huge_memory.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <asm/tlb.h>
  18. #include <asm/pgalloc.h>
  19. #include "internal.h"
  20. /*
  21. * By default transparent hugepage support is enabled for all mappings
  22. * and khugepaged scans all mappings. Defrag is only invoked by
  23. * khugepaged hugepage allocations and by page faults inside
  24. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  25. * allocations.
  26. */
  27. unsigned long transparent_hugepage_flags __read_mostly =
  28. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  29. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  30. /* default scan 8*512 pte (or vmas) every 30 second */
  31. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  32. static unsigned int khugepaged_pages_collapsed;
  33. static unsigned int khugepaged_full_scans;
  34. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  35. /* during fragmentation poll the hugepage allocator once every minute */
  36. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  37. static struct task_struct *khugepaged_thread __read_mostly;
  38. static DEFINE_MUTEX(khugepaged_mutex);
  39. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  40. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  41. /*
  42. * default collapse hugepages if there is at least one pte mapped like
  43. * it would have happened if the vma was large enough during page
  44. * fault.
  45. */
  46. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  47. static int khugepaged(void *none);
  48. static int mm_slots_hash_init(void);
  49. static int khugepaged_slab_init(void);
  50. static void khugepaged_slab_free(void);
  51. #define MM_SLOTS_HASH_HEADS 1024
  52. static struct hlist_head *mm_slots_hash __read_mostly;
  53. static struct kmem_cache *mm_slot_cache __read_mostly;
  54. /**
  55. * struct mm_slot - hash lookup from mm to mm_slot
  56. * @hash: hash collision list
  57. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  58. * @mm: the mm that this information is valid for
  59. */
  60. struct mm_slot {
  61. struct hlist_node hash;
  62. struct list_head mm_node;
  63. struct mm_struct *mm;
  64. };
  65. /**
  66. * struct khugepaged_scan - cursor for scanning
  67. * @mm_head: the head of the mm list to scan
  68. * @mm_slot: the current mm_slot we are scanning
  69. * @address: the next address inside that to be scanned
  70. *
  71. * There is only the one khugepaged_scan instance of this cursor structure.
  72. */
  73. struct khugepaged_scan {
  74. struct list_head mm_head;
  75. struct mm_slot *mm_slot;
  76. unsigned long address;
  77. } khugepaged_scan = {
  78. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  79. };
  80. static int start_khugepaged(void)
  81. {
  82. int err = 0;
  83. if (khugepaged_enabled()) {
  84. int wakeup;
  85. if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
  86. err = -ENOMEM;
  87. goto out;
  88. }
  89. mutex_lock(&khugepaged_mutex);
  90. if (!khugepaged_thread)
  91. khugepaged_thread = kthread_run(khugepaged, NULL,
  92. "khugepaged");
  93. if (unlikely(IS_ERR(khugepaged_thread))) {
  94. printk(KERN_ERR
  95. "khugepaged: kthread_run(khugepaged) failed\n");
  96. err = PTR_ERR(khugepaged_thread);
  97. khugepaged_thread = NULL;
  98. }
  99. wakeup = !list_empty(&khugepaged_scan.mm_head);
  100. mutex_unlock(&khugepaged_mutex);
  101. if (wakeup)
  102. wake_up_interruptible(&khugepaged_wait);
  103. } else
  104. /* wakeup to exit */
  105. wake_up_interruptible(&khugepaged_wait);
  106. out:
  107. return err;
  108. }
  109. #ifdef CONFIG_SYSFS
  110. static ssize_t double_flag_show(struct kobject *kobj,
  111. struct kobj_attribute *attr, char *buf,
  112. enum transparent_hugepage_flag enabled,
  113. enum transparent_hugepage_flag req_madv)
  114. {
  115. if (test_bit(enabled, &transparent_hugepage_flags)) {
  116. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  117. return sprintf(buf, "[always] madvise never\n");
  118. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  119. return sprintf(buf, "always [madvise] never\n");
  120. else
