines.
  20. Supported chipsets: RT2460.
  21. */
  22. #include <linux/delay.h>
  23. #include <linux/etherdevice.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/module.h>
  27. #include <linux/pci.h>
  28. #include <linux/eeprom_93cx6.h>
  29. #include "rt2x00.h"
  30. #include "rt2x00pci.h"
  31. #include "rt2400pci.h"
  32. /*
  33. * Register access.
  34. * All access to the CSR registers will go through the methods
  35. * rt2x00pci_register_read and rt2x00pci_register_write.
  36. * BBP and RF register require indirect register access,
  37. * and use the CSR registers BBPCSR and RFCSR to achieve this.
  38. * These indirect registers work with busy bits,
  39. * and we will try maximal REGISTER_BUSY_COUNT times to access
  40. * the register while taking a REGISTER_BUSY_DELAY us delay
  41. * between each attampt. When the busy bit is still set at that time,
  42. * the access attempt is considered to have failed,
  43. * and we will print an error.
  44. */
  45. static u32 rt2400pci_bbp_check(struct rt2x00_dev *rt2x00dev)
  46. {
  47. u32 reg;
  48. unsigned int i;
  49. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  50. rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
  51. if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
  52. break;
  53. udelay(REGISTER_BUSY_DELAY);
  54. }
  55. return reg;
  56. }
  57. static void rt2400pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  58. const unsigned int word, const u8 value)
  59. {
  60. u32 reg;
  61. /*
  62. * Wait until the BBP becomes ready.
  63. */
  64. reg = rt2400pci_bbp_check(rt2x00dev);
  65. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  66. ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
  67. return;
  68. }
  69. /*
  70. * Write the data into the BBP.
  71. */
  72. reg = 0;
  73. rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  74. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  75. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  76. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  77. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  78. }
  79. static void rt2400pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  80. const unsigned int word, u8 *value)
  81. {
  82. u32 reg;
  83. /*
  84. * Wait until the BBP becomes ready.
  85. */
  86. reg = rt2400pci_bbp_check(rt2x00dev);
  87. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  88. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  89. return;
  90. }
  91. /*
  92. * Write the request into the BBP.
  93. */
  94. reg = 0;
  95. rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  96. rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  97. rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
  98. rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  99. /*
  100. * Wait until the BBP becomes ready.
  101. */
  102. reg = rt2400pci_bbp_check(rt2x00dev);
  103. if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
  104. ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
  105. *value = 0xff;
  106. return;
  107. }
  108. *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
  109. }
  110. static void rt2400pci_rf_write(struct rt2x00_dev *rt2x00dev,
  111. const unsigned int word, const u32 value)
  112. {
  113. u32 reg;
  114. unsigned int i;
  115. if (!word)
  116. return;
  117. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  118. rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
  119. if (!rt2x00_get_field32(reg, RFCSR_BUSY))
  120. goto rf_write;
  121. udelay(REGISTER_BUSY_DELAY);
  122. }
  123. ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
  124. return;
  125. rf_write:
  126. reg = 0;
  127. rt2x00_set_field32(&reg, RFCSR_VALUE, value);
  128. rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
  129. rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
  130. rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
  131. rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
  132. rt2x00_rf_write(rt2x00dev, word, value);
  133. }
  134. static void rt2400pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
  135. {
  136. struct rt2x00_dev *rt2x00dev = eeprom->data;
  137. u32 reg;
  138. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  139. eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
  140. eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
  141. eeprom->reg_data_clock =
  142. !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
  143. eeprom->reg_chip_select =
  144. !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
  145. }
  146. static void rt2400pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
  147. {
  148. struct rt2x00_dev *rt2x00dev = eeprom->data;
  149. u32 reg = 0;
  150. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
  151. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
  152. rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
  153. !!eeprom->reg_data_clock);
  154. rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
  155. !!eeprom->reg_chip_select);
  156. rt2x00pci_register_write(rt2x00dev, CSR21, reg);
  157. }
  158. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  159. static const struct rt2x00debug rt2400pci_rt2x00debug = {
  160. .owner = THIS_MODULE,
  161. .csr = {
  162. .read = rt2x00pci_register_read,
  163. .write = rt2x00pci_register_write,
  164. .flags = RT2X00DEBUGFS_OFFSET,
  165. .word_base = CSR_REG_BASE,
  166. .word_size = sizeof(u32),
  167. .word_count = CSR_REG_SIZE / sizeof(u32),
  168. },
  169. .eeprom = {
  170. .read = rt2x00_eeprom_read,
  171. .write = rt2x00_eeprom_write,
  172. .word_base = EEPROM_BASE,
  173. .word_size = sizeof(u16),
  174. .word_count = EEPROM_SIZE / sizeof(u16),
  175. },
  176. .bbp = {
  177. .read = rt2400pci_bbp_read,
  178. .write = rt2400pci_bbp_write,
  179. .word_base = BBP_BASE,
  180. .word_size = sizeof(u8),
  181. .word_count = BBP_SIZE / sizeof(u8),
  182. },
  183. .rf = {
  184. .read = rt2x00_rf_read,
  185. .write = rt2400pci_rf_write,
  186. .word_base = RF_BASE,
  187. .word_size = sizeof(u32),
  188. .word_count = RF_SIZE / sizeof(u32),
  189. },
  190. };
  191. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  192. #ifdef CONFIG_RT2X00_LIB_RFKILL
  193. static int rt2400pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
  194. {
  195. u32 reg;
  196. rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
  197. return rt2x00_get_field32(reg, GPIOCSR_BIT0);
  198. }
  199. #else
  200. #define rt2400pci_rfkill_poll NULL
  201. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  202. #ifdef CONFIG_RT2X00_LIB_LEDS
  203. static void rt2400pci_brightness_set(struct led_classdev *led_cdev,
  204. enum led_brightness brightness)
  205. {
  206. struct rt2x00_led *led =
  207. container_of(led_cdev, struct rt2x00_led, led_dev);
  208. unsigned int enabled = brightness != LED_OFF;
  209. u32 reg;
  210. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  211. if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
  212. rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
  213. else if (led->type == LED_TYPE_ACTIVITY)
  214. rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
  215. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  216. }
  217. static int rt2400pci_blink_set(struct led_classdev *led_cdev,
  218. unsigned long *delay_on,
  219. unsigned long *delay_off)
  220. {
  221. struct rt2x00_led *led =
  222. container_of(led_cdev, struct rt2x00_led, led_dev);
  223. u32 reg;
  224. rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
  225. rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
  226. rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
  227. rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
  228. return 0;
  229. }
  230. static void rt2400pci_init_led(struct rt2x00_dev *rt2x00dev,
  231. struct rt2x00_led *led,
  232. enum led_type type)
  233. {
  234. led->rt2x00dev = rt2x00dev;
  235. led->type = type;
  236. led->led_dev.brightness_set = rt2400pci_brightness_set;
  237. led->led_dev.blink_set = rt2400pci_blink_set;
  238. led->flags = LED_INITIALIZED;
  239. }
  240. #endif /* CONFIG_RT2X00_LIB_LEDS */
  241. /*
  242. * Configuration handlers.
