x86.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <asm/uaccess.h>
  39. #include <asm/msr.h>
  40. #include <asm/desc.h>
  41. #include <asm/mtrr.h>
  42. #define MAX_IO_MSRS 256
  43. #define CR0_RESERVED_BITS \
  44. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  45. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  46. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  47. #define CR4_RESERVED_BITS \
  48. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  49. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  50. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  51. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  52. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  53. /* EFER defaults:
  54. * - enable syscall per default because its emulated by KVM
  55. * - enable LME and LMA per default on 64 bit KVM
  56. */
  57. #ifdef CONFIG_X86_64
  58. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  59. #else
  60. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  61. #endif
  62. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  63. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  64. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  65. struct kvm_cpuid_entry2 __user *entries);
  66. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  67. u32 function, u32 index);
  68. struct kvm_x86_ops *kvm_x86_ops;
  69. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  70. struct kvm_stats_debugfs_item debugfs_entries[] = {
  71. { "pf_fixed", VCPU_STAT(pf_fixed) },
  72. { "pf_guest", VCPU_STAT(pf_guest) },
  73. { "tlb_flush", VCPU_STAT(tlb_flush) },
  74. { "invlpg", VCPU_STAT(invlpg) },
  75. { "exits", VCPU_STAT(exits) },
  76. { "io_exits", VCPU_STAT(io_exits) },
  77. { "mmio_exits", VCPU_STAT(mmio_exits) },
  78. { "signal_exits", VCPU_STAT(signal_exits) },
  79. { "irq_window", VCPU_STAT(irq_window_exits) },
  80. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  81. { "halt_exits", VCPU_STAT(halt_exits) },
  82. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  83. { "hypercalls", VCPU_STAT(hypercalls) },
  84. { "request_irq", VCPU_STAT(request_irq_exits) },
  85. { "request_nmi", VCPU_STAT(request_nmi_exits) },
  86. { "irq_exits", VCPU_STAT(irq_exits) },
  87. { "host_state_reload", VCPU_STAT(host_state_reload) },
  88. { "efer_reload", VCPU_STAT(efer_reload) },
  89. { "fpu_reload", VCPU_STAT(fpu_reload) },
  90. { "insn_emulation", VCPU_STAT(insn_emulation) },
  91. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  92. { "irq_injections", VCPU_STAT(irq_injections) },
  93. { "nmi_injections", VCPU_STAT(nmi_injections) },
  94. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  95. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  96. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  97. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  98. { "mmu_flooded", VM_STAT(mmu_flooded) },
  99. { "mmu_recycled", VM_STAT(mmu_recycled) },
  100. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  101. { "mmu_unsync", VM_STAT(mmu_unsync) },
  102. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  103. { "largepages", VM_STAT(lpages) },
  104. { NULL }
  105. };
  106. unsigned long segment_base(u16 selector)
  107. {
  108. struct descriptor_table gdt;
  109. struct desc_struct *d;
  110. unsigned long table_base;
  111. unsigned long v;
  112. if (selector == 0)
  113. return 0;
  114. asm("sgdt %0" : "=m"(gdt));
  115. table_base = gdt.base;
  116. if (selector & 4) { /* from ldt */
  117. u16 ldt_selector;
  118. asm("sldt %0" : "=g"(ldt_selector));
  119. table_base = segment_base(ldt_selector);
  120. }
  121. d = (struct desc_struct *)(table_base + (selector & ~7));
  122. v = d->base0 | ((unsigned long)d->base1 << 16) |
  123. ((unsigned long)d->base2 << 24);
  124. #ifdef CONFIG_X86_64
  125. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  126. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  127. #endif
  128. return v;
  129. }
  130. EXPORT_SYMBOL_GPL(segment_base);
  131. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  132. {
  133. if (irqchip_in_kernel(vcpu->kvm))
  134. return vcpu->arch.apic_base;
  135. else
  136. return vcpu->arch.apic_base;
  137. }
  138. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  139. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  140. {
  141. /* TODO: reserve bits check */
  142. if (irqchip_in_kernel(vcpu->kvm))
  143. kvm_lapic_set_base(vcpu, data);
  144. else
  145. vcpu->arch.apic_base = data;
  146. }
  147. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  148. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  149. {
  150. WARN_ON(vcpu->arch.exception.pending);
  151. vcpu->arch.exception.pending = true;
  152. vcpu->arch.exception.has_error_code = false;
  153. vcpu->arch.exception.nr = nr;
  154. }
  155. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  156. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  157. u32 error_code)
  158. {
  159. ++vcpu->stat.pf_guest;
  160. if (vcpu->arch.exception.pending) {
  161. if (vcpu->arch.exception.nr == PF_VECTOR) {
  162. printk(KERN_DEBUG "kvm: inject_page_fault:"
  163. " double fault 0x%lx\n", addr);
  164. vcpu->arch.exception.nr = DF_VECTOR;
  165. vcpu->arch.exception.error_code = 0;
  166. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  167. /* triple fault -> shutdown */
  168. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  169. }
  170. return;
  171. }
  172. vcpu->arch.cr2 = addr;
  173. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  174. }
  175. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  176. {
  177. vcpu->arch.nmi_pending = 1;
  178. }
  179. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  180. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  181. {
  182. WARN_ON(vcpu->arch.exception.pending);
  183. vcpu->arch.exception.pending = true;
  184. vcpu->arch.exception.has_error_code = true;
  185. vcpu->arch.exception.nr = nr;
  186. vcpu->arch.exception.error_code = error_code;
  187. }
  188. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  189. static void __queue_exception(struct kvm_vcpu *vcpu)
  190. {
  191. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  192. vcpu->arch.exception.has_error_code,
  193. vcpu->arch.exception.error_code);
  194. }
  195. /*
  196. * Load the pae pdptrs. Return true is they are all valid.
  197. */
  198. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  199. {
  200. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  201. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  202. int i;
  203. int ret;
  204. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  205. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  206. offset * sizeof(u64), sizeof(pdpte));
  207. if (ret < 0) {
  208. ret = 0;
  209. goto out;
  210. }
  211. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  212. if (is_present_pte(pdpte[i]) &&
  213. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  214. ret = 0;
  215. goto out;
  216. }
  217. }
  218. ret = 1;
  219. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  220. out:
  221. return ret;
  222. }
  223. EXPORT_SYMBOL_GPL(load_pdptrs);
  224. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  225. {
  226. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  227. bool changed = true;
  228. int r;
  229. if (is_long_mode(vcpu) || !is_pae(vcpu))
  230. return false;
  231. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  232. if (r < 0)
  233. goto out;
  234. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  235. out:
  236. return changed;
  237. }
  238. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  239. {
  240. if (cr0 & CR0_RESERVED_BITS) {
  241. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  242. cr0, vcpu->arch.cr0);
  243. kvm_inject_gp(vcpu, 0);
  244. return;
  245. }
  246. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  247. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  248. kvm_inject_gp(vcpu, 0);
  249. return;
  250. }
  251. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  252. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  253. "and a clear PE flag\n");
  254. kvm_inject_gp(vcpu, 0);
  255. return;
  256. }
  257. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  258. #ifdef CONFIG_X86_64
  259. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  260. int cs_db, cs_l;
  261. if (!is_pae(vcpu)) {
  262. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  263. "in long mode while PAE is disabled\n");
  264. kvm_inject_gp(vcpu, 0);
  265. return;
  266. }
  267. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  268. if (cs_l) {
  269. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  270. "in long mode while CS.L == 1\n");
  271. kvm_inject_gp(vcpu, 0);
  272. return;
  273. }
  274. } else
  275. #endif
  276. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  277. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  278. "reserved bits\n");
  279. kvm_inject_gp(vcpu, 0);
  280. return;
  281. }
  282. }
  283. kvm_x86_ops->set_cr0(vcpu, cr0);
  284. vcpu->arch.cr0 = cr0;
  285. kvm_mmu_reset_context(vcpu);
  286. return;
  287. }
  288. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  289. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  290. {
  291. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  292. KVMTRACE_1D(LMSW, vcpu,
  293. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  294. handler);
  295. }
  296. EXPORT_SYMBOL_GPL(kvm_lmsw);
  297. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  298. {
  299. unsigned long old_cr4 = vcpu->arch.cr4;
  300. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  301. if (cr4 & CR4_RESERVED_BITS) {
  302. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  303. kvm_inject_gp(vcpu, 0);
  304. return;
  305. }
  306. if (is_long_mode(vcpu)) {
  307. if (!(cr4 & X86_CR4_PAE)) {
  308. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  309. "in long mode\n");
  310. kvm_inject_gp(vcpu, 0);
  311. return;
  312. }
  313. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  314. && ((cr4 ^ old_cr4) & pdptr_bits)
  315. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  316. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  317. kvm_inject_gp(vcpu, 0);
  318. return;
  319. }
  320. if (cr4 & X86_CR4_VMXE) {
  321. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  322. kvm_inject_gp(vcpu, 0);
  323. return;
  324. }
  325. kvm_x86_ops->set_cr4(vcpu, cr4);
  326. vcpu->arch.cr4 = cr4;
  327. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  328. kvm_mmu_reset_context(vcpu);
  329. }
  330. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  331. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  332. {
  333. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  334. kvm_mmu_sync_roots(vcpu);
  335. kvm_mmu_flush_tlb(vcpu);
  336. return;
  337. }
  338. if (is_long_mode(vcpu)) {
  339. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  340. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  341. kvm_inject_gp(vcpu, 0);
  342. return;
  343. }
  344. } else {
  345. if (is_pae(vcpu)) {
  346. if (cr3 & CR3_PAE_RESERVED_BITS) {
  347. printk(KERN_DEBUG
  348. "set_cr3: #GP, reserved bits\n");
  349. kvm_inject_gp(vcpu, 0);
  350. return;
  351. }
  352. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  353. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  354. "reserved bits\n");
  355. kvm_inject_gp(vcpu, 0);
  356. return;
  357. }
  358. }
  359. /*
  360. * We don't check reserved bits in nonpae mode, because
  361. * this isn't enforced, and VMware depends on this.
  362. */
  363. }
  364. /*
  365. * Does the new cr3 value map to physical memory? (Note, we
  366. * catch an invalid cr3 even in real-mode, because it would
  367. * cause trouble later on when we turn on paging anyway.)
  368. *
  369. * A real CPU would silently accept an invalid cr3 and would
  370. * attempt to use it - with largely undefined (and often hard
  371. * to debug) behavior on the guest side.
  372. */
  373. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  374. kvm_inject_gp(vcpu, 0);
  375. else {
  376. vcpu->arch.cr3 = cr3;
  377. vcpu->arch.mmu.new_cr3(vcpu);
  378. }
  379. }
  380. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  381. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  382. {
  383. if (cr8 & CR8_RESERVED_BITS) {
  384. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  385. kvm_inject_gp(vcpu, 0);
  386. return;
  387. }
  388. if (irqchip_in_kernel(vcpu->kvm))
  389. kvm_lapic_set_tpr(vcpu, cr8);
  390. else
  391. vcpu->arch.cr8 = cr8;
  392. }
  393. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  394. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  395. {
  396. if (irqchip_in_kernel(vcpu->kvm))
  397. return kvm_lapic_get_cr8(vcpu);
  398. else
  399. return vcpu->arch.cr8;
  400. }
  401. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  402. static inline u32 bit(int bitno)
  403. {
  404. return 1 << (bitno & 31);
  405. }
  406. /*
  407. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  408. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  409. *
  410. * This list is modified at module load time to reflect the
  411. * capabilities of the host cpu.
  412. */
  413. static u32 msrs_to_save[] = {
  414. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  415. MSR_K6_STAR,
  416. #ifdef CONFIG_X86_64
  417. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  418. #endif
  419. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  420. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  421. };
  422. static unsigned num_msrs_to_save;
  423. static u32 emulated_msrs[] = {
  424. MSR_IA32_MISC_ENABLE,
  425. };
  426. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  427. {
  428. if (efer & efer_reserved_bits) {
  429. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  430. efer);
  431. kvm_inject_gp(vcpu, 0);
  432. return;
  433. }
  434. if (is_paging(vcpu)
  435. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  436. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  437. kvm_inject_gp(vcpu, 0);
  438. return;
  439. }
  440. if (efer & EFER_FFXSR) {
  441. struct kvm_cpuid_entry2 *feat;
  442. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  443. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  444. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  445. kvm_inject_gp(vcpu, 0);
  446. return;
  447. }
  448. }
  449. if (efer & EFER_SVME) {
  450. struct kvm_cpuid_entry2 *feat;
  451. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  452. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  453. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  454. kvm_inject_gp(vcpu, 0);
  455. return;
  456. }
  457. }
  458. kvm_x86_ops->set_efer(vcpu, efer);
  459. efer &= ~EFER_LMA;
  460. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  461. vcpu->arch.shadow_efer = efer;
  462. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  463. kvm_mmu_reset_context(vcpu);
  464. }
  465. void kvm_enable_efer_bits(u64 mask)
  466. {
  467. efer_reserved_bits &= ~mask;
  468. }
  469. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  470. /*
  471. * Writes msr value into into the appropriate "register".
  472. * Returns 0 on success, non-0 otherwise.
  473. * Assumes vcpu_load() was already called.
  474. */
  475. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  476. {
  477. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  478. }
  479. /*
  480. * Adapt set_msr() to msr_io()'s calling convention
  481. */
  482. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  483. {
  484. return kvm_set_msr(vcpu, index, *data);
  485. }
  486. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  487. {
  488. static int version;
  489. struct pvclock_wall_clock wc;
  490. struct timespec now, sys, boot;
  491. if (!wall_clock)
  492. return;
  493. version++;
  494. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  495. /*
  496. * The guest calculates current wall clock time by adding
  497. * system time (updated by kvm_write_guest_time below) to the
  498. * wall clock specified here. guest system time equals host
  499. * system time for us, thus we must fill in host boot time here.