  121. return sprintf(buf, "always madvise [never]\n");
  122. }
  123. static ssize_t double_flag_store(struct kobject *kobj,
  124. struct kobj_attribute *attr,
  125. const char *buf, size_t count,
  126. enum transparent_hugepage_flag enabled,
  127. enum transparent_hugepage_flag req_madv)
  128. {
  129. if (!memcmp("always", buf,
  130. min(sizeof("always")-1, count))) {
  131. set_bit(enabled, &transparent_hugepage_flags);
  132. clear_bit(req_madv, &transparent_hugepage_flags);
  133. } else if (!memcmp("madvise", buf,
  134. min(sizeof("madvise")-1, count))) {
  135. clear_bit(enabled, &transparent_hugepage_flags);
  136. set_bit(req_madv, &transparent_hugepage_flags);
  137. } else if (!memcmp("never", buf,
  138. min(sizeof("never")-1, count))) {
  139. clear_bit(enabled, &transparent_hugepage_flags);
  140. clear_bit(req_madv, &transparent_hugepage_flags);
  141. } else
  142. return -EINVAL;
  143. return count;
  144. }
  145. static ssize_t enabled_show(struct kobject *kobj,
  146. struct kobj_attribute *attr, char *buf)
  147. {
  148. return double_flag_show(kobj, attr, buf,
  149. TRANSPARENT_HUGEPAGE_FLAG,
  150. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  151. }
  152. static ssize_t enabled_store(struct kobject *kobj,
  153. struct kobj_attribute *attr,
  154. const char *buf, size_t count)
  155. {
  156. ssize_t ret;
  157. ret = double_flag_store(kobj, attr, buf, count,
  158. TRANSPARENT_HUGEPAGE_FLAG,
  159. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  160. if (ret > 0) {
  161. int err = start_khugepaged();
  162. if (err)
  163. ret = err;
  164. }
  165. return ret;
  166. }
  167. static struct kobj_attribute enabled_attr =
  168. __ATTR(enabled, 0644, enabled_show, enabled_store);
  169. static ssize_t single_flag_show(struct kobject *kobj,
  170. struct kobj_attribute *attr, char *buf,
  171. enum transparent_hugepage_flag flag)
  172. {
  173. if (test_bit(flag, &transparent_hugepage_flags))
  174. return sprintf(buf, "[yes] no\n");
  175. else
  176. return sprintf(buf, "yes [no]\n");
  177. }
  178. static ssize_t single_flag_store(struct kobject *kobj,
  179. struct kobj_attribute *attr,
  180. const char *buf, size_t count,
  181. enum transparent_hugepage_flag flag)
  182. {
  183. if (!memcmp("yes", buf,
  184. min(sizeof("yes")-1, count))) {
  185. set_bit(flag, &transparent_hugepage_flags);
  186. } else if (!memcmp("no", buf,
  187. min(sizeof("no")-1, count))) {
  188. clear_bit(flag, &transparent_hugepage_flags);
  189. } else
  190. return -EINVAL;
  191. return count;
  192. }
  193. /*
  194. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  195. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  196. * memory just to allocate one more hugepage.
  197. */
  198. static ssize_t defrag_show(struct kobject *kobj,
  199. struct kobj_attribute *attr, char *buf)
  200. {
  201. return double_flag_show(kobj, attr, buf,
  202. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  203. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  204. }
  205. static ssize_t defrag_store(struct kobject *kobj,
  206. struct kobj_attribute *attr,
  207. const char *buf, size_t count)
  208. {
  209. return double_flag_store(kobj, attr, buf, count,
  210. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  211. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  212. }
  213. static struct kobj_attribute defrag_attr =
  214. __ATTR(defrag, 0644, defrag_show, defrag_store);
  215. #ifdef CONFIG_DEBUG_VM
  216. static ssize_t debug_cow_show(struct kobject *kobj,
  217. struct kobj_attribute *attr, char *buf)
  218. {
  219. return single_flag_show(kobj, attr, buf,
  220. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  221. }
  222. static ssize_t debug_cow_store(struct kobject *kobj,
  223. struct kobj_attribute *attr,
  224. const char *buf, size_t count)
  225. {
  226. return single_flag_store(kobj, attr, buf, count,
  227. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  228. }
  229. static struct kobj_attribute debug_cow_attr =
  230. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  231. #endif /* CONFIG_DEBUG_VM */