  243. */
  244. static void rt2400pci_config_filter(struct rt2x00_dev *rt2x00dev,
  245. const unsigned int filter_flags)
  246. {
  247. u32 reg;
  248. /*
  249. * Start configuration steps.
  250. * Note that the version error will always be dropped
  251. * since there is no filter for it at this time.
  252. */
  253. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  254. rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
  255. !(filter_flags & FIF_FCSFAIL));
  256. rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
  257. !(filter_flags & FIF_PLCPFAIL));
  258. rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
  259. !(filter_flags & FIF_CONTROL));
  260. rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
  261. !(filter_flags & FIF_PROMISC_IN_BSS));
  262. rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
  263. !(filter_flags & FIF_PROMISC_IN_BSS) &&
  264. !rt2x00dev->intf_ap_count);
  265. rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
  266. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  267. }
  268. static void rt2400pci_config_intf(struct rt2x00_dev *rt2x00dev,
  269. struct rt2x00_intf *intf,
  270. struct rt2x00intf_conf *conf,
  271. const unsigned int flags)
  272. {
  273. unsigned int bcn_preload;
  274. u32 reg;
  275. if (flags & CONFIG_UPDATE_TYPE) {
  276. /*
  277. * Enable beacon config
  278. */
  279. bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
  280. rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
  281. rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
  282. rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
  283. /*
  284. * Enable synchronisation.
  285. */
  286. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  287. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  288. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
  289. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  290. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  291. }
  292. if (flags & CONFIG_UPDATE_MAC)
  293. rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
  294. conf->mac, sizeof(conf->mac));
  295. if (flags & CONFIG_UPDATE_BSSID)
  296. rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
  297. conf->bssid, sizeof(conf->bssid));
  298. }
  299. static void rt2400pci_config_erp(struct rt2x00_dev *rt2x00dev,
  300. struct rt2x00lib_erp *erp)
  301. {
  302. int preamble_mask;
  303. u32 reg;
  304. /*
  305. * When short preamble is enabled, we should set bit 0x08
  306. */
  307. preamble_mask = erp->short_preamble << 3;
  308. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  309. rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT,
  310. erp->ack_timeout);
  311. rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME,
  312. erp->ack_consume_time);
  313. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  314. rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
  315. rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
  316. rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
  317. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 10));
  318. rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
  319. rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
  320. rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
  321. rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
  322. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 20));
  323. rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
  324. rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
  325. rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
  326. rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
  327. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 55));
  328. rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
  329. rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
  330. rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
  331. rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
  332. rt2x00_set_field32(&reg, ARCSR2_LENGTH, GET_DURATION(ACK_SIZE, 110));
  333. rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
  334. rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
  335. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  336. rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
  337. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  338. rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
  339. rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
  340. rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
  341. rt2x00pci_register_write(rt2x00dev, CSR18, reg);
  342. rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
  343. rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
  344. rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
  345. rt2x00pci_register_write(rt2x00dev, CSR19, reg);
  346. }
  347. static void rt2400pci_config_ant(struct rt2x00_dev *rt2x00dev,
  348. struct antenna_setup *ant)
  349. {
  350. u8 r1;
  351. u8 r4;
  352. /*
  353. * We should never come here because rt2x00lib is supposed
  354. * to catch this and send us the correct antenna explicitely.
  355. */
  356. BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
  357. ant->tx == ANTENNA_SW_DIVERSITY);
  358. rt2400pci_bbp_read(rt2x00dev, 4, &r4);
  359. rt2400pci_bbp_read(rt2x00dev, 1, &r1);
  360. /*
  361. * Configure the TX antenna.
  362. */
  363. switch (ant->tx) {
  364. case ANTENNA_HW_DIVERSITY:
  365. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 1);
  366. break;
  367. case ANTENNA_A:
  368. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 0);
  369. break;
  370. case ANTENNA_B:
  371. default:
  372. rt2x00_set_field8(&r1, BBP_R1_TX_ANTENNA, 2);
  373. break;
  374. }
  375. /*
  376. * Configure the RX antenna.
  377. */
  378. switch (ant->rx) {
  379. case ANTENNA_HW_DIVERSITY:
  380. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 1);
  381. break;
  382. case ANTENNA_A:
  383. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 0);
  384. break;
  385. case ANTENNA_B:
  386. default:
  387. rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA, 2);
  388. break;
  389. }
  390. rt2400pci_bbp_write(rt2x00dev, 4, r4);
  391. rt2400pci_bbp_write(rt2x00dev, 1, r1);
  392. }
  393. static void rt2400pci_config_channel(struct rt2x00_dev *rt2x00dev,
  394. struct rf_channel *rf)
  395. {
  396. /*
  397. * Switch on tuning bits.
  398. */
  399. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
  400. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
  401. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  402. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  403. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  404. /*
  405. * RF2420 chipset don't need any additional actions.
  406. */
  407. if (rt2x00_rf(&rt2x00dev->chip, RF2420))
  408. return;
  409. /*
  410. * For the RT2421 chipsets we need to write an invalid
  411. * reference clock rate to activate auto_tune.
  412. * After that we set the value back to the correct channel.
  413. */
  414. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  415. rt2400pci_rf_write(rt2x00dev, 2, 0x000c2a32);
  416. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  417. msleep(1);
  418. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  419. rt2400pci_rf_write(rt2x00dev, 2, rf->rf2);
  420. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  421. msleep(1);
  422. /*
  423. * Switch off tuning bits.
  424. */
  425. rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
  426. rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
  427. rt2400pci_rf_write(rt2x00dev, 1, rf->rf1);
  428. rt2400pci_rf_write(rt2x00dev, 3, rf->rf3);
  429. /*
  430. * Clear false CRC during channel switch.
