md.c 87 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. This program is free software; you can redistribute it and/or modify
  17. it under the terms of the GNU General Public License as published by
  18. the Free Software Foundation; either version 2, or (at your option)
  19. any later version.
  20. You should have received a copy of the GNU General Public License
  21. (for example /usr/src/linux/COPYING); if not, write to the Free
  22. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. */
  24. #include <linux/module.h>
  25. #include <linux/config.h>
  26. #include <linux/linkage.h>
  27. #include <linux/raid/md.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/devfs_fs_kernel.h>
  30. #include <linux/buffer_head.h> /* for invalidate_bdev */
  31. #include <linux/suspend.h>
  32. #include <linux/init.h>
  33. #ifdef CONFIG_KMOD
  34. #include <linux/kmod.h>
  35. #endif
  36. #include <asm/unaligned.h>
  37. #define MAJOR_NR MD_MAJOR
  38. #define MD_DRIVER
  39. /* 63 partitions with the alternate major number (mdp) */
  40. #define MdpMinorShift 6
  41. #define DEBUG 0
  42. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  43. #ifndef MODULE
  44. static void autostart_arrays (int part);
  45. #endif
  46. static mdk_personality_t *pers[MAX_PERSONALITY];
  47. static DEFINE_SPINLOCK(pers_lock);
  48. /*
  49. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  50. * is 1000 KB/sec, so the extra system load does not show up that much.
  51. * Increase it if you want to have more _guaranteed_ speed. Note that
  52. * the RAID driver will use the maximum available bandwith if the IO
  53. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  54. * speed limit - in case reconstruction slows down your system despite
  55. * idle IO detection.
  56. *
  57. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  58. */
  59. static int sysctl_speed_limit_min = 1000;
  60. static int sysctl_speed_limit_max = 200000;
  61. static struct ctl_table_header *raid_table_header;
  62. static ctl_table raid_table[] = {
  63. {
  64. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  65. .procname = "speed_limit_min",
  66. .data = &sysctl_speed_limit_min,
  67. .maxlen = sizeof(int),
  68. .mode = 0644,
  69. .proc_handler = &proc_dointvec,
  70. },
  71. {
  72. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  73. .procname = "speed_limit_max",
  74. .data = &sysctl_speed_limit_max,
  75. .maxlen = sizeof(int),
  76. .mode = 0644,
  77. .proc_handler = &proc_dointvec,
  78. },
  79. { .ctl_name = 0 }
  80. };
  81. static ctl_table raid_dir_table[] = {
  82. {
  83. .ctl_name = DEV_RAID,
  84. .procname = "raid",
  85. .maxlen = 0,
  86. .mode = 0555,
  87. .child = raid_table,
  88. },
  89. { .ctl_name = 0 }
  90. };
  91. static ctl_table raid_root_table[] = {
  92. {
  93. .ctl_name = CTL_DEV,
  94. .procname = "dev",
  95. .maxlen = 0,
  96. .mode = 0555,
  97. .child = raid_dir_table,
  98. },
  99. { .ctl_name = 0 }
  100. };
  101. static struct block_device_operations md_fops;
  102. /*
  103. * Enables to iterate over all existing md arrays
  104. * all_mddevs_lock protects this list.
  105. */
  106. static LIST_HEAD(all_mddevs);
  107. static DEFINE_SPINLOCK(all_mddevs_lock);
  108. /*
  109. * iterates through all used mddevs in the system.
  110. * We take care to grab the all_mddevs_lock whenever navigating
  111. * the list, and to always hold a refcount when unlocked.
  112. * Any code which breaks out of this loop while own
  113. * a reference to the current mddev and must mddev_put it.
  114. */
  115. #define ITERATE_MDDEV(mddev,tmp) \
  116. \
  117. for (({ spin_lock(&all_mddevs_lock); \
  118. tmp = all_mddevs.next; \
  119. mddev = NULL;}); \
  120. ({ if (tmp != &all_mddevs) \
  121. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  122. spin_unlock(&all_mddevs_lock); \
  123. if (mddev) mddev_put(mddev); \
  124. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  125. tmp != &all_mddevs;}); \
  126. ({ spin_lock(&all_mddevs_lock); \
  127. tmp = tmp->next;}) \
  128. )
  129. static int md_fail_request (request_queue_t *q, struct bio *bio)
  130. {
  131. bio_io_error(bio, bio->bi_size);
  132. return 0;
  133. }
  134. static inline mddev_t *mddev_get(mddev_t *mddev)
  135. {
  136. atomic_inc(&mddev->active);
  137. return mddev;
  138. }
  139. static void mddev_put(mddev_t *mddev)
  140. {
  141. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  142. return;
  143. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  144. list_del(&mddev->all_mddevs);
  145. blk_put_queue(mddev->queue);
  146. kfree(mddev);
  147. }
  148. spin_unlock(&all_mddevs_lock);
  149. }
  150. static mddev_t * mddev_find(dev_t unit)
  151. {
  152. mddev_t *mddev, *new = NULL;
  153. retry:
  154. spin_lock(&all_mddevs_lock);
  155. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  156. if (mddev->unit == unit) {
  157. mddev_get(mddev);
  158. spin_unlock(&all_mddevs_lock);
  159. if (new)
  160. kfree(new);
  161. return mddev;
  162. }
  163. if (new) {
  164. list_add(&new->all_mddevs, &all_mddevs);
  165. spin_unlock(&all_mddevs_lock);
  166. return new;
  167. }
  168. spin_unlock(&all_mddevs_lock);
  169. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  170. if (!new)
  171. return NULL;
  172. memset(new, 0, sizeof(*new));
  173. new->unit = unit;
  174. if (MAJOR(unit) == MD_MAJOR)
  175. new->md_minor = MINOR(unit);
  176. else
  177. new->md_minor = MINOR(unit) >> MdpMinorShift;
  178. init_MUTEX(&new->reconfig_sem);
  179. INIT_LIST_HEAD(&new->disks);
  180. INIT_LIST_HEAD(&new->all_mddevs);
  181. init_timer(&new->safemode_timer);
  182. atomic_set(&new->active, 1);
  183. new->queue = blk_alloc_queue(GFP_KERNEL);
  184. if (!new->queue) {
  185. kfree(new);
  186. return NULL;
  187. }
  188. blk_queue_make_request(new->queue, md_fail_request);
  189. goto retry;
  190. }
  191. static inline int mddev_lock(mddev_t * mddev)
  192. {
  193. return down_interruptible(&mddev->reconfig_sem);
  194. }
  195. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  196. {
  197. down(&mddev->reconfig_sem);
  198. }
  199. static inline int mddev_trylock(mddev_t * mddev)
  200. {
  201. return down_trylock(&mddev->reconfig_sem);
  202. }
  203. static inline void mddev_unlock(mddev_t * mddev)
  204. {
  205. up(&mddev->reconfig_sem);
  206. if (mddev->thread)
  207. md_wakeup_thread(mddev->thread);
  208. }
  209. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  210. {
  211. mdk_rdev_t * rdev;
  212. struct list_head *tmp;
  213. ITERATE_RDEV(mddev,rdev,tmp) {
  214. if (rdev->desc_nr == nr)
  215. return rdev;
  216. }
  217. return NULL;
  218. }
  219. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  220. {
  221. struct list_head *tmp;
  222. mdk_rdev_t *rdev;
  223. ITERATE_RDEV(mddev,rdev,tmp) {
  224. if (rdev->bdev->bd_dev == dev)
  225. return rdev;
  226. }
  227. return NULL;
  228. }
  229. inline static sector_t calc_dev_sboffset(struct block_device *bdev)
  230. {
  231. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  232. return MD_NEW_SIZE_BLOCKS(size);
  233. }
  234. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  235. {
  236. sector_t size;
  237. size = rdev->sb_offset;
  238. if (chunk_size)
  239. size &= ~((sector_t)chunk_size/1024 - 1);
  240. return size;
  241. }
  242. static int alloc_disk_sb(mdk_rdev_t * rdev)
  243. {
  244. if (rdev->sb_page)
  245. MD_BUG();
  246. rdev->sb_page = alloc_page(GFP_KERNEL);
  247. if (!rdev->sb_page) {
  248. printk(KERN_ALERT "md: out of memory.\n");
  249. return -EINVAL;
  250. }
  251. return 0;
  252. }
  253. static void free_disk_sb(mdk_rdev_t * rdev)
  254. {
  255. if (rdev->sb_page) {
  256. page_cache_release(rdev->sb_page);
  257. rdev->sb_loaded = 0;
  258. rdev->sb_page = NULL;
  259. rdev->sb_offset = 0;
  260. rdev->size = 0;
  261. }
  262. }
  263. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  264. {
  265. if (bio->bi_size)
  266. return 1;
  267. complete((struct completion*)bio->bi_private);
  268. return 0;
  269. }
  270. static int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  271. struct page *page, int rw)
  272. {
  273. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  274. struct completion event;
  275. int ret;
  276. rw |= (1 << BIO_RW_SYNC);
  277. bio->bi_bdev = bdev;
  278. bio->bi_sector = sector;
  279. bio_add_page(bio, page, size, 0);
  280. init_completion(&event);
  281. bio->bi_private = &event;
  282. bio->bi_end_io = bi_complete;
  283. submit_bio(rw, bio);
  284. wait_for_completion(&event);
  285. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  286. bio_put(bio);
  287. return ret;
  288. }
  289. static int read_disk_sb(mdk_rdev_t * rdev)
  290. {
  291. char b[BDEVNAME_SIZE];
  292. if (!rdev->sb_page) {
  293. MD_BUG();
  294. return -EINVAL;
  295. }
  296. if (rdev->sb_loaded)
  297. return 0;
  298. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, READ))
  299. goto fail;
  300. rdev->sb_loaded = 1;
  301. return 0;
  302. fail:
  303. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  304. bdevname(rdev->bdev,b));
  305. return -EINVAL;
  306. }
  307. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  308. {
  309. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  310. (sb1->set_uuid1 == sb2->set_uuid1) &&
  311. (sb1->set_uuid2 == sb2->set_uuid2) &&
  312. (sb1->set_uuid3 == sb2->set_uuid3))
  313. return 1;
  314. return 0;
  315. }
  316. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  317. {
  318. int ret;
  319. mdp_super_t *tmp1, *tmp2;
  320. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  321. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  322. if (!tmp1 || !tmp2) {
  323. ret = 0;
  324. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  325. goto abort;
  326. }
  327. *tmp1 = *sb1;
  328. *tmp2 = *sb2;
  329. /*
  330. * nr_disks is not constant
  331. */
  332. tmp1->nr_disks = 0;
  333. tmp2->nr_disks = 0;
  334. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  335. ret = 0;
  336. else
  337. ret = 1;
  338. abort:
  339. if (tmp1)
  340. kfree(tmp1);
  341. if (tmp2)
  342. kfree(tmp2);
  343. return ret;
  344. }
  345. static unsigned int calc_sb_csum(mdp_super_t * sb)
  346. {
  347. unsigned int disk_csum, csum;
  348. disk_csum = sb->sb_csum;
  349. sb->sb_csum = 0;
  350. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  351. sb->sb_csum = disk_csum;
  352. return csum;
  353. }
  354. /*
  355. * Handle superblock details.
  356. * We want to be able to handle multiple superblock formats
  357. * so we have a common interface to them all, and an array of
  358. * different handlers.
  359. * We rely on user-space to write the initial superblock, and support
  360. * reading and updating of superblocks.
  361. * Interface methods are:
  362. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  363. * loads and validates a superblock on dev.
  364. * if refdev != NULL, compare superblocks on both devices
  365. * Return:
  366. * 0 - dev has a superblock that is compatible with refdev
  367. * 1 - dev has a superblock that is compatible and newer than refdev
  368. * so dev should be used as the refdev in future
  369. * -EINVAL superblock incompatible or invalid
  370. * -othererror e.g. -EIO
  371. *
  372. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  373. * Verify that dev is acceptable into mddev.
  374. * The first time, mddev->raid_disks will be 0, and data from
  375. * dev should be merged in. Subsequent calls check that dev
  376. * is new enough. Return 0 or -EINVAL
  377. *
  378. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  379. * Update the superblock for rdev with data in mddev
  380. * This does not write to disc.
  381. *
  382. */
  383. struct super_type {
  384. char *name;
  385. struct module *owner;
  386. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  387. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  388. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  389. };
  390. /*
  391. * load_super for 0.90.0
  392. */
  393. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  394. {
  395. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  396. mdp_super_t *sb;
  397. int ret;
  398. sector_t sb_offset;
  399. /*
  400. * Calculate the position of the superblock,
  401. * it's at the end of the disk.
  402. *
  403. * It also happens to be a multiple of 4Kb.