  232. static struct attribute *hugepage_attr[] = {
  233. &enabled_attr.attr,
  234. &defrag_attr.attr,
  235. #ifdef CONFIG_DEBUG_VM
  236. &debug_cow_attr.attr,
  237. #endif
  238. NULL,
  239. };
  240. static struct attribute_group hugepage_attr_group = {
  241. .attrs = hugepage_attr,
  242. };
  243. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  244. struct kobj_attribute *attr,
  245. char *buf)
  246. {
  247. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  248. }
  249. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  250. struct kobj_attribute *attr,
  251. const char *buf, size_t count)
  252. {
  253. unsigned long msecs;
  254. int err;
  255. err = strict_strtoul(buf, 10, &msecs);
  256. if (err || msecs > UINT_MAX)
  257. return -EINVAL;
  258. khugepaged_scan_sleep_millisecs = msecs;
  259. wake_up_interruptible(&khugepaged_wait);
  260. return count;
  261. }
  262. static struct kobj_attribute scan_sleep_millisecs_attr =
  263. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  264. scan_sleep_millisecs_store);
  265. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  266. struct kobj_attribute *attr,
  267. char *buf)
  268. {
  269. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  270. }
  271. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  272. struct kobj_attribute *attr,
  273. const char *buf, size_t count)
  274. {
  275. unsigned long msecs;
  276. int err;
  277. err = strict_strtoul(buf, 10, &msecs);
  278. if (err || msecs > UINT_MAX)
  279. return -EINVAL;
  280. khugepaged_alloc_sleep_millisecs = msecs;
  281. wake_up_interruptible(&khugepaged_wait);
  282. return count;
  283. }
  284. static struct kobj_attribute alloc_sleep_millisecs_attr =
  285. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  286. alloc_sleep_millisecs_store);
  287. static ssize_t pages_to_scan_show(struct kobject *kobj,
  288. struct kobj_attribute *attr,
  289. char *buf)
  290. {
  291. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  292. }
  293. static ssize_t pages_to_scan_store(struct kobject *kobj,
  294. struct kobj_attribute *attr,
  295. const char *buf, size_t count)
  296. {
  297. int err;
  298. unsigned long pages;
  299. err = strict_strtoul(buf, 10, &pages);
  300. if (err || !pages || pages > UINT_MAX)
  301. return -EINVAL;
  302. khugepaged_pages_to_scan = pages;
  303. return count;
  304. }
  305. static struct kobj_attribute pages_to_scan_attr =
  306. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  307. pages_to_scan_store);
  308. static ssize_t pages_collapsed_show(struct kobject *kobj,
  309. struct kobj_attribute *attr,
  310. char *buf)
  311. {
  312. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  313. }
  314. static struct kobj_attribute pages_collapsed_attr =
  315. __ATTR_RO(pages_collapsed);
  316. static ssize_t full_scans_show(struct kobject *kobj,
  317. struct kobj_attribute *attr,
  318. char *buf)
  319. {
  320. return sprintf(buf, "%u\n", khugepaged_full_scans);
  321. }
  322. static struct kobj_attribute full_scans_attr =
  323. __ATTR_RO(full_scans);
  324. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  325. struct kobj_attribute *attr, char *buf)
  326. {
  327. return single_flag_show(kobj, attr, buf,
  328. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  329. }
  330. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  331. struct kobj_attribute *attr,
  332. const char *buf, size_t count)
  333. {
  334. return single_flag_store(kobj, attr, buf, count,
  335. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  336. }
  337. static struct kobj_attribute khugepaged_defrag_attr =
  338. __ATTR(defrag, 0644, khugepaged_defrag_show,
  339. khugepaged_defrag_store);
  340. /*
  341. * max_ptes_none controls if khugepaged should collapse hugepages over
  342. * any unmapped ptes in turn potentially increasing the memory
  343. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  344. * reduce the available free memory in the system as it
  345. * runs. Increasing max_ptes_none will instead potentially reduce the
  346. * free memory in the system during the khugepaged scan.