  431. */
  432. rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
  433. }
  434. static void rt2400pci_config_txpower(struct rt2x00_dev *rt2x00dev, int txpower)
  435. {
  436. rt2400pci_bbp_write(rt2x00dev, 3, TXPOWER_TO_DEV(txpower));
  437. }
  438. static void rt2400pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
  439. struct rt2x00lib_conf *libconf)
  440. {
  441. u32 reg;
  442. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  443. rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
  444. libconf->conf->long_frame_max_tx_count);
  445. rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
  446. libconf->conf->short_frame_max_tx_count);
  447. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  448. }
  449. static void rt2400pci_config_duration(struct rt2x00_dev *rt2x00dev,
  450. struct rt2x00lib_conf *libconf)
  451. {
  452. u32 reg;
  453. rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
  454. rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
  455. rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
  456. rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
  457. rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
  458. rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
  459. libconf->conf->beacon_int * 16);
  460. rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
  461. libconf->conf->beacon_int * 16);
  462. rt2x00pci_register_write(rt2x00dev, CSR12, reg);
  463. }
  464. static void rt2400pci_config(struct rt2x00_dev *rt2x00dev,
  465. struct rt2x00lib_conf *libconf,
  466. const unsigned int flags)
  467. {
  468. if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
  469. rt2400pci_config_channel(rt2x00dev, &libconf->rf);
  470. if (flags & IEEE80211_CONF_CHANGE_POWER)
  471. rt2400pci_config_txpower(rt2x00dev,
  472. libconf->conf->power_level);
  473. if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
  474. rt2400pci_config_retry_limit(rt2x00dev, libconf);
  475. if (flags & IEEE80211_CONF_CHANGE_BEACON_INTERVAL)
  476. rt2400pci_config_duration(rt2x00dev, libconf);
  477. }
  478. static void rt2400pci_config_cw(struct rt2x00_dev *rt2x00dev,
  479. const int cw_min, const int cw_max)
  480. {
  481. u32 reg;
  482. rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
  483. rt2x00_set_field32(&reg, CSR11_CWMIN, cw_min);
  484. rt2x00_set_field32(&reg, CSR11_CWMAX, cw_max);
  485. rt2x00pci_register_write(rt2x00dev, CSR11, reg);
  486. }
  487. /*
  488. * Link tuning
  489. */
  490. static void rt2400pci_link_stats(struct rt2x00_dev *rt2x00dev,
  491. struct link_qual *qual)
  492. {
  493. u32 reg;
  494. u8 bbp;
  495. /*
  496. * Update FCS error count from register.
  497. */
  498. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  499. qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
  500. /*
  501. * Update False CCA count from register.
  502. */
  503. rt2400pci_bbp_read(rt2x00dev, 39, &bbp);
  504. qual->false_cca = bbp;
  505. }
  506. static void rt2400pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
  507. {
  508. rt2400pci_bbp_write(rt2x00dev, 13, 0x08);
  509. rt2x00dev->link.vgc_level = 0x08;
  510. }
  511. static void rt2400pci_link_tuner(struct rt2x00_dev *rt2x00dev)
  512. {
  513. u8 reg;
  514. /*
  515. * The link tuner should not run longer then 60 seconds,
  516. * and should run once every 2 seconds.
  517. */
  518. if (rt2x00dev->link.count > 60 || !(rt2x00dev->link.count & 1))
  519. return;
  520. /*
  521. * Base r13 link tuning on the false cca count.
  522. */
  523. rt2400pci_bbp_read(rt2x00dev, 13, &reg);
  524. if (rt2x00dev->link.qual.false_cca > 512 && reg < 0x20) {
  525. rt2400pci_bbp_write(rt2x00dev, 13, ++reg);
  526. rt2x00dev->link.vgc_level = reg;
  527. } else if (rt2x00dev->link.qual.false_cca < 100 && reg > 0x08) {
  528. rt2400pci_bbp_write(rt2x00dev, 13, --reg);
  529. rt2x00dev->link.vgc_level = reg;
  530. }
  531. }
  532. /*
  533. * Initialization functions.
  534. */
  535. static bool rt2400pci_get_entry_state(struct queue_entry *entry)
  536. {
  537. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  538. u32 word;
  539. if (entry->queue->qid == QID_RX) {
  540. rt2x00_desc_read(entry_priv->desc, 0, &word);
  541. return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
  542. } else {
  543. rt2x00_desc_read(entry_priv->desc, 0, &word);
  544. return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  545. rt2x00_get_field32(word, TXD_W0_VALID));
  546. }
  547. }
  548. static void rt2400pci_clear_entry(struct queue_entry *entry)
  549. {
  550. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  551. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  552. u32 word;
  553. if (entry->queue->qid == QID_RX) {
  554. rt2x00_desc_read(entry_priv->desc, 2, &word);
  555. rt2x00_set_field32(&word, RXD_W2_BUFFER_LENGTH, entry->skb->len);
  556. rt2x00_desc_write(entry_priv->desc, 2, word);
  557. rt2x00_desc_read(entry_priv->desc, 1, &word);
  558. rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  559. rt2x00_desc_write(entry_priv->desc, 1, word);
  560. rt2x00_desc_read(entry_priv->desc, 0, &word);
  561. rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
  562. rt2x00_desc_write(entry_priv->desc, 0, word);
  563. } else {
  564. rt2x00_desc_read(entry_priv->desc, 0, &word);
  565. rt2x00_set_field32(&word, TXD_W0_VALID, 0);
  566. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
  567. rt2x00_desc_write(entry_priv->desc, 0, word);
  568. }
  569. }
  570. static int rt2400pci_init_queues(struct rt2x00_dev *rt2x00dev)
  571. {
  572. struct queue_entry_priv_pci *entry_priv;
  573. u32 reg;
  574. /*
  575. * Initialize registers.