  404. */
  405. sb_offset = calc_dev_sboffset(rdev->bdev);
  406. rdev->sb_offset = sb_offset;
  407. ret = read_disk_sb(rdev);
  408. if (ret) return ret;
  409. ret = -EINVAL;
  410. bdevname(rdev->bdev, b);
  411. sb = (mdp_super_t*)page_address(rdev->sb_page);
  412. if (sb->md_magic != MD_SB_MAGIC) {
  413. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  414. b);
  415. goto abort;
  416. }
  417. if (sb->major_version != 0 ||
  418. sb->minor_version != 90) {
  419. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  420. sb->major_version, sb->minor_version,
  421. b);
  422. goto abort;
  423. }
  424. if (sb->raid_disks <= 0)
  425. goto abort;
  426. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  427. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  428. b);
  429. goto abort;
  430. }
  431. rdev->preferred_minor = sb->md_minor;
  432. rdev->data_offset = 0;
  433. if (sb->level == LEVEL_MULTIPATH)
  434. rdev->desc_nr = -1;
  435. else
  436. rdev->desc_nr = sb->this_disk.number;
  437. if (refdev == 0)
  438. ret = 1;
  439. else {
  440. __u64 ev1, ev2;
  441. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  442. if (!uuid_equal(refsb, sb)) {
  443. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  444. b, bdevname(refdev->bdev,b2));
  445. goto abort;
  446. }
  447. if (!sb_equal(refsb, sb)) {
  448. printk(KERN_WARNING "md: %s has same UUID"
  449. " but different superblock to %s\n",
  450. b, bdevname(refdev->bdev, b2));
  451. goto abort;
  452. }
  453. ev1 = md_event(sb);
  454. ev2 = md_event(refsb);
  455. if (ev1 > ev2)
  456. ret = 1;
  457. else
  458. ret = 0;
  459. }
  460. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  461. abort:
  462. return ret;
  463. }
  464. /*
  465. * validate_super for 0.90.0
  466. */
  467. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  468. {
  469. mdp_disk_t *desc;
  470. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  471. if (mddev->raid_disks == 0) {
  472. mddev->major_version = 0;
  473. mddev->minor_version = sb->minor_version;
  474. mddev->patch_version = sb->patch_version;
  475. mddev->persistent = ! sb->not_persistent;
  476. mddev->chunk_size = sb->chunk_size;
  477. mddev->ctime = sb->ctime;
  478. mddev->utime = sb->utime;
  479. mddev->level = sb->level;
  480. mddev->layout = sb->layout;
  481. mddev->raid_disks = sb->raid_disks;
  482. mddev->size = sb->size;
  483. mddev->events = md_event(sb);
  484. if (sb->state & (1<<MD_SB_CLEAN))
  485. mddev->recovery_cp = MaxSector;
  486. else {
  487. if (sb->events_hi == sb->cp_events_hi &&
  488. sb->events_lo == sb->cp_events_lo) {
  489. mddev->recovery_cp = sb->recovery_cp;
  490. } else
  491. mddev->recovery_cp = 0;
  492. }
  493. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  494. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  495. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  496. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  497. mddev->max_disks = MD_SB_DISKS;
  498. } else {
  499. __u64 ev1;
  500. ev1 = md_event(sb);
  501. ++ev1;
  502. if (ev1 < mddev->events)
  503. return -EINVAL;
  504. }
  505. if (mddev->level != LEVEL_MULTIPATH) {
  506. rdev->raid_disk = -1;
  507. rdev->in_sync = rdev->faulty = 0;
  508. desc = sb->disks + rdev->desc_nr;
  509. if (desc->state & (1<<MD_DISK_FAULTY))
  510. rdev->faulty = 1;
  511. else if (desc->state & (1<<MD_DISK_SYNC) &&
  512. desc->raid_disk < mddev->raid_disks) {
  513. rdev->in_sync = 1;
  514. rdev->raid_disk = desc->raid_disk;
  515. }
  516. }
  517. return 0;
  518. }
  519. /*
  520. * sync_super for 0.90.0
  521. */
  522. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  523. {
  524. mdp_super_t *sb;
  525. struct list_head *tmp;
  526. mdk_rdev_t *rdev2;
  527. int next_spare = mddev->raid_disks;
  528. /* make rdev->sb match mddev data..
  529. *
  530. * 1/ zero out disks
  531. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  532. * 3/ any empty disks < next_spare become removed
  533. *
  534. * disks[0] gets initialised to REMOVED because
  535. * we cannot be sure from other fields if it has
  536. * been initialised or not.
  537. */
  538. int i;
  539. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  540. sb = (mdp_super_t*)page_address(rdev->sb_page);
  541. memset(sb, 0, sizeof(*sb));
  542. sb->md_magic = MD_SB_MAGIC;
  543. sb->major_version = mddev->major_version;
  544. sb->minor_version = mddev->minor_version;
  545. sb->patch_version = mddev->patch_version;
  546. sb->gvalid_words = 0; /* ignored */
  547. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  548. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  549. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  550. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  551. sb->ctime = mddev->ctime;
  552. sb->level = mddev->level;
  553. sb->size = mddev->size;
  554. sb->raid_disks = mddev->raid_disks;
  555. sb->md_minor = mddev->md_minor;
  556. sb->not_persistent = !mddev->persistent;
  557. sb->utime = mddev->utime;
  558. sb->state = 0;
  559. sb->events_hi = (mddev->events>>32);
  560. sb->events_lo = (u32)mddev->events;
  561. if (mddev->in_sync)
  562. {
  563. sb->recovery_cp = mddev->recovery_cp;
  564. sb->cp_events_hi = (mddev->events>>32);
  565. sb->cp_events_lo = (u32)mddev->events;
  566. if (mddev->recovery_cp == MaxSector)
  567. sb->state = (1<< MD_SB_CLEAN);
  568. } else
  569. sb->recovery_cp = 0;
  570. sb->layout = mddev->layout;
  571. sb->chunk_size = mddev->chunk_size;
  572. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  573. ITERATE_RDEV(mddev,rdev2,tmp) {
  574. mdp_disk_t *d;
  575. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  576. rdev2->desc_nr = rdev2->raid_disk;
  577. else
  578. rdev2->desc_nr = next_spare++;
  579. d = &sb->disks[rdev2->desc_nr];
  580. nr_disks++;
  581. d->number = rdev2->desc_nr;
  582. d->major = MAJOR(rdev2->bdev->bd_dev);
  583. d->minor = MINOR(rdev2->bdev->bd_dev);
  584. if (rdev2->raid_disk >= 0 && rdev->in_sync && !rdev2->faulty)
  585. d->raid_disk = rdev2->raid_disk;
  586. else
  587. d->raid_disk = rdev2->desc_nr; /* compatibility */
  588. if (rdev2->faulty) {
  589. d->state = (1<<MD_DISK_FAULTY);
  590. failed++;
  591. } else if (rdev2->in_sync) {
  592. d->state = (1<<MD_DISK_ACTIVE);
  593. d->state |= (1<<MD_DISK_SYNC);
  594. active++;
  595. working++;
  596. } else {
  597. d->state = 0;
  598. spare++;
  599. working++;
  600. }
  601. }
  602. /* now set the "removed" and "faulty" bits on any missing devices */
  603. for (i=0 ; i < mddev->raid_disks ; i++) {
  604. mdp_disk_t *d = &sb->disks[i];
  605. if (d->state == 0 && d->number == 0) {
  606. d->number = i;
  607. d->raid_disk = i;
  608. d->state = (1<<MD_DISK_REMOVED);
  609. d->state |= (1<<MD_DISK_FAULTY);
  610. failed++;
  611. }
  612. }
  613. sb->nr_disks = nr_disks;
  614. sb->active_disks = active;
  615. sb->working_disks = working;
  616. sb->failed_disks = failed;
  617. sb->spare_disks = spare;
  618. sb->this_disk = sb->disks[rdev->desc_nr];
  619. sb->sb_csum = calc_sb_csum(sb);
  620. }
  621. /*
  622. * version 1 superblock
  623. */
  624. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  625. {
  626. unsigned int disk_csum, csum;
  627. unsigned long long newcsum;
  628. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  629. unsigned int *isuper = (unsigned int*)sb;
  630. int i;
  631. disk_csum = sb->sb_csum;
  632. sb->sb_csum = 0;
  633. newcsum = 0;
  634. for (i=0; size>=4; size -= 4 )
  635. newcsum += le32_to_cpu(*isuper++);
  636. if (size == 2)
  637. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  638. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  639. sb->sb_csum = disk_csum;
  640. return cpu_to_le32(csum);
  641. }
  642. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  643. {
  644. struct mdp_superblock_1 *sb;
  645. int ret;
  646. sector_t sb_offset;
  647. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  648. /*
  649. * Calculate the position of the superblock.
  650. * It is always aligned to a 4K boundary and
  651. * depeding on minor_version, it can be:
  652. * 0: At least 8K, but less than 12K, from end of device
  653. * 1: At start of device
  654. * 2: 4K from start of device.
  655. */
  656. switch(minor_version) {
  657. case 0:
  658. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  659. sb_offset -= 8*2;
  660. sb_offset &= ~(4*2-1);
  661. /* convert from sectors to K */
  662. sb_offset /= 2;
  663. break;
  664. case 1:
  665. sb_offset = 0;
  666. break;
  667. case 2:
  668. sb_offset = 4;
  669. break;
  670. default:
  671. return -EINVAL;
  672. }
  673. rdev->sb_offset = sb_offset;
  674. ret = read_disk_sb(rdev);
  675. if (ret) return ret;
  676. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  677. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  678. sb->major_version != cpu_to_le32(1) ||
  679. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  680. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  681. sb->feature_map != 0)
  682. return -EINVAL;
  683. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  684. printk("md: invalid superblock checksum on %s\n",
  685. bdevname(rdev->bdev,b));
  686. return -EINVAL;
  687. }
  688. if (le64_to_cpu(sb->data_size) < 10) {
  689. printk("md: data_size too small on %s\n",
  690. bdevname(rdev->bdev,b));
  691. return -EINVAL;
  692. }
  693. rdev->preferred_minor = 0xffff;
  694. rdev->data_offset = le64_to_cpu(sb->data_offset);
  695. if (refdev == 0)
  696. return 1;
  697. else {
  698. __u64 ev1, ev2;
  699. struct mdp_superblock_1 *refsb =
  700. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  701. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  702. sb->level != refsb->level ||
  703. sb->layout != refsb->layout ||
  704. sb->chunksize != refsb->chunksize) {
  705. printk(KERN_WARNING "md: %s has strangely different"
  706. " superblock to %s\n",
  707. bdevname(rdev->bdev,b),
  708. bdevname(refdev->bdev,b2));
  709. return -EINVAL;
  710. }
  711. ev1 = le64_to_cpu(sb->events);
  712. ev2 = le64_to_cpu(refsb->events);
  713. if (ev1 > ev2)
  714. return 1;
  715. }
  716. if (minor_version)
  717. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  718. else
  719. rdev->size = rdev->sb_offset;
  720. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  721. return -EINVAL;
  722. rdev->size = le64_to_cpu(sb->data_size)/2;
  723. if (le32_to_cpu(sb->chunksize))
  724. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  725. return 0;
  726. }
  727. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  728. {
  729. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  730. if (mddev->raid_disks == 0) {
  731. mddev->major_version = 1;
  732. mddev->patch_version = 0;
  733. mddev->persistent = 1;
  734. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  735. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  736. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  737. mddev->level = le32_to_cpu(sb->level);
  738. mddev->layout = le32_to_cpu(sb->layout);
  739. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  740. mddev->size = le64_to_cpu(sb->size)/2;
  741. mddev->events = le64_to_cpu(sb->events);
  742. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  743. memcpy(mddev->uuid, sb->set_uuid, 16);
  744. mddev->max_disks = (4096-256)/2;
  745. } else {
  746. __u64 ev1;
  747. ev1 = le64_to_cpu(sb->events);
  748. ++ev1;
  749. if (ev1 < mddev->events)
  750. return -EINVAL;
  751. }
  752. if (mddev->level != LEVEL_MULTIPATH) {
  753. int role;
  754. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  755. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  756. switch(role) {
  757. case 0xffff: /* spare */
  758. rdev->in_sync = 0;
  759. rdev->faulty = 0;
  760. rdev->raid_disk = -1;
  761. break;
  762. case 0xfffe: /* faulty */
  763. rdev->in_sync = 0;
  764. rdev->faulty = 1;
  765. rdev->raid_disk = -1;
  766. break;
  767. default:
  768. rdev->in_sync = 1;
  769. rdev->faulty = 0;
  770. rdev->raid_disk = role;
  771. break;
  772. }
  773. }
  774. return 0;
  775. }
  776. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  777. {
  778. struct mdp_superblock_1 *sb;
  779. struct list_head *tmp;
  780. mdk_rdev_t *rdev2;
  781. int max_dev, i;
  782. /* make rdev->sb match mddev and rdev data. */
  783. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  784. sb->feature_map = 0;
  785. sb->pad0 = 0;
  786. memset(sb->pad1, 0, sizeof(sb->pad1));
  787. memset(sb->pad2, 0, sizeof(sb->pad2));
  788. memset(sb->pad3, 0, sizeof(sb->pad3));
  789. sb->utime = cpu_to_le64((__u64)mddev->utime);
  790. sb->events = cpu_to_le64(mddev->events);
  791. if (mddev->in_sync)
  792. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  793. else
  794. sb->resync_offset = cpu_to_le64(0);
  795. max_dev = 0;
  796. ITERATE_RDEV(mddev,rdev2,tmp)
  797. if (rdev2->desc_nr+1 > max_dev)
  798. max_dev = rdev2->desc_nr+1;
  799. sb->max_dev = cpu_to_le32(max_dev);
  800. for (i=0; i<max_dev;i++)
  801. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  802. ITERATE_RDEV(mddev,rdev2,tmp) {
  803. i = rdev2->desc_nr;
  804. if (rdev2->faulty)
  805. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  806. else if (rdev2->in_sync)
  807. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  808. else
  809. sb->dev_roles[i] = cpu_to_le16(0xffff);
  810. }
  811. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  812. sb->sb_csum = calc_sb_1_csum(sb);
  813. }
  814. struct super_type super_types[] = {
  815. [0] = {
  816. .name = "0.90.0",
  817. .owner = THIS_MODULE,
  818. .load_super = super_90_load,
  819. .validate_super = super_90_validate,
  820. .sync_super = super_90_sync,
  821. },
  822. [1] = {
  823. .name = "md-1",
  824. .owner = THIS_MODULE,
  825. .load_super = super_1_load,
  826. .validate_super = super_1_validate,
  827. .sync_super = super_1_sync,
  828. },
  829. };
  830. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  831. {
  832. struct list_head *tmp;
  833. mdk_rdev_t *rdev;
  834. ITERATE_RDEV(mddev,rdev,tmp)
  835. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  836. return rdev;
  837. return NULL;
  838. }
  839. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  840. {
  841. struct list_head *tmp;
  842. mdk_rdev_t *rdev;
  843. ITERATE_RDEV(mddev1,rdev,tmp)
  844. if (match_dev_unit(mddev2, rdev))
  845. return 1;
  846. return 0;
  847. }
  848. static LIST_HEAD(pending_raid_disks);
  849. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  850. {
  851. mdk_rdev_t *same_pdev;
  852. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  853. if (rdev->mddev) {
  854. MD_BUG();
  855. return -EINVAL;
  856. }
  857. same_pdev = match_dev_unit(mddev, rdev);
  858. if (same_pdev)
  859. printk(KERN_WARNING
  860. "%s: WARNING: %s appears to be on the same physical"
  861. " disk as %s. True\n protection against single-disk"
  862. " failure might be compromised.\n",
  863. mdname(mddev), bdevname(rdev->bdev,b),
  864. bdevname(same_pdev->bdev,b2));
  865. /* Verify rdev->desc_nr is unique.