  347. */
  348. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  349. struct kobj_attribute *attr,
  350. char *buf)
  351. {
  352. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  353. }
  354. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  355. struct kobj_attribute *attr,
  356. const char *buf, size_t count)
  357. {
  358. int err;
  359. unsigned long max_ptes_none;
  360. err = strict_strtoul(buf, 10, &max_ptes_none);
  361. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  362. return -EINVAL;
  363. khugepaged_max_ptes_none = max_ptes_none;
  364. return count;
  365. }
  366. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  367. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  368. khugepaged_max_ptes_none_store);
  369. static struct attribute *khugepaged_attr[] = {
  370. &khugepaged_defrag_attr.attr,
  371. &khugepaged_max_ptes_none_attr.attr,
  372. &pages_to_scan_attr.attr,
  373. &pages_collapsed_attr.attr,
  374. &full_scans_attr.attr,
  375. &scan_sleep_millisecs_attr.attr,
  376. &alloc_sleep_millisecs_attr.attr,
  377. NULL,
  378. };
  379. static struct attribute_group khugepaged_attr_group = {
  380. .attrs = khugepaged_attr,
  381. .name = "khugepaged",
  382. };
  383. #endif /* CONFIG_SYSFS */
  384. static int __init hugepage_init(void)
  385. {
  386. int err;
  387. #ifdef CONFIG_SYSFS
  388. static struct kobject *hugepage_kobj;
  389. err = -ENOMEM;
  390. hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  391. if (unlikely(!hugepage_kobj)) {
  392. printk(KERN_ERR "hugepage: failed kobject create\n");
  393. goto out;
  394. }
  395. err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
  396. if (err) {
  397. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  398. goto out;
  399. }
  400. err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
  401. if (err) {
  402. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  403. goto out;
  404. }
  405. #endif
  406. err = khugepaged_slab_init();
  407. if (err)
  408. goto out;
  409. err = mm_slots_hash_init();
  410. if (err) {
  411. khugepaged_slab_free();
  412. goto out;
  413. }
  414. start_khugepaged();
  415. out:
  416. return err;
  417. }
  418. module_init(hugepage_init)
  419. static int __init setup_transparent_hugepage(char *str)
  420. {
  421. int ret = 0;
  422. if (!str)
  423. goto out;
  424. if (!strcmp(str, "always")) {
  425. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  426. &transparent_hugepage_flags);
  427. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  428. &transparent_hugepage_flags);
  429. ret = 1;
  430. } else if (!strcmp(str, "madvise")) {
  431. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  432. &transparent_hugepage_flags);
  433. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  434. &transparent_hugepage_flags);
  435. ret = 1;
  436. } else if (!strcmp(str, "never")) {
  437. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  438. &transparent_hugepage_flags);
  439. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  440. &transparent_hugepage_flags);
  441. ret = 1;
  442. }
  443. out:
  444. if (!ret)
  445. printk(KERN_WARNING
  446. "transparent_hugepage= cannot parse, ignored\n");
  447. return ret;
  448. }
  449. __setup("transparent_hugepage=", setup_transparent_hugepage);
  450. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  451. struct mm_struct *mm)
  452. {
  453. assert_spin_locked(&mm->page_table_lock);
  454. /* FIFO */
  455. if (!mm->pmd_huge_pte)
  456. INIT_LIST_HEAD(&pgtable->lru);
  457. else
  458. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  459. mm->pmd_huge_pte = pgtable;
  460. }
  461. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  462. {
  463. if (likely(vma->vm_flags & VM_WRITE))
  464. pmd = pmd_mkwrite(pmd);
  465. return pmd;
  466. }
  467. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  468. struct vm_area_struct *vma,
  469. unsigned long haddr, pmd_t *pmd,
  470. struct page *page)
  471. {
  472. int ret = 0;
  473. pgtable_t pgtable;
  474. VM_BUG_ON(!PageCompound(page));
  475. pgtable = pte_alloc_one(mm, haddr);
  476. if (unlikely(!pgtable)) {
  477. mem_cgroup_uncharge_page(page);
  478. put_page(page);
  479. return VM_FAULT_OOM;
  480. }
  481. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  482. __SetPageUptodate(page);
  483. spin_lock(&mm->page_table_lock);
  484. if (unlikely(!pmd_none(*pmd))) {
  485. spin_unlock(&mm->page_table_lock);
  486. mem_cgroup_uncharge_page(page);
  487. put_page(page);
  488. pte_free(mm, pgtable);
  489. } else {
  490. pmd_t entry;
  491. entry = mk_pmd(page, vma->vm_page_prot);
  492. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  493. entry = pmd_mkhuge(entry);
  494. /*
  495. * The spinlocking to take the lru_lock inside
  496. * page_add_new_anon_rmap() acts as a full memory
  497. * barrier to be sure clear_huge_page writes become
  498. * visible after the set_pmd_at() write.