  576. */
  577. rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
  578. rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
  579. rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
  580. rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->bcn[1].limit);
  581. rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
  582. rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
  583. entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
  584. rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
  585. rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
  586. entry_priv->desc_dma);
  587. rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
  588. entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
  589. rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
  590. rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
  591. entry_priv->desc_dma);
  592. rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
  593. entry_priv = rt2x00dev->bcn[1].entries[0].priv_data;
  594. rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
  595. rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
  596. entry_priv->desc_dma);
  597. rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
  598. entry_priv = rt2x00dev->bcn[0].entries[0].priv_data;
  599. rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
  600. rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
  601. entry_priv->desc_dma);
  602. rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
  603. rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
  604. rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
  605. rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
  606. rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
  607. entry_priv = rt2x00dev->rx->entries[0].priv_data;
  608. rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
  609. rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
  610. entry_priv->desc_dma);
  611. rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
  612. return 0;
  613. }
  614. static int rt2400pci_init_registers(struct rt2x00_dev *rt2x00dev)
  615. {
  616. u32 reg;
  617. rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
  618. rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
  619. rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00023f20);
  620. rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
  621. rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
  622. rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
  623. rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
  624. rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
  625. rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
  626. rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
  627. rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
  628. (rt2x00dev->rx->data_size / 128));
  629. rt2x00pci_register_write(rt2x00dev, CSR9, reg);
  630. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  631. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  632. rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
  633. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  634. rt2x00_set_field32(&reg, CSR14_TCFP, 0);
  635. rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
  636. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  637. rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
  638. rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
  639. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  640. rt2x00pci_register_write(rt2x00dev, CNT3, 0x3f080000);
  641. rt2x00pci_register_read(rt2x00dev, ARCSR0, &reg);
  642. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA0, 133);
  643. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID0, 134);
  644. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_DATA1, 136);
  645. rt2x00_set_field32(&reg, ARCSR0_AR_BBP_ID1, 135);
  646. rt2x00pci_register_write(rt2x00dev, ARCSR0, reg);
  647. rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
  648. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 3); /* Tx power.*/
  649. rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
  650. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 32); /* Signal */
  651. rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
  652. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 36); /* Rssi */
  653. rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
  654. rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
  655. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
  656. if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
  657. return -EBUSY;
  658. rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00217223);
  659. rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
  660. rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
  661. rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
  662. rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
  663. rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
  664. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
  665. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 154);
  666. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
  667. rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 154);
  668. rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
  669. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  670. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
  671. rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
  672. rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
  673. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  674. rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
  675. rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
  676. rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
  677. rt2x00pci_register_write(rt2x00dev, CSR1, reg);
  678. /*
  679. * We must clear the FCS and FIFO error count.
  680. * These registers are cleared on read,
  681. * so we may pass a useless variable to store the value.
  682. */
  683. rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
  684. rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
  685. return 0;
  686. }
  687. static int rt2400pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
  688. {
  689. unsigned int i;
  690. u8 value;
  691. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  692. rt2400pci_bbp_read(rt2x00dev, 0, &value);
  693. if ((value != 0xff) && (value != 0x00))
  694. return 0;
  695. udelay(REGISTER_BUSY_DELAY);
  696. }
  697. ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
  698. return -EACCES;
  699. }
  700. static int rt2400pci_init_bbp(struct rt2x00_dev *rt2x00dev)
  701. {
  702. unsigned int i;
  703. u16 eeprom;
  704. u8 reg_id;
  705. u8 value;
  706. if (unlikely(rt2400pci_wait_bbp_ready(rt2x00dev)))
  707. return -EACCES;
  708. rt2400pci_bbp_write(rt2x00dev, 1, 0x00);
  709. rt2400pci_bbp_write(rt2x00dev, 3, 0x27);
  710. rt2400pci_bbp_write(rt2x00dev, 4, 0x08);
  711. rt2400pci_bbp_write(rt2x00dev, 10, 0x0f);
  712. rt2400pci_bbp_write(rt2x00dev, 15, 0x72);
  713. rt2400pci_bbp_write(rt2x00dev, 16, 0x74);
  714. rt2400pci_bbp_write(rt2x00dev, 17, 0x20);
  715. rt2400pci_bbp_write(rt2x00dev, 18, 0x72);
  716. rt2400pci_bbp_write(rt2x00dev, 19, 0x0b);
  717. rt2400pci_bbp_write(rt2x00dev, 20, 0x00);
  718. rt2400pci_bbp_write(rt2x00dev, 28, 0x11);
  719. rt2400pci_bbp_write(rt2x00dev, 29, 0x04);
  720. rt2400pci_bbp_write(rt2x00dev, 30, 0x21);
  721. rt2400pci_bbp_write(rt2x00dev, 31, 0x00);
  722. for (i = 0; i < EEPROM_BBP_SIZE; i++) {
  723. rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
  724. if (eeprom != 0xffff && eeprom != 0x0000) {
  725. reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
  726. value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
  727. rt2400pci_bbp_write(rt2x00dev, reg_id, value);
  728. }
  729. }
  730. return 0;
  731. }
  732. /*
  733. * Device state switch handlers.
  734. */
  735. static void rt2400pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
  736. enum dev_state state)
  737. {
  738. u32 reg;
  739. rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
  740. rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
  741. (state == STATE_RADIO_RX_OFF) ||
  742. (state == STATE_RADIO_RX_OFF_LINK));
  743. rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
  744. }
  745. static void rt2400pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
  746. enum dev_state state)
  747. {
  748. int mask = (state == STATE_RADIO_IRQ_OFF);
  749. u32 reg;
  750. /*
  751. * When interrupts are being enabled, the interrupt registers
  752. * should clear the register to assure a clean state.
  753. */
  754. if (state == STATE_RADIO_IRQ_ON) {
  755. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  756. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  757. }
  758. /*
  759. * Only toggle the interrupts bits we are going to use.
  760. * Non-checked interrupt bits are disabled by default.
  761. */
  762. rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
  763. rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
  764. rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
  765. rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
  766. rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
  767. rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
  768. rt2x00pci_register_write(rt2x00dev, CSR8, reg);
  769. }
  770. static int rt2400pci_enable_radio(struct rt2x00_dev *rt2x00dev)
  771. {
  772. /*
  773. * Initialize all registers.
  774. */
  775. if (unlikely(rt2400pci_init_queues(rt2x00dev) ||
  776. rt2400pci_init_registers(rt2x00dev) ||
  777. rt2400pci_init_bbp(rt2x00dev)))
  778. return -EIO;
  779. return 0;
  780. }
  781. static void rt2400pci_disable_radio(struct rt2x00_dev *rt2x00dev)
  782. {
  783. u32 reg;
  784. rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
  785. /*
  786. * Disable synchronisation.
  787. */
  788. rt2x00pci_register_write(rt2x00dev, CSR14, 0);
  789. /*
  790. * Cancel RX and TX.
  791. */
  792. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  793. rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
  794. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  795. }
  796. static int rt2400pci_set_state(struct rt2x00_dev *rt2x00dev,
  797. enum dev_state state)
  798. {
  799. u32 reg;
  800. unsigned int i;
  801. char put_to_sleep;
  802. char bbp_state;
  803. char rf_state;
  804. put_to_sleep = (state != STATE_AWAKE);
  805. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  806. rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
  807. rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
  808. rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
  809. rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
  810. rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
  811. /*
  812. * Device is not guaranteed to be in the requested state yet.