  500. */
  501. now = current_kernel_time();
  502. ktime_get_ts(&sys);
  503. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  504. wc.sec = boot.tv_sec;
  505. wc.nsec = boot.tv_nsec;
  506. wc.version = version;
  507. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  508. version++;
  509. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  510. }
  511. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  512. {
  513. uint32_t quotient, remainder;
  514. /* Don't try to replace with do_div(), this one calculates
  515. * "(dividend << 32) / divisor" */
  516. __asm__ ( "divl %4"
  517. : "=a" (quotient), "=d" (remainder)
  518. : "0" (0), "1" (dividend), "r" (divisor) );
  519. return quotient;
  520. }
  521. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  522. {
  523. uint64_t nsecs = 1000000000LL;
  524. int32_t shift = 0;
  525. uint64_t tps64;
  526. uint32_t tps32;
  527. tps64 = tsc_khz * 1000LL;
  528. while (tps64 > nsecs*2) {
  529. tps64 >>= 1;
  530. shift--;
  531. }
  532. tps32 = (uint32_t)tps64;
  533. while (tps32 <= (uint32_t)nsecs) {
  534. tps32 <<= 1;
  535. shift++;
  536. }
  537. hv_clock->tsc_shift = shift;
  538. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  539. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  540. __func__, tsc_khz, hv_clock->tsc_shift,
  541. hv_clock->tsc_to_system_mul);
  542. }
  543. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  544. static void kvm_write_guest_time(struct kvm_vcpu *v)
  545. {
  546. struct timespec ts;
  547. unsigned long flags;
  548. struct kvm_vcpu_arch *vcpu = &v->arch;
  549. void *shared_kaddr;
  550. if ((!vcpu->time_page))
  551. return;
  552. preempt_disable();
  553. if (unlikely(vcpu->hv_clock_tsc_khz != __get_cpu_var(cpu_tsc_khz))) {
  554. kvm_set_time_scale(__get_cpu_var(cpu_tsc_khz), &vcpu->hv_clock);
  555. vcpu->hv_clock_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  556. }
  557. preempt_enable();
  558. /* Keep irq disabled to prevent changes to the clock */
  559. local_irq_save(flags);
  560. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  561. &vcpu->hv_clock.tsc_timestamp);
  562. ktime_get_ts(&ts);
  563. local_irq_restore(flags);
  564. /* With all the info we got, fill in the values */
  565. vcpu->hv_clock.system_time = ts.tv_nsec +
  566. (NSEC_PER_SEC * (u64)ts.tv_sec);
  567. /*
  568. * The interface expects us to write an even number signaling that the
  569. * update is finished. Since the guest won't see the intermediate
  570. * state, we just increase by 2 at the end.
  571. */
  572. vcpu->hv_clock.version += 2;
  573. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  574. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  575. sizeof(vcpu->hv_clock));
  576. kunmap_atomic(shared_kaddr, KM_USER0);
  577. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  578. }
  579. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  580. {
  581. struct kvm_vcpu_arch *vcpu = &v->arch;
  582. if (!vcpu->time_page)
  583. return 0;
  584. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  585. return 1;
  586. }
  587. static bool msr_mtrr_valid(unsigned msr)
  588. {
  589. switch (msr) {
  590. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  591. case MSR_MTRRfix64K_00000:
  592. case MSR_MTRRfix16K_80000:
  593. case MSR_MTRRfix16K_A0000:
  594. case MSR_MTRRfix4K_C0000:
  595. case MSR_MTRRfix4K_C8000:
  596. case MSR_MTRRfix4K_D0000:
  597. case MSR_MTRRfix4K_D8000:
  598. case MSR_MTRRfix4K_E0000:
  599. case MSR_MTRRfix4K_E8000:
  600. case MSR_MTRRfix4K_F0000:
  601. case MSR_MTRRfix4K_F8000:
  602. case MSR_MTRRdefType:
  603. case MSR_IA32_CR_PAT:
  604. return true;
  605. case 0x2f8:
  606. return true;
  607. }
  608. return false;
  609. }
  610. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  611. {
  612. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  613. if (!msr_mtrr_valid(msr))
  614. return 1;
  615. if (msr == MSR_MTRRdefType) {
  616. vcpu->arch.mtrr_state.def_type = data;
  617. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  618. } else if (msr == MSR_MTRRfix64K_00000)
  619. p[0] = data;
  620. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  621. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  622. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  623. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  624. else if (msr == MSR_IA32_CR_PAT)
  625. vcpu->arch.pat = data;
  626. else { /* Variable MTRRs */
  627. int idx, is_mtrr_mask;
  628. u64 *pt;
  629. idx = (msr - 0x200) / 2;
  630. is_mtrr_mask = msr - 0x200 - 2 * idx;
  631. if (!is_mtrr_mask)
  632. pt =
  633. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  634. else
  635. pt =
  636. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  637. *pt = data;
  638. }
  639. kvm_mmu_reset_context(vcpu);
  640. return 0;
  641. }
  642. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  643. {
  644. switch (msr) {
  645. case MSR_EFER:
  646. set_efer(vcpu, data);
  647. break;
  648. case MSR_IA32_MC0_STATUS:
  649. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  650. __func__, data);
  651. break;
  652. case MSR_IA32_MCG_STATUS:
  653. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  654. __func__, data);
  655. break;
  656. case MSR_IA32_MCG_CTL:
  657. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  658. __func__, data);
  659. break;
  660. case MSR_IA32_DEBUGCTLMSR:
  661. if (!data) {
  662. /* We support the non-activated case already */
  663. break;
  664. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  665. /* Values other than LBR and BTF are vendor-specific,
  666. thus reserved and should throw a #GP */
  667. return 1;
  668. }
  669. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  670. __func__, data);
  671. break;
  672. case MSR_IA32_UCODE_REV:
  673. case MSR_IA32_UCODE_WRITE:
  674. case MSR_VM_HSAVE_PA:
  675. break;
  676. case 0x200 ... 0x2ff:
  677. return set_msr_mtrr(vcpu, msr, data);
  678. case MSR_IA32_APICBASE:
  679. kvm_set_apic_base(vcpu, data);
  680. break;
  681. case MSR_IA32_MISC_ENABLE:
  682. vcpu->arch.ia32_misc_enable_msr = data;
  683. break;
  684. case MSR_KVM_WALL_CLOCK:
  685. vcpu->kvm->arch.wall_clock = data;
  686. kvm_write_wall_clock(vcpu->kvm, data);
  687. break;
  688. case MSR_KVM_SYSTEM_TIME: {
  689. if (vcpu->arch.time_page) {
  690. kvm_release_page_dirty(vcpu->arch.time_page);
  691. vcpu->arch.time_page = NULL;
  692. }
  693. vcpu->arch.time = data;
  694. /* we verify if the enable bit is set... */
  695. if (!(data & 1))
  696. break;
  697. /* ...but clean it before doing the actual write */
  698. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  699. vcpu->arch.time_page =
  700. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  701. if (is_error_page(vcpu->arch.time_page)) {
  702. kvm_release_page_clean(vcpu->arch.time_page);
  703. vcpu->arch.time_page = NULL;
  704. }
  705. kvm_request_guest_time_update(vcpu);
  706. break;
  707. }
  708. default:
  709. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  710. return 1;
  711. }
  712. return 0;
  713. }
  714. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  715. /*
  716. * Reads an msr value (of 'msr_index') into 'pdata'.
  717. * Returns 0 on success, non-0 otherwise.
  718. * Assumes vcpu_load() was already called.
  719. */
  720. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  721. {
  722. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  723. }
  724. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  725. {
  726. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  727. if (!msr_mtrr_valid(msr))
  728. return 1;
  729. if (msr == MSR_MTRRdefType)
  730. *pdata = vcpu->arch.mtrr_state.def_type +
  731. (vcpu->arch.mtrr_state.enabled << 10);
  732. else if (msr == MSR_MTRRfix64K_00000)
  733. *pdata = p[0];
  734. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  735. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  736. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  737. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  738. else if (msr == MSR_IA32_CR_PAT)
  739. *pdata = vcpu->arch.pat;
  740. else { /* Variable MTRRs */
  741. int idx, is_mtrr_mask;
  742. u64 *pt;
  743. idx = (msr - 0x200) / 2;
  744. is_mtrr_mask = msr - 0x200 - 2 * idx;
  745. if (!is_mtrr_mask)
  746. pt =
  747. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  748. else
  749. pt =
  750. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  751. *pdata = *pt;
  752. }
  753. return 0;
  754. }
  755. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  756. {
  757. u64 data;
  758. switch (msr) {
  759. case 0xc0010010: /* SYSCFG */
  760. case 0xc0010015: /* HWCR */
  761. case MSR_IA32_PLATFORM_ID:
  762. case MSR_IA32_P5_MC_ADDR:
  763. case MSR_IA32_P5_MC_TYPE:
  764. case MSR_IA32_MC0_CTL:
  765. case MSR_IA32_MCG_STATUS:
  766. case MSR_IA32_MCG_CAP:
  767. case MSR_IA32_MCG_CTL:
  768. case MSR_IA32_MC0_MISC:
  769. case MSR_IA32_MC0_MISC+4:
  770. case MSR_IA32_MC0_MISC+8:
  771. case MSR_IA32_MC0_MISC+12:
  772. case MSR_IA32_MC0_MISC+16:
  773. case MSR_IA32_MC0_MISC+20:
  774. case MSR_IA32_UCODE_REV:
  775. case MSR_IA32_EBL_CR_POWERON:
  776. case MSR_IA32_DEBUGCTLMSR:
  777. case MSR_IA32_LASTBRANCHFROMIP:
  778. case MSR_IA32_LASTBRANCHTOIP:
  779. case MSR_IA32_LASTINTFROMIP:
  780. case MSR_IA32_LASTINTTOIP:
  781. case MSR_VM_HSAVE_PA:
  782. case MSR_P6_EVNTSEL0:
  783. case MSR_P6_EVNTSEL1:
  784. data = 0;
  785. break;
  786. case MSR_MTRRcap:
  787. data = 0x500 | KVM_NR_VAR_MTRR;
  788. break;
  789. case 0x200 ... 0x2ff:
  790. return get_msr_mtrr(vcpu, msr, pdata);
  791. case 0xcd: /* fsb frequency */
  792. data = 3;
  793. break;
  794. case MSR_IA32_APICBASE:
  795. data = kvm_get_apic_base(vcpu);
  796. break;
  797. case MSR_IA32_MISC_ENABLE:
  798. data = vcpu->arch.ia32_misc_enable_msr;
  799. break;
  800. case MSR_IA32_PERF_STATUS:
  801. /* TSC increment by tick */
  802. data = 1000ULL;
  803. /* CPU multiplier */
  804. data |= (((uint64_t)4ULL) << 40);
  805. break;
  806. case MSR_EFER:
  807. data = vcpu->arch.shadow_efer;
  808. break;
  809. case MSR_KVM_WALL_CLOCK:
  810. data = vcpu->kvm->arch.wall_clock;
  811. break;
  812. case MSR_KVM_SYSTEM_TIME:
  813. data = vcpu->arch.time;
  814. break;
  815. default:
  816. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  817. return 1;
  818. }
  819. *pdata = data;
  820. return 0;
  821. }
  822. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  823. /*
  824. * Read or write a bunch of msrs. All parameters are kernel addresses.
  825. *
  826. * @return number of msrs set successfully.
  827. */
  828. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  829. struct kvm_msr_entry *entries,
  830. int (*do_msr)(struct kvm_vcpu *vcpu,
  831. unsigned index, u64 *data))
  832. {
  833. int i;
  834. vcpu_load(vcpu);
  835. down_read(&vcpu->kvm->slots_lock);
  836. for (i = 0; i < msrs->nmsrs; ++i)
  837. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  838. break;
  839. up_read(&vcpu->kvm->slots_lock);
  840. vcpu_put(vcpu);
  841. return i;
  842. }
  843. /*
  844. * Read or write a bunch of msrs. Parameters are user addresses.
  845. *
  846. * @return number of msrs set successfully.