  499. */
  500. page_add_new_anon_rmap(page, vma, haddr);
  501. set_pmd_at(mm, haddr, pmd, entry);
  502. prepare_pmd_huge_pte(pgtable, mm);
  503. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  504. spin_unlock(&mm->page_table_lock);
  505. }
  506. return ret;
  507. }
  508. static inline struct page *alloc_hugepage(int defrag)
  509. {
  510. return alloc_pages(GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT),
  511. HPAGE_PMD_ORDER);
  512. }
  513. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  514. unsigned long address, pmd_t *pmd,
  515. unsigned int flags)
  516. {
  517. struct page *page;
  518. unsigned long haddr = address & HPAGE_PMD_MASK;
  519. pte_t *pte;
  520. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  521. if (unlikely(anon_vma_prepare(vma)))
  522. return VM_FAULT_OOM;
  523. if (unlikely(khugepaged_enter(vma)))
  524. return VM_FAULT_OOM;
  525. page = alloc_hugepage(transparent_hugepage_defrag(vma));
  526. if (unlikely(!page))
  527. goto out;
  528. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  529. put_page(page);
  530. goto out;
  531. }
  532. return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
  533. }
  534. out:
  535. /*
  536. * Use __pte_alloc instead of pte_alloc_map, because we can't
  537. * run pte_offset_map on the pmd, if an huge pmd could
  538. * materialize from under us from a different thread.
  539. */
  540. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  541. return VM_FAULT_OOM;
  542. /* if an huge pmd materialized from under us just retry later */
  543. if (unlikely(pmd_trans_huge(*pmd)))
  544. return 0;
  545. /*
  546. * A regular pmd is established and it can't morph into a huge pmd
  547. * from under us anymore at this point because we hold the mmap_sem
  548. * read mode and khugepaged takes it in write mode. So now it's
  549. * safe to run pte_offset_map().
  550. */
  551. pte = pte_offset_map(pmd, address);
  552. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  553. }
  554. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  555. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  556. struct vm_area_struct *vma)
  557. {
  558. struct page *src_page;
  559. pmd_t pmd;
  560. pgtable_t pgtable;
  561. int ret;
  562. ret = -ENOMEM;
  563. pgtable = pte_alloc_one(dst_mm, addr);
  564. if (unlikely(!pgtable))
  565. goto out;
  566. spin_lock(&dst_mm->page_table_lock);
  567. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  568. ret = -EAGAIN;
  569. pmd = *src_pmd;
  570. if (unlikely(!pmd_trans_huge(pmd))) {
  571. pte_free(dst_mm, pgtable);
  572. goto out_unlock;
  573. }
  574. if (unlikely(pmd_trans_splitting(pmd))) {
  575. /* split huge page running from under us */
  576. spin_unlock(&src_mm->page_table_lock);
  577. spin_unlock(&dst_mm->page_table_lock);
  578. pte_free(dst_mm, pgtable);
  579. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  580. goto out;
  581. }
  582. src_page = pmd_page(pmd);
  583. VM_BUG_ON(!PageHead(src_page));
  584. get_page(src_page);
  585. page_dup_rmap(src_page);
  586. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  587. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  588. pmd = pmd_mkold(pmd_wrprotect(pmd));
  589. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  590. prepare_pmd_huge_pte(pgtable, dst_mm);
  591. ret = 0;
  592. out_unlock:
  593. spin_unlock(&src_mm->page_table_lock);
  594. spin_unlock(&dst_mm->page_table_lock);
  595. out:
  596. return ret;
  597. }
  598. /* no "address" argument so destroys page coloring of some arch */
  599. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  600. {
  601. pgtable_t pgtable;
  602. assert_spin_locked(&mm->page_table_lock);
  603. /* FIFO */
  604. pgtable = mm->pmd_huge_pte;
  605. if (list_empty(&pgtable->lru))
  606. mm->pmd_huge_pte = NULL;
  607. else {
  608. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  609. struct page, lru);
  610. list_del(&pgtable->lru);
  611. }
  612. return pgtable;
  613. }
  614. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  615. struct vm_area_struct *vma,
  616. unsigned long address,
  617. pmd_t *pmd, pmd_t orig_pmd,
  618. struct page *page,
  619. unsigned long haddr)
  620. {
  621. pgtable_t pgtable;
  622. pmd_t _pmd;
  623. int ret = 0, i;
  624. struct page **pages;
  625. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  626. GFP_KERNEL);
  627. if (unlikely(!pages)) {
  628. ret |= VM_FAULT_OOM;
  629. goto out;
  630. }
  631. for (i = 0; i < HPAGE_PMD_NR; i++) {
  632. pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  633. vma, address);
  634. if (unlikely(!pages[i] ||
  635. mem_cgroup_newpage_charge(pages[i], mm,