  866. * If it is -1, assign a free number, else
  867. * check number is not in use
  868. */
  869. if (rdev->desc_nr < 0) {
  870. int choice = 0;
  871. if (mddev->pers) choice = mddev->raid_disks;
  872. while (find_rdev_nr(mddev, choice))
  873. choice++;
  874. rdev->desc_nr = choice;
  875. } else {
  876. if (find_rdev_nr(mddev, rdev->desc_nr))
  877. return -EBUSY;
  878. }
  879. list_add(&rdev->same_set, &mddev->disks);
  880. rdev->mddev = mddev;
  881. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  882. return 0;
  883. }
  884. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  885. {
  886. char b[BDEVNAME_SIZE];
  887. if (!rdev->mddev) {
  888. MD_BUG();
  889. return;
  890. }
  891. list_del_init(&rdev->same_set);
  892. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  893. rdev->mddev = NULL;
  894. }
  895. /*
  896. * prevent the device from being mounted, repartitioned or
  897. * otherwise reused by a RAID array (or any other kernel
  898. * subsystem), by bd_claiming the device.
  899. */
  900. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  901. {
  902. int err = 0;
  903. struct block_device *bdev;
  904. char b[BDEVNAME_SIZE];
  905. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  906. if (IS_ERR(bdev)) {
  907. printk(KERN_ERR "md: could not open %s.\n",
  908. __bdevname(dev, b));
  909. return PTR_ERR(bdev);
  910. }
  911. err = bd_claim(bdev, rdev);
  912. if (err) {
  913. printk(KERN_ERR "md: could not bd_claim %s.\n",
  914. bdevname(bdev, b));
  915. blkdev_put(bdev);
  916. return err;
  917. }
  918. rdev->bdev = bdev;
  919. return err;
  920. }
  921. static void unlock_rdev(mdk_rdev_t *rdev)
  922. {
  923. struct block_device *bdev = rdev->bdev;
  924. rdev->bdev = NULL;
  925. if (!bdev)
  926. MD_BUG();
  927. bd_release(bdev);
  928. blkdev_put(bdev);
  929. }
  930. void md_autodetect_dev(dev_t dev);
  931. static void export_rdev(mdk_rdev_t * rdev)
  932. {
  933. char b[BDEVNAME_SIZE];
  934. printk(KERN_INFO "md: export_rdev(%s)\n",
  935. bdevname(rdev->bdev,b));
  936. if (rdev->mddev)
  937. MD_BUG();
  938. free_disk_sb(rdev);
  939. list_del_init(&rdev->same_set);
  940. #ifndef MODULE
  941. md_autodetect_dev(rdev->bdev->bd_dev);
  942. #endif
  943. unlock_rdev(rdev);
  944. kfree(rdev);
  945. }
  946. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  947. {
  948. unbind_rdev_from_array(rdev);
  949. export_rdev(rdev);
  950. }
  951. static void export_array(mddev_t *mddev)
  952. {
  953. struct list_head *tmp;
  954. mdk_rdev_t *rdev;
  955. ITERATE_RDEV(mddev,rdev,tmp) {
  956. if (!rdev->mddev) {
  957. MD_BUG();
  958. continue;
  959. }
  960. kick_rdev_from_array(rdev);
  961. }
  962. if (!list_empty(&mddev->disks))
  963. MD_BUG();
  964. mddev->raid_disks = 0;
  965. mddev->major_version = 0;
  966. }
  967. static void print_desc(mdp_disk_t *desc)
  968. {
  969. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  970. desc->major,desc->minor,desc->raid_disk,desc->state);
  971. }
  972. static void print_sb(mdp_super_t *sb)
  973. {
  974. int i;
  975. printk(KERN_INFO
  976. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  977. sb->major_version, sb->minor_version, sb->patch_version,
  978. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  979. sb->ctime);
  980. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  981. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  982. sb->md_minor, sb->layout, sb->chunk_size);
  983. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  984. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  985. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  986. sb->failed_disks, sb->spare_disks,
  987. sb->sb_csum, (unsigned long)sb->events_lo);
  988. printk(KERN_INFO);
  989. for (i = 0; i < MD_SB_DISKS; i++) {
  990. mdp_disk_t *desc;
  991. desc = sb->disks + i;
  992. if (desc->number || desc->major || desc->minor ||
  993. desc->raid_disk || (desc->state && (desc->state != 4))) {
  994. printk(" D %2d: ", i);
  995. print_desc(desc);
  996. }
  997. }
  998. printk(KERN_INFO "md: THIS: ");
  999. print_desc(&sb->this_disk);
  1000. }
  1001. static void print_rdev(mdk_rdev_t *rdev)
  1002. {
  1003. char b[BDEVNAME_SIZE];
  1004. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1005. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1006. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1007. if (rdev->sb_loaded) {
  1008. printk(KERN_INFO "md: rdev superblock:\n");
  1009. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1010. } else
  1011. printk(KERN_INFO "md: no rdev superblock!\n");
  1012. }
  1013. void md_print_devices(void)
  1014. {
  1015. struct list_head *tmp, *tmp2;
  1016. mdk_rdev_t *rdev;
  1017. mddev_t *mddev;
  1018. char b[BDEVNAME_SIZE];
  1019. printk("\n");
  1020. printk("md: **********************************\n");
  1021. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1022. printk("md: **********************************\n");
  1023. ITERATE_MDDEV(mddev,tmp) {
  1024. printk("%s: ", mdname(mddev));
  1025. ITERATE_RDEV(mddev,rdev,tmp2)
  1026. printk("<%s>", bdevname(rdev->bdev,b));
  1027. printk("\n");
  1028. ITERATE_RDEV(mddev,rdev,tmp2)
  1029. print_rdev(rdev);
  1030. }
  1031. printk("md: **********************************\n");
  1032. printk("\n");
  1033. }
  1034. static int write_disk_sb(mdk_rdev_t * rdev)
  1035. {
  1036. char b[BDEVNAME_SIZE];
  1037. if (!rdev->sb_loaded) {
  1038. MD_BUG();
  1039. return 1;
  1040. }
  1041. if (rdev->faulty) {
  1042. MD_BUG();
  1043. return 1;
  1044. }
  1045. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1046. bdevname(rdev->bdev,b),
  1047. (unsigned long long)rdev->sb_offset);
  1048. if (sync_page_io(rdev->bdev, rdev->sb_offset<<1, MD_SB_BYTES, rdev->sb_page, WRITE))
  1049. return 0;
  1050. printk("md: write_disk_sb failed for device %s\n",
  1051. bdevname(rdev->bdev,b));
  1052. return 1;
  1053. }
  1054. static void sync_sbs(mddev_t * mddev)
  1055. {
  1056. mdk_rdev_t *rdev;
  1057. struct list_head *tmp;
  1058. ITERATE_RDEV(mddev,rdev,tmp) {
  1059. super_types[mddev->major_version].
  1060. sync_super(mddev, rdev);
  1061. rdev->sb_loaded = 1;
  1062. }
  1063. }
  1064. static void md_update_sb(mddev_t * mddev)
  1065. {
  1066. int err, count = 100;
  1067. struct list_head *tmp;
  1068. mdk_rdev_t *rdev;
  1069. mddev->sb_dirty = 0;
  1070. repeat:
  1071. mddev->utime = get_seconds();
  1072. mddev->events ++;
  1073. if (!mddev->events) {
  1074. /*
  1075. * oops, this 64-bit counter should never wrap.
  1076. * Either we are in around ~1 trillion A.C., assuming
  1077. * 1 reboot per second, or we have a bug:
  1078. */
  1079. MD_BUG();
  1080. mddev->events --;
  1081. }
  1082. sync_sbs(mddev);
  1083. /*
  1084. * do not write anything to disk if using
  1085. * nonpersistent superblocks
  1086. */
  1087. if (!mddev->persistent)
  1088. return;
  1089. dprintk(KERN_INFO
  1090. "md: updating %s RAID superblock on device (in sync %d)\n",
  1091. mdname(mddev),mddev->in_sync);
  1092. err = 0;
  1093. ITERATE_RDEV(mddev,rdev,tmp) {
  1094. char b[BDEVNAME_SIZE];
  1095. dprintk(KERN_INFO "md: ");
  1096. if (rdev->faulty)
  1097. dprintk("(skipping faulty ");
  1098. dprintk("%s ", bdevname(rdev->bdev,b));
  1099. if (!rdev->faulty) {
  1100. err += write_disk_sb(rdev);
  1101. } else
  1102. dprintk(")\n");
  1103. if (!err && mddev->level == LEVEL_MULTIPATH)
  1104. /* only need to write one superblock... */
  1105. break;
  1106. }
  1107. if (err) {
  1108. if (--count) {
  1109. printk(KERN_ERR "md: errors occurred during superblock"
  1110. " update, repeating\n");
  1111. goto repeat;
  1112. }
  1113. printk(KERN_ERR \
  1114. "md: excessive errors occurred during superblock update, exiting\n");
  1115. }
  1116. }
  1117. /*
  1118. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1119. *
  1120. * mark the device faulty if:
  1121. *
  1122. * - the device is nonexistent (zero size)
  1123. * - the device has no valid superblock
  1124. *
  1125. * a faulty rdev _never_ has rdev->sb set.
  1126. */
  1127. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1128. {
  1129. char b[BDEVNAME_SIZE];
  1130. int err;
  1131. mdk_rdev_t *rdev;
  1132. sector_t size;
  1133. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1134. if (!rdev) {
  1135. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1136. return ERR_PTR(-ENOMEM);
  1137. }
  1138. memset(rdev, 0, sizeof(*rdev));
  1139. if ((err = alloc_disk_sb(rdev)))
  1140. goto abort_free;
  1141. err = lock_rdev(rdev, newdev);
  1142. if (err)
  1143. goto abort_free;
  1144. rdev->desc_nr = -1;
  1145. rdev->faulty = 0;
  1146. rdev->in_sync = 0;
  1147. rdev->data_offset = 0;
  1148. atomic_set(&rdev->nr_pending, 0);
  1149. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1150. if (!size) {
  1151. printk(KERN_WARNING
  1152. "md: %s has zero or unknown size, marking faulty!\n",
  1153. bdevname(rdev->bdev,b));
  1154. err = -EINVAL;
  1155. goto abort_free;
  1156. }
  1157. if (super_format >= 0) {
  1158. err = super_types[super_format].
  1159. load_super(rdev, NULL, super_minor);
  1160. if (err == -EINVAL) {
  1161. printk(KERN_WARNING
  1162. "md: %s has invalid sb, not importing!\n",
  1163. bdevname(rdev->bdev,b));
  1164. goto abort_free;
  1165. }
  1166. if (err < 0) {
  1167. printk(KERN_WARNING
  1168. "md: could not read %s's sb, not importing!\n",
  1169. bdevname(rdev->bdev,b));
  1170. goto abort_free;
  1171. }
  1172. }
  1173. INIT_LIST_HEAD(&rdev->same_set);
  1174. return rdev;
  1175. abort_free:
  1176. if (rdev->sb_page) {
  1177. if (rdev->bdev)
  1178. unlock_rdev(rdev);
  1179. free_disk_sb(rdev);
  1180. }
  1181. kfree(rdev);
  1182. return ERR_PTR(err);
  1183. }
  1184. /*
  1185. * Check a full RAID array for plausibility
  1186. */
  1187. static int analyze_sbs(mddev_t * mddev)
  1188. {
  1189. int i;
  1190. struct list_head *tmp;
  1191. mdk_rdev_t *rdev, *freshest;
  1192. char b[BDEVNAME_SIZE];
  1193. freshest = NULL;
  1194. ITERATE_RDEV(mddev,rdev,tmp)
  1195. switch (super_types[mddev->major_version].
  1196. load_super(rdev, freshest, mddev->minor_version)) {
  1197. case 1:
  1198. freshest = rdev;
  1199. break;
  1200. case 0:
  1201. break;
  1202. default:
  1203. printk( KERN_ERR \
  1204. "md: fatal superblock inconsistency in %s"
  1205. " -- removing from array\n",
  1206. bdevname(rdev->bdev,b));
  1207. kick_rdev_from_array(rdev);
  1208. }
  1209. super_types[mddev->major_version].
  1210. validate_super(mddev, freshest);
  1211. i = 0;
  1212. ITERATE_RDEV(mddev,rdev,tmp) {
  1213. if (rdev != freshest)
  1214. if (super_types[mddev->major_version].
  1215. validate_super(mddev, rdev)) {
  1216. printk(KERN_WARNING "md: kicking non-fresh %s"
  1217. " from array!\n",
  1218. bdevname(rdev->bdev,b));
  1219. kick_rdev_from_array(rdev);
  1220. continue;
  1221. }
  1222. if (mddev->level == LEVEL_MULTIPATH) {
  1223. rdev->desc_nr = i++;
  1224. rdev->raid_disk = rdev->desc_nr;
  1225. rdev->in_sync = 1;
  1226. }
  1227. }
  1228. if (mddev->recovery_cp != MaxSector &&
  1229. mddev->level >= 1)
  1230. printk(KERN_ERR "md: %s: raid array is not clean"
  1231. " -- starting background reconstruction\n",
  1232. mdname(mddev));
  1233. return 0;
  1234. }
  1235. int mdp_major = 0;
  1236. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1237. {
  1238. static DECLARE_MUTEX(disks_sem);
  1239. mddev_t *mddev = mddev_find(dev);
  1240. struct gendisk *disk;
  1241. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1242. int shift = partitioned ? MdpMinorShift : 0;
  1243. int unit = MINOR(dev) >> shift;
  1244. if (!mddev)
  1245. return NULL;
  1246. down(&disks_sem);
  1247. if (mddev->gendisk) {
  1248. up(&disks_sem);
  1249. mddev_put(mddev);
  1250. return NULL;
  1251. }
  1252. disk = alloc_disk(1 << shift);
  1253. if (!disk) {
  1254. up(&disks_sem);
  1255. mddev_put(mddev);
  1256. return NULL;
  1257. }
  1258. disk->major = MAJOR(dev);
  1259. disk->first_minor = unit << shift;
  1260. if (partitioned) {
  1261. sprintf(disk->disk_name, "md_d%d", unit);
  1262. sprintf(disk->devfs_name, "md/d%d", unit);
  1263. } else {
  1264. sprintf(disk->disk_name, "md%d", unit);
  1265. sprintf(disk->devfs_name, "md/%d", unit);
  1266. }
  1267. disk->fops = &md_fops;
  1268. disk->private_data = mddev;
  1269. disk->queue = mddev->queue;
  1270. add_disk(disk);
  1271. mddev->gendisk = disk;
  1272. up(&disks_sem);
  1273. return NULL;
  1274. }
  1275. void md_wakeup_thread(mdk_thread_t *thread);
  1276. static void md_safemode_timeout(unsigned long data)
  1277. {
  1278. mddev_t *mddev = (mddev_t *) data;
  1279. mddev->safemode = 1;
  1280. md_wakeup_thread(mddev->thread);
  1281. }
  1282. static int do_md_run(mddev_t * mddev)
  1283. {
  1284. int pnum, err;
  1285. int chunk_size;
  1286. struct list_head *tmp;
  1287. mdk_rdev_t *rdev;
  1288. struct gendisk *disk;
  1289. char b[BDEVNAME_SIZE];
  1290. if (list_empty(&mddev->disks)) {
  1291. MD_BUG();
  1292. return -EINVAL;
  1293. }
  1294. if (mddev->pers)
  1295. return -EBUSY;
  1296. /*
  1297. * Analyze all RAID superblock(s)
  1298. */
  1299. if (!mddev->raid_disks && analyze_sbs(mddev)) {
  1300. MD_BUG();
  1301. return -EINVAL;
  1302. }
  1303. chunk_size = mddev->chunk_size;
  1304. pnum = level_to_pers(mddev->level);
  1305. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1306. if (!chunk_size) {
  1307. /*
  1308. * 'default chunksize' in the old md code used to
  1309. * be PAGE_SIZE, baaad.