  847. */
  848. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  849. int (*do_msr)(struct kvm_vcpu *vcpu,
  850. unsigned index, u64 *data),
  851. int writeback)
  852. {
  853. struct kvm_msrs msrs;
  854. struct kvm_msr_entry *entries;
  855. int r, n;
  856. unsigned size;
  857. r = -EFAULT;
  858. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  859. goto out;
  860. r = -E2BIG;
  861. if (msrs.nmsrs >= MAX_IO_MSRS)
  862. goto out;
  863. r = -ENOMEM;
  864. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  865. entries = vmalloc(size);
  866. if (!entries)
  867. goto out;
  868. r = -EFAULT;
  869. if (copy_from_user(entries, user_msrs->entries, size))
  870. goto out_free;
  871. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  872. if (r < 0)
  873. goto out_free;
  874. r = -EFAULT;
  875. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  876. goto out_free;
  877. r = n;
  878. out_free:
  879. vfree(entries);
  880. out:
  881. return r;
  882. }
  883. int kvm_dev_ioctl_check_extension(long ext)
  884. {
  885. int r;
  886. switch (ext) {
  887. case KVM_CAP_IRQCHIP:
  888. case KVM_CAP_HLT:
  889. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  890. case KVM_CAP_SET_TSS_ADDR:
  891. case KVM_CAP_EXT_CPUID:
  892. case KVM_CAP_CLOCKSOURCE:
  893. case KVM_CAP_PIT:
  894. case KVM_CAP_NOP_IO_DELAY:
  895. case KVM_CAP_MP_STATE:
  896. case KVM_CAP_SYNC_MMU:
  897. case KVM_CAP_REINJECT_CONTROL:
  898. case KVM_CAP_IRQ_INJECT_STATUS:
  899. case KVM_CAP_ASSIGN_DEV_IRQ:
  900. r = 1;
  901. break;
  902. case KVM_CAP_COALESCED_MMIO:
  903. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  904. break;
  905. case KVM_CAP_VAPIC:
  906. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  907. break;
  908. case KVM_CAP_NR_VCPUS:
  909. r = KVM_MAX_VCPUS;
  910. break;
  911. case KVM_CAP_NR_MEMSLOTS:
  912. r = KVM_MEMORY_SLOTS;
  913. break;
  914. case KVM_CAP_PV_MMU:
  915. r = !tdp_enabled;
  916. break;
  917. case KVM_CAP_IOMMU:
  918. r = iommu_found();
  919. break;
  920. default:
  921. r = 0;
  922. break;
  923. }
  924. return r;
  925. }
  926. long kvm_arch_dev_ioctl(struct file *filp,
  927. unsigned int ioctl, unsigned long arg)
  928. {
  929. void __user *argp = (void __user *)arg;
  930. long r;
  931. switch (ioctl) {
  932. case KVM_GET_MSR_INDEX_LIST: {
  933. struct kvm_msr_list __user *user_msr_list = argp;
  934. struct kvm_msr_list msr_list;
  935. unsigned n;
  936. r = -EFAULT;
  937. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  938. goto out;
  939. n = msr_list.nmsrs;
  940. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  941. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  942. goto out;
  943. r = -E2BIG;
  944. if (n < num_msrs_to_save)
  945. goto out;
  946. r = -EFAULT;
  947. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  948. num_msrs_to_save * sizeof(u32)))
  949. goto out;
  950. if (copy_to_user(user_msr_list->indices
  951. + num_msrs_to_save * sizeof(u32),
  952. &emulated_msrs,
  953. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  954. goto out;
  955. r = 0;
  956. break;
  957. }
  958. case KVM_GET_SUPPORTED_CPUID: {
  959. struct kvm_cpuid2 __user *cpuid_arg = argp;
  960. struct kvm_cpuid2 cpuid;
  961. r = -EFAULT;
  962. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  963. goto out;
  964. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  965. cpuid_arg->entries);
  966. if (r)
  967. goto out;
  968. r = -EFAULT;
  969. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  970. goto out;
  971. r = 0;
  972. break;
  973. }
  974. default:
  975. r = -EINVAL;
  976. }
  977. out:
  978. return r;
  979. }
  980. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  981. {
  982. kvm_x86_ops->vcpu_load(vcpu, cpu);
  983. kvm_request_guest_time_update(vcpu);
  984. }
  985. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  986. {
  987. kvm_x86_ops->vcpu_put(vcpu);
  988. kvm_put_guest_fpu(vcpu);
  989. }
  990. static int is_efer_nx(void)
  991. {
  992. unsigned long long efer = 0;
  993. rdmsrl_safe(MSR_EFER, &efer);
  994. return efer & EFER_NX;
  995. }
  996. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  997. {
  998. int i;
  999. struct kvm_cpuid_entry2 *e, *entry;
  1000. entry = NULL;
  1001. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1002. e = &vcpu->arch.cpuid_entries[i];
  1003. if (e->function == 0x80000001) {
  1004. entry = e;
  1005. break;
  1006. }
  1007. }
  1008. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1009. entry->edx &= ~(1 << 20);
  1010. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1011. }
  1012. }
  1013. /* when an old userspace process fills a new kernel module */
  1014. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1015. struct kvm_cpuid *cpuid,
  1016. struct kvm_cpuid_entry __user *entries)
  1017. {
  1018. int r, i;
  1019. struct kvm_cpuid_entry *cpuid_entries;
  1020. r = -E2BIG;
  1021. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1022. goto out;
  1023. r = -ENOMEM;
  1024. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1025. if (!cpuid_entries)
  1026. goto out;
  1027. r = -EFAULT;
  1028. if (copy_from_user(cpuid_entries, entries,
  1029. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1030. goto out_free;
  1031. for (i = 0; i < cpuid->nent; i++) {
  1032. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1033. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1034. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1035. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1036. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1037. vcpu->arch.cpuid_entries[i].index = 0;
  1038. vcpu->arch.cpuid_entries[i].flags = 0;
  1039. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1040. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1041. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1042. }
  1043. vcpu->arch.cpuid_nent = cpuid->nent;
  1044. cpuid_fix_nx_cap(vcpu);
  1045. r = 0;
  1046. out_free:
  1047. vfree(cpuid_entries);
  1048. out:
  1049. return r;
  1050. }
  1051. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1052. struct kvm_cpuid2 *cpuid,
  1053. struct kvm_cpuid_entry2 __user *entries)
  1054. {
  1055. int r;
  1056. r = -E2BIG;
  1057. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1058. goto out;
  1059. r = -EFAULT;
  1060. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1061. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1062. goto out;
  1063. vcpu->arch.cpuid_nent = cpuid->nent;
  1064. return 0;
  1065. out:
  1066. return r;
  1067. }
  1068. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1069. struct kvm_cpuid2 *cpuid,
  1070. struct kvm_cpuid_entry2 __user *entries)
  1071. {
  1072. int r;
  1073. r = -E2BIG;
  1074. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1075. goto out;
  1076. r = -EFAULT;
  1077. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1078. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1079. goto out;
  1080. return 0;
  1081. out:
  1082. cpuid->nent = vcpu->arch.cpuid_nent;
  1083. return r;
  1084. }
  1085. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1086. u32 index)
  1087. {
  1088. entry->function = function;
  1089. entry->index = index;
  1090. cpuid_count(entry->function, entry->index,
  1091. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1092. entry->flags = 0;
  1093. }
  1094. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1095. u32 index, int *nent, int maxnent)
  1096. {
  1097. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  1098. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1099. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1100. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1101. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1102. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  1103. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1104. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  1105. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  1106. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  1107. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  1108. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  1109. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  1110. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  1111. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  1112. bit(X86_FEATURE_PGE) |
  1113. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  1114. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  1115. bit(X86_FEATURE_SYSCALL) |
  1116. (is_efer_nx() ? bit(X86_FEATURE_NX) : 0) |
  1117. #ifdef CONFIG_X86_64
  1118. bit(X86_FEATURE_LM) |
  1119. #endif
  1120. bit(X86_FEATURE_FXSR_OPT) |
  1121. bit(X86_FEATURE_MMXEXT) |
  1122. bit(X86_FEATURE_3DNOWEXT) |
  1123. bit(X86_FEATURE_3DNOW);
  1124. const u32 kvm_supported_word3_x86_features =
  1125. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  1126. const u32 kvm_supported_word6_x86_features =
  1127. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
  1128. bit(X86_FEATURE_SVM);
  1129. /* all calls to cpuid_count() should be made on the same cpu */
  1130. get_cpu();
  1131. do_cpuid_1_ent(entry, function, index);
  1132. ++*nent;
  1133. switch (function) {
  1134. case 0:
  1135. entry->eax = min(entry->eax, (u32)0xb);
  1136. break;
  1137. case 1:
  1138. entry->edx &= kvm_supported_word0_x86_features;
  1139. entry->ecx &= kvm_supported_word3_x86_features;
  1140. break;
  1141. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1142. * may return different values. This forces us to get_cpu() before
  1143. * issuing the first command, and also to emulate this annoying behavior
  1144. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1145. case 2: {
  1146. int t, times = entry->eax & 0xff;
  1147. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1148. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1149. for (t = 1; t < times && *nent < maxnent; ++t) {
  1150. do_cpuid_1_ent(&entry[t], function, 0);
  1151. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1152. ++*nent;
  1153. }
  1154. break;
  1155. }
  1156. /* function 4 and 0xb have additional index. */
  1157. case 4: {
  1158. int i, cache_type;
  1159. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1160. /* read more entries until cache_type is zero */
  1161. for (i = 1; *nent < maxnent; ++i) {
  1162. cache_type = entry[i - 1].eax & 0x1f;
  1163. if (!cache_type)
  1164. break;
  1165. do_cpuid_1_ent(&entry[i], function, i);
  1166. entry[i].flags |=
  1167. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1168. ++*nent;
  1169. }
  1170. break;
  1171. }
  1172. case 0xb: {
  1173. int i, level_type;
  1174. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1175. /* read more entries until level_type is zero */
  1176. for (i = 1; *nent < maxnent; ++i) {
  1177. level_type = entry[i - 1].ecx & 0xff00;
  1178. if (!level_type)
  1179. break;
  1180. do_cpuid_1_ent(&entry[i], function, i);
  1181. entry[i].flags |=
  1182. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1183. ++*nent;
  1184. }
  1185. break;
  1186. }
  1187. case 0x80000000:
  1188. entry->eax = min(entry->eax, 0x8000001a);
  1189. break;
  1190. case 0x80000001:
  1191. entry->edx &= kvm_supported_word1_x86_features;
  1192. entry->ecx &= kvm_supported_word6_x86_features;
  1193. break;
  1194. }
  1195. put_cpu();
  1196. }
  1197. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1198. struct kvm_cpuid_entry2 __user *entries)
  1199. {
  1200. struct kvm_cpuid_entry2 *cpuid_entries;
  1201. int limit, nent = 0, r = -E2BIG;
  1202. u32 func;
  1203. if (cpuid->nent < 1)
  1204. goto out;
  1205. r = -ENOMEM;
  1206. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1207. if (!cpuid_entries)
  1208. goto out;
  1209. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1210. limit = cpuid_entries[0].eax;
  1211. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1212. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1213. &nent, cpuid->nent);
  1214. r = -E2BIG;
  1215. if (nent >= cpuid->nent)
  1216. goto out_free;
  1217. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1218. limit = cpuid_entries[nent - 1].eax;
  1219. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1220. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1221. &nent, cpuid->nent);
  1222. r = -EFAULT;
  1223. if (copy_to_user(entries, cpuid_entries,
  1224. nent * sizeof(struct kvm_cpuid_entry2)))
  1225. goto out_free;
  1226. cpuid->nent = nent;
  1227. r = 0;
  1228. out_free:
  1229. vfree(cpuid_entries);
  1230. out:
  1231. return r;
  1232. }
  1233. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1234. struct kvm_lapic_state *s)
  1235. {
  1236. vcpu_load(vcpu);
  1237. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1238. vcpu_put(vcpu);
  1239. return 0;
  1240. }
  1241. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1242. struct kvm_lapic_state *s)
  1243. {
  1244. vcpu_load(vcpu);
  1245. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1246. kvm_apic_post_state_restore(vcpu);
  1247. vcpu_put(vcpu);
  1248. return 0;
  1249. }
  1250. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1251. struct kvm_interrupt *irq)
  1252. {
  1253. if (irq->irq < 0 || irq->irq >= 256)
  1254. return -EINVAL;
  1255. if (irqchip_in_kernel(vcpu->kvm))
  1256. return -ENXIO;
  1257. vcpu_load(vcpu);
  1258. set_bit(irq->irq, vcpu->arch.irq_pending);
  1259. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1260. vcpu_put(vcpu);
  1261. return 0;
  1262. }
  1263. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1264. {
  1265. vcpu_load(vcpu);
  1266. kvm_inject_nmi(vcpu);
  1267. vcpu_put(vcpu);
  1268. return 0;
  1269. }
  1270. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1271. struct kvm_tpr_access_ctl *tac)
  1272. {
  1273. if (tac->flags)
  1274. return -EINVAL;
  1275. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1276. return 0;
  1277. }
  1278. long kvm_arch_vcpu_ioctl(struct file *filp,
  1279. unsigned int ioctl, unsigned long arg)
  1280. {
  1281. struct kvm_vcpu *vcpu = filp->private_data;
  1282. void __user *argp = (void __user *)arg;
  1283. int r;
  1284. struct kvm_lapic_state *lapic = NULL;
  1285. switch (ioctl) {
  1286. case KVM_GET_LAPIC: {
  1287. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1288. r = -ENOMEM;
  1289. if (!lapic)
  1290. goto out;
  1291. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1292. if (r)
  1293. goto out;
  1294. r = -EFAULT;
  1295. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1296. goto out;
  1297. r = 0;
  1298. break;
  1299. }
  1300. case KVM_SET_LAPIC: {
  1301. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1302. r = -ENOMEM;
  1303. if (!lapic)
  1304. goto out;
  1305. r = -EFAULT;
  1306. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1307. goto out;
  1308. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1309. if (r)
  1310. goto out;
  1311. r = 0;
  1312. break;
  1313. }
  1314. case KVM_INTERRUPT: {
  1315. struct kvm_interrupt irq;
  1316. r = -EFAULT;
  1317. if (copy_from_user(&irq, argp, sizeof irq))
  1318. goto out;
  1319. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1320. if (r)
  1321. goto out;
  1322. r = 0;
  1323. break;
  1324. }
  1325. case KVM_NMI: {
  1326. r = kvm_vcpu_ioctl_nmi(vcpu);
  1327. if (r)
  1328. goto out;
  1329. r = 0;
  1330. break;
  1331. }
  1332. case KVM_SET_CPUID: {
  1333. struct kvm_cpuid __user *cpuid_arg = argp;
  1334. struct kvm_cpuid cpuid;
  1335. r = -EFAULT;
  1336. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1337. goto out;
  1338. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1339. if (r)
  1340. goto out;
  1341. break;
  1342. }
  1343. case KVM_SET_CPUID2: {
  1344. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1345. struct kvm_cpuid2 cpuid;
  1346. r = -EFAULT;
  1347. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1348. goto out;
  1349. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1350. cpuid_arg->entries);
  1351. if (r)
  1352. goto out;
  1353. break;
  1354. }
  1355. case KVM_GET_CPUID2: {
  1356. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1357. struct kvm_cpuid2 cpuid;
  1358. r = -EFAULT;
  1359. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1360. goto out;
  1361. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1362. cpuid_arg->entries);
  1363. if (r)
  1364. goto out;
  1365. r = -EFAULT;
  1366. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1367. goto out;
  1368. r = 0;
  1369. break;
  1370. }
  1371. case KVM_GET_MSRS:
  1372. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1373. break;
  1374. case KVM_SET_MSRS:
  1375. r = msr_io(vcpu, argp, do_set_msr, 0);
  1376. break;
  1377. case KVM_TPR_ACCESS_REPORTING: {
  1378. struct kvm_tpr_access_ctl tac;
  1379. r = -EFAULT;
  1380. if (copy_from_user(&tac, argp, sizeof tac))
  1381. goto out;
  1382. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1383. if (r)
  1384. goto out;
  1385. r = -EFAULT;
  1386. if (copy_to_user(argp, &tac, sizeof tac))
  1387. goto out;
  1388. r = 0;
  1389. break;
  1390. };
  1391. case KVM_SET_VAPIC_ADDR: {
  1392. struct kvm_vapic_addr va;
  1393. r = -EINVAL;
  1394. if (!irqchip_in_kernel(vcpu->kvm))
  1395. goto out;
  1396. r = -EFAULT;
  1397. if (copy_from_user(&va, argp, sizeof va))
  1398. goto out;
  1399. r = 0;
  1400. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1401. break;
  1402. }
  1403. default:
  1404. r = -EINVAL;
  1405. }
  1406. out:
  1407. kfree(lapic);
  1408. return r;
  1409. }
  1410. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1411. {
  1412. int ret;
  1413. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1414. return -1;
  1415. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1416. return ret;
  1417. }
  1418. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1419. u32 kvm_nr_mmu_pages)
  1420. {
  1421. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1422. return -EINVAL;
  1423. down_write(&kvm->slots_lock);
  1424. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1425. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1426. up_write(&kvm->slots_lock);
  1427. return 0;
  1428. }
  1429. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1430. {
  1431. return kvm->arch.n_alloc_mmu_pages;
  1432. }
  1433. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1434. {
  1435. int i;
  1436. struct kvm_mem_alias *alias;
  1437. for (i = 0; i < kvm->arch.naliases; ++i) {
  1438. alias = &kvm->arch.aliases[i];
  1439. if (gfn >= alias->base_gfn
  1440. && gfn < alias->base_gfn + alias->npages)
  1441. return alias->target_gfn + gfn - alias->base_gfn;
  1442. }
  1443. return gfn;
  1444. }
  1445. /*
  1446. * Set a new alias region. Aliases map a portion of physical memory into
  1447. * another portion. This is useful for memory windows, for example the PC
  1448. * VGA region.