  813. * We must wait until the register indicates that the
  814. * device has entered the correct state.
  815. */
  816. for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
  817. rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
  818. bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
  819. rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
  820. if (bbp_state == state && rf_state == state)
  821. return 0;
  822. msleep(10);
  823. }
  824. return -EBUSY;
  825. }
  826. static int rt2400pci_set_device_state(struct rt2x00_dev *rt2x00dev,
  827. enum dev_state state)
  828. {
  829. int retval = 0;
  830. switch (state) {
  831. case STATE_RADIO_ON:
  832. retval = rt2400pci_enable_radio(rt2x00dev);
  833. break;
  834. case STATE_RADIO_OFF:
  835. rt2400pci_disable_radio(rt2x00dev);
  836. break;
  837. case STATE_RADIO_RX_ON:
  838. case STATE_RADIO_RX_ON_LINK:
  839. case STATE_RADIO_RX_OFF:
  840. case STATE_RADIO_RX_OFF_LINK:
  841. rt2400pci_toggle_rx(rt2x00dev, state);
  842. break;
  843. case STATE_RADIO_IRQ_ON:
  844. case STATE_RADIO_IRQ_OFF:
  845. rt2400pci_toggle_irq(rt2x00dev, state);
  846. break;
  847. case STATE_DEEP_SLEEP:
  848. case STATE_SLEEP:
  849. case STATE_STANDBY:
  850. case STATE_AWAKE:
  851. retval = rt2400pci_set_state(rt2x00dev, state);
  852. break;
  853. default:
  854. retval = -ENOTSUPP;
  855. break;
  856. }
  857. if (unlikely(retval))
  858. ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
  859. state, retval);
  860. return retval;
  861. }
  862. /*
  863. * TX descriptor initialization
  864. */
  865. static void rt2400pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
  866. struct sk_buff *skb,
  867. struct txentry_desc *txdesc)
  868. {
  869. struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
  870. struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
  871. __le32 *txd = skbdesc->desc;
  872. u32 word;
  873. /*
  874. * Start writing the descriptor words.
  875. */
  876. rt2x00_desc_read(entry_priv->desc, 1, &word);
  877. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  878. rt2x00_desc_write(entry_priv->desc, 1, word);
  879. rt2x00_desc_read(txd, 2, &word);
  880. rt2x00_set_field32(&word, TXD_W2_BUFFER_LENGTH, skb->len);
  881. rt2x00_set_field32(&word, TXD_W2_DATABYTE_COUNT, skb->len);
  882. rt2x00_desc_write(txd, 2, word);
  883. rt2x00_desc_read(txd, 3, &word);
  884. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->signal);
  885. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_REGNUM, 5);
  886. rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL_BUSY, 1);
  887. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->service);
  888. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_REGNUM, 6);
  889. rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE_BUSY, 1);
  890. rt2x00_desc_write(txd, 3, word);
  891. rt2x00_desc_read(txd, 4, &word);
  892. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_LOW, txdesc->length_low);
  893. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_REGNUM, 8);
  894. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW_BUSY, 1);
  895. rt2x00_set_field32(&word, TXD_W4_PLCP_LENGTH_HIGH, txdesc->length_high);
  896. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_REGNUM, 7);
  897. rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH_BUSY, 1);
  898. rt2x00_desc_write(txd, 4, word);
  899. rt2x00_desc_read(txd, 0, &word);
  900. rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
  901. rt2x00_set_field32(&word, TXD_W0_VALID, 1);
  902. rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
  903. test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
  904. rt2x00_set_field32(&word, TXD_W0_ACK,
  905. test_bit(ENTRY_TXD_ACK, &txdesc->flags));
  906. rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
  907. test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
  908. rt2x00_set_field32(&word, TXD_W0_RTS,
  909. test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
  910. rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
  911. rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
  912. test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
  913. rt2x00_desc_write(txd, 0, word);
  914. }
  915. /*
  916. * TX data initialization
  917. */
  918. static void rt2400pci_write_beacon(struct queue_entry *entry)
  919. {
  920. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  921. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  922. struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
  923. u32 word;
  924. u32 reg;
  925. /*
  926. * Disable beaconing while we are reloading the beacon data,
  927. * otherwise we might be sending out invalid data.
  928. */
  929. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  930. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
  931. rt2x00_set_field32(&reg, CSR14_TBCN, 0);
  932. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
  933. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  934. /*
  935. * Replace rt2x00lib allocated descriptor with the
  936. * pointer to the _real_ hardware descriptor.
  937. * After that, map the beacon to DMA and update the
  938. * descriptor.
  939. */
  940. memcpy(entry_priv->desc, skbdesc->desc, skbdesc->desc_len);
  941. skbdesc->desc = entry_priv->desc;
  942. rt2x00queue_map_txskb(rt2x00dev, entry->skb);
  943. rt2x00_desc_read(entry_priv->desc, 1, &word);
  944. rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
  945. rt2x00_desc_write(entry_priv->desc, 1, word);
  946. }
  947. static void rt2400pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
  948. const enum data_queue_qid queue)
  949. {
  950. u32 reg;
  951. if (queue == QID_BEACON) {
  952. rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
  953. if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
  954. rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
  955. rt2x00_set_field32(&reg, CSR14_TBCN, 1);
  956. rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
  957. rt2x00pci_register_write(rt2x00dev, CSR14, reg);
  958. }
  959. return;
  960. }
  961. rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
  962. rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, (queue == QID_AC_BE));
  963. rt2x00_set_field32(&reg, TXCSR0_KICK_TX, (queue == QID_AC_BK));
  964. rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, (queue == QID_ATIM));
  965. rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
  966. }
  967. /*
  968. * RX control handlers
  969. */
  970. static void rt2400pci_fill_rxdone(struct queue_entry *entry,
  971. struct rxdone_entry_desc *rxdesc)
  972. {
  973. struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
  974. struct queue_entry_priv_pci *entry_priv = entry->priv_data;
  975. u32 word0;
  976. u32 word2;
  977. u32 word3;
  978. u32 word4;
  979. u64 tsf;
  980. u32 rx_low;
  981. u32 rx_high;
  982. rt2x00_desc_read(entry_priv->desc, 0, &word0);
  983. rt2x00_desc_read(entry_priv->desc, 2, &word2);
  984. rt2x00_desc_read(entry_priv->desc, 3, &word3);
  985. rt2x00_desc_read(entry_priv->desc, 4, &word4);
  986. if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
  987. rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
  988. if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
  989. rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
  990. /*
  991. * We only get the lower 32bits from the timestamp,
  992. * to get the full 64bits we must complement it with
  993. * the timestamp from get_tsf().