  1310. * we abort here to be on the safe side. We don't
  1311. * want to continue the bad practice.
  1312. */
  1313. printk(KERN_ERR
  1314. "no chunksize specified, see 'man raidtab'\n");
  1315. return -EINVAL;
  1316. }
  1317. if (chunk_size > MAX_CHUNK_SIZE) {
  1318. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1319. chunk_size, MAX_CHUNK_SIZE);
  1320. return -EINVAL;
  1321. }
  1322. /*
  1323. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1324. */
  1325. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1326. MD_BUG();
  1327. return -EINVAL;
  1328. }
  1329. if (chunk_size < PAGE_SIZE) {
  1330. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1331. chunk_size, PAGE_SIZE);
  1332. return -EINVAL;
  1333. }
  1334. /* devices must have minimum size of one chunk */
  1335. ITERATE_RDEV(mddev,rdev,tmp) {
  1336. if (rdev->faulty)
  1337. continue;
  1338. if (rdev->size < chunk_size / 1024) {
  1339. printk(KERN_WARNING
  1340. "md: Dev %s smaller than chunk_size:"
  1341. " %lluk < %dk\n",
  1342. bdevname(rdev->bdev,b),
  1343. (unsigned long long)rdev->size,
  1344. chunk_size / 1024);
  1345. return -EINVAL;
  1346. }
  1347. }
  1348. }
  1349. if (pnum >= MAX_PERSONALITY) {
  1350. MD_BUG();
  1351. return -EINVAL;
  1352. }
  1353. #ifdef CONFIG_KMOD
  1354. if (!pers[pnum])
  1355. {
  1356. request_module("md-personality-%d", pnum);
  1357. }
  1358. #endif
  1359. /*
  1360. * Drop all container device buffers, from now on
  1361. * the only valid external interface is through the md
  1362. * device.
  1363. * Also find largest hardsector size
  1364. */
  1365. ITERATE_RDEV(mddev,rdev,tmp) {
  1366. if (rdev->faulty)
  1367. continue;
  1368. sync_blockdev(rdev->bdev);
  1369. invalidate_bdev(rdev->bdev, 0);
  1370. }
  1371. md_probe(mddev->unit, NULL, NULL);
  1372. disk = mddev->gendisk;
  1373. if (!disk)
  1374. return -ENOMEM;
  1375. spin_lock(&pers_lock);
  1376. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1377. spin_unlock(&pers_lock);
  1378. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1379. pnum);
  1380. return -EINVAL;
  1381. }
  1382. mddev->pers = pers[pnum];
  1383. spin_unlock(&pers_lock);
  1384. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1385. err = mddev->pers->run(mddev);
  1386. if (err) {
  1387. printk(KERN_ERR "md: pers->run() failed ...\n");
  1388. module_put(mddev->pers->owner);
  1389. mddev->pers = NULL;
  1390. return -EINVAL;
  1391. }
  1392. atomic_set(&mddev->writes_pending,0);
  1393. mddev->safemode = 0;
  1394. mddev->safemode_timer.function = md_safemode_timeout;
  1395. mddev->safemode_timer.data = (unsigned long) mddev;
  1396. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1397. mddev->in_sync = 1;
  1398. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1399. if (mddev->sb_dirty)
  1400. md_update_sb(mddev);
  1401. set_capacity(disk, mddev->array_size<<1);
  1402. /* If we call blk_queue_make_request here, it will
  1403. * re-initialise max_sectors etc which may have been
  1404. * refined inside -> run. So just set the bits we need to set.
  1405. * Most initialisation happended when we called
  1406. * blk_queue_make_request(..., md_fail_request)
  1407. * earlier.
  1408. */
  1409. mddev->queue->queuedata = mddev;
  1410. mddev->queue->make_request_fn = mddev->pers->make_request;
  1411. mddev->changed = 1;
  1412. return 0;
  1413. }
  1414. static int restart_array(mddev_t *mddev)
  1415. {
  1416. struct gendisk *disk = mddev->gendisk;
  1417. int err;
  1418. /*
  1419. * Complain if it has no devices
  1420. */
  1421. err = -ENXIO;
  1422. if (list_empty(&mddev->disks))
  1423. goto out;
  1424. if (mddev->pers) {
  1425. err = -EBUSY;
  1426. if (!mddev->ro)
  1427. goto out;
  1428. mddev->safemode = 0;
  1429. mddev->ro = 0;
  1430. set_disk_ro(disk, 0);
  1431. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1432. mdname(mddev));
  1433. /*
  1434. * Kick recovery or resync if necessary
  1435. */
  1436. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1437. md_wakeup_thread(mddev->thread);
  1438. err = 0;
  1439. } else {
  1440. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1441. mdname(mddev));
  1442. err = -EINVAL;
  1443. }
  1444. out:
  1445. return err;
  1446. }
  1447. static int do_md_stop(mddev_t * mddev, int ro)
  1448. {
  1449. int err = 0;
  1450. struct gendisk *disk = mddev->gendisk;
  1451. if (mddev->pers) {
  1452. if (atomic_read(&mddev->active)>2) {
  1453. printk("md: %s still in use.\n",mdname(mddev));
  1454. return -EBUSY;
  1455. }
  1456. if (mddev->sync_thread) {
  1457. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1458. md_unregister_thread(mddev->sync_thread);
  1459. mddev->sync_thread = NULL;
  1460. }
  1461. del_timer_sync(&mddev->safemode_timer);
  1462. invalidate_partition(disk, 0);
  1463. if (ro) {
  1464. err = -ENXIO;
  1465. if (mddev->ro)
  1466. goto out;
  1467. mddev->ro = 1;
  1468. } else {
  1469. if (mddev->ro)
  1470. set_disk_ro(disk, 0);
  1471. blk_queue_make_request(mddev->queue, md_fail_request);
  1472. mddev->pers->stop(mddev);
  1473. module_put(mddev->pers->owner);
  1474. mddev->pers = NULL;
  1475. if (mddev->ro)
  1476. mddev->ro = 0;
  1477. }
  1478. if (!mddev->in_sync) {
  1479. /* mark array as shutdown cleanly */
  1480. mddev->in_sync = 1;
  1481. md_update_sb(mddev);
  1482. }
  1483. if (ro)
  1484. set_disk_ro(disk, 1);
  1485. }
  1486. /*
  1487. * Free resources if final stop
  1488. */
  1489. if (!ro) {
  1490. struct gendisk *disk;
  1491. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1492. export_array(mddev);
  1493. mddev->array_size = 0;
  1494. disk = mddev->gendisk;
  1495. if (disk)
  1496. set_capacity(disk, 0);
  1497. mddev->changed = 1;
  1498. } else
  1499. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1500. mdname(mddev));
  1501. err = 0;
  1502. out:
  1503. return err;
  1504. }
  1505. static void autorun_array(mddev_t *mddev)
  1506. {
  1507. mdk_rdev_t *rdev;
  1508. struct list_head *tmp;
  1509. int err;
  1510. if (list_empty(&mddev->disks)) {
  1511. MD_BUG();
  1512. return;
  1513. }
  1514. printk(KERN_INFO "md: running: ");
  1515. ITERATE_RDEV(mddev,rdev,tmp) {
  1516. char b[BDEVNAME_SIZE];
  1517. printk("<%s>", bdevname(rdev->bdev,b));
  1518. }
  1519. printk("\n");
  1520. err = do_md_run (mddev);
  1521. if (err) {
  1522. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1523. do_md_stop (mddev, 0);
  1524. }
  1525. }
  1526. /*
  1527. * lets try to run arrays based on all disks that have arrived
  1528. * until now. (those are in pending_raid_disks)
  1529. *
  1530. * the method: pick the first pending disk, collect all disks with
  1531. * the same UUID, remove all from the pending list and put them into
  1532. * the 'same_array' list. Then order this list based on superblock
  1533. * update time (freshest comes first), kick out 'old' disks and
  1534. * compare superblocks. If everything's fine then run it.
  1535. *
  1536. * If "unit" is allocated, then bump its reference count
  1537. */
  1538. static void autorun_devices(int part)
  1539. {
  1540. struct list_head candidates;
  1541. struct list_head *tmp;
  1542. mdk_rdev_t *rdev0, *rdev;
  1543. mddev_t *mddev;
  1544. char b[BDEVNAME_SIZE];
  1545. printk(KERN_INFO "md: autorun ...\n");
  1546. while (!list_empty(&pending_raid_disks)) {
  1547. dev_t dev;
  1548. rdev0 = list_entry(pending_raid_disks.next,
  1549. mdk_rdev_t, same_set);
  1550. printk(KERN_INFO "md: considering %s ...\n",
  1551. bdevname(rdev0->bdev,b));
  1552. INIT_LIST_HEAD(&candidates);
  1553. ITERATE_RDEV_PENDING(rdev,tmp)
  1554. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1555. printk(KERN_INFO "md: adding %s ...\n",
  1556. bdevname(rdev->bdev,b));
  1557. list_move(&rdev->same_set, &candidates);
  1558. }
  1559. /*
  1560. * now we have a set of devices, with all of them having
  1561. * mostly sane superblocks. It's time to allocate the
  1562. * mddev.
  1563. */
  1564. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1565. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1566. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1567. break;
  1568. }
  1569. if (part)
  1570. dev = MKDEV(mdp_major,
  1571. rdev0->preferred_minor << MdpMinorShift);
  1572. else
  1573. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1574. md_probe(dev, NULL, NULL);
  1575. mddev = mddev_find(dev);
  1576. if (!mddev) {
  1577. printk(KERN_ERR
  1578. "md: cannot allocate memory for md drive.\n");
  1579. break;
  1580. }
  1581. if (mddev_lock(mddev))
  1582. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1583. mdname(mddev));
  1584. else if (mddev->raid_disks || mddev->major_version
  1585. || !list_empty(&mddev->disks)) {
  1586. printk(KERN_WARNING
  1587. "md: %s already running, cannot run %s\n",
  1588. mdname(mddev), bdevname(rdev0->bdev,b));
  1589. mddev_unlock(mddev);
  1590. } else {
  1591. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1592. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1593. list_del_init(&rdev->same_set);
  1594. if (bind_rdev_to_array(rdev, mddev))
  1595. export_rdev(rdev);
  1596. }
  1597. autorun_array(mddev);
  1598. mddev_unlock(mddev);
  1599. }
  1600. /* on success, candidates will be empty, on error
  1601. * it won't...
  1602. */
  1603. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1604. export_rdev(rdev);
  1605. mddev_put(mddev);
  1606. }
  1607. printk(KERN_INFO "md: ... autorun DONE.\n");
  1608. }
  1609. /*
  1610. * import RAID devices based on one partition
  1611. * if possible, the array gets run as well.