  1449. */
  1450. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1451. struct kvm_memory_alias *alias)
  1452. {
  1453. int r, n;
  1454. struct kvm_mem_alias *p;
  1455. r = -EINVAL;
  1456. /* General sanity checks */
  1457. if (alias->memory_size & (PAGE_SIZE - 1))
  1458. goto out;
  1459. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1460. goto out;
  1461. if (alias->slot >= KVM_ALIAS_SLOTS)
  1462. goto out;
  1463. if (alias->guest_phys_addr + alias->memory_size
  1464. < alias->guest_phys_addr)
  1465. goto out;
  1466. if (alias->target_phys_addr + alias->memory_size
  1467. < alias->target_phys_addr)
  1468. goto out;
  1469. down_write(&kvm->slots_lock);
  1470. spin_lock(&kvm->mmu_lock);
  1471. p = &kvm->arch.aliases[alias->slot];
  1472. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1473. p->npages = alias->memory_size >> PAGE_SHIFT;
  1474. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1475. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1476. if (kvm->arch.aliases[n - 1].npages)
  1477. break;
  1478. kvm->arch.naliases = n;
  1479. spin_unlock(&kvm->mmu_lock);
  1480. kvm_mmu_zap_all(kvm);
  1481. up_write(&kvm->slots_lock);
  1482. return 0;
  1483. out:
  1484. return r;
  1485. }
  1486. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1487. {
  1488. int r;
  1489. r = 0;
  1490. switch (chip->chip_id) {
  1491. case KVM_IRQCHIP_PIC_MASTER:
  1492. memcpy(&chip->chip.pic,
  1493. &pic_irqchip(kvm)->pics[0],
  1494. sizeof(struct kvm_pic_state));
  1495. break;
  1496. case KVM_IRQCHIP_PIC_SLAVE:
  1497. memcpy(&chip->chip.pic,
  1498. &pic_irqchip(kvm)->pics[1],
  1499. sizeof(struct kvm_pic_state));
  1500. break;
  1501. case KVM_IRQCHIP_IOAPIC:
  1502. memcpy(&chip->chip.ioapic,
  1503. ioapic_irqchip(kvm),
  1504. sizeof(struct kvm_ioapic_state));
  1505. break;
  1506. default:
  1507. r = -EINVAL;
  1508. break;
  1509. }
  1510. return r;
  1511. }
  1512. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1513. {
  1514. int r;
  1515. r = 0;
  1516. switch (chip->chip_id) {
  1517. case KVM_IRQCHIP_PIC_MASTER:
  1518. memcpy(&pic_irqchip(kvm)->pics[0],
  1519. &chip->chip.pic,
  1520. sizeof(struct kvm_pic_state));
  1521. break;
  1522. case KVM_IRQCHIP_PIC_SLAVE:
  1523. memcpy(&pic_irqchip(kvm)->pics[1],
  1524. &chip->chip.pic,
  1525. sizeof(struct kvm_pic_state));
  1526. break;
  1527. case KVM_IRQCHIP_IOAPIC:
  1528. memcpy(ioapic_irqchip(kvm),
  1529. &chip->chip.ioapic,
  1530. sizeof(struct kvm_ioapic_state));
  1531. break;
  1532. default:
  1533. r = -EINVAL;
  1534. break;
  1535. }
  1536. kvm_pic_update_irq(pic_irqchip(kvm));
  1537. return r;
  1538. }
  1539. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1540. {
  1541. int r = 0;
  1542. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1543. return r;
  1544. }
  1545. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1546. {
  1547. int r = 0;
  1548. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1549. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1550. return r;
  1551. }
  1552. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1553. struct kvm_reinject_control *control)
  1554. {
  1555. if (!kvm->arch.vpit)
  1556. return -ENXIO;
  1557. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1558. return 0;
  1559. }
  1560. /*
  1561. * Get (and clear) the dirty memory log for a memory slot.
  1562. */
  1563. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1564. struct kvm_dirty_log *log)
  1565. {
  1566. int r;
  1567. int n;
  1568. struct kvm_memory_slot *memslot;
  1569. int is_dirty = 0;
  1570. down_write(&kvm->slots_lock);
  1571. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1572. if (r)
  1573. goto out;
  1574. /* If nothing is dirty, don't bother messing with page tables. */
  1575. if (is_dirty) {
  1576. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1577. kvm_flush_remote_tlbs(kvm);
  1578. memslot = &kvm->memslots[log->slot];
  1579. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1580. memset(memslot->dirty_bitmap, 0, n);
  1581. }
  1582. r = 0;
  1583. out:
  1584. up_write(&kvm->slots_lock);
  1585. return r;
  1586. }
  1587. long kvm_arch_vm_ioctl(struct file *filp,
  1588. unsigned int ioctl, unsigned long arg)
  1589. {
  1590. struct kvm *kvm = filp->private_data;
  1591. void __user *argp = (void __user *)arg;
  1592. int r = -EINVAL;
  1593. /*
  1594. * This union makes it completely explicit to gcc-3.x
  1595. * that these two variables' stack usage should be
  1596. * combined, not added together.
  1597. */
  1598. union {
  1599. struct kvm_pit_state ps;
  1600. struct kvm_memory_alias alias;
  1601. } u;
  1602. switch (ioctl) {
  1603. case KVM_SET_TSS_ADDR:
  1604. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1605. if (r < 0)
  1606. goto out;
  1607. break;
  1608. case KVM_SET_MEMORY_REGION: {
  1609. struct kvm_memory_region kvm_mem;
  1610. struct kvm_userspace_memory_region kvm_userspace_mem;
  1611. r = -EFAULT;
  1612. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1613. goto out;
  1614. kvm_userspace_mem.slot = kvm_mem.slot;
  1615. kvm_userspace_mem.flags = kvm_mem.flags;
  1616. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1617. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1618. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1619. if (r)
  1620. goto out;
  1621. break;
  1622. }
  1623. case KVM_SET_NR_MMU_PAGES:
  1624. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1625. if (r)
  1626. goto out;
  1627. break;
  1628. case KVM_GET_NR_MMU_PAGES:
  1629. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1630. break;
  1631. case KVM_SET_MEMORY_ALIAS:
  1632. r = -EFAULT;
  1633. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1634. goto out;
  1635. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1636. if (r)
  1637. goto out;
  1638. break;
  1639. case KVM_CREATE_IRQCHIP:
  1640. r = -ENOMEM;
  1641. kvm->arch.vpic = kvm_create_pic(kvm);
  1642. if (kvm->arch.vpic) {
  1643. r = kvm_ioapic_init(kvm);
  1644. if (r) {
  1645. kfree(kvm->arch.vpic);
  1646. kvm->arch.vpic = NULL;
  1647. goto out;
  1648. }
  1649. } else
  1650. goto out;
  1651. r = kvm_setup_default_irq_routing(kvm);
  1652. if (r) {
  1653. kfree(kvm->arch.vpic);
  1654. kfree(kvm->arch.vioapic);
  1655. goto out;
  1656. }
  1657. break;
  1658. case KVM_CREATE_PIT:
  1659. mutex_lock(&kvm->lock);
  1660. r = -EEXIST;
  1661. if (kvm->arch.vpit)
  1662. goto create_pit_unlock;
  1663. r = -ENOMEM;
  1664. kvm->arch.vpit = kvm_create_pit(kvm);
  1665. if (kvm->arch.vpit)
  1666. r = 0;
  1667. create_pit_unlock:
  1668. mutex_unlock(&kvm->lock);
  1669. break;
  1670. case KVM_IRQ_LINE_STATUS:
  1671. case KVM_IRQ_LINE: {
  1672. struct kvm_irq_level irq_event;
  1673. r = -EFAULT;
  1674. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1675. goto out;
  1676. if (irqchip_in_kernel(kvm)) {
  1677. __s32 status;
  1678. mutex_lock(&kvm->lock);
  1679. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  1680. irq_event.irq, irq_event.level);
  1681. mutex_unlock(&kvm->lock);
  1682. if (ioctl == KVM_IRQ_LINE_STATUS) {
  1683. irq_event.status = status;
  1684. if (copy_to_user(argp, &irq_event,
  1685. sizeof irq_event))
  1686. goto out;
  1687. }
  1688. r = 0;
  1689. }
  1690. break;
  1691. }
  1692. case KVM_GET_IRQCHIP: {
  1693. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1694. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1695. r = -ENOMEM;
  1696. if (!chip)
  1697. goto out;
  1698. r = -EFAULT;
  1699. if (copy_from_user(chip, argp, sizeof *chip))
  1700. goto get_irqchip_out;
  1701. r = -ENXIO;
  1702. if (!irqchip_in_kernel(kvm))
  1703. goto get_irqchip_out;
  1704. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  1705. if (r)
  1706. goto get_irqchip_out;
  1707. r = -EFAULT;
  1708. if (copy_to_user(argp, chip, sizeof *chip))
  1709. goto get_irqchip_out;
  1710. r = 0;
  1711. get_irqchip_out:
  1712. kfree(chip);
  1713. if (r)
  1714. goto out;
  1715. break;
  1716. }
  1717. case KVM_SET_IRQCHIP: {
  1718. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1719. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  1720. r = -ENOMEM;
  1721. if (!chip)
  1722. goto out;
  1723. r = -EFAULT;
  1724. if (copy_from_user(chip, argp, sizeof *chip))
  1725. goto set_irqchip_out;
  1726. r = -ENXIO;
  1727. if (!irqchip_in_kernel(kvm))
  1728. goto set_irqchip_out;
  1729. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  1730. if (r)
  1731. goto set_irqchip_out;
  1732. r = 0;
  1733. set_irqchip_out:
  1734. kfree(chip);
  1735. if (r)
  1736. goto out;
  1737. break;
  1738. }
  1739. case KVM_GET_PIT: {
  1740. r = -EFAULT;
  1741. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  1742. goto out;
  1743. r = -ENXIO;
  1744. if (!kvm->arch.vpit)
  1745. goto out;
  1746. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  1747. if (r)
  1748. goto out;
  1749. r = -EFAULT;
  1750. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  1751. goto out;
  1752. r = 0;
  1753. break;
  1754. }
  1755. case KVM_SET_PIT: {
  1756. r = -EFAULT;
  1757. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  1758. goto out;
  1759. r = -ENXIO;
  1760. if (!kvm->arch.vpit)
  1761. goto out;
  1762. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  1763. if (r)
  1764. goto out;
  1765. r = 0;
  1766. break;
  1767. }
  1768. case KVM_REINJECT_CONTROL: {
  1769. struct kvm_reinject_control control;
  1770. r = -EFAULT;
  1771. if (copy_from_user(&control, argp, sizeof(control)))
  1772. goto out;
  1773. r = kvm_vm_ioctl_reinject(kvm, &control);
  1774. if (r)
  1775. goto out;
  1776. r = 0;
  1777. break;
  1778. }
  1779. default:
  1780. ;
  1781. }
  1782. out:
  1783. return r;
  1784. }
  1785. static void kvm_init_msr_list(void)
  1786. {
  1787. u32 dummy[2];
  1788. unsigned i, j;
  1789. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1790. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1791. continue;
  1792. if (j < i)
  1793. msrs_to_save[j] = msrs_to_save[i];
  1794. j++;
  1795. }
  1796. num_msrs_to_save = j;
  1797. }
  1798. /*
  1799. * Only apic need an MMIO device hook, so shortcut now..
  1800. */
  1801. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1802. gpa_t addr, int len,
  1803. int is_write)
  1804. {
  1805. struct kvm_io_device *dev;
  1806. if (vcpu->arch.apic) {
  1807. dev = &vcpu->arch.apic->dev;
  1808. if (dev->in_range(dev, addr, len, is_write))
  1809. return dev;
  1810. }
  1811. return NULL;
  1812. }
  1813. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1814. gpa_t addr, int len,
  1815. int is_write)
  1816. {
  1817. struct kvm_io_device *dev;
  1818. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1819. if (dev == NULL)
  1820. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1821. is_write);
  1822. return dev;
  1823. }
  1824. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1825. struct kvm_vcpu *vcpu)
  1826. {
  1827. void *data = val;
  1828. int r = X86EMUL_CONTINUE;
  1829. while (bytes) {
  1830. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1831. unsigned offset = addr & (PAGE_SIZE-1);
  1832. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  1833. int ret;
  1834. if (gpa == UNMAPPED_GVA) {
  1835. r = X86EMUL_PROPAGATE_FAULT;
  1836. goto out;
  1837. }
  1838. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  1839. if (ret < 0) {
  1840. r = X86EMUL_UNHANDLEABLE;
  1841. goto out;
  1842. }
  1843. bytes -= toread;
  1844. data += toread;
  1845. addr += toread;
  1846. }
  1847. out:
  1848. return r;
  1849. }
  1850. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  1851. struct kvm_vcpu *vcpu)
  1852. {
  1853. void *data = val;
  1854. int r = X86EMUL_CONTINUE;
  1855. while (bytes) {
  1856. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1857. unsigned offset = addr & (PAGE_SIZE-1);
  1858. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  1859. int ret;
  1860. if (gpa == UNMAPPED_GVA) {
  1861. r = X86EMUL_PROPAGATE_FAULT;
  1862. goto out;
  1863. }
  1864. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  1865. if (ret < 0) {
  1866. r = X86EMUL_UNHANDLEABLE;
  1867. goto out;
  1868. }
  1869. bytes -= towrite;
  1870. data += towrite;
  1871. addr += towrite;
  1872. }
  1873. out:
  1874. return r;
  1875. }
  1876. static int emulator_read_emulated(unsigned long addr,
  1877. void *val,
  1878. unsigned int bytes,
  1879. struct kvm_vcpu *vcpu)
  1880. {
  1881. struct kvm_io_device *mmio_dev;
  1882. gpa_t gpa;
  1883. if (vcpu->mmio_read_completed) {
  1884. memcpy(val, vcpu->mmio_data, bytes);
  1885. vcpu->mmio_read_completed = 0;
  1886. return X86EMUL_CONTINUE;
  1887. }
  1888. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1889. /* For APIC access vmexit */
  1890. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1891. goto mmio;
  1892. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  1893. == X86EMUL_CONTINUE)
  1894. return X86EMUL_CONTINUE;
  1895. if (gpa == UNMAPPED_GVA)
  1896. return X86EMUL_PROPAGATE_FAULT;
  1897. mmio:
  1898. /*
  1899. * Is this MMIO handled locally?
  1900. */
  1901. mutex_lock(&vcpu->kvm->lock);
  1902. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1903. if (mmio_dev) {
  1904. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1905. mutex_unlock(&vcpu->kvm->lock);
  1906. return X86EMUL_CONTINUE;
  1907. }
  1908. mutex_unlock(&vcpu->kvm->lock);
  1909. vcpu->mmio_needed = 1;
  1910. vcpu->mmio_phys_addr = gpa;
  1911. vcpu->mmio_size = bytes;
  1912. vcpu->mmio_is_write = 0;
  1913. return X86EMUL_UNHANDLEABLE;
  1914. }
  1915. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1916. const void *val, int bytes)
  1917. {
  1918. int ret;
  1919. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1920. if (ret < 0)
  1921. return 0;
  1922. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  1923. return 1;
  1924. }
  1925. static int emulator_write_emulated_onepage(unsigned long addr,
  1926. const void *val,
  1927. unsigned int bytes,
  1928. struct kvm_vcpu *vcpu)
  1929. {
  1930. struct kvm_io_device *mmio_dev;
  1931. gpa_t gpa;
  1932. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1933. if (gpa == UNMAPPED_GVA) {
  1934. kvm_inject_page_fault(vcpu, addr, 2);
  1935. return X86EMUL_PROPAGATE_FAULT;
  1936. }
  1937. /* For APIC access vmexit */
  1938. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1939. goto mmio;
  1940. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1941. return X86EMUL_CONTINUE;
  1942. mmio:
  1943. /*
  1944. * Is this MMIO handled locally?