  636. GFP_KERNEL))) {
  637. if (pages[i])
  638. put_page(pages[i]);
  639. mem_cgroup_uncharge_start();
  640. while (--i >= 0) {
  641. mem_cgroup_uncharge_page(pages[i]);
  642. put_page(pages[i]);
  643. }
  644. mem_cgroup_uncharge_end();
  645. kfree(pages);
  646. ret |= VM_FAULT_OOM;
  647. goto out;
  648. }
  649. }
  650. for (i = 0; i < HPAGE_PMD_NR; i++) {
  651. copy_user_highpage(pages[i], page + i,
  652. haddr + PAGE_SHIFT*i, vma);
  653. __SetPageUptodate(pages[i]);
  654. cond_resched();
  655. }
  656. spin_lock(&mm->page_table_lock);
  657. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  658. goto out_free_pages;
  659. VM_BUG_ON(!PageHead(page));
  660. pmdp_clear_flush_notify(vma, haddr, pmd);
  661. /* leave pmd empty until pte is filled */
  662. pgtable = get_pmd_huge_pte(mm);
  663. pmd_populate(mm, &_pmd, pgtable);
  664. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  665. pte_t *pte, entry;
  666. entry = mk_pte(pages[i], vma->vm_page_prot);
  667. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  668. page_add_new_anon_rmap(pages[i], vma, haddr);
  669. pte = pte_offset_map(&_pmd, haddr);
  670. VM_BUG_ON(!pte_none(*pte));
  671. set_pte_at(mm, haddr, pte, entry);
  672. pte_unmap(pte);
  673. }
  674. kfree(pages);
  675. mm->nr_ptes++;
  676. smp_wmb(); /* make pte visible before pmd */
  677. pmd_populate(mm, pmd, pgtable);
  678. page_remove_rmap(page);
  679. spin_unlock(&mm->page_table_lock);
  680. ret |= VM_FAULT_WRITE;
  681. put_page(page);
  682. out:
  683. return ret;
  684. out_free_pages:
  685. spin_unlock(&mm->page_table_lock);
  686. mem_cgroup_uncharge_start();
  687. for (i = 0; i < HPAGE_PMD_NR; i++) {
  688. mem_cgroup_uncharge_page(pages[i]);
  689. put_page(pages[i]);
  690. }
  691. mem_cgroup_uncharge_end();
  692. kfree(pages);
  693. goto out;
  694. }
  695. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  696. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  697. {
  698. int ret = 0;
  699. struct page *page, *new_page;
  700. unsigned long haddr;
  701. VM_BUG_ON(!vma->anon_vma);
  702. spin_lock(&mm->page_table_lock);
  703. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  704. goto out_unlock;
  705. page = pmd_page(orig_pmd);
  706. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  707. haddr = address & HPAGE_PMD_MASK;
  708. if (page_mapcount(page) == 1) {
  709. pmd_t entry;
  710. entry = pmd_mkyoung(orig_pmd);
  711. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  712. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  713. update_mmu_cache(vma, address, entry);
  714. ret |= VM_FAULT_WRITE;
  715. goto out_unlock;
  716. }
  717. get_page(page);
  718. spin_unlock(&mm->page_table_lock);
  719. if (transparent_hugepage_enabled(vma) &&
  720. !transparent_hugepage_debug_cow())
  721. new_page = alloc_hugepage(transparent_hugepage_defrag(vma));
  722. else
  723. new_page = NULL;
  724. if (unlikely(!new_page)) {
  725. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  726. pmd, orig_pmd, page, haddr);
  727. put_page(page);
  728. goto out;
  729. }
  730. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  731. put_page(new_page);
  732. put_page(page);
  733. ret |= VM_FAULT_OOM;
  734. goto out;
  735. }
  736. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  737. __SetPageUptodate(new_page);
  738. spin_lock(&mm->page_table_lock);
  739. put_page(page);
  740. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  741. mem_cgroup_uncharge_page(new_page);
  742. put_page(new_page);
  743. } else {
  744. pmd_t entry;
  745. VM_BUG_ON(!PageHead(page));
  746. entry = mk_pmd(new_page, vma->vm_page_prot);
  747. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  748. entry = pmd_mkhuge(entry);
  749. pmdp_clear_flush_notify(vma, haddr, pmd);
  750. page_add_new_anon_rmap(new_page, vma, haddr);
  751. set_pmd_at(mm, haddr, pmd, entry);
  752. update_mmu_cache(vma, address, entry);
  753. page_remove_rmap(page);
  754. put_page(page);
  755. ret |= VM_FAULT_WRITE;
  756. }
  757. out_unlock:
  758. spin_unlock(&mm->page_table_lock);
  759. out:
  760. return ret;
  761. }
  762. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  763. unsigned long addr,
  764. pmd_t *pmd,
  765. unsigned int flags)
  766. {
  767. struct page *page = NULL;
  768. assert_spin_locked(&mm->page_table_lock);
  769. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  770. goto out;
  771. page = pmd_page(*pmd);
  772. VM_BUG_ON(!PageHead(page));
  773. if (flags & FOLL_TOUCH) {
  774. pmd_t _pmd;
  775. /*
  776. * We should set the dirty bit only for FOLL_WRITE but
  777. * for now the dirty bit in the pmd is meaningless.