  1612. */
  1613. static int autostart_array(dev_t startdev)
  1614. {
  1615. char b[BDEVNAME_SIZE];
  1616. int err = -EINVAL, i;
  1617. mdp_super_t *sb = NULL;
  1618. mdk_rdev_t *start_rdev = NULL, *rdev;
  1619. start_rdev = md_import_device(startdev, 0, 0);
  1620. if (IS_ERR(start_rdev))
  1621. return err;
  1622. /* NOTE: this can only work for 0.90.0 superblocks */
  1623. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1624. if (sb->major_version != 0 ||
  1625. sb->minor_version != 90 ) {
  1626. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1627. export_rdev(start_rdev);
  1628. return err;
  1629. }
  1630. if (start_rdev->faulty) {
  1631. printk(KERN_WARNING
  1632. "md: can not autostart based on faulty %s!\n",
  1633. bdevname(start_rdev->bdev,b));
  1634. export_rdev(start_rdev);
  1635. return err;
  1636. }
  1637. list_add(&start_rdev->same_set, &pending_raid_disks);
  1638. for (i = 0; i < MD_SB_DISKS; i++) {
  1639. mdp_disk_t *desc = sb->disks + i;
  1640. dev_t dev = MKDEV(desc->major, desc->minor);
  1641. if (!dev)
  1642. continue;
  1643. if (dev == startdev)
  1644. continue;
  1645. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  1646. continue;
  1647. rdev = md_import_device(dev, 0, 0);
  1648. if (IS_ERR(rdev))
  1649. continue;
  1650. list_add(&rdev->same_set, &pending_raid_disks);
  1651. }
  1652. /*
  1653. * possibly return codes
  1654. */
  1655. autorun_devices(0);
  1656. return 0;
  1657. }
  1658. static int get_version(void __user * arg)
  1659. {
  1660. mdu_version_t ver;
  1661. ver.major = MD_MAJOR_VERSION;
  1662. ver.minor = MD_MINOR_VERSION;
  1663. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  1664. if (copy_to_user(arg, &ver, sizeof(ver)))
  1665. return -EFAULT;
  1666. return 0;
  1667. }
  1668. static int get_array_info(mddev_t * mddev, void __user * arg)
  1669. {
  1670. mdu_array_info_t info;
  1671. int nr,working,active,failed,spare;
  1672. mdk_rdev_t *rdev;
  1673. struct list_head *tmp;
  1674. nr=working=active=failed=spare=0;
  1675. ITERATE_RDEV(mddev,rdev,tmp) {
  1676. nr++;
  1677. if (rdev->faulty)
  1678. failed++;
  1679. else {
  1680. working++;
  1681. if (rdev->in_sync)
  1682. active++;
  1683. else
  1684. spare++;
  1685. }
  1686. }
  1687. info.major_version = mddev->major_version;
  1688. info.minor_version = mddev->minor_version;
  1689. info.patch_version = MD_PATCHLEVEL_VERSION;
  1690. info.ctime = mddev->ctime;
  1691. info.level = mddev->level;
  1692. info.size = mddev->size;
  1693. info.nr_disks = nr;
  1694. info.raid_disks = mddev->raid_disks;
  1695. info.md_minor = mddev->md_minor;
  1696. info.not_persistent= !mddev->persistent;
  1697. info.utime = mddev->utime;
  1698. info.state = 0;
  1699. if (mddev->in_sync)
  1700. info.state = (1<<MD_SB_CLEAN);
  1701. info.active_disks = active;
  1702. info.working_disks = working;
  1703. info.failed_disks = failed;
  1704. info.spare_disks = spare;
  1705. info.layout = mddev->layout;
  1706. info.chunk_size = mddev->chunk_size;
  1707. if (copy_to_user(arg, &info, sizeof(info)))
  1708. return -EFAULT;
  1709. return 0;
  1710. }
  1711. static int get_disk_info(mddev_t * mddev, void __user * arg)
  1712. {
  1713. mdu_disk_info_t info;
  1714. unsigned int nr;
  1715. mdk_rdev_t *rdev;
  1716. if (copy_from_user(&info, arg, sizeof(info)))
  1717. return -EFAULT;
  1718. nr = info.number;
  1719. rdev = find_rdev_nr(mddev, nr);
  1720. if (rdev) {
  1721. info.major = MAJOR(rdev->bdev->bd_dev);
  1722. info.minor = MINOR(rdev->bdev->bd_dev);
  1723. info.raid_disk = rdev->raid_disk;
  1724. info.state = 0;
  1725. if (rdev->faulty)
  1726. info.state |= (1<<MD_DISK_FAULTY);
  1727. else if (rdev->in_sync) {
  1728. info.state |= (1<<MD_DISK_ACTIVE);
  1729. info.state |= (1<<MD_DISK_SYNC);
  1730. }
  1731. } else {
  1732. info.major = info.minor = 0;
  1733. info.raid_disk = -1;
  1734. info.state = (1<<MD_DISK_REMOVED);
  1735. }
  1736. if (copy_to_user(arg, &info, sizeof(info)))
  1737. return -EFAULT;
  1738. return 0;
  1739. }
  1740. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  1741. {
  1742. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1743. mdk_rdev_t *rdev;
  1744. dev_t dev = MKDEV(info->major,info->minor);
  1745. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  1746. return -EOVERFLOW;
  1747. if (!mddev->raid_disks) {
  1748. int err;
  1749. /* expecting a device which has a superblock */
  1750. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  1751. if (IS_ERR(rdev)) {
  1752. printk(KERN_WARNING
  1753. "md: md_import_device returned %ld\n",
  1754. PTR_ERR(rdev));
  1755. return PTR_ERR(rdev);
  1756. }
  1757. if (!list_empty(&mddev->disks)) {
  1758. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  1759. mdk_rdev_t, same_set);
  1760. int err = super_types[mddev->major_version]
  1761. .load_super(rdev, rdev0, mddev->minor_version);
  1762. if (err < 0) {
  1763. printk(KERN_WARNING
  1764. "md: %s has different UUID to %s\n",
  1765. bdevname(rdev->bdev,b),
  1766. bdevname(rdev0->bdev,b2));
  1767. export_rdev(rdev);
  1768. return -EINVAL;
  1769. }
  1770. }
  1771. err = bind_rdev_to_array(rdev, mddev);
  1772. if (err)
  1773. export_rdev(rdev);
  1774. return err;
  1775. }
  1776. /*
  1777. * add_new_disk can be used once the array is assembled
  1778. * to add "hot spares". They must already have a superblock
  1779. * written
  1780. */
  1781. if (mddev->pers) {
  1782. int err;
  1783. if (!mddev->pers->hot_add_disk) {
  1784. printk(KERN_WARNING
  1785. "%s: personality does not support diskops!\n",
  1786. mdname(mddev));
  1787. return -EINVAL;
  1788. }
  1789. rdev = md_import_device(dev, mddev->major_version,
  1790. mddev->minor_version);
  1791. if (IS_ERR(rdev)) {
  1792. printk(KERN_WARNING
  1793. "md: md_import_device returned %ld\n",
  1794. PTR_ERR(rdev));
  1795. return PTR_ERR(rdev);
  1796. }
  1797. rdev->in_sync = 0; /* just to be sure */
  1798. rdev->raid_disk = -1;
  1799. err = bind_rdev_to_array(rdev, mddev);
  1800. if (err)
  1801. export_rdev(rdev);
  1802. if (mddev->thread)
  1803. md_wakeup_thread(mddev->thread);
  1804. return err;
  1805. }
  1806. /* otherwise, add_new_disk is only allowed
  1807. * for major_version==0 superblocks
  1808. */
  1809. if (mddev->major_version != 0) {
  1810. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  1811. mdname(mddev));
  1812. return -EINVAL;
  1813. }
  1814. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  1815. int err;
  1816. rdev = md_import_device (dev, -1, 0);
  1817. if (IS_ERR(rdev)) {
  1818. printk(KERN_WARNING
  1819. "md: error, md_import_device() returned %ld\n",
  1820. PTR_ERR(rdev));
  1821. return PTR_ERR(rdev);
  1822. }
  1823. rdev->desc_nr = info->number;
  1824. if (info->raid_disk < mddev->raid_disks)
  1825. rdev->raid_disk = info->raid_disk;
  1826. else
  1827. rdev->raid_disk = -1;
  1828. rdev->faulty = 0;
  1829. if (rdev->raid_disk < mddev->raid_disks)
  1830. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  1831. else
  1832. rdev->in_sync = 0;
  1833. err = bind_rdev_to_array(rdev, mddev);
  1834. if (err) {
  1835. export_rdev(rdev);
  1836. return err;
  1837. }
  1838. if (!mddev->persistent) {
  1839. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  1840. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1841. } else
  1842. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1843. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  1844. if (!mddev->size || (mddev->size > rdev->size))
  1845. mddev->size = rdev->size;
  1846. }
  1847. return 0;
  1848. }
  1849. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  1850. {
  1851. char b[BDEVNAME_SIZE];
  1852. mdk_rdev_t *rdev;
  1853. if (!mddev->pers)
  1854. return -ENODEV;
  1855. rdev = find_rdev(mddev, dev);
  1856. if (!rdev)
  1857. return -ENXIO;
  1858. if (rdev->raid_disk >= 0)
  1859. goto busy;
  1860. kick_rdev_from_array(rdev);
  1861. md_update_sb(mddev);
  1862. return 0;
  1863. busy:
  1864. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  1865. bdevname(rdev->bdev,b), mdname(mddev));
  1866. return -EBUSY;
  1867. }
  1868. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  1869. {
  1870. char b[BDEVNAME_SIZE];
  1871. int err;
  1872. unsigned int size;
  1873. mdk_rdev_t *rdev;
  1874. if (!mddev->pers)
  1875. return -ENODEV;
  1876. if (mddev->major_version != 0) {
  1877. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  1878. " version-0 superblocks.\n",
  1879. mdname(mddev));
  1880. return -EINVAL;
  1881. }
  1882. if (!mddev->pers->hot_add_disk) {
  1883. printk(KERN_WARNING
  1884. "%s: personality does not support diskops!\n",
  1885. mdname(mddev));
  1886. return -EINVAL;
  1887. }
  1888. rdev = md_import_device (dev, -1, 0);
  1889. if (IS_ERR(rdev)) {
  1890. printk(KERN_WARNING
  1891. "md: error, md_import_device() returned %ld\n",
  1892. PTR_ERR(rdev));
  1893. return -EINVAL;
  1894. }
  1895. if (mddev->persistent)
  1896. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  1897. else
  1898. rdev->sb_offset =
  1899. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1900. size = calc_dev_size(rdev, mddev->chunk_size);
  1901. rdev->size = size;
  1902. if (size < mddev->size) {
  1903. printk(KERN_WARNING
  1904. "%s: disk size %llu blocks < array size %llu\n",
  1905. mdname(mddev), (unsigned long long)size,
  1906. (unsigned long long)mddev->size);
  1907. err = -ENOSPC;
  1908. goto abort_export;
  1909. }
  1910. if (rdev->faulty) {
  1911. printk(KERN_WARNING
  1912. "md: can not hot-add faulty %s disk to %s!\n",
  1913. bdevname(rdev->bdev,b), mdname(mddev));
  1914. err = -EINVAL;
  1915. goto abort_export;
  1916. }
  1917. rdev->in_sync = 0;
  1918. rdev->desc_nr = -1;
  1919. bind_rdev_to_array(rdev, mddev);
  1920. /*
  1921. * The rest should better be atomic, we can have disk failures
  1922. * noticed in interrupt contexts ...
  1923. */
  1924. if (rdev->desc_nr == mddev->max_disks) {
  1925. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  1926. mdname(mddev));
  1927. err = -EBUSY;
  1928. goto abort_unbind_export;
  1929. }
  1930. rdev->raid_disk = -1;
  1931. md_update_sb(mddev);
  1932. /*
  1933. * Kick recovery, maybe this spare has to be added to the
  1934. * array immediately.
  1935. */
  1936. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1937. md_wakeup_thread(mddev->thread);
  1938. return 0;
  1939. abort_unbind_export:
  1940. unbind_rdev_from_array(rdev);
  1941. abort_export:
  1942. export_rdev(rdev);
  1943. return err;
  1944. }
  1945. /*
  1946. * set_array_info is used two different ways
  1947. * The original usage is when creating a new array.
  1948. * In this usage, raid_disks is > 0 and it together with
  1949. * level, size, not_persistent,layout,chunksize determine the
  1950. * shape of the array.
  1951. * This will always create an array with a type-0.90.0 superblock.
  1952. * The newer usage is when assembling an array.
  1953. * In this case raid_disks will be 0, and the major_version field is
  1954. * use to determine which style super-blocks are to be found on the devices.
  1955. * The minor and patch _version numbers are also kept incase the
  1956. * super_block handler wishes to interpret them.
  1957. */
  1958. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  1959. {
  1960. if (info->raid_disks == 0) {
  1961. /* just setting version number for superblock loading */
  1962. if (info->major_version < 0 ||
  1963. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  1964. super_types[info->major_version].name == NULL) {
  1965. /* maybe try to auto-load a module? */
  1966. printk(KERN_INFO
  1967. "md: superblock version %d not known\n",
  1968. info->major_version);
  1969. return -EINVAL;
  1970. }
  1971. mddev->major_version = info->major_version;
  1972. mddev->minor_version = info->minor_version;
  1973. mddev->patch_version = info->patch_version;
  1974. return 0;
  1975. }
  1976. mddev->major_version = MD_MAJOR_VERSION;
  1977. mddev->minor_version = MD_MINOR_VERSION;
  1978. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  1979. mddev->ctime = get_seconds();
  1980. mddev->level = info->level;
  1981. mddev->size = info->size;
  1982. mddev->raid_disks = info->raid_disks;
  1983. /* don't set md_minor, it is determined by which /dev/md* was
  1984. * openned
  1985. */
  1986. if (info->state & (1<<MD_SB_CLEAN))
  1987. mddev->recovery_cp = MaxSector;
  1988. else
  1989. mddev->recovery_cp = 0;
  1990. mddev->persistent = ! info->not_persistent;
  1991. mddev->layout = info->layout;
  1992. mddev->chunk_size = info->chunk_size;
  1993. mddev->max_disks = MD_SB_DISKS;
  1994. mddev->sb_dirty = 1;
  1995. /*
  1996. * Generate a 128 bit UUID
  1997. */
  1998. get_random_bytes(mddev->uuid, 16);
  1999. return 0;
  2000. }
  2001. /*
  2002. * update_array_info is used to change the configuration of an
  2003. * on-line array.
  2004. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2005. * fields in the info are checked against the array.
  2006. * Any differences that cannot be handled will cause an error.
  2007. * Normally, only one change can be managed at a time.
  2008. */
  2009. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2010. {
  2011. int rv = 0;
  2012. int cnt = 0;
  2013. if (mddev->major_version != info->major_version ||
  2014. mddev->minor_version != info->minor_version ||
  2015. /* mddev->patch_version != info->patch_version || */
  2016. mddev->ctime != info->ctime ||
  2017. mddev->level != info->level ||
  2018. /* mddev->layout != info->layout || */
  2019. !mddev->persistent != info->not_persistent||
  2020. mddev->chunk_size != info->chunk_size )
  2021. return -EINVAL;
  2022. /* Check there is only one change */
  2023. if (mddev->size != info->size) cnt++;
  2024. if (mddev->raid_disks != info->raid_disks) cnt++;
  2025. if (mddev->layout != info->layout) cnt++;
  2026. if (cnt == 0) return 0;
  2027. if (cnt > 1) return -EINVAL;
  2028. if (mddev->layout != info->layout) {
  2029. /* Change layout
  2030. * we don't need to do anything at the md level, the
  2031. * personality will take care of it all.
  2032. */
  2033. if (mddev->pers->reconfig == NULL)
  2034. return -EINVAL;
  2035. else
  2036. return mddev->pers->reconfig(mddev, info->layout, -1);
  2037. }
  2038. if (mddev->size != info->size) {
  2039. mdk_rdev_t * rdev;
  2040. struct list_head *tmp;
  2041. if (mddev->pers->resize == NULL)
  2042. return -EINVAL;
  2043. /* The "size" is the amount of each device that is used.
  2044. * This can only make sense for arrays with redundancy.
  2045. * linear and raid0 always use whatever space is available
  2046. * We can only consider changing the size if no resync
  2047. * or reconstruction is happening, and if the new size
  2048. * is acceptable. It must fit before the sb_offset or,
  2049. * if that is <data_offset, it must fit before the
  2050. * size of each device.