  1945. */
  1946. mutex_lock(&vcpu->kvm->lock);
  1947. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1948. if (mmio_dev) {
  1949. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1950. mutex_unlock(&vcpu->kvm->lock);
  1951. return X86EMUL_CONTINUE;
  1952. }
  1953. mutex_unlock(&vcpu->kvm->lock);
  1954. vcpu->mmio_needed = 1;
  1955. vcpu->mmio_phys_addr = gpa;
  1956. vcpu->mmio_size = bytes;
  1957. vcpu->mmio_is_write = 1;
  1958. memcpy(vcpu->mmio_data, val, bytes);
  1959. return X86EMUL_CONTINUE;
  1960. }
  1961. int emulator_write_emulated(unsigned long addr,
  1962. const void *val,
  1963. unsigned int bytes,
  1964. struct kvm_vcpu *vcpu)
  1965. {
  1966. /* Crossing a page boundary? */
  1967. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1968. int rc, now;
  1969. now = -addr & ~PAGE_MASK;
  1970. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1971. if (rc != X86EMUL_CONTINUE)
  1972. return rc;
  1973. addr += now;
  1974. val += now;
  1975. bytes -= now;
  1976. }
  1977. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1978. }
  1979. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1980. static int emulator_cmpxchg_emulated(unsigned long addr,
  1981. const void *old,
  1982. const void *new,
  1983. unsigned int bytes,
  1984. struct kvm_vcpu *vcpu)
  1985. {
  1986. static int reported;
  1987. if (!reported) {
  1988. reported = 1;
  1989. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1990. }
  1991. #ifndef CONFIG_X86_64
  1992. /* guests cmpxchg8b have to be emulated atomically */
  1993. if (bytes == 8) {
  1994. gpa_t gpa;
  1995. struct page *page;
  1996. char *kaddr;
  1997. u64 val;
  1998. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1999. if (gpa == UNMAPPED_GVA ||
  2000. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2001. goto emul_write;
  2002. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2003. goto emul_write;
  2004. val = *(u64 *)new;
  2005. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2006. kaddr = kmap_atomic(page, KM_USER0);
  2007. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2008. kunmap_atomic(kaddr, KM_USER0);
  2009. kvm_release_page_dirty(page);
  2010. }
  2011. emul_write:
  2012. #endif
  2013. return emulator_write_emulated(addr, new, bytes, vcpu);
  2014. }
  2015. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2016. {
  2017. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2018. }
  2019. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2020. {
  2021. kvm_mmu_invlpg(vcpu, address);
  2022. return X86EMUL_CONTINUE;
  2023. }
  2024. int emulate_clts(struct kvm_vcpu *vcpu)
  2025. {
  2026. KVMTRACE_0D(CLTS, vcpu, handler);
  2027. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2028. return X86EMUL_CONTINUE;
  2029. }
  2030. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2031. {
  2032. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2033. switch (dr) {
  2034. case 0 ... 3:
  2035. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2036. return X86EMUL_CONTINUE;
  2037. default:
  2038. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2039. return X86EMUL_UNHANDLEABLE;
  2040. }
  2041. }
  2042. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2043. {
  2044. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2045. int exception;
  2046. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2047. if (exception) {
  2048. /* FIXME: better handling */
  2049. return X86EMUL_UNHANDLEABLE;
  2050. }
  2051. return X86EMUL_CONTINUE;
  2052. }
  2053. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2054. {
  2055. u8 opcodes[4];
  2056. unsigned long rip = kvm_rip_read(vcpu);
  2057. unsigned long rip_linear;
  2058. if (!printk_ratelimit())
  2059. return;
  2060. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2061. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2062. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2063. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2064. }
  2065. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2066. static struct x86_emulate_ops emulate_ops = {
  2067. .read_std = kvm_read_guest_virt,
  2068. .read_emulated = emulator_read_emulated,
  2069. .write_emulated = emulator_write_emulated,
  2070. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2071. };
  2072. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2073. {
  2074. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2075. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2076. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2077. vcpu->arch.regs_dirty = ~0;
  2078. }
  2079. int emulate_instruction(struct kvm_vcpu *vcpu,
  2080. struct kvm_run *run,
  2081. unsigned long cr2,
  2082. u16 error_code,
  2083. int emulation_type)
  2084. {
  2085. int r;
  2086. struct decode_cache *c;
  2087. kvm_clear_exception_queue(vcpu);
  2088. vcpu->arch.mmio_fault_cr2 = cr2;
  2089. /*
  2090. * TODO: fix x86_emulate.c to use guest_read/write_register
  2091. * instead of direct ->regs accesses, can save hundred cycles
  2092. * on Intel for instructions that don't read/change RSP, for
  2093. * for example.
  2094. */
  2095. cache_all_regs(vcpu);
  2096. vcpu->mmio_is_write = 0;
  2097. vcpu->arch.pio.string = 0;
  2098. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2099. int cs_db, cs_l;
  2100. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2101. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2102. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2103. vcpu->arch.emulate_ctxt.mode =
  2104. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2105. ? X86EMUL_MODE_REAL : cs_l
  2106. ? X86EMUL_MODE_PROT64 : cs_db
  2107. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2108. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2109. /* Reject the instructions other than VMCALL/VMMCALL when
  2110. * try to emulate invalid opcode */
  2111. c = &vcpu->arch.emulate_ctxt.decode;
  2112. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  2113. (!(c->twobyte && c->b == 0x01 &&
  2114. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  2115. c->modrm_mod == 3 && c->modrm_rm == 1)))
  2116. return EMULATE_FAIL;
  2117. ++vcpu->stat.insn_emulation;
  2118. if (r) {
  2119. ++vcpu->stat.insn_emulation_fail;
  2120. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2121. return EMULATE_DONE;
  2122. return EMULATE_FAIL;
  2123. }
  2124. }
  2125. if (emulation_type & EMULTYPE_SKIP) {
  2126. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2127. return EMULATE_DONE;
  2128. }
  2129. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2130. if (vcpu->arch.pio.string)
  2131. return EMULATE_DO_MMIO;
  2132. if ((r || vcpu->mmio_is_write) && run) {
  2133. run->exit_reason = KVM_EXIT_MMIO;
  2134. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2135. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2136. run->mmio.len = vcpu->mmio_size;
  2137. run->mmio.is_write = vcpu->mmio_is_write;
  2138. }
  2139. if (r) {
  2140. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2141. return EMULATE_DONE;
  2142. if (!vcpu->mmio_needed) {
  2143. kvm_report_emulation_failure(vcpu, "mmio");
  2144. return EMULATE_FAIL;
  2145. }
  2146. return EMULATE_DO_MMIO;
  2147. }
  2148. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2149. if (vcpu->mmio_is_write) {
  2150. vcpu->mmio_needed = 0;
  2151. return EMULATE_DO_MMIO;
  2152. }
  2153. return EMULATE_DONE;
  2154. }
  2155. EXPORT_SYMBOL_GPL(emulate_instruction);
  2156. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2157. {
  2158. void *p = vcpu->arch.pio_data;
  2159. gva_t q = vcpu->arch.pio.guest_gva;
  2160. unsigned bytes;
  2161. int ret;
  2162. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2163. if (vcpu->arch.pio.in)
  2164. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2165. else
  2166. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2167. return ret;
  2168. }
  2169. int complete_pio(struct kvm_vcpu *vcpu)
  2170. {
  2171. struct kvm_pio_request *io = &vcpu->arch.pio;
  2172. long delta;
  2173. int r;
  2174. unsigned long val;
  2175. if (!io->string) {
  2176. if (io->in) {
  2177. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2178. memcpy(&val, vcpu->arch.pio_data, io->size);
  2179. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2180. }
  2181. } else {
  2182. if (io->in) {
  2183. r = pio_copy_data(vcpu);
  2184. if (r)
  2185. return r;
  2186. }
  2187. delta = 1;
  2188. if (io->rep) {
  2189. delta *= io->cur_count;
  2190. /*
  2191. * The size of the register should really depend on
  2192. * current address size.
  2193. */
  2194. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2195. val -= delta;
  2196. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2197. }
  2198. if (io->down)
  2199. delta = -delta;
  2200. delta *= io->size;
  2201. if (io->in) {
  2202. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2203. val += delta;
  2204. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2205. } else {
  2206. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2207. val += delta;
  2208. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2209. }
  2210. }
  2211. io->count -= io->cur_count;
  2212. io->cur_count = 0;
  2213. return 0;
  2214. }
  2215. static void kernel_pio(struct kvm_io_device *pio_dev,
  2216. struct kvm_vcpu *vcpu,
  2217. void *pd)
  2218. {
  2219. /* TODO: String I/O for in kernel device */
  2220. mutex_lock(&vcpu->kvm->lock);
  2221. if (vcpu->arch.pio.in)
  2222. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  2223. vcpu->arch.pio.size,
  2224. pd);
  2225. else
  2226. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  2227. vcpu->arch.pio.size,
  2228. pd);
  2229. mutex_unlock(&vcpu->kvm->lock);
  2230. }
  2231. static void pio_string_write(struct kvm_io_device *pio_dev,
  2232. struct kvm_vcpu *vcpu)
  2233. {
  2234. struct kvm_pio_request *io = &vcpu->arch.pio;
  2235. void *pd = vcpu->arch.pio_data;
  2236. int i;
  2237. mutex_lock(&vcpu->kvm->lock);
  2238. for (i = 0; i < io->cur_count; i++) {
  2239. kvm_iodevice_write(pio_dev, io->port,
  2240. io->size,
  2241. pd);
  2242. pd += io->size;
  2243. }
  2244. mutex_unlock(&vcpu->kvm->lock);
  2245. }
  2246. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2247. gpa_t addr, int len,
  2248. int is_write)
  2249. {
  2250. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2251. }
  2252. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2253. int size, unsigned port)
  2254. {
  2255. struct kvm_io_device *pio_dev;
  2256. unsigned long val;
  2257. vcpu->run->exit_reason = KVM_EXIT_IO;
  2258. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2259. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2260. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2261. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2262. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2263. vcpu->arch.pio.in = in;
  2264. vcpu->arch.pio.string = 0;
  2265. vcpu->arch.pio.down = 0;
  2266. vcpu->arch.pio.rep = 0;
  2267. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2268. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2269. handler);
  2270. else
  2271. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2272. handler);
  2273. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2274. memcpy(vcpu->arch.pio_data, &val, 4);
  2275. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2276. if (pio_dev) {
  2277. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2278. complete_pio(vcpu);
  2279. return 1;
  2280. }
  2281. return 0;
  2282. }
  2283. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2284. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2285. int size, unsigned long count, int down,
  2286. gva_t address, int rep, unsigned port)
  2287. {
  2288. unsigned now, in_page;
  2289. int ret = 0;
  2290. struct kvm_io_device *pio_dev;
  2291. vcpu->run->exit_reason = KVM_EXIT_IO;
  2292. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2293. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2294. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2295. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2296. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2297. vcpu->arch.pio.in = in;
  2298. vcpu->arch.pio.string = 1;
  2299. vcpu->arch.pio.down = down;
  2300. vcpu->arch.pio.rep = rep;
  2301. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2302. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2303. handler);
  2304. else
  2305. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2306. handler);
  2307. if (!count) {
  2308. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2309. return 1;
  2310. }
  2311. if (!down)
  2312. in_page = PAGE_SIZE - offset_in_page(address);
  2313. else
  2314. in_page = offset_in_page(address) + size;
  2315. now = min(count, (unsigned long)in_page / size);
  2316. if (!now)
  2317. now = 1;
  2318. if (down) {
  2319. /*
  2320. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2321. */
  2322. pr_unimpl(vcpu, "guest string pio down\n");
  2323. kvm_inject_gp(vcpu, 0);
  2324. return 1;
  2325. }
  2326. vcpu->run->io.count = now;
  2327. vcpu->arch.pio.cur_count = now;
  2328. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2329. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2330. vcpu->arch.pio.guest_gva = address;
  2331. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2332. vcpu->arch.pio.cur_count,
  2333. !vcpu->arch.pio.in);
  2334. if (!vcpu->arch.pio.in) {
  2335. /* string PIO write */
  2336. ret = pio_copy_data(vcpu);
  2337. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2338. kvm_inject_gp(vcpu, 0);
  2339. return 1;
  2340. }
  2341. if (ret == 0 && pio_dev) {
  2342. pio_string_write(pio_dev, vcpu);
  2343. complete_pio(vcpu);
  2344. if (vcpu->arch.pio.count == 0)
  2345. ret = 1;
  2346. }
  2347. } else if (pio_dev)
  2348. pr_unimpl(vcpu, "no string pio read support yet, "
  2349. "port %x size %d count %ld\n",
  2350. port, size, count);
  2351. return ret;
  2352. }
  2353. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2354. static void bounce_off(void *info)
  2355. {
  2356. /* nothing */
  2357. }
  2358. static unsigned int ref_freq;
  2359. static unsigned long tsc_khz_ref;
  2360. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2361. void *data)
  2362. {
  2363. struct cpufreq_freqs *freq = data;
  2364. struct kvm *kvm;
  2365. struct kvm_vcpu *vcpu;
  2366. int i, send_ipi = 0;
  2367. if (!ref_freq)
  2368. ref_freq = freq->old;
  2369. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2370. return 0;
  2371. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2372. return 0;
  2373. per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  2374. spin_lock(&kvm_lock);
  2375. list_for_each_entry(kvm, &vm_list, vm_list) {
  2376. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2377. vcpu = kvm->vcpus[i];
  2378. if (!vcpu)
  2379. continue;
  2380. if (vcpu->cpu != freq->cpu)
  2381. continue;
  2382. if (!kvm_request_guest_time_update(vcpu))
  2383. continue;
  2384. if (vcpu->cpu != smp_processor_id())
  2385. send_ipi++;
  2386. }
  2387. }
  2388. spin_unlock(&kvm_lock);
  2389. if (freq->old < freq->new && send_ipi) {
  2390. /*
  2391. * We upscale the frequency. Must make the guest
  2392. * doesn't see old kvmclock values while running with
  2393. * the new frequency, otherwise we risk the guest sees
  2394. * time go backwards.
  2395. *
  2396. * In case we update the frequency for another cpu
  2397. * (which might be in guest context) send an interrupt
  2398. * to kick the cpu out of guest context. Next time
  2399. * guest context is entered kvmclock will be updated,
  2400. * so the guest will not see stale values.