  994. * Note that when a wraparound of the lower 32bits
  995. * has occurred between the frame arrival and the get_tsf()
  996. * call, we must decrease the higher 32bits with 1 to get
  997. * to correct value.
  998. */
  999. tsf = rt2x00dev->ops->hw->get_tsf(rt2x00dev->hw);
  1000. rx_low = rt2x00_get_field32(word4, RXD_W4_RX_END_TIME);
  1001. rx_high = upper_32_bits(tsf);
  1002. if ((u32)tsf <= rx_low)
  1003. rx_high--;
  1004. /*
  1005. * Obtain the status about this packet.
  1006. * The signal is the PLCP value, and needs to be stripped
  1007. * of the preamble bit (0x08).
  1008. */
  1009. rxdesc->timestamp = ((u64)rx_high << 32) | rx_low;
  1010. rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL) & ~0x08;
  1011. rxdesc->rssi = rt2x00_get_field32(word2, RXD_W3_RSSI) -
  1012. entry->queue->rt2x00dev->rssi_offset;
  1013. rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
  1014. rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
  1015. if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
  1016. rxdesc->dev_flags |= RXDONE_MY_BSS;
  1017. }
  1018. /*
  1019. * Interrupt functions.
  1020. */
  1021. static void rt2400pci_txdone(struct rt2x00_dev *rt2x00dev,
  1022. const enum data_queue_qid queue_idx)
  1023. {
  1024. struct data_queue *queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
  1025. struct queue_entry_priv_pci *entry_priv;
  1026. struct queue_entry *entry;
  1027. struct txdone_entry_desc txdesc;
  1028. u32 word;
  1029. while (!rt2x00queue_empty(queue)) {
  1030. entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
  1031. entry_priv = entry->priv_data;
  1032. rt2x00_desc_read(entry_priv->desc, 0, &word);
  1033. if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
  1034. !rt2x00_get_field32(word, TXD_W0_VALID))
  1035. break;
  1036. /*
  1037. * Obtain the status about this packet.
  1038. */
  1039. txdesc.flags = 0;
  1040. switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
  1041. case 0: /* Success */
  1042. case 1: /* Success with retry */
  1043. __set_bit(TXDONE_SUCCESS, &txdesc.flags);
  1044. break;
  1045. case 2: /* Failure, excessive retries */
  1046. __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
  1047. /* Don't break, this is a failed frame! */
  1048. default: /* Failure */
  1049. __set_bit(TXDONE_FAILURE, &txdesc.flags);
  1050. }
  1051. txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
  1052. rt2x00lib_txdone(entry, &txdesc);
  1053. }
  1054. }
  1055. static irqreturn_t rt2400pci_interrupt(int irq, void *dev_instance)
  1056. {
  1057. struct rt2x00_dev *rt2x00dev = dev_instance;
  1058. u32 reg;
  1059. /*
  1060. * Get the interrupt sources & saved to local variable.
  1061. * Write register value back to clear pending interrupts.
  1062. */
  1063. rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
  1064. rt2x00pci_register_write(rt2x00dev, CSR7, reg);
  1065. if (!reg)
  1066. return IRQ_NONE;
  1067. if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
  1068. return IRQ_HANDLED;
  1069. /*
  1070. * Handle interrupts, walk through all bits
  1071. * and run the tasks, the bits are checked in order of
  1072. * priority.
  1073. */
  1074. /*
  1075. * 1 - Beacon timer expired interrupt.
  1076. */
  1077. if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
  1078. rt2x00lib_beacondone(rt2x00dev);
  1079. /*
  1080. * 2 - Rx ring done interrupt.
  1081. */
  1082. if (rt2x00_get_field32(reg, CSR7_RXDONE))
  1083. rt2x00pci_rxdone(rt2x00dev);
  1084. /*
  1085. * 3 - Atim ring transmit done interrupt.
  1086. */
  1087. if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
  1088. rt2400pci_txdone(rt2x00dev, QID_ATIM);
  1089. /*
  1090. * 4 - Priority ring transmit done interrupt.
  1091. */
  1092. if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
  1093. rt2400pci_txdone(rt2x00dev, QID_AC_BE);
  1094. /*
  1095. * 5 - Tx ring transmit done interrupt.
  1096. */
  1097. if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
  1098. rt2400pci_txdone(rt2x00dev, QID_AC_BK);
  1099. return IRQ_HANDLED;
  1100. }
  1101. /*
  1102. * Device probe functions.
  1103. */
  1104. static int rt2400pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
  1105. {
  1106. struct eeprom_93cx6 eeprom;
  1107. u32 reg;
  1108. u16 word;
  1109. u8 *mac;
  1110. rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
  1111. eeprom.data = rt2x00dev;
  1112. eeprom.register_read = rt2400pci_eepromregister_read;
  1113. eeprom.register_write = rt2400pci_eepromregister_write;
  1114. eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
  1115. PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
  1116. eeprom.reg_data_in = 0;
  1117. eeprom.reg_data_out = 0;
  1118. eeprom.reg_data_clock = 0;
  1119. eeprom.reg_chip_select = 0;
  1120. eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
  1121. EEPROM_SIZE / sizeof(u16));
  1122. /*
  1123. * Start validation of the data that has been read.
  1124. */
  1125. mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
  1126. if (!is_valid_ether_addr(mac)) {
  1127. random_ether_addr(mac);
  1128. EEPROM(rt2x00dev, "MAC: %pM\n", mac);
  1129. }
  1130. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
  1131. if (word == 0xffff) {
  1132. ERROR(rt2x00dev, "Invalid EEPROM data detected.\n");
  1133. return -EINVAL;
  1134. }
  1135. return 0;
  1136. }
  1137. static int rt2400pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
  1138. {
  1139. u32 reg;
  1140. u16 value;
  1141. u16 eeprom;
  1142. /*
  1143. * Read EEPROM word for configuration.
  1144. */
  1145. rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
  1146. /*
  1147. * Identify RF chipset.