  778. * And if the dirty bit will become meaningful and
  779. * we'll only set it with FOLL_WRITE, an atomic
  780. * set_bit will be required on the pmd to set the
  781. * young bit, instead of the current set_pmd_at.
  782. */
  783. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  784. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  785. }
  786. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  787. VM_BUG_ON(!PageCompound(page));
  788. if (flags & FOLL_GET)
  789. get_page(page);
  790. out:
  791. return page;
  792. }
  793. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  794. pmd_t *pmd)
  795. {
  796. int ret = 0;
  797. spin_lock(&tlb->mm->page_table_lock);
  798. if (likely(pmd_trans_huge(*pmd))) {
  799. if (unlikely(pmd_trans_splitting(*pmd))) {
  800. spin_unlock(&tlb->mm->page_table_lock);
  801. wait_split_huge_page(vma->anon_vma,
  802. pmd);
  803. } else {
  804. struct page *page;
  805. pgtable_t pgtable;
  806. pgtable = get_pmd_huge_pte(tlb->mm);
  807. page = pmd_page(*pmd);
  808. pmd_clear(pmd);
  809. page_remove_rmap(page);
  810. VM_BUG_ON(page_mapcount(page) < 0);
  811. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  812. VM_BUG_ON(!PageHead(page));
  813. spin_unlock(&tlb->mm->page_table_lock);
  814. tlb_remove_page(tlb, page);
  815. pte_free(tlb->mm, pgtable);
  816. ret = 1;
  817. }
  818. } else
  819. spin_unlock(&tlb->mm->page_table_lock);
  820. return ret;
  821. }
  822. pmd_t *page_check_address_pmd(struct page *page,
  823. struct mm_struct *mm,
  824. unsigned long address,
  825. enum page_check_address_pmd_flag flag)
  826. {
  827. pgd_t *pgd;
  828. pud_t *pud;
  829. pmd_t *pmd, *ret = NULL;
  830. if (address & ~HPAGE_PMD_MASK)
  831. goto out;
  832. pgd = pgd_offset(mm, address);
  833. if (!pgd_present(*pgd))
  834. goto out;
  835. pud = pud_offset(pgd, address);
  836. if (!pud_present(*pud))
  837. goto out;
  838. pmd = pmd_offset(pud, address);
  839. if (pmd_none(*pmd))
  840. goto out;
  841. if (pmd_page(*pmd) != page)
  842. goto out;
  843. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  844. pmd_trans_splitting(*pmd));
  845. if (pmd_trans_huge(*pmd)) {
  846. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  847. !pmd_trans_splitting(*pmd));
  848. ret = pmd;
  849. }
  850. out:
  851. return ret;
  852. }
  853. static int __split_huge_page_splitting(struct page *page,
  854. struct vm_area_struct *vma,
  855. unsigned long address)
  856. {
  857. struct mm_struct *mm = vma->vm_mm;
  858. pmd_t *pmd;
  859. int ret = 0;
  860. spin_lock(&mm->page_table_lock);
  861. pmd = page_check_address_pmd(page, mm, address,
  862. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  863. if (pmd) {
  864. /*
  865. * We can't temporarily set the pmd to null in order
  866. * to split it, the pmd must remain marked huge at all
  867. * times or the VM won't take the pmd_trans_huge paths
  868. * and it won't wait on the anon_vma->root->lock to
  869. * serialize against split_huge_page*.