  2401. */
  2402. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2403. }
  2404. return 0;
  2405. }
  2406. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2407. .notifier_call = kvmclock_cpufreq_notifier
  2408. };
  2409. int kvm_arch_init(void *opaque)
  2410. {
  2411. int r, cpu;
  2412. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2413. if (kvm_x86_ops) {
  2414. printk(KERN_ERR "kvm: already loaded the other module\n");
  2415. r = -EEXIST;
  2416. goto out;
  2417. }
  2418. if (!ops->cpu_has_kvm_support()) {
  2419. printk(KERN_ERR "kvm: no hardware support\n");
  2420. r = -EOPNOTSUPP;
  2421. goto out;
  2422. }
  2423. if (ops->disabled_by_bios()) {
  2424. printk(KERN_ERR "kvm: disabled by bios\n");
  2425. r = -EOPNOTSUPP;
  2426. goto out;
  2427. }
  2428. r = kvm_mmu_module_init();
  2429. if (r)
  2430. goto out;
  2431. kvm_init_msr_list();
  2432. kvm_x86_ops = ops;
  2433. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2434. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2435. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2436. PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
  2437. for_each_possible_cpu(cpu)
  2438. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2439. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2440. tsc_khz_ref = tsc_khz;
  2441. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2442. CPUFREQ_TRANSITION_NOTIFIER);
  2443. }
  2444. return 0;
  2445. out:
  2446. return r;
  2447. }
  2448. void kvm_arch_exit(void)
  2449. {
  2450. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2451. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2452. CPUFREQ_TRANSITION_NOTIFIER);
  2453. kvm_x86_ops = NULL;
  2454. kvm_mmu_module_exit();
  2455. }
  2456. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2457. {
  2458. ++vcpu->stat.halt_exits;
  2459. KVMTRACE_0D(HLT, vcpu, handler);
  2460. if (irqchip_in_kernel(vcpu->kvm)) {
  2461. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2462. return 1;
  2463. } else {
  2464. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2465. return 0;
  2466. }
  2467. }
  2468. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2469. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2470. unsigned long a1)
  2471. {
  2472. if (is_long_mode(vcpu))
  2473. return a0;
  2474. else
  2475. return a0 | ((gpa_t)a1 << 32);
  2476. }
  2477. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2478. {
  2479. unsigned long nr, a0, a1, a2, a3, ret;
  2480. int r = 1;
  2481. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2482. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2483. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2484. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2485. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2486. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2487. if (!is_long_mode(vcpu)) {
  2488. nr &= 0xFFFFFFFF;
  2489. a0 &= 0xFFFFFFFF;
  2490. a1 &= 0xFFFFFFFF;
  2491. a2 &= 0xFFFFFFFF;
  2492. a3 &= 0xFFFFFFFF;
  2493. }
  2494. switch (nr) {
  2495. case KVM_HC_VAPIC_POLL_IRQ:
  2496. ret = 0;
  2497. break;
  2498. case KVM_HC_MMU_OP:
  2499. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2500. break;
  2501. default:
  2502. ret = -KVM_ENOSYS;
  2503. break;
  2504. }
  2505. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2506. ++vcpu->stat.hypercalls;
  2507. return r;
  2508. }
  2509. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2510. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2511. {
  2512. char instruction[3];
  2513. int ret = 0;
  2514. unsigned long rip = kvm_rip_read(vcpu);
  2515. /*
  2516. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2517. * to ensure that the updated hypercall appears atomically across all
  2518. * VCPUs.
  2519. */
  2520. kvm_mmu_zap_all(vcpu->kvm);
  2521. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2522. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2523. != X86EMUL_CONTINUE)
  2524. ret = -EFAULT;
  2525. return ret;
  2526. }
  2527. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2528. {
  2529. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2530. }
  2531. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2532. {
  2533. struct descriptor_table dt = { limit, base };
  2534. kvm_x86_ops->set_gdt(vcpu, &dt);
  2535. }
  2536. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2537. {
  2538. struct descriptor_table dt = { limit, base };
  2539. kvm_x86_ops->set_idt(vcpu, &dt);
  2540. }
  2541. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2542. unsigned long *rflags)
  2543. {
  2544. kvm_lmsw(vcpu, msw);
  2545. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2546. }
  2547. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2548. {
  2549. unsigned long value;
  2550. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2551. switch (cr) {
  2552. case 0:
  2553. value = vcpu->arch.cr0;
  2554. break;
  2555. case 2:
  2556. value = vcpu->arch.cr2;
  2557. break;
  2558. case 3:
  2559. value = vcpu->arch.cr3;
  2560. break;
  2561. case 4:
  2562. value = vcpu->arch.cr4;
  2563. break;
  2564. case 8:
  2565. value = kvm_get_cr8(vcpu);
  2566. break;
  2567. default:
  2568. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2569. return 0;
  2570. }
  2571. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2572. (u32)((u64)value >> 32), handler);
  2573. return value;
  2574. }
  2575. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2576. unsigned long *rflags)
  2577. {
  2578. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2579. (u32)((u64)val >> 32), handler);
  2580. switch (cr) {
  2581. case 0:
  2582. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2583. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2584. break;
  2585. case 2:
  2586. vcpu->arch.cr2 = val;
  2587. break;
  2588. case 3:
  2589. kvm_set_cr3(vcpu, val);
  2590. break;
  2591. case 4:
  2592. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2593. break;
  2594. case 8:
  2595. kvm_set_cr8(vcpu, val & 0xfUL);
  2596. break;
  2597. default:
  2598. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2599. }
  2600. }
  2601. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2602. {
  2603. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2604. int j, nent = vcpu->arch.cpuid_nent;
  2605. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2606. /* when no next entry is found, the current entry[i] is reselected */
  2607. for (j = i + 1; ; j = (j + 1) % nent) {
  2608. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2609. if (ej->function == e->function) {
  2610. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2611. return j;
  2612. }
  2613. }
  2614. return 0; /* silence gcc, even though control never reaches here */
  2615. }
  2616. /* find an entry with matching function, matching index (if needed), and that
  2617. * should be read next (if it's stateful) */
  2618. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2619. u32 function, u32 index)
  2620. {
  2621. if (e->function != function)
  2622. return 0;
  2623. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2624. return 0;
  2625. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2626. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2627. return 0;
  2628. return 1;
  2629. }
  2630. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2631. u32 function, u32 index)
  2632. {
  2633. int i;
  2634. struct kvm_cpuid_entry2 *best = NULL;
  2635. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2636. struct kvm_cpuid_entry2 *e;
  2637. e = &vcpu->arch.cpuid_entries[i];
  2638. if (is_matching_cpuid_entry(e, function, index)) {
  2639. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2640. move_to_next_stateful_cpuid_entry(vcpu, i);
  2641. best = e;
  2642. break;
  2643. }
  2644. /*
  2645. * Both basic or both extended?
  2646. */
  2647. if (((e->function ^ function) & 0x80000000) == 0)
  2648. if (!best || e->function > best->function)
  2649. best = e;
  2650. }
  2651. return best;
  2652. }
  2653. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  2654. {
  2655. struct kvm_cpuid_entry2 *best;
  2656. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  2657. if (best)
  2658. return best->eax & 0xff;
  2659. return 36;
  2660. }
  2661. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2662. {
  2663. u32 function, index;
  2664. struct kvm_cpuid_entry2 *best;
  2665. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2666. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2667. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  2668. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  2669. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  2670. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  2671. best = kvm_find_cpuid_entry(vcpu, function, index);
  2672. if (best) {
  2673. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  2674. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  2675. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  2676. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  2677. }
  2678. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2679. KVMTRACE_5D(CPUID, vcpu, function,
  2680. (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
  2681. (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
  2682. (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
  2683. (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
  2684. }
  2685. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2686. /*
  2687. * Check if userspace requested an interrupt window, and that the
  2688. * interrupt window is open.
  2689. *
  2690. * No need to exit to userspace if we already have an interrupt queued.
  2691. */
  2692. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2693. struct kvm_run *kvm_run)
  2694. {
  2695. return (!vcpu->arch.irq_summary &&
  2696. kvm_run->request_interrupt_window &&
  2697. vcpu->arch.interrupt_window_open &&
  2698. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2699. }
  2700. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2701. struct kvm_run *kvm_run)
  2702. {
  2703. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2704. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2705. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2706. if (irqchip_in_kernel(vcpu->kvm))
  2707. kvm_run->ready_for_interrupt_injection = 1;
  2708. else
  2709. kvm_run->ready_for_interrupt_injection =
  2710. (vcpu->arch.interrupt_window_open &&
  2711. vcpu->arch.irq_summary == 0);
  2712. }
  2713. static void vapic_enter(struct kvm_vcpu *vcpu)
  2714. {
  2715. struct kvm_lapic *apic = vcpu->arch.apic;
  2716. struct page *page;
  2717. if (!apic || !apic->vapic_addr)
  2718. return;
  2719. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2720. vcpu->arch.apic->vapic_page = page;
  2721. }
  2722. static void vapic_exit(struct kvm_vcpu *vcpu)
  2723. {
  2724. struct kvm_lapic *apic = vcpu->arch.apic;
  2725. if (!apic || !apic->vapic_addr)
  2726. return;
  2727. down_read(&vcpu->kvm->slots_lock);
  2728. kvm_release_page_dirty(apic->vapic_page);
  2729. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2730. up_read(&vcpu->kvm->slots_lock);
  2731. }
  2732. static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2733. {
  2734. int r;
  2735. if (vcpu->requests)
  2736. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2737. kvm_mmu_unload(vcpu);
  2738. r = kvm_mmu_reload(vcpu);
  2739. if (unlikely(r))
  2740. goto out;
  2741. if (vcpu->requests) {
  2742. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2743. __kvm_migrate_timers(vcpu);
  2744. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  2745. kvm_write_guest_time(vcpu);
  2746. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  2747. kvm_mmu_sync_roots(vcpu);
  2748. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2749. kvm_x86_ops->tlb_flush(vcpu);
  2750. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2751. &vcpu->requests)) {
  2752. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2753. r = 0;
  2754. goto out;
  2755. }
  2756. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2757. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2758. r = 0;
  2759. goto out;
  2760. }
  2761. }
  2762. preempt_disable();
  2763. kvm_x86_ops->prepare_guest_switch(vcpu);
  2764. kvm_load_guest_fpu(vcpu);
  2765. local_irq_disable();
  2766. if (vcpu->requests || need_resched() || signal_pending(current)) {
  2767. local_irq_enable();
  2768. preempt_enable();
  2769. r = 1;
  2770. goto out;
  2771. }
  2772. vcpu->guest_mode = 1;
  2773. /*
  2774. * Make sure that guest_mode assignment won't happen after
  2775. * testing the pending IRQ vector bitmap.
  2776. */
  2777. smp_wmb();
  2778. if (vcpu->arch.exception.pending)
  2779. __queue_exception(vcpu);
  2780. else if (irqchip_in_kernel(vcpu->kvm))
  2781. kvm_x86_ops->inject_pending_irq(vcpu);
  2782. else
  2783. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2784. kvm_lapic_sync_to_vapic(vcpu);
  2785. up_read(&vcpu->kvm->slots_lock);
  2786. kvm_guest_enter();
  2787. get_debugreg(vcpu->arch.host_dr6, 6);
  2788. get_debugreg(vcpu->arch.host_dr7, 7);
  2789. if (unlikely(vcpu->arch.switch_db_regs)) {
  2790. get_debugreg(vcpu->arch.host_db[0], 0);
  2791. get_debugreg(vcpu->arch.host_db[1], 1);
  2792. get_debugreg(vcpu->arch.host_db[2], 2);
  2793. get_debugreg(vcpu->arch.host_db[3], 3);
  2794. set_debugreg(0, 7);
  2795. set_debugreg(vcpu->arch.eff_db[0], 0);
  2796. set_debugreg(vcpu->arch.eff_db[1], 1);
  2797. set_debugreg(vcpu->arch.eff_db[2], 2);
  2798. set_debugreg(vcpu->arch.eff_db[3], 3);
  2799. }
  2800. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2801. kvm_x86_ops->run(vcpu, kvm_run);
  2802. if (unlikely(vcpu->arch.switch_db_regs)) {
  2803. set_debugreg(0, 7);
  2804. set_debugreg(vcpu->arch.host_db[0], 0);
  2805. set_debugreg(vcpu->arch.host_db[1], 1);
  2806. set_debugreg(vcpu->arch.host_db[2], 2);
  2807. set_debugreg(vcpu->arch.host_db[3], 3);
  2808. }
  2809. set_debugreg(vcpu->arch.host_dr6, 6);
  2810. set_debugreg(vcpu->arch.host_dr7, 7);
  2811. vcpu->guest_mode = 0;
  2812. local_irq_enable();
  2813. ++vcpu->stat.exits;
  2814. /*
  2815. * We must have an instruction between local_irq_enable() and
  2816. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2817. * the interrupt shadow. The stat.exits increment will do nicely.
  2818. * But we need to prevent reordering, hence this barrier():
  2819. */
  2820. barrier();
  2821. kvm_guest_exit();
  2822. preempt_enable();
  2823. down_read(&vcpu->kvm->slots_lock);
  2824. /*
  2825. * Profile KVM exit RIPs:
  2826. */
  2827. if (unlikely(prof_on == KVM_PROFILING)) {
  2828. unsigned long rip = kvm_rip_read(vcpu);
  2829. profile_hit(KVM_PROFILING, (void *)rip);
  2830. }
  2831. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2832. vcpu->arch.exception.pending = false;
  2833. kvm_lapic_sync_from_vapic(vcpu);
  2834. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2835. out:
  2836. return r;
  2837. }
  2838. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2839. {
  2840. int r;
  2841. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2842. pr_debug("vcpu %d received sipi with vector # %x\n",
  2843. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2844. kvm_lapic_reset(vcpu);
  2845. r = kvm_arch_vcpu_reset(vcpu);
  2846. if (r)
  2847. return r;
  2848. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2849. }
  2850. down_read(&vcpu->kvm->slots_lock);
  2851. vapic_enter(vcpu);
  2852. r = 1;
  2853. while (r > 0) {
  2854. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  2855. r = vcpu_enter_guest(vcpu, kvm_run);
  2856. else {
  2857. up_read(&vcpu->kvm->slots_lock);
  2858. kvm_vcpu_block(vcpu);
  2859. down_read(&vcpu->kvm->slots_lock);
  2860. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  2861. {
  2862. switch(vcpu->arch.mp_state) {
  2863. case KVM_MP_STATE_HALTED:
  2864. vcpu->arch.mp_state =
  2865. KVM_MP_STATE_RUNNABLE;
  2866. case KVM_MP_STATE_RUNNABLE:
  2867. break;
  2868. case KVM_MP_STATE_SIPI_RECEIVED:
  2869. default:
  2870. r = -EINTR;
  2871. break;
  2872. }
  2873. }
  2874. }
  2875. if (r <= 0)
  2876. break;
  2877. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2878. if (kvm_cpu_has_pending_timer(vcpu))
  2879. kvm_inject_pending_timer_irqs(vcpu);
  2880. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2881. r = -EINTR;
  2882. kvm_run->exit_reason = KVM_EXIT_INTR;
  2883. ++vcpu->stat.request_irq_exits;
  2884. }
  2885. if (signal_pending(current)) {
  2886. r = -EINTR;
  2887. kvm_run->exit_reason = KVM_EXIT_INTR;
  2888. ++vcpu->stat.signal_exits;
  2889. }
  2890. if (need_resched()) {
  2891. up_read(&vcpu->kvm->slots_lock);
  2892. kvm_resched(vcpu);
  2893. down_read(&vcpu->kvm->slots_lock);
  2894. }
  2895. }
  2896. up_read(&vcpu->kvm->slots_lock);
  2897. post_kvm_run_save(vcpu, kvm_run);
  2898. vapic_exit(vcpu);
  2899. return r;
  2900. }
  2901. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2902. {
  2903. int r;
  2904. sigset_t sigsaved;
  2905. vcpu_load(vcpu);
  2906. if (vcpu->sigset_active)
  2907. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2908. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2909. kvm_vcpu_block(vcpu);
  2910. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  2911. r = -EAGAIN;
  2912. goto out;
  2913. }
  2914. /* re-sync apic's tpr */
  2915. if (!irqchip_in_kernel(vcpu->kvm))
  2916. kvm_set_cr8(vcpu, kvm_run->cr8);
  2917. if (vcpu->arch.pio.cur_count) {
  2918. r = complete_pio(vcpu);
  2919. if (r)
  2920. goto out;
  2921. }
  2922. #if CONFIG_HAS_IOMEM
  2923. if (vcpu->mmio_needed) {
  2924. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2925. vcpu->mmio_read_completed = 1;
  2926. vcpu->mmio_needed = 0;
  2927. down_read(&vcpu->kvm->slots_lock);
  2928. r = emulate_instruction(vcpu, kvm_run,
  2929. vcpu->arch.mmio_fault_cr2, 0,
  2930. EMULTYPE_NO_DECODE);
  2931. up_read(&vcpu->kvm->slots_lock);
  2932. if (r == EMULATE_DO_MMIO) {
  2933. /*
  2934. * Read-modify-write. Back to userspace.