  1148. */
  1149. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
  1150. rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
  1151. rt2x00_set_chip(rt2x00dev, RT2460, value, reg);
  1152. if (!rt2x00_rf(&rt2x00dev->chip, RF2420) &&
  1153. !rt2x00_rf(&rt2x00dev->chip, RF2421)) {
  1154. ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
  1155. return -ENODEV;
  1156. }
  1157. /*
  1158. * Identify default antenna configuration.
  1159. */
  1160. rt2x00dev->default_ant.tx =
  1161. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
  1162. rt2x00dev->default_ant.rx =
  1163. rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
  1164. /*
  1165. * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
  1166. * I am not 100% sure about this, but the legacy drivers do not
  1167. * indicate antenna swapping in software is required when
  1168. * diversity is enabled.
  1169. */
  1170. if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
  1171. rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
  1172. if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
  1173. rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
  1174. /*
  1175. * Store led mode, for correct led behaviour.
  1176. */
  1177. #ifdef CONFIG_RT2X00_LIB_LEDS
  1178. value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
  1179. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
  1180. if (value == LED_MODE_TXRX_ACTIVITY)
  1181. rt2400pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
  1182. LED_TYPE_ACTIVITY);
  1183. #endif /* CONFIG_RT2X00_LIB_LEDS */
  1184. /*
  1185. * Detect if this device has an hardware controlled radio.
  1186. */
  1187. #ifdef CONFIG_RT2X00_LIB_RFKILL
  1188. if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
  1189. __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
  1190. #endif /* CONFIG_RT2X00_LIB_RFKILL */
  1191. /*
  1192. * Check if the BBP tuning should be enabled.
  1193. */
  1194. if (!rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_AGCVGC_TUNING))
  1195. __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
  1196. return 0;
  1197. }
  1198. /*
  1199. * RF value list for RF2420 & RF2421
  1200. * Supports: 2.4 GHz
  1201. */
  1202. static const struct rf_channel rf_vals_b[] = {
  1203. { 1, 0x00022058, 0x000c1fda, 0x00000101, 0 },
  1204. { 2, 0x00022058, 0x000c1fee, 0x00000101, 0 },
  1205. { 3, 0x00022058, 0x000c2002, 0x00000101, 0 },
  1206. { 4, 0x00022058, 0x000c2016, 0x00000101, 0 },
  1207. { 5, 0x00022058, 0x000c202a, 0x00000101, 0 },
  1208. { 6, 0x00022058, 0x000c203e, 0x00000101, 0 },
  1209. { 7, 0x00022058, 0x000c2052, 0x00000101, 0 },
  1210. { 8, 0x00022058, 0x000c2066, 0x00000101, 0 },
  1211. { 9, 0x00022058, 0x000c207a, 0x00000101, 0 },
  1212. { 10, 0x00022058, 0x000c208e, 0x00000101, 0 },
  1213. { 11, 0x00022058, 0x000c20a2, 0x00000101, 0 },
  1214. { 12, 0x00022058, 0x000c20b6, 0x00000101, 0 },
  1215. { 13, 0x00022058, 0x000c20ca, 0x00000101, 0 },
  1216. { 14, 0x00022058, 0x000c20fa, 0x00000101, 0 },
  1217. };
  1218. static int rt2400pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
  1219. {
  1220. struct hw_mode_spec *spec = &rt2x00dev->spec;
  1221. struct channel_info *info;
  1222. char *tx_power;
  1223. unsigned int i;
  1224. /*
  1225. * Initialize all hw fields.
  1226. */
  1227. rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  1228. IEEE80211_HW_SIGNAL_DBM;
  1229. rt2x00dev->hw->extra_tx_headroom = 0;
  1230. SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
  1231. SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
  1232. rt2x00_eeprom_addr(rt2x00dev,
  1233. EEPROM_MAC_ADDR_0));
  1234. /*
  1235. * Initialize hw_mode information.
  1236. */
  1237. spec->supported_bands = SUPPORT_BAND_2GHZ;
  1238. spec->supported_rates = SUPPORT_RATE_CCK;
  1239. spec->num_channels = ARRAY_SIZE(rf_vals_b);
  1240. spec->channels = rf_vals_b;
  1241. /*
  1242. * Create channel information array
  1243. */
  1244. info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
  1245. if (!info)
  1246. return -ENOMEM;
  1247. spec->channels_info = info;
  1248. tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
  1249. for (i = 0; i < 14; i++)
  1250. info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
  1251. return 0;
  1252. }
  1253. static int rt2400pci_probe_hw(struct rt2x00_dev *rt2x00dev)
  1254. {
  1255. int retval;
  1256. /*
  1257. * Allocate eeprom data.
  1258. */
  1259. retval = rt2400pci_validate_eeprom(rt2x00dev);
  1260. if (retval)
  1261. return retval;
  1262. retval = rt2400pci_init_eeprom(rt2x00dev);
  1263. if (retval)
  1264. return retval;
  1265. /*
  1266. * Initialize hw specifications.
  1267. */
  1268. retval = rt2400pci_probe_hw_mode(rt2x00dev);
  1269. if (retval)
  1270. return retval;
  1271. /*
  1272. * This device requires the atim queue and DMA-mapped skbs.
  1273. */
  1274. __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
  1275. __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
  1276. /*
  1277. * Set the rssi offset.
  1278. */
  1279. rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
  1280. return 0;
  1281. }
  1282. /*
  1283. * IEEE80211 stack callback functions.
  1284. */
  1285. static int rt2400pci_conf_tx(struct ieee80211_hw *hw, u16 queue,
  1286. const struct ieee80211_tx_queue_params *params)
  1287. {
  1288. struct rt2x00_dev *rt2x00dev = hw->priv;
  1289. /*
  1290. * We don't support variating cw_min and cw_max variables
  1291. * per queue. So by default we only configure the TX queue,
  1292. * and ignore all other configurations.
  1293. */
  1294. if (queue != 0)
  1295. return -EINVAL;
  1296. if (rt2x00mac_conf_tx(hw, queue, params))
  1297. return -EINVAL;
  1298. /*
  1299. * Write configuration to register.