  2051. * If size is zero, we find the largest size that fits.
  2052. */
  2053. if (mddev->sync_thread)
  2054. return -EBUSY;
  2055. ITERATE_RDEV(mddev,rdev,tmp) {
  2056. sector_t avail;
  2057. int fit = (info->size == 0);
  2058. if (rdev->sb_offset > rdev->data_offset)
  2059. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2060. else
  2061. avail = get_capacity(rdev->bdev->bd_disk)
  2062. - rdev->data_offset;
  2063. if (fit && (info->size == 0 || info->size > avail/2))
  2064. info->size = avail/2;
  2065. if (avail < ((sector_t)info->size << 1))
  2066. return -ENOSPC;
  2067. }
  2068. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2069. if (!rv) {
  2070. struct block_device *bdev;
  2071. bdev = bdget_disk(mddev->gendisk, 0);
  2072. if (bdev) {
  2073. down(&bdev->bd_inode->i_sem);
  2074. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2075. up(&bdev->bd_inode->i_sem);
  2076. bdput(bdev);
  2077. }
  2078. }
  2079. }
  2080. if (mddev->raid_disks != info->raid_disks) {
  2081. /* change the number of raid disks */
  2082. if (mddev->pers->reshape == NULL)
  2083. return -EINVAL;
  2084. if (info->raid_disks <= 0 ||
  2085. info->raid_disks >= mddev->max_disks)
  2086. return -EINVAL;
  2087. if (mddev->sync_thread)
  2088. return -EBUSY;
  2089. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2090. if (!rv) {
  2091. struct block_device *bdev;
  2092. bdev = bdget_disk(mddev->gendisk, 0);
  2093. if (bdev) {
  2094. down(&bdev->bd_inode->i_sem);
  2095. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2096. up(&bdev->bd_inode->i_sem);
  2097. bdput(bdev);
  2098. }
  2099. }
  2100. }
  2101. md_update_sb(mddev);
  2102. return rv;
  2103. }
  2104. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2105. {
  2106. mdk_rdev_t *rdev;
  2107. if (mddev->pers == NULL)
  2108. return -ENODEV;
  2109. rdev = find_rdev(mddev, dev);
  2110. if (!rdev)
  2111. return -ENODEV;
  2112. md_error(mddev, rdev);
  2113. return 0;
  2114. }
  2115. static int md_ioctl(struct inode *inode, struct file *file,
  2116. unsigned int cmd, unsigned long arg)
  2117. {
  2118. int err = 0;
  2119. void __user *argp = (void __user *)arg;
  2120. struct hd_geometry __user *loc = argp;
  2121. mddev_t *mddev = NULL;
  2122. if (!capable(CAP_SYS_ADMIN))
  2123. return -EACCES;
  2124. /*
  2125. * Commands dealing with the RAID driver but not any
  2126. * particular array:
  2127. */
  2128. switch (cmd)
  2129. {
  2130. case RAID_VERSION:
  2131. err = get_version(argp);
  2132. goto done;
  2133. case PRINT_RAID_DEBUG:
  2134. err = 0;
  2135. md_print_devices();
  2136. goto done;
  2137. #ifndef MODULE
  2138. case RAID_AUTORUN:
  2139. err = 0;
  2140. autostart_arrays(arg);
  2141. goto done;
  2142. #endif
  2143. default:;
  2144. }
  2145. /*
  2146. * Commands creating/starting a new array:
  2147. */
  2148. mddev = inode->i_bdev->bd_disk->private_data;
  2149. if (!mddev) {
  2150. BUG();
  2151. goto abort;
  2152. }
  2153. if (cmd == START_ARRAY) {
  2154. /* START_ARRAY doesn't need to lock the array as autostart_array
  2155. * does the locking, and it could even be a different array
  2156. */
  2157. static int cnt = 3;
  2158. if (cnt > 0 ) {
  2159. printk(KERN_WARNING
  2160. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2161. "This will not be supported beyond 2.6\n",
  2162. current->comm, current->pid);
  2163. cnt--;
  2164. }
  2165. err = autostart_array(new_decode_dev(arg));
  2166. if (err) {
  2167. printk(KERN_WARNING "md: autostart failed!\n");
  2168. goto abort;
  2169. }
  2170. goto done;
  2171. }
  2172. err = mddev_lock(mddev);
  2173. if (err) {
  2174. printk(KERN_INFO
  2175. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2176. err, cmd);
  2177. goto abort;
  2178. }
  2179. switch (cmd)
  2180. {
  2181. case SET_ARRAY_INFO:
  2182. {
  2183. mdu_array_info_t info;
  2184. if (!arg)
  2185. memset(&info, 0, sizeof(info));
  2186. else if (copy_from_user(&info, argp, sizeof(info))) {
  2187. err = -EFAULT;
  2188. goto abort_unlock;
  2189. }
  2190. if (mddev->pers) {
  2191. err = update_array_info(mddev, &info);
  2192. if (err) {
  2193. printk(KERN_WARNING "md: couldn't update"
  2194. " array info. %d\n", err);
  2195. goto abort_unlock;
  2196. }
  2197. goto done_unlock;
  2198. }
  2199. if (!list_empty(&mddev->disks)) {
  2200. printk(KERN_WARNING
  2201. "md: array %s already has disks!\n",
  2202. mdname(mddev));
  2203. err = -EBUSY;
  2204. goto abort_unlock;
  2205. }
  2206. if (mddev->raid_disks) {
  2207. printk(KERN_WARNING
  2208. "md: array %s already initialised!\n",
  2209. mdname(mddev));
  2210. err = -EBUSY;
  2211. goto abort_unlock;
  2212. }
  2213. err = set_array_info(mddev, &info);
  2214. if (err) {
  2215. printk(KERN_WARNING "md: couldn't set"
  2216. " array info. %d\n", err);
  2217. goto abort_unlock;
  2218. }
  2219. }
  2220. goto done_unlock;
  2221. default:;
  2222. }
  2223. /*
  2224. * Commands querying/configuring an existing array:
  2225. */
  2226. /* if we are initialised yet, only ADD_NEW_DISK or STOP_ARRAY is allowed */
  2227. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY && cmd != RUN_ARRAY) {
  2228. err = -ENODEV;
  2229. goto abort_unlock;
  2230. }
  2231. /*
  2232. * Commands even a read-only array can execute:
  2233. */
  2234. switch (cmd)
  2235. {
  2236. case GET_ARRAY_INFO:
  2237. err = get_array_info(mddev, argp);
  2238. goto done_unlock;
  2239. case GET_DISK_INFO:
  2240. err = get_disk_info(mddev, argp);
  2241. goto done_unlock;
  2242. case RESTART_ARRAY_RW:
  2243. err = restart_array(mddev);
  2244. goto done_unlock;
  2245. case STOP_ARRAY:
  2246. err = do_md_stop (mddev, 0);
  2247. goto done_unlock;
  2248. case STOP_ARRAY_RO:
  2249. err = do_md_stop (mddev, 1);
  2250. goto done_unlock;
  2251. /*
  2252. * We have a problem here : there is no easy way to give a CHS
  2253. * virtual geometry. We currently pretend that we have a 2 heads
  2254. * 4 sectors (with a BIG number of cylinders...). This drives
  2255. * dosfs just mad... ;-)
  2256. */
  2257. case HDIO_GETGEO:
  2258. if (!loc) {
  2259. err = -EINVAL;
  2260. goto abort_unlock;
  2261. }
  2262. err = put_user (2, (char __user *) &loc->heads);
  2263. if (err)
  2264. goto abort_unlock;
  2265. err = put_user (4, (char __user *) &loc->sectors);
  2266. if (err)
  2267. goto abort_unlock;
  2268. err = put_user(get_capacity(mddev->gendisk)/8,
  2269. (short __user *) &loc->cylinders);
  2270. if (err)
  2271. goto abort_unlock;
  2272. err = put_user (get_start_sect(inode->i_bdev),
  2273. (long __user *) &loc->start);
  2274. goto done_unlock;
  2275. }
  2276. /*
  2277. * The remaining ioctls are changing the state of the
  2278. * superblock, so we do not allow read-only arrays
  2279. * here:
  2280. */
  2281. if (mddev->ro) {
  2282. err = -EROFS;
  2283. goto abort_unlock;
  2284. }
  2285. switch (cmd)
  2286. {
  2287. case ADD_NEW_DISK:
  2288. {
  2289. mdu_disk_info_t info;
  2290. if (copy_from_user(&info, argp, sizeof(info)))
  2291. err = -EFAULT;
  2292. else
  2293. err = add_new_disk(mddev, &info);
  2294. goto done_unlock;
  2295. }
  2296. case HOT_REMOVE_DISK:
  2297. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2298. goto done_unlock;
  2299. case HOT_ADD_DISK:
  2300. err = hot_add_disk(mddev, new_decode_dev(arg));
  2301. goto done_unlock;
  2302. case SET_DISK_FAULTY:
  2303. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2304. goto done_unlock;
  2305. case RUN_ARRAY:
  2306. err = do_md_run (mddev);
  2307. goto done_unlock;
  2308. default:
  2309. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2310. printk(KERN_WARNING "md: %s(pid %d) used"
  2311. " obsolete MD ioctl, upgrade your"
  2312. " software to use new ictls.\n",
  2313. current->comm, current->pid);
  2314. err = -EINVAL;
  2315. goto abort_unlock;
  2316. }
  2317. done_unlock:
  2318. abort_unlock:
  2319. mddev_unlock(mddev);
  2320. return err;
  2321. done:
  2322. if (err)
  2323. MD_BUG();
  2324. abort:
  2325. return err;
  2326. }
  2327. static int md_open(struct inode *inode, struct file *file)
  2328. {
  2329. /*
  2330. * Succeed if we can lock the mddev, which confirms that
  2331. * it isn't being stopped right now.
  2332. */
  2333. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2334. int err;
  2335. if ((err = mddev_lock(mddev)))
  2336. goto out;
  2337. err = 0;
  2338. mddev_get(mddev);
  2339. mddev_unlock(mddev);
  2340. check_disk_change(inode->i_bdev);
  2341. out:
  2342. return err;
  2343. }
  2344. static int md_release(struct inode *inode, struct file * file)
  2345. {
  2346. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2347. if (!mddev)
  2348. BUG();
  2349. mddev_put(mddev);
  2350. return 0;
  2351. }
  2352. static int md_media_changed(struct gendisk *disk)
  2353. {
  2354. mddev_t *mddev = disk->private_data;
  2355. return mddev->changed;
  2356. }
  2357. static int md_revalidate(struct gendisk *disk)
  2358. {
  2359. mddev_t *mddev = disk->private_data;
  2360. mddev->changed = 0;
  2361. return 0;
  2362. }
  2363. static struct block_device_operations md_fops =
  2364. {
  2365. .owner = THIS_MODULE,
  2366. .open = md_open,
  2367. .release = md_release,
  2368. .ioctl = md_ioctl,
  2369. .media_changed = md_media_changed,
  2370. .revalidate_disk= md_revalidate,
  2371. };
  2372. int md_thread(void * arg)
  2373. {
  2374. mdk_thread_t *thread = arg;
  2375. lock_kernel();
  2376. /*
  2377. * Detach thread
  2378. */
  2379. daemonize(thread->name, mdname(thread->mddev));
  2380. current->exit_signal = SIGCHLD;
  2381. allow_signal(SIGKILL);
  2382. thread->tsk = current;
  2383. /*
  2384. * md_thread is a 'system-thread', it's priority should be very
  2385. * high. We avoid resource deadlocks individually in each
  2386. * raid personality. (RAID5 does preallocation) We also use RR and
  2387. * the very same RT priority as kswapd, thus we will never get
  2388. * into a priority inversion deadlock.
  2389. *
  2390. * we definitely have to have equal or higher priority than
  2391. * bdflush, otherwise bdflush will deadlock if there are too
  2392. * many dirty RAID5 blocks.
  2393. */
  2394. unlock_kernel();
  2395. complete(thread->event);
  2396. while (thread->run) {
  2397. void (*run)(mddev_t *);
  2398. wait_event_interruptible(thread->wqueue,
  2399. test_bit(THREAD_WAKEUP, &thread->flags));
  2400. if (current->flags & PF_FREEZE)
  2401. refrigerator(PF_FREEZE);
  2402. clear_bit(THREAD_WAKEUP, &thread->flags);
  2403. run = thread->run;
  2404. if (run)
  2405. run(thread->mddev);
  2406. if (signal_pending(current))
  2407. flush_signals(current);
  2408. }
  2409. complete(thread->event);
  2410. return 0;
  2411. }
  2412. void md_wakeup_thread(mdk_thread_t *thread)
  2413. {
  2414. if (thread) {
  2415. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2416. set_bit(THREAD_WAKEUP, &thread->flags);
  2417. wake_up(&thread->wqueue);
  2418. }
  2419. }
  2420. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2421. const char *name)
  2422. {
  2423. mdk_thread_t *thread;
  2424. int ret;
  2425. struct completion event;
  2426. thread = (mdk_thread_t *) kmalloc
  2427. (sizeof(mdk_thread_t), GFP_KERNEL);
  2428. if (!thread)
  2429. return NULL;
  2430. memset(thread, 0, sizeof(mdk_thread_t));
  2431. init_waitqueue_head(&thread->wqueue);
  2432. init_completion(&event);
  2433. thread->event = &event;
  2434. thread->run = run;
  2435. thread->mddev = mddev;
  2436. thread->name = name;
  2437. ret = kernel_thread(md_thread, thread, 0);
  2438. if (ret < 0) {
  2439. kfree(thread);
  2440. return NULL;
  2441. }
  2442. wait_for_completion(&event);
  2443. return thread;
  2444. }
  2445. static void md_interrupt_thread(mdk_thread_t *thread)
  2446. {
  2447. if (!thread->tsk) {
  2448. MD_BUG();
  2449. return;
  2450. }
  2451. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2452. send_sig(SIGKILL, thread->tsk, 1);
  2453. }
  2454. void md_unregister_thread(mdk_thread_t *thread)
  2455. {
  2456. struct completion event;
  2457. init_completion(&event);
  2458. thread->event = &event;
  2459. thread->run = NULL;
  2460. thread->name = NULL;
  2461. md_interrupt_thread(thread);
  2462. wait_for_completion(&event);
  2463. kfree(thread);
  2464. }
  2465. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2466. {
  2467. if (!mddev) {
  2468. MD_BUG();
  2469. return;
  2470. }
  2471. if (!rdev || rdev->faulty)
  2472. return;
  2473. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2474. mdname(mddev),
  2475. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2476. __builtin_return_address(0),__builtin_return_address(1),
  2477. __builtin_return_address(2),__builtin_return_address(3));
  2478. if (!mddev->pers->error_handler)
  2479. return;
  2480. mddev->pers->error_handler(mddev,rdev);
  2481. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2482. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2483. md_wakeup_thread(mddev->thread);
  2484. }
  2485. /* seq_file implementation /proc/mdstat */
  2486. static void status_unused(struct seq_file *seq)
  2487. {
  2488. int i = 0;
  2489. mdk_rdev_t *rdev;
  2490. struct list_head *tmp;
  2491. seq_printf(seq, "unused devices: ");
  2492. ITERATE_RDEV_PENDING(rdev,tmp) {
  2493. char b[BDEVNAME_SIZE];
  2494. i++;
  2495. seq_printf(seq, "%s ",
  2496. bdevname(rdev->bdev,b));
  2497. }
  2498. if (!i)
  2499. seq_printf(seq, "<none>");
  2500. seq_printf(seq, "\n");
  2501. }
  2502. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2503. {
  2504. unsigned long max_blocks, resync, res, dt, db, rt;
  2505. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  2506. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2507. max_blocks = mddev->resync_max_sectors >> 1;
  2508. else
  2509. max_blocks = mddev->size;
  2510. /*
  2511. * Should not happen.