  2935. */
  2936. r = 0;
  2937. goto out;
  2938. }
  2939. }
  2940. #endif
  2941. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  2942. kvm_register_write(vcpu, VCPU_REGS_RAX,
  2943. kvm_run->hypercall.ret);
  2944. r = __vcpu_run(vcpu, kvm_run);
  2945. out:
  2946. if (vcpu->sigset_active)
  2947. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2948. vcpu_put(vcpu);
  2949. return r;
  2950. }
  2951. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2952. {
  2953. vcpu_load(vcpu);
  2954. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2955. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2956. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2957. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2958. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2959. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2960. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  2961. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  2962. #ifdef CONFIG_X86_64
  2963. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  2964. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  2965. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  2966. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  2967. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  2968. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  2969. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  2970. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  2971. #endif
  2972. regs->rip = kvm_rip_read(vcpu);
  2973. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2974. /*
  2975. * Don't leak debug flags in case they were set for guest debugging
  2976. */
  2977. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  2978. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2979. vcpu_put(vcpu);
  2980. return 0;
  2981. }
  2982. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2983. {
  2984. vcpu_load(vcpu);
  2985. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  2986. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  2987. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  2988. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  2989. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  2990. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  2991. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  2992. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  2993. #ifdef CONFIG_X86_64
  2994. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  2995. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  2996. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  2997. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  2998. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  2999. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3000. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3001. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3002. #endif
  3003. kvm_rip_write(vcpu, regs->rip);
  3004. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3005. vcpu->arch.exception.pending = false;
  3006. vcpu_put(vcpu);
  3007. return 0;
  3008. }
  3009. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3010. struct kvm_segment *var, int seg)
  3011. {
  3012. kvm_x86_ops->get_segment(vcpu, var, seg);
  3013. }
  3014. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3015. {
  3016. struct kvm_segment cs;
  3017. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3018. *db = cs.db;
  3019. *l = cs.l;
  3020. }
  3021. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3022. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3023. struct kvm_sregs *sregs)
  3024. {
  3025. struct descriptor_table dt;
  3026. int pending_vec;
  3027. vcpu_load(vcpu);
  3028. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3029. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3030. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3031. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3032. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3033. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3034. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3035. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3036. kvm_x86_ops->get_idt(vcpu, &dt);
  3037. sregs->idt.limit = dt.limit;
  3038. sregs->idt.base = dt.base;
  3039. kvm_x86_ops->get_gdt(vcpu, &dt);
  3040. sregs->gdt.limit = dt.limit;
  3041. sregs->gdt.base = dt.base;
  3042. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3043. sregs->cr0 = vcpu->arch.cr0;
  3044. sregs->cr2 = vcpu->arch.cr2;
  3045. sregs->cr3 = vcpu->arch.cr3;
  3046. sregs->cr4 = vcpu->arch.cr4;
  3047. sregs->cr8 = kvm_get_cr8(vcpu);
  3048. sregs->efer = vcpu->arch.shadow_efer;
  3049. sregs->apic_base = kvm_get_apic_base(vcpu);
  3050. if (irqchip_in_kernel(vcpu->kvm)) {
  3051. memset(sregs->interrupt_bitmap, 0,
  3052. sizeof sregs->interrupt_bitmap);
  3053. pending_vec = kvm_x86_ops->get_irq(vcpu);
  3054. if (pending_vec >= 0)
  3055. set_bit(pending_vec,
  3056. (unsigned long *)sregs->interrupt_bitmap);
  3057. } else
  3058. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  3059. sizeof sregs->interrupt_bitmap);
  3060. vcpu_put(vcpu);
  3061. return 0;
  3062. }
  3063. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3064. struct kvm_mp_state *mp_state)
  3065. {
  3066. vcpu_load(vcpu);
  3067. mp_state->mp_state = vcpu->arch.mp_state;
  3068. vcpu_put(vcpu);
  3069. return 0;
  3070. }
  3071. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3072. struct kvm_mp_state *mp_state)
  3073. {
  3074. vcpu_load(vcpu);
  3075. vcpu->arch.mp_state = mp_state->mp_state;
  3076. vcpu_put(vcpu);
  3077. return 0;
  3078. }
  3079. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3080. struct kvm_segment *var, int seg)
  3081. {
  3082. kvm_x86_ops->set_segment(vcpu, var, seg);
  3083. }
  3084. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3085. struct kvm_segment *kvm_desct)
  3086. {
  3087. kvm_desct->base = seg_desc->base0;
  3088. kvm_desct->base |= seg_desc->base1 << 16;
  3089. kvm_desct->base |= seg_desc->base2 << 24;
  3090. kvm_desct->limit = seg_desc->limit0;
  3091. kvm_desct->limit |= seg_desc->limit << 16;
  3092. if (seg_desc->g) {
  3093. kvm_desct->limit <<= 12;
  3094. kvm_desct->limit |= 0xfff;
  3095. }
  3096. kvm_desct->selector = selector;
  3097. kvm_desct->type = seg_desc->type;
  3098. kvm_desct->present = seg_desc->p;
  3099. kvm_desct->dpl = seg_desc->dpl;
  3100. kvm_desct->db = seg_desc->d;
  3101. kvm_desct->s = seg_desc->s;
  3102. kvm_desct->l = seg_desc->l;
  3103. kvm_desct->g = seg_desc->g;
  3104. kvm_desct->avl = seg_desc->avl;
  3105. if (!selector)
  3106. kvm_desct->unusable = 1;
  3107. else
  3108. kvm_desct->unusable = 0;
  3109. kvm_desct->padding = 0;
  3110. }
  3111. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3112. u16 selector,
  3113. struct descriptor_table *dtable)
  3114. {
  3115. if (selector & 1 << 2) {
  3116. struct kvm_segment kvm_seg;
  3117. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3118. if (kvm_seg.unusable)
  3119. dtable->limit = 0;
  3120. else
  3121. dtable->limit = kvm_seg.limit;
  3122. dtable->base = kvm_seg.base;
  3123. }
  3124. else
  3125. kvm_x86_ops->get_gdt(vcpu, dtable);
  3126. }
  3127. /* allowed just for 8 bytes segments */
  3128. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3129. struct desc_struct *seg_desc)
  3130. {
  3131. gpa_t gpa;
  3132. struct descriptor_table dtable;
  3133. u16 index = selector >> 3;
  3134. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3135. if (dtable.limit < index * 8 + 7) {
  3136. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3137. return 1;
  3138. }
  3139. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3140. gpa += index * 8;
  3141. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  3142. }
  3143. /* allowed just for 8 bytes segments */
  3144. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3145. struct desc_struct *seg_desc)
  3146. {
  3147. gpa_t gpa;
  3148. struct descriptor_table dtable;
  3149. u16 index = selector >> 3;
  3150. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3151. if (dtable.limit < index * 8 + 7)
  3152. return 1;
  3153. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  3154. gpa += index * 8;
  3155. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  3156. }
  3157. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  3158. struct desc_struct *seg_desc)
  3159. {
  3160. u32 base_addr;
  3161. base_addr = seg_desc->base0;
  3162. base_addr |= (seg_desc->base1 << 16);
  3163. base_addr |= (seg_desc->base2 << 24);
  3164. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3165. }
  3166. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3167. {
  3168. struct kvm_segment kvm_seg;
  3169. kvm_get_segment(vcpu, &kvm_seg, seg);
  3170. return kvm_seg.selector;
  3171. }
  3172. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3173. u16 selector,
  3174. struct kvm_segment *kvm_seg)
  3175. {
  3176. struct desc_struct seg_desc;
  3177. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3178. return 1;
  3179. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3180. return 0;
  3181. }
  3182. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3183. {
  3184. struct kvm_segment segvar = {
  3185. .base = selector << 4,
  3186. .limit = 0xffff,
  3187. .selector = selector,
  3188. .type = 3,
  3189. .present = 1,
  3190. .dpl = 3,
  3191. .db = 0,
  3192. .s = 1,
  3193. .l = 0,
  3194. .g = 0,
  3195. .avl = 0,
  3196. .unusable = 0,
  3197. };
  3198. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3199. return 0;
  3200. }
  3201. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3202. int type_bits, int seg)
  3203. {
  3204. struct kvm_segment kvm_seg;
  3205. if (!(vcpu->arch.cr0 & X86_CR0_PE))
  3206. return kvm_load_realmode_segment(vcpu, selector, seg);
  3207. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3208. return 1;
  3209. kvm_seg.type |= type_bits;
  3210. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3211. seg != VCPU_SREG_LDTR)
  3212. if (!kvm_seg.s)
  3213. kvm_seg.unusable = 1;
  3214. kvm_set_segment(vcpu, &kvm_seg, seg);
  3215. return 0;
  3216. }
  3217. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3218. struct tss_segment_32 *tss)
  3219. {
  3220. tss->cr3 = vcpu->arch.cr3;
  3221. tss->eip = kvm_rip_read(vcpu);
  3222. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3223. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3224. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3225. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3226. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3227. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3228. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3229. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3230. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3231. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3232. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3233. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3234. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3235. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3236. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3237. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3238. }
  3239. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3240. struct tss_segment_32 *tss)
  3241. {
  3242. kvm_set_cr3(vcpu, tss->cr3);
  3243. kvm_rip_write(vcpu, tss->eip);
  3244. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3245. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3246. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3247. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3248. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3249. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3250. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3251. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3252. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3253. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3254. return 1;
  3255. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3256. return 1;
  3257. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3258. return 1;
  3259. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3260. return 1;
  3261. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3262. return 1;
  3263. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3264. return 1;
  3265. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3266. return 1;
  3267. return 0;
  3268. }
  3269. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3270. struct tss_segment_16 *tss)
  3271. {
  3272. tss->ip = kvm_rip_read(vcpu);
  3273. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3274. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3275. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3276. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3277. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3278. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3279. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3280. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3281. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3282. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3283. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3284. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3285. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3286. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3287. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  3288. }
  3289. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3290. struct tss_segment_16 *tss)
  3291. {
  3292. kvm_rip_write(vcpu, tss->ip);
  3293. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3294. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3295. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3296. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3297. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3298. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3299. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3300. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3301. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3302. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3303. return 1;
  3304. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3305. return 1;
  3306. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3307. return 1;
  3308. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3309. return 1;
  3310. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3311. return 1;
  3312. return 0;
  3313. }
  3314. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3315. u16 old_tss_sel, u32 old_tss_base,
  3316. struct desc_struct *nseg_desc)
  3317. {
  3318. struct tss_segment_16 tss_segment_16;
  3319. int ret = 0;
  3320. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3321. sizeof tss_segment_16))
  3322. goto out;
  3323. save_state_to_tss16(vcpu, &tss_segment_16);
  3324. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3325. sizeof tss_segment_16))
  3326. goto out;
  3327. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3328. &tss_segment_16, sizeof tss_segment_16))
  3329. goto out;
  3330. if (old_tss_sel != 0xffff) {
  3331. tss_segment_16.prev_task_link = old_tss_sel;
  3332. if (kvm_write_guest(vcpu->kvm,
  3333. get_tss_base_addr(vcpu, nseg_desc),
  3334. &tss_segment_16.prev_task_link,
  3335. sizeof tss_segment_16.prev_task_link))
  3336. goto out;
  3337. }
  3338. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3339. goto out;
  3340. ret = 1;
  3341. out:
  3342. return ret;
  3343. }
  3344. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3345. u16 old_tss_sel, u32 old_tss_base,
  3346. struct desc_struct *nseg_desc)
  3347. {
  3348. struct tss_segment_32 tss_segment_32;
  3349. int ret = 0;
  3350. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3351. sizeof tss_segment_32))
  3352. goto out;
  3353. save_state_to_tss32(vcpu, &tss_segment_32);
  3354. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3355. sizeof tss_segment_32))
  3356. goto out;
  3357. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3358. &tss_segment_32, sizeof tss_segment_32))
  3359. goto out;
  3360. if (old_tss_sel != 0xffff) {
  3361. tss_segment_32.prev_task_link = old_tss_sel;
  3362. if (kvm_write_guest(vcpu->kvm,
  3363. get_tss_base_addr(vcpu, nseg_desc),
  3364. &tss_segment_32.prev_task_link,
  3365. sizeof tss_segment_32.prev_task_link))
  3366. goto out;
  3367. }
  3368. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3369. goto out;
  3370. ret = 1;
  3371. out:
  3372. return ret;
  3373. }
  3374. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3375. {
  3376. struct kvm_segment tr_seg;
  3377. struct desc_struct cseg_desc;
  3378. struct desc_struct nseg_desc;
  3379. int ret = 0;
  3380. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3381. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3382. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3383. /* FIXME: Handle errors. Failure to read either TSS or their
  3384. * descriptors should generate a pagefault.