  1300. */
  1301. rt2400pci_config_cw(rt2x00dev,
  1302. rt2x00dev->tx->cw_min, rt2x00dev->tx->cw_max);
  1303. return 0;
  1304. }
  1305. static u64 rt2400pci_get_tsf(struct ieee80211_hw *hw)
  1306. {
  1307. struct rt2x00_dev *rt2x00dev = hw->priv;
  1308. u64 tsf;
  1309. u32 reg;
  1310. rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
  1311. tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
  1312. rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
  1313. tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
  1314. return tsf;
  1315. }
  1316. static int rt2400pci_tx_last_beacon(struct ieee80211_hw *hw)
  1317. {
  1318. struct rt2x00_dev *rt2x00dev = hw->priv;
  1319. u32 reg;
  1320. rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
  1321. return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
  1322. }
  1323. static const struct ieee80211_ops rt2400pci_mac80211_ops = {
  1324. .tx = rt2x00mac_tx,
  1325. .start = rt2x00mac_start,
  1326. .stop = rt2x00mac_stop,
  1327. .add_interface = rt2x00mac_add_interface,
  1328. .remove_interface = rt2x00mac_remove_interface,
  1329. .config = rt2x00mac_config,
  1330. .config_interface = rt2x00mac_config_interface,
  1331. .configure_filter = rt2x00mac_configure_filter,
  1332. .get_stats = rt2x00mac_get_stats,
  1333. .bss_info_changed = rt2x00mac_bss_info_changed,
  1334. .conf_tx = rt2400pci_conf_tx,
  1335. .get_tx_stats = rt2x00mac_get_tx_stats,
  1336. .get_tsf = rt2400pci_get_tsf,
  1337. .tx_last_beacon = rt2400pci_tx_last_beacon,
  1338. };
  1339. static const struct rt2x00lib_ops rt2400pci_rt2x00_ops = {
  1340. .irq_handler = rt2400pci_interrupt,
  1341. .probe_hw = rt2400pci_probe_hw,
  1342. .initialize = rt2x00pci_initialize,
  1343. .uninitialize = rt2x00pci_uninitialize,
  1344. .get_entry_state = rt2400pci_get_entry_state,
  1345. .clear_entry = rt2400pci_clear_entry,
  1346. .set_device_state = rt2400pci_set_device_state,
  1347. .rfkill_poll = rt2400pci_rfkill_poll,
  1348. .link_stats = rt2400pci_link_stats,
  1349. .reset_tuner = rt2400pci_reset_tuner,
  1350. .link_tuner = rt2400pci_link_tuner,
  1351. .write_tx_desc = rt2400pci_write_tx_desc,
  1352. .write_tx_data = rt2x00pci_write_tx_data,
  1353. .write_beacon = rt2400pci_write_beacon,
  1354. .kick_tx_queue = rt2400pci_kick_tx_queue,
  1355. .fill_rxdone = rt2400pci_fill_rxdone,
  1356. .config_filter = rt2400pci_config_filter,
  1357. .config_intf = rt2400pci_config_intf,
  1358. .config_erp = rt2400pci_config_erp,
  1359. .config_ant = rt2400pci_config_ant,
  1360. .config = rt2400pci_config,
  1361. };
  1362. static const struct data_queue_desc rt2400pci_queue_rx = {
  1363. .entry_num = RX_ENTRIES,
  1364. .data_size = DATA_FRAME_SIZE,
  1365. .desc_size = RXD_DESC_SIZE,
  1366. .priv_size = sizeof(struct queue_entry_priv_pci),
  1367. };
  1368. static const struct data_queue_desc rt2400pci_queue_tx = {
  1369. .entry_num = TX_ENTRIES,
  1370. .data_size = DATA_FRAME_SIZE,
  1371. .desc_size = TXD_DESC_SIZE,
  1372. .priv_size = sizeof(struct queue_entry_priv_pci),
  1373. };
  1374. static const struct data_queue_desc rt2400pci_queue_bcn = {
  1375. .entry_num = BEACON_ENTRIES,
  1376. .data_size = MGMT_FRAME_SIZE,
  1377. .desc_size = TXD_DESC_SIZE,
  1378. .priv_size = sizeof(struct queue_entry_priv_pci),
  1379. };
  1380. static const struct data_queue_desc rt2400pci_queue_atim = {
  1381. .entry_num = ATIM_ENTRIES,
  1382. .data_size = DATA_FRAME_SIZE,
  1383. .desc_size = TXD_DESC_SIZE,
  1384. .priv_size = sizeof(struct queue_entry_priv_pci),
  1385. };
  1386. static const struct rt2x00_ops rt2400pci_ops = {
  1387. .name = KBUILD_MODNAME,
  1388. .max_sta_intf = 1,
  1389. .max_ap_intf = 1,
  1390. .eeprom_size = EEPROM_SIZE,
  1391. .rf_size = RF_SIZE,
  1392. .tx_queues = NUM_TX_QUEUES,
  1393. .rx = &rt2400pci_queue_rx,
  1394. .tx = &rt2400pci_queue_tx,
  1395. .bcn = &rt2400pci_queue_bcn,
  1396. .atim = &rt2400pci_queue_atim,
  1397. .lib = &rt2400pci_rt2x00_ops,
  1398. .hw = &rt2400pci_mac80211_ops,
  1399. #ifdef CONFIG_RT2X00_LIB_DEBUGFS
  1400. .debugfs = &rt2400pci_rt2x00debug,
  1401. #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
  1402. };
  1403. /*
  1404. * RT2400pci module information.
  1405. */
  1406. static struct pci_device_id rt2400pci_device_table[] = {
  1407. { PCI_DEVICE(0x1814, 0x0101), PCI_DEVICE_DATA(&rt2400pci_ops) },
  1408. { 0, }
  1409. };
  1410. MODULE_AUTHOR(DRV_PROJECT);
  1411. MODULE_VERSION(DRV_VERSION);
  1412. MODULE_DESCRIPTION("Ralink RT2400 PCI & PCMCIA Wireless LAN driver.");
  1413. MODULE_SUPPORTED_DEVICE("Ralink RT2460 PCI & PCMCIA chipset based cards");
  1414. MODULE_DEVICE_TABLE(pci, rt2400pci_device_table);
  1415. MODULE_LICENSE("GPL");
  1416. static struct pci_driver rt2400pci_driver = {
  1417. .name = KBUILD_MODNAME,
  1418. .id_table = rt2400pci_device_table,
  1419. .probe = rt2x00pci_probe,
  1420. .remove = __devexit_p(rt2x00pci_remove),
  1421. .suspend = rt2x00pci_suspend,
  1422. .resume = rt2x00pci_resume,
  1423. };
  1424. static int __init rt2400pci_init(void)
  1425. {
  1426. return pci_register_driver(&rt2400pci_driver);
  1427. }
  1428. static void __exit rt2400pci_exit(void)
  1429. {
  1430. pci_unregister_driver(&rt2400pci_driver);
  1431. }
  1432. module_init(rt2400pci_init);
  1433. module_exit(rt2400pci_exit);