  2512. */
  2513. if (!max_blocks) {
  2514. MD_BUG();
  2515. return;
  2516. }
  2517. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  2518. {
  2519. int i, x = res/50, y = 20-x;
  2520. seq_printf(seq, "[");
  2521. for (i = 0; i < x; i++)
  2522. seq_printf(seq, "=");
  2523. seq_printf(seq, ">");
  2524. for (i = 0; i < y; i++)
  2525. seq_printf(seq, ".");
  2526. seq_printf(seq, "] ");
  2527. }
  2528. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  2529. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  2530. "resync" : "recovery"),
  2531. res/10, res % 10, resync, max_blocks);
  2532. /*
  2533. * We do not want to overflow, so the order of operands and
  2534. * the * 100 / 100 trick are important. We do a +1 to be
  2535. * safe against division by zero. We only estimate anyway.
  2536. *
  2537. * dt: time from mark until now
  2538. * db: blocks written from mark until now
  2539. * rt: remaining time
  2540. */
  2541. dt = ((jiffies - mddev->resync_mark) / HZ);
  2542. if (!dt) dt++;
  2543. db = resync - (mddev->resync_mark_cnt/2);
  2544. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  2545. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  2546. seq_printf(seq, " speed=%ldK/sec", db/dt);
  2547. }
  2548. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  2549. {
  2550. struct list_head *tmp;
  2551. loff_t l = *pos;
  2552. mddev_t *mddev;
  2553. if (l >= 0x10000)
  2554. return NULL;
  2555. if (!l--)
  2556. /* header */
  2557. return (void*)1;
  2558. spin_lock(&all_mddevs_lock);
  2559. list_for_each(tmp,&all_mddevs)
  2560. if (!l--) {
  2561. mddev = list_entry(tmp, mddev_t, all_mddevs);
  2562. mddev_get(mddev);
  2563. spin_unlock(&all_mddevs_lock);
  2564. return mddev;
  2565. }
  2566. spin_unlock(&all_mddevs_lock);
  2567. if (!l--)
  2568. return (void*)2;/* tail */
  2569. return NULL;
  2570. }
  2571. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2572. {
  2573. struct list_head *tmp;
  2574. mddev_t *next_mddev, *mddev = v;
  2575. ++*pos;
  2576. if (v == (void*)2)
  2577. return NULL;
  2578. spin_lock(&all_mddevs_lock);
  2579. if (v == (void*)1)
  2580. tmp = all_mddevs.next;
  2581. else
  2582. tmp = mddev->all_mddevs.next;
  2583. if (tmp != &all_mddevs)
  2584. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  2585. else {
  2586. next_mddev = (void*)2;
  2587. *pos = 0x10000;
  2588. }
  2589. spin_unlock(&all_mddevs_lock);
  2590. if (v != (void*)1)
  2591. mddev_put(mddev);
  2592. return next_mddev;
  2593. }
  2594. static void md_seq_stop(struct seq_file *seq, void *v)
  2595. {
  2596. mddev_t *mddev = v;
  2597. if (mddev && v != (void*)1 && v != (void*)2)
  2598. mddev_put(mddev);
  2599. }
  2600. static int md_seq_show(struct seq_file *seq, void *v)
  2601. {
  2602. mddev_t *mddev = v;
  2603. sector_t size;
  2604. struct list_head *tmp2;
  2605. mdk_rdev_t *rdev;
  2606. int i;
  2607. if (v == (void*)1) {
  2608. seq_printf(seq, "Personalities : ");
  2609. spin_lock(&pers_lock);
  2610. for (i = 0; i < MAX_PERSONALITY; i++)
  2611. if (pers[i])
  2612. seq_printf(seq, "[%s] ", pers[i]->name);
  2613. spin_unlock(&pers_lock);
  2614. seq_printf(seq, "\n");
  2615. return 0;
  2616. }
  2617. if (v == (void*)2) {
  2618. status_unused(seq);
  2619. return 0;
  2620. }
  2621. if (mddev_lock(mddev)!=0)
  2622. return -EINTR;
  2623. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  2624. seq_printf(seq, "%s : %sactive", mdname(mddev),
  2625. mddev->pers ? "" : "in");
  2626. if (mddev->pers) {
  2627. if (mddev->ro)
  2628. seq_printf(seq, " (read-only)");
  2629. seq_printf(seq, " %s", mddev->pers->name);
  2630. }
  2631. size = 0;
  2632. ITERATE_RDEV(mddev,rdev,tmp2) {
  2633. char b[BDEVNAME_SIZE];
  2634. seq_printf(seq, " %s[%d]",
  2635. bdevname(rdev->bdev,b), rdev->desc_nr);
  2636. if (rdev->faulty) {
  2637. seq_printf(seq, "(F)");
  2638. continue;
  2639. }
  2640. size += rdev->size;
  2641. }
  2642. if (!list_empty(&mddev->disks)) {
  2643. if (mddev->pers)
  2644. seq_printf(seq, "\n %llu blocks",
  2645. (unsigned long long)mddev->array_size);
  2646. else
  2647. seq_printf(seq, "\n %llu blocks",
  2648. (unsigned long long)size);
  2649. }
  2650. if (mddev->pers) {
  2651. mddev->pers->status (seq, mddev);
  2652. seq_printf(seq, "\n ");
  2653. if (mddev->curr_resync > 2)
  2654. status_resync (seq, mddev);
  2655. else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  2656. seq_printf(seq, " resync=DELAYED");
  2657. }
  2658. seq_printf(seq, "\n");
  2659. }
  2660. mddev_unlock(mddev);
  2661. return 0;
  2662. }
  2663. static struct seq_operations md_seq_ops = {
  2664. .start = md_seq_start,
  2665. .next = md_seq_next,
  2666. .stop = md_seq_stop,
  2667. .show = md_seq_show,
  2668. };
  2669. static int md_seq_open(struct inode *inode, struct file *file)
  2670. {
  2671. int error;
  2672. error = seq_open(file, &md_seq_ops);
  2673. return error;
  2674. }
  2675. static struct file_operations md_seq_fops = {
  2676. .open = md_seq_open,
  2677. .read = seq_read,
  2678. .llseek = seq_lseek,
  2679. .release = seq_release,
  2680. };
  2681. int register_md_personality(int pnum, mdk_personality_t *p)
  2682. {
  2683. if (pnum >= MAX_PERSONALITY) {
  2684. printk(KERN_ERR
  2685. "md: tried to install personality %s as nr %d, but max is %lu\n",
  2686. p->name, pnum, MAX_PERSONALITY-1);
  2687. return -EINVAL;
  2688. }
  2689. spin_lock(&pers_lock);
  2690. if (pers[pnum]) {
  2691. spin_unlock(&pers_lock);
  2692. MD_BUG();
  2693. return -EBUSY;
  2694. }
  2695. pers[pnum] = p;
  2696. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  2697. spin_unlock(&pers_lock);
  2698. return 0;
  2699. }
  2700. int unregister_md_personality(int pnum)
  2701. {
  2702. if (pnum >= MAX_PERSONALITY) {
  2703. MD_BUG();
  2704. return -EINVAL;
  2705. }
  2706. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  2707. spin_lock(&pers_lock);
  2708. pers[pnum] = NULL;
  2709. spin_unlock(&pers_lock);
  2710. return 0;
  2711. }
  2712. static int is_mddev_idle(mddev_t *mddev)
  2713. {
  2714. mdk_rdev_t * rdev;
  2715. struct list_head *tmp;
  2716. int idle;
  2717. unsigned long curr_events;
  2718. idle = 1;
  2719. ITERATE_RDEV(mddev,rdev,tmp) {
  2720. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  2721. curr_events = disk_stat_read(disk, read_sectors) +
  2722. disk_stat_read(disk, write_sectors) -
  2723. atomic_read(&disk->sync_io);
  2724. /* Allow some slack between valud of curr_events and last_events,
  2725. * as there are some uninteresting races.
  2726. * Note: the following is an unsigned comparison.
  2727. */
  2728. if ((curr_events - rdev->last_events + 32) > 64) {
  2729. rdev->last_events = curr_events;
  2730. idle = 0;
  2731. }
  2732. }
  2733. return idle;
  2734. }
  2735. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  2736. {
  2737. /* another "blocks" (512byte) blocks have been synced */
  2738. atomic_sub(blocks, &mddev->recovery_active);
  2739. wake_up(&mddev->recovery_wait);
  2740. if (!ok) {
  2741. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  2742. md_wakeup_thread(mddev->thread);
  2743. // stop recovery, signal do_sync ....
  2744. }
  2745. }
  2746. void md_write_start(mddev_t *mddev)
  2747. {
  2748. if (!atomic_read(&mddev->writes_pending)) {
  2749. mddev_lock_uninterruptible(mddev);
  2750. if (mddev->in_sync) {
  2751. mddev->in_sync = 0;
  2752. del_timer(&mddev->safemode_timer);
  2753. md_update_sb(mddev);
  2754. }
  2755. atomic_inc(&mddev->writes_pending);
  2756. mddev_unlock(mddev);
  2757. } else
  2758. atomic_inc(&mddev->writes_pending);
  2759. }
  2760. void md_write_end(mddev_t *mddev)
  2761. {
  2762. if (atomic_dec_and_test(&mddev->writes_pending)) {
  2763. if (mddev->safemode == 2)
  2764. md_wakeup_thread(mddev->thread);
  2765. else
  2766. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  2767. }
  2768. }
  2769. static inline void md_enter_safemode(mddev_t *mddev)
  2770. {
  2771. if (!mddev->safemode) return;
  2772. if (mddev->safemode == 2 &&
  2773. (atomic_read(&mddev->writes_pending) || mddev->in_sync ||
  2774. mddev->recovery_cp != MaxSector))
  2775. return; /* avoid the lock */
  2776. mddev_lock_uninterruptible(mddev);
  2777. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  2778. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  2779. mddev->in_sync = 1;
  2780. md_update_sb(mddev);
  2781. }
  2782. mddev_unlock(mddev);
  2783. if (mddev->safemode == 1)
  2784. mddev->safemode = 0;
  2785. }
  2786. void md_handle_safemode(mddev_t *mddev)
  2787. {
  2788. if (signal_pending(current)) {
  2789. printk(KERN_INFO "md: %s in immediate safe mode\n",
  2790. mdname(mddev));
  2791. mddev->safemode = 2;
  2792. flush_signals(current);
  2793. }
  2794. md_enter_safemode(mddev);
  2795. }
  2796. DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  2797. #define SYNC_MARKS 10
  2798. #define SYNC_MARK_STEP (3*HZ)
  2799. static void md_do_sync(mddev_t *mddev)
  2800. {
  2801. mddev_t *mddev2;
  2802. unsigned int currspeed = 0,
  2803. window;
  2804. sector_t max_sectors,j;
  2805. unsigned long mark[SYNC_MARKS];
  2806. sector_t mark_cnt[SYNC_MARKS];
  2807. int last_mark,m;
  2808. struct list_head *tmp;
  2809. sector_t last_check;
  2810. /* just incase thread restarts... */
  2811. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  2812. return;
  2813. /* we overload curr_resync somewhat here.
  2814. * 0 == not engaged in resync at all
  2815. * 2 == checking that there is no conflict with another sync
  2816. * 1 == like 2, but have yielded to allow conflicting resync to
  2817. * commense
  2818. * other == active in resync - this many blocks
  2819. *
  2820. * Before starting a resync we must have set curr_resync to
  2821. * 2, and then checked that every "conflicting" array has curr_resync
  2822. * less than ours. When we find one that is the same or higher
  2823. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  2824. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  2825. * This will mean we have to start checking from the beginning again.