  3385. */
  3386. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3387. goto out;
  3388. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3389. goto out;
  3390. if (reason != TASK_SWITCH_IRET) {
  3391. int cpl;
  3392. cpl = kvm_x86_ops->get_cpl(vcpu);
  3393. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3394. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3395. return 1;
  3396. }
  3397. }
  3398. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3399. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3400. return 1;
  3401. }
  3402. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3403. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3404. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3405. }
  3406. if (reason == TASK_SWITCH_IRET) {
  3407. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3408. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3409. }
  3410. /* set back link to prev task only if NT bit is set in eflags
  3411. note that old_tss_sel is not used afetr this point */
  3412. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3413. old_tss_sel = 0xffff;
  3414. /* set back link to prev task only if NT bit is set in eflags
  3415. note that old_tss_sel is not used afetr this point */
  3416. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3417. old_tss_sel = 0xffff;
  3418. if (nseg_desc.type & 8)
  3419. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3420. old_tss_base, &nseg_desc);
  3421. else
  3422. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3423. old_tss_base, &nseg_desc);
  3424. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3425. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3426. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3427. }
  3428. if (reason != TASK_SWITCH_IRET) {
  3429. nseg_desc.type |= (1 << 1);
  3430. save_guest_segment_descriptor(vcpu, tss_selector,
  3431. &nseg_desc);
  3432. }
  3433. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3434. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3435. tr_seg.type = 11;
  3436. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3437. out:
  3438. return ret;
  3439. }
  3440. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3441. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3442. struct kvm_sregs *sregs)
  3443. {
  3444. int mmu_reset_needed = 0;
  3445. int i, pending_vec, max_bits;
  3446. struct descriptor_table dt;
  3447. vcpu_load(vcpu);
  3448. dt.limit = sregs->idt.limit;
  3449. dt.base = sregs->idt.base;
  3450. kvm_x86_ops->set_idt(vcpu, &dt);
  3451. dt.limit = sregs->gdt.limit;
  3452. dt.base = sregs->gdt.base;
  3453. kvm_x86_ops->set_gdt(vcpu, &dt);
  3454. vcpu->arch.cr2 = sregs->cr2;
  3455. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3456. vcpu->arch.cr3 = sregs->cr3;
  3457. kvm_set_cr8(vcpu, sregs->cr8);
  3458. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3459. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3460. kvm_set_apic_base(vcpu, sregs->apic_base);
  3461. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3462. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3463. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3464. vcpu->arch.cr0 = sregs->cr0;
  3465. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3466. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3467. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3468. load_pdptrs(vcpu, vcpu->arch.cr3);
  3469. if (mmu_reset_needed)
  3470. kvm_mmu_reset_context(vcpu);
  3471. if (!irqchip_in_kernel(vcpu->kvm)) {
  3472. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3473. sizeof vcpu->arch.irq_pending);
  3474. vcpu->arch.irq_summary = 0;
  3475. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3476. if (vcpu->arch.irq_pending[i])
  3477. __set_bit(i, &vcpu->arch.irq_summary);
  3478. } else {
  3479. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3480. pending_vec = find_first_bit(
  3481. (const unsigned long *)sregs->interrupt_bitmap,
  3482. max_bits);
  3483. /* Only pending external irq is handled here */
  3484. if (pending_vec < max_bits) {
  3485. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3486. pr_debug("Set back pending irq %d\n",
  3487. pending_vec);
  3488. }
  3489. kvm_pic_clear_isr_ack(vcpu->kvm);
  3490. }
  3491. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3492. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3493. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3494. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3495. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3496. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3497. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3498. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3499. /* Older userspace won't unhalt the vcpu on reset. */
  3500. if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
  3501. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3502. !(vcpu->arch.cr0 & X86_CR0_PE))
  3503. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3504. vcpu_put(vcpu);
  3505. return 0;
  3506. }
  3507. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3508. struct kvm_guest_debug *dbg)
  3509. {
  3510. int i, r;
  3511. vcpu_load(vcpu);
  3512. if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
  3513. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
  3514. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3515. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3516. vcpu->arch.switch_db_regs =
  3517. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3518. } else {
  3519. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3520. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3521. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3522. }
  3523. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3524. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  3525. kvm_queue_exception(vcpu, DB_VECTOR);
  3526. else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
  3527. kvm_queue_exception(vcpu, BP_VECTOR);
  3528. vcpu_put(vcpu);
  3529. return r;
  3530. }
  3531. /*
  3532. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3533. * we have asm/x86/processor.h
  3534. */
  3535. struct fxsave {
  3536. u16 cwd;
  3537. u16 swd;
  3538. u16 twd;
  3539. u16 fop;
  3540. u64 rip;
  3541. u64 rdp;
  3542. u32 mxcsr;
  3543. u32 mxcsr_mask;
  3544. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3545. #ifdef CONFIG_X86_64
  3546. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3547. #else
  3548. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3549. #endif
  3550. };
  3551. /*
  3552. * Translate a guest virtual address to a guest physical address.
  3553. */
  3554. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3555. struct kvm_translation *tr)
  3556. {
  3557. unsigned long vaddr = tr->linear_address;
  3558. gpa_t gpa;
  3559. vcpu_load(vcpu);
  3560. down_read(&vcpu->kvm->slots_lock);
  3561. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3562. up_read(&vcpu->kvm->slots_lock);
  3563. tr->physical_address = gpa;
  3564. tr->valid = gpa != UNMAPPED_GVA;
  3565. tr->writeable = 1;
  3566. tr->usermode = 0;
  3567. vcpu_put(vcpu);
  3568. return 0;
  3569. }
  3570. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3571. {
  3572. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3573. vcpu_load(vcpu);
  3574. memcpy(fpu->fpr, fxsave->st_space, 128);
  3575. fpu->fcw = fxsave->cwd;
  3576. fpu->fsw = fxsave->swd;
  3577. fpu->ftwx = fxsave->twd;
  3578. fpu->last_opcode = fxsave->fop;
  3579. fpu->last_ip = fxsave->rip;
  3580. fpu->last_dp = fxsave->rdp;
  3581. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3582. vcpu_put(vcpu);
  3583. return 0;
  3584. }
  3585. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3586. {
  3587. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3588. vcpu_load(vcpu);
  3589. memcpy(fxsave->st_space, fpu->fpr, 128);
  3590. fxsave->cwd = fpu->fcw;
  3591. fxsave->swd = fpu->fsw;
  3592. fxsave->twd = fpu->ftwx;
  3593. fxsave->fop = fpu->last_opcode;
  3594. fxsave->rip = fpu->last_ip;
  3595. fxsave->rdp = fpu->last_dp;
  3596. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3597. vcpu_put(vcpu);
  3598. return 0;
  3599. }
  3600. void fx_init(struct kvm_vcpu *vcpu)
  3601. {
  3602. unsigned after_mxcsr_mask;
  3603. /*
  3604. * Touch the fpu the first time in non atomic context as if
  3605. * this is the first fpu instruction the exception handler
  3606. * will fire before the instruction returns and it'll have to
  3607. * allocate ram with GFP_KERNEL.
  3608. */
  3609. if (!used_math())
  3610. kvm_fx_save(&vcpu->arch.host_fx_image);
  3611. /* Initialize guest FPU by resetting ours and saving into guest's */
  3612. preempt_disable();
  3613. kvm_fx_save(&vcpu->arch.host_fx_image);
  3614. kvm_fx_finit();
  3615. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3616. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3617. preempt_enable();
  3618. vcpu->arch.cr0 |= X86_CR0_ET;
  3619. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3620. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3621. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3622. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3623. }
  3624. EXPORT_SYMBOL_GPL(fx_init);
  3625. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3626. {
  3627. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3628. return;
  3629. vcpu->guest_fpu_loaded = 1;
  3630. kvm_fx_save(&vcpu->arch.host_fx_image);
  3631. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3632. }
  3633. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3634. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3635. {
  3636. if (!vcpu->guest_fpu_loaded)
  3637. return;
  3638. vcpu->guest_fpu_loaded = 0;
  3639. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3640. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3641. ++vcpu->stat.fpu_reload;
  3642. }
  3643. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3644. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3645. {
  3646. if (vcpu->arch.time_page) {
  3647. kvm_release_page_dirty(vcpu->arch.time_page);
  3648. vcpu->arch.time_page = NULL;
  3649. }
  3650. kvm_x86_ops->vcpu_free(vcpu);
  3651. }
  3652. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3653. unsigned int id)
  3654. {
  3655. return kvm_x86_ops->vcpu_create(kvm, id);
  3656. }
  3657. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3658. {
  3659. int r;
  3660. /* We do fxsave: this must be aligned. */
  3661. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3662. vcpu->arch.mtrr_state.have_fixed = 1;
  3663. vcpu_load(vcpu);
  3664. r = kvm_arch_vcpu_reset(vcpu);
  3665. if (r == 0)
  3666. r = kvm_mmu_setup(vcpu);
  3667. vcpu_put(vcpu);
  3668. if (r < 0)
  3669. goto free_vcpu;
  3670. return 0;
  3671. free_vcpu:
  3672. kvm_x86_ops->vcpu_free(vcpu);
  3673. return r;
  3674. }
  3675. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3676. {
  3677. vcpu_load(vcpu);
  3678. kvm_mmu_unload(vcpu);
  3679. vcpu_put(vcpu);
  3680. kvm_x86_ops->vcpu_free(vcpu);
  3681. }
  3682. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3683. {
  3684. vcpu->arch.nmi_pending = false;
  3685. vcpu->arch.nmi_injected = false;
  3686. vcpu->arch.switch_db_regs = 0;
  3687. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  3688. vcpu->arch.dr6 = DR6_FIXED_1;
  3689. vcpu->arch.dr7 = DR7_FIXED_1;
  3690. return kvm_x86_ops->vcpu_reset(vcpu);
  3691. }
  3692. void kvm_arch_hardware_enable(void *garbage)
  3693. {
  3694. kvm_x86_ops->hardware_enable(garbage);
  3695. }
  3696. void kvm_arch_hardware_disable(void *garbage)
  3697. {
  3698. kvm_x86_ops->hardware_disable(garbage);
  3699. }
  3700. int kvm_arch_hardware_setup(void)
  3701. {
  3702. return kvm_x86_ops->hardware_setup();
  3703. }
  3704. void kvm_arch_hardware_unsetup(void)
  3705. {
  3706. kvm_x86_ops->hardware_unsetup();
  3707. }
  3708. void kvm_arch_check_processor_compat(void *rtn)
  3709. {
  3710. kvm_x86_ops->check_processor_compatibility(rtn);
  3711. }
  3712. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3713. {
  3714. struct page *page;
  3715. struct kvm *kvm;
  3716. int r;
  3717. BUG_ON(vcpu->kvm == NULL);
  3718. kvm = vcpu->kvm;
  3719. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3720. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3721. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3722. else
  3723. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3724. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3725. if (!page) {
  3726. r = -ENOMEM;
  3727. goto fail;
  3728. }
  3729. vcpu->arch.pio_data = page_address(page);
  3730. r = kvm_mmu_create(vcpu);
  3731. if (r < 0)
  3732. goto fail_free_pio_data;
  3733. if (irqchip_in_kernel(kvm)) {
  3734. r = kvm_create_lapic(vcpu);
  3735. if (r < 0)
  3736. goto fail_mmu_destroy;
  3737. }
  3738. return 0;
  3739. fail_mmu_destroy:
  3740. kvm_mmu_destroy(vcpu);
  3741. fail_free_pio_data:
  3742. free_page((unsigned long)vcpu->arch.pio_data);
  3743. fail:
  3744. return r;
  3745. }
  3746. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3747. {
  3748. kvm_free_lapic(vcpu);
  3749. down_read(&vcpu->kvm->slots_lock);
  3750. kvm_mmu_destroy(vcpu);
  3751. up_read(&vcpu->kvm->slots_lock);
  3752. free_page((unsigned long)vcpu->arch.pio_data);
  3753. }
  3754. struct kvm *kvm_arch_create_vm(void)
  3755. {
  3756. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3757. if (!kvm)
  3758. return ERR_PTR(-ENOMEM);
  3759. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3760. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  3761. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  3762. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  3763. rdtscll(kvm->arch.vm_init_tsc);
  3764. return kvm;
  3765. }
  3766. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3767. {
  3768. vcpu_load(vcpu);
  3769. kvm_mmu_unload(vcpu);
  3770. vcpu_put(vcpu);
  3771. }
  3772. static void kvm_free_vcpus(struct kvm *kvm)
  3773. {
  3774. unsigned int i;
  3775. /*
  3776. * Unpin any mmu pages first.
  3777. */
  3778. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3779. if (kvm->vcpus[i])
  3780. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3781. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3782. if (kvm->vcpus[i]) {
  3783. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3784. kvm->vcpus[i] = NULL;
  3785. }
  3786. }
  3787. }
  3788. void kvm_arch_sync_events(struct kvm *kvm)
  3789. {
  3790. kvm_free_all_assigned_devices(kvm);
  3791. }
  3792. void kvm_arch_destroy_vm(struct kvm *kvm)
  3793. {
  3794. kvm_iommu_unmap_guest(kvm);
  3795. kvm_free_pit(kvm);
  3796. kfree(kvm->arch.vpic);
  3797. kfree(kvm->arch.vioapic);
  3798. kvm_free_vcpus(kvm);
  3799. kvm_free_physmem(kvm);
  3800. if (kvm->arch.apic_access_page)
  3801. put_page(kvm->arch.apic_access_page);
  3802. if (kvm->arch.ept_identity_pagetable)
  3803. put_page(kvm->arch.ept_identity_pagetable);
  3804. kfree(kvm);
  3805. }
  3806. int kvm_arch_set_memory_region(struct kvm *kvm,
  3807. struct kvm_userspace_memory_region *mem,
  3808. struct kvm_memory_slot old,
  3809. int user_alloc)
  3810. {
  3811. int npages = mem->memory_size >> PAGE_SHIFT;
  3812. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3813. /*To keep backward compatibility with older userspace,
  3814. *x86 needs to hanlde !user_alloc case.
  3815. */
  3816. if (!user_alloc) {
  3817. if (npages && !old.rmap) {
  3818. unsigned long userspace_addr;
  3819. down_write(&current->mm->mmap_sem);
  3820. userspace_addr = do_mmap(NULL, 0,
  3821. npages * PAGE_SIZE,
  3822. PROT_READ | PROT_WRITE,
  3823. MAP_PRIVATE | MAP_ANONYMOUS,
  3824. 0);
  3825. up_write(&current->mm->mmap_sem);
  3826. if (IS_ERR((void *)userspace_addr))
  3827. return PTR_ERR((void *)userspace_addr);
  3828. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3829. spin_lock(&kvm->mmu_lock);
  3830. memslot->userspace_addr = userspace_addr;
  3831. spin_unlock(&kvm->mmu_lock);
  3832. } else {
  3833. if (!old.user_alloc && old.rmap) {
  3834. int ret;
  3835. down_write(&current->mm->mmap_sem);
  3836. ret = do_munmap(current->mm, old.userspace_addr,
  3837. old.npages * PAGE_SIZE);
  3838. up_write(&current->mm->mmap_sem);
  3839. if (ret < 0)
  3840. printk(KERN_WARNING
  3841. "kvm_vm_ioctl_set_memory_region: "
  3842. "failed to munmap memory\n");
  3843. }
  3844. }
  3845. }
  3846. if (!kvm->arch.n_requested_mmu_pages) {
  3847. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3848. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3849. }
  3850. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3851. kvm_flush_remote_tlbs(kvm);
  3852. return 0;
  3853. }
  3854. void kvm_arch_flush_shadow(struct kvm *kvm)
  3855. {
  3856. kvm_mmu_zap_all(kvm);
  3857. }
  3858. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3859. {
  3860. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3861. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  3862. || vcpu->arch.nmi_pending;
  3863. }
  3864. static void vcpu_kick_intr(void *info)
  3865. {
  3866. #ifdef DEBUG
  3867. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3868. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3869. #endif
  3870. }
  3871. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3872. {
  3873. int ipi_pcpu = vcpu->cpu;
  3874. int cpu = get_cpu();
  3875. if (waitqueue_active(&vcpu->wq)) {
  3876. wake_up_interruptible(&vcpu->wq);
  3877. ++vcpu->stat.halt_wakeup;
  3878. }
  3879. /*
  3880. * We may be called synchronously with irqs disabled in guest mode,
  3881. * So need not to call smp_call_function_single() in that case.
  3882. */
  3883. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3884. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  3885. put_cpu();
  3886. }
  3887. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  3888. {
  3889. return kvm_x86_ops->interrupt_allowed(vcpu);
  3890. }