  2826. *
  2827. */
  2828. do {
  2829. mddev->curr_resync = 2;
  2830. try_again:
  2831. if (signal_pending(current)) {
  2832. flush_signals(current);
  2833. goto skip;
  2834. }
  2835. ITERATE_MDDEV(mddev2,tmp) {
  2836. printk(".");
  2837. if (mddev2 == mddev)
  2838. continue;
  2839. if (mddev2->curr_resync &&
  2840. match_mddev_units(mddev,mddev2)) {
  2841. DEFINE_WAIT(wq);
  2842. if (mddev < mddev2 && mddev->curr_resync == 2) {
  2843. /* arbitrarily yield */
  2844. mddev->curr_resync = 1;
  2845. wake_up(&resync_wait);
  2846. }
  2847. if (mddev > mddev2 && mddev->curr_resync == 1)
  2848. /* no need to wait here, we can wait the next
  2849. * time 'round when curr_resync == 2
  2850. */
  2851. continue;
  2852. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  2853. if (!signal_pending(current)
  2854. && mddev2->curr_resync >= mddev->curr_resync) {
  2855. printk(KERN_INFO "md: delaying resync of %s"
  2856. " until %s has finished resync (they"
  2857. " share one or more physical units)\n",
  2858. mdname(mddev), mdname(mddev2));
  2859. mddev_put(mddev2);
  2860. schedule();
  2861. finish_wait(&resync_wait, &wq);
  2862. goto try_again;
  2863. }
  2864. finish_wait(&resync_wait, &wq);
  2865. }
  2866. }
  2867. } while (mddev->curr_resync < 2);
  2868. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2869. /* resync follows the size requested by the personality,
  2870. * which default to physical size, but can be virtual size
  2871. */
  2872. max_sectors = mddev->resync_max_sectors;
  2873. else
  2874. /* recovery follows the physical size of devices */
  2875. max_sectors = mddev->size << 1;
  2876. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  2877. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  2878. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  2879. printk(KERN_INFO "md: using maximum available idle IO bandwith "
  2880. "(but not more than %d KB/sec) for reconstruction.\n",
  2881. sysctl_speed_limit_max);
  2882. is_mddev_idle(mddev); /* this also initializes IO event counters */
  2883. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2884. j = mddev->recovery_cp;
  2885. else
  2886. j = 0;
  2887. for (m = 0; m < SYNC_MARKS; m++) {
  2888. mark[m] = jiffies;
  2889. mark_cnt[m] = j;
  2890. }
  2891. last_mark = 0;
  2892. mddev->resync_mark = mark[last_mark];
  2893. mddev->resync_mark_cnt = mark_cnt[last_mark];
  2894. /*
  2895. * Tune reconstruction:
  2896. */
  2897. window = 32*(PAGE_SIZE/512);
  2898. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  2899. window/2,(unsigned long long) max_sectors/2);
  2900. atomic_set(&mddev->recovery_active, 0);
  2901. init_waitqueue_head(&mddev->recovery_wait);
  2902. last_check = 0;
  2903. if (j>2) {
  2904. printk(KERN_INFO
  2905. "md: resuming recovery of %s from checkpoint.\n",
  2906. mdname(mddev));
  2907. mddev->curr_resync = j;
  2908. }
  2909. while (j < max_sectors) {
  2910. int sectors;
  2911. sectors = mddev->pers->sync_request(mddev, j, currspeed < sysctl_speed_limit_min);
  2912. if (sectors < 0) {
  2913. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  2914. goto out;
  2915. }
  2916. atomic_add(sectors, &mddev->recovery_active);
  2917. j += sectors;
  2918. if (j>1) mddev->curr_resync = j;
  2919. if (last_check + window > j || j == max_sectors)
  2920. continue;
  2921. last_check = j;
  2922. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  2923. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  2924. break;
  2925. repeat:
  2926. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  2927. /* step marks */
  2928. int next = (last_mark+1) % SYNC_MARKS;
  2929. mddev->resync_mark = mark[next];
  2930. mddev->resync_mark_cnt = mark_cnt[next];
  2931. mark[next] = jiffies;
  2932. mark_cnt[next] = j - atomic_read(&mddev->recovery_active);
  2933. last_mark = next;
  2934. }
  2935. if (signal_pending(current)) {
  2936. /*
  2937. * got a signal, exit.
  2938. */
  2939. printk(KERN_INFO
  2940. "md: md_do_sync() got signal ... exiting\n");
  2941. flush_signals(current);
  2942. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2943. goto out;
  2944. }
  2945. /*
  2946. * this loop exits only if either when we are slower than
  2947. * the 'hard' speed limit, or the system was IO-idle for
  2948. * a jiffy.
  2949. * the system might be non-idle CPU-wise, but we only care
  2950. * about not overloading the IO subsystem. (things like an
  2951. * e2fsck being done on the RAID array should execute fast)
  2952. */
  2953. mddev->queue->unplug_fn(mddev->queue);
  2954. cond_resched();
  2955. currspeed = ((unsigned long)(j-mddev->resync_mark_cnt))/2/((jiffies-mddev->resync_mark)/HZ +1) +1;
  2956. if (currspeed > sysctl_speed_limit_min) {
  2957. if ((currspeed > sysctl_speed_limit_max) ||
  2958. !is_mddev_idle(mddev)) {
  2959. msleep_interruptible(250);
  2960. goto repeat;
  2961. }
  2962. }
  2963. }
  2964. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  2965. /*
  2966. * this also signals 'finished resyncing' to md_stop
  2967. */
  2968. out:
  2969. mddev->queue->unplug_fn(mddev->queue);
  2970. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  2971. /* tell personality that we are finished */
  2972. mddev->pers->sync_request(mddev, max_sectors, 1);
  2973. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  2974. mddev->curr_resync > 2 &&
  2975. mddev->curr_resync >= mddev->recovery_cp) {
  2976. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  2977. printk(KERN_INFO
  2978. "md: checkpointing recovery of %s.\n",
  2979. mdname(mddev));
  2980. mddev->recovery_cp = mddev->curr_resync;
  2981. } else
  2982. mddev->recovery_cp = MaxSector;
  2983. }
  2984. md_enter_safemode(mddev);
  2985. skip:
  2986. mddev->curr_resync = 0;
  2987. wake_up(&resync_wait);
  2988. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  2989. md_wakeup_thread(mddev->thread);
  2990. }
  2991. /*
  2992. * This routine is regularly called by all per-raid-array threads to
  2993. * deal with generic issues like resync and super-block update.
  2994. * Raid personalities that don't have a thread (linear/raid0) do not
  2995. * need this as they never do any recovery or update the superblock.
  2996. *
  2997. * It does not do any resync itself, but rather "forks" off other threads
  2998. * to do that as needed.
  2999. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3000. * "->recovery" and create a thread at ->sync_thread.
  3001. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3002. * and wakeups up this thread which will reap the thread and finish up.
  3003. * This thread also removes any faulty devices (with nr_pending == 0).
  3004. *
  3005. * The overall approach is:
  3006. * 1/ if the superblock needs updating, update it.
  3007. * 2/ If a recovery thread is running, don't do anything else.
  3008. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3009. * 4/ If there are any faulty devices, remove them.
  3010. * 5/ If array is degraded, try to add spares devices
  3011. * 6/ If array has spares or is not in-sync, start a resync thread.
  3012. */
  3013. void md_check_recovery(mddev_t *mddev)
  3014. {
  3015. mdk_rdev_t *rdev;
  3016. struct list_head *rtmp;
  3017. dprintk(KERN_INFO "md: recovery thread got woken up ...\n");
  3018. if (mddev->ro)
  3019. return;
  3020. if ( ! (
  3021. mddev->sb_dirty ||
  3022. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3023. test_bit(MD_RECOVERY_DONE, &mddev->recovery)
  3024. ))
  3025. return;
  3026. if (mddev_trylock(mddev)==0) {
  3027. int spares =0;
  3028. if (mddev->sb_dirty)
  3029. md_update_sb(mddev);
  3030. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3031. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3032. /* resync/recovery still happening */
  3033. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3034. goto unlock;
  3035. }
  3036. if (mddev->sync_thread) {
  3037. /* resync has finished, collect result */
  3038. md_unregister_thread(mddev->sync_thread);
  3039. mddev->sync_thread = NULL;
  3040. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3041. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3042. /* success...*/
  3043. /* activate any spares */
  3044. mddev->pers->spare_active(mddev);
  3045. }
  3046. md_update_sb(mddev);
  3047. mddev->recovery = 0;
  3048. /* flag recovery needed just to double check */
  3049. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3050. goto unlock;
  3051. }
  3052. if (mddev->recovery)
  3053. /* probably just the RECOVERY_NEEDED flag */
  3054. mddev->recovery = 0;
  3055. /* no recovery is running.
  3056. * remove any failed drives, then
  3057. * add spares if possible.
  3058. * Spare are also removed and re-added, to allow
  3059. * the personality to fail the re-add.
  3060. */
  3061. ITERATE_RDEV(mddev,rdev,rtmp)
  3062. if (rdev->raid_disk >= 0 &&
  3063. (rdev->faulty || ! rdev->in_sync) &&
  3064. atomic_read(&rdev->nr_pending)==0) {
  3065. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0)
  3066. rdev->raid_disk = -1;
  3067. }
  3068. if (mddev->degraded) {
  3069. ITERATE_RDEV(mddev,rdev,rtmp)
  3070. if (rdev->raid_disk < 0
  3071. && !rdev->faulty) {
  3072. if (mddev->pers->hot_add_disk(mddev,rdev))
  3073. spares++;
  3074. else
  3075. break;
  3076. }
  3077. }
  3078. if (!spares && (mddev->recovery_cp == MaxSector )) {
  3079. /* nothing we can do ... */
  3080. goto unlock;
  3081. }
  3082. if (mddev->pers->sync_request) {
  3083. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3084. if (!spares)
  3085. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3086. mddev->sync_thread = md_register_thread(md_do_sync,
  3087. mddev,
  3088. "%s_resync");
  3089. if (!mddev->sync_thread) {
  3090. printk(KERN_ERR "%s: could not start resync"
  3091. " thread...\n",
  3092. mdname(mddev));
  3093. /* leave the spares where they are, it shouldn't hurt */
  3094. mddev->recovery = 0;
  3095. } else {
  3096. md_wakeup_thread(mddev->sync_thread);
  3097. }
  3098. }
  3099. unlock:
  3100. mddev_unlock(mddev);
  3101. }
  3102. }
  3103. int md_notify_reboot(struct notifier_block *this,
  3104. unsigned long code, void *x)
  3105. {
  3106. struct list_head *tmp;
  3107. mddev_t *mddev;
  3108. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3109. printk(KERN_INFO "md: stopping all md devices.\n");
  3110. ITERATE_MDDEV(mddev,tmp)
  3111. if (mddev_trylock(mddev)==0)
  3112. do_md_stop (mddev, 1);
  3113. /*
  3114. * certain more exotic SCSI devices are known to be
  3115. * volatile wrt too early system reboots. While the
  3116. * right place to handle this issue is the given
  3117. * driver, we do want to have a safe RAID driver ...
  3118. */
  3119. mdelay(1000*1);
  3120. }
  3121. return NOTIFY_DONE;
  3122. }
  3123. struct notifier_block md_notifier = {
  3124. .notifier_call = md_notify_reboot,
  3125. .next = NULL,
  3126. .priority = INT_MAX, /* before any real devices */
  3127. };
  3128. static void md_geninit(void)
  3129. {
  3130. struct proc_dir_entry *p;
  3131. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3132. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3133. if (p)
  3134. p->proc_fops = &md_seq_fops;
  3135. }
  3136. int __init md_init(void)
  3137. {
  3138. int minor;
  3139. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3140. " MD_SB_DISKS=%d\n",
  3141. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3142. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3143. if (register_blkdev(MAJOR_NR, "md"))
  3144. return -1;
  3145. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3146. unregister_blkdev(MAJOR_NR, "md");
  3147. return -1;
  3148. }
  3149. devfs_mk_dir("md");
  3150. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3151. md_probe, NULL, NULL);
  3152. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3153. md_probe, NULL, NULL);
  3154. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3155. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3156. S_IFBLK|S_IRUSR|S_IWUSR,
  3157. "md/%d", minor);
  3158. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3159. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3160. S_IFBLK|S_IRUSR|S_IWUSR,
  3161. "md/mdp%d", minor);
  3162. register_reboot_notifier(&md_notifier);
  3163. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3164. md_geninit();
  3165. return (0);
  3166. }
  3167. #ifndef MODULE
  3168. /*
  3169. * Searches all registered partitions for autorun RAID arrays
  3170. * at boot time.
  3171. */
  3172. static dev_t detected_devices[128];
  3173. static int dev_cnt;
  3174. void md_autodetect_dev(dev_t dev)
  3175. {
  3176. if (dev_cnt >= 0 && dev_cnt < 127)
  3177. detected_devices[dev_cnt++] = dev;
  3178. }
  3179. static void autostart_arrays(int part)
  3180. {
  3181. mdk_rdev_t *rdev;
  3182. int i;
  3183. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3184. for (i = 0; i < dev_cnt; i++) {
  3185. dev_t dev = detected_devices[i];
  3186. rdev = md_import_device(dev,0, 0);
  3187. if (IS_ERR(rdev))
  3188. continue;
  3189. if (rdev->faulty) {
  3190. MD_BUG();
  3191. continue;
  3192. }
  3193. list_add(&rdev->same_set, &pending_raid_disks);
  3194. }
  3195. dev_cnt = 0;
  3196. autorun_devices(part);
  3197. }
  3198. #endif
  3199. static __exit void md_exit(void)
  3200. {
  3201. mddev_t *mddev;
  3202. struct list_head *tmp;
  3203. int i;
  3204. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3205. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3206. for (i=0; i < MAX_MD_DEVS; i++)
  3207. devfs_remove("md/%d", i);
  3208. for (i=0; i < MAX_MD_DEVS; i++)
  3209. devfs_remove("md/d%d", i);
  3210. devfs_remove("md");
  3211. unregister_blkdev(MAJOR_NR,"md");
  3212. unregister_blkdev(mdp_major, "mdp");
  3213. unregister_reboot_notifier(&md_notifier);
  3214. unregister_sysctl_table(raid_table_header);
  3215. remove_proc_entry("mdstat", NULL);
  3216. ITERATE_MDDEV(mddev,tmp) {
  3217. struct gendisk *disk = mddev->gendisk;
  3218. if (!disk)
  3219. continue;
  3220. export_array(mddev);
  3221. del_gendisk(disk);
  3222. put_disk(disk);
  3223. mddev->gendisk = NULL;
  3224. mddev_put(mddev);
  3225. }
  3226. }
  3227. module_init(md_init)
  3228. module_exit(md_exit)
  3229. EXPORT_SYMBOL(register_md_personality);
  3230. EXPORT_SYMBOL(unregister_md_personality);
  3231. EXPORT_SYMBOL(md_error);
  3232. EXPORT_SYMBOL(md_done_sync);
  3233. EXPORT_SYMBOL(md_write_start);
  3234. EXPORT_SYMBOL(md_write_end);
  3235. EXPORT_SYMBOL(md_handle_safemode);
  3236. EXPORT_SYMBOL(md_register_thread);
  3237. EXPORT_SYMBOL(md_unregister_thread);
  3238. EXPORT_SYMBOL(md_wakeup_thread);
  3239. EXPORT_SYMBOL(md_print_devices);
  3240. EXPORT_SYMBOL(md_check_recovery);
  3241. MODULE_LICENSE("GPL");