  870. */
  871. pmdp_splitting_flush_notify(vma, address, pmd);
  872. ret = 1;
  873. }
  874. spin_unlock(&mm->page_table_lock);
  875. return ret;
  876. }
  877. static void __split_huge_page_refcount(struct page *page)
  878. {
  879. int i;
  880. unsigned long head_index = page->index;
  881. struct zone *zone = page_zone(page);
  882. /* prevent PageLRU to go away from under us, and freeze lru stats */
  883. spin_lock_irq(&zone->lru_lock);
  884. compound_lock(page);
  885. for (i = 1; i < HPAGE_PMD_NR; i++) {
  886. struct page *page_tail = page + i;
  887. /* tail_page->_count cannot change */
  888. atomic_sub(atomic_read(&page_tail->_count), &page->_count);
  889. BUG_ON(page_count(page) <= 0);
  890. atomic_add(page_mapcount(page) + 1, &page_tail->_count);
  891. BUG_ON(atomic_read(&page_tail->_count) <= 0);
  892. /* after clearing PageTail the gup refcount can be released */
  893. smp_mb();
  894. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  895. page_tail->flags |= (page->flags &
  896. ((1L << PG_referenced) |
  897. (1L << PG_swapbacked) |
  898. (1L << PG_mlocked) |
  899. (1L << PG_uptodate)));
  900. page_tail->flags |= (1L << PG_dirty);
  901. /*
  902. * 1) clear PageTail before overwriting first_page
  903. * 2) clear PageTail before clearing PageHead for VM_BUG_ON
  904. */
  905. smp_wmb();
  906. /*
  907. * __split_huge_page_splitting() already set the
  908. * splitting bit in all pmd that could map this
  909. * hugepage, that will ensure no CPU can alter the
  910. * mapcount on the head page. The mapcount is only
  911. * accounted in the head page and it has to be
  912. * transferred to all tail pages in the below code. So
  913. * for this code to be safe, the split the mapcount
  914. * can't change. But that doesn't mean userland can't
  915. * keep changing and reading the page contents while
  916. * we transfer the mapcount, so the pmd splitting
  917. * status is achieved setting a reserved bit in the
  918. * pmd, not by clearing the present bit.
  919. */
  920. BUG_ON(page_mapcount(page_tail));
  921. page_tail->_mapcount = page->_mapcount;
  922. BUG_ON(page_tail->mapping);
  923. page_tail->mapping = page->mapping;
  924. page_tail->index = ++head_index;
  925. BUG_ON(!PageAnon(page_tail));
  926. BUG_ON(!PageUptodate(page_tail));
  927. BUG_ON(!PageDirty(page_tail));
  928. BUG_ON(!PageSwapBacked(page_tail));
  929. lru_add_page_tail(zone, page, page_tail);
  930. }
  931. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  932. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  933. ClearPageCompound(page);
  934. compound_unlock(page);
  935. spin_unlock_irq(&zone->lru_lock);
  936. for (i = 1; i < HPAGE_PMD_NR; i++) {
  937. struct page *page_tail = page + i;
  938. BUG_ON(page_count(page_tail) <= 0);
  939. /*
  940. * Tail pages may be freed if there wasn't any mapping
  941. * like if add_to_swap() is running on a lru page that
  942. * had its mapping zapped. And freeing these pages
  943. * requires taking the lru_lock so we do the put_page
  944. * of the tail pages after the split is complete.
  945. */
  946. put_page(page_tail);
  947. }
  948. /*
  949. * Only the head page (now become a regular page) is required
  950. * to be pinned by the caller.
  951. */
  952. BUG_ON(page_count(page) <= 0);
  953. }
  954. static int __split_huge_page_map(struct page *page,
  955. struct vm_area_struct *vma,
  956. unsigned long address)
  957. {
  958. struct mm_struct *mm = vma->vm_mm;
  959. pmd_t *pmd, _pmd;
  960. int ret = 0, i;
  961. pgtable_t pgtable;
  962. unsigned long haddr;
  963. spin_lock(&mm->page_table_lock);
  964. pmd = page_check_address_pmd(page, mm, address,
  965. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  966. if (pmd) {
  967. pgtable = get_pmd_huge_pte(mm);
  968. pmd_populate(mm, &_pmd, pgtable);
  969. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  970. i++, haddr += PAGE_SIZE) {
  971. pte_t *pte, entry;
  972. BUG_ON(PageCompound(page+i));
  973. entry = mk_pte(page + i, vma->vm_page_prot);
  974. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  975. if (!pmd_write(*pmd))
  976. entry = pte_wrprotect(entry);
  977. else
  978. BUG_ON(page_mapcount(page) != 1);
  979. if (!pmd_young(*pmd))
  980. entry = pte_mkold(entry);
  981. pte = pte_offset_map(&_pmd, haddr);
  982. BUG_ON(!pte_none(*pte));
  983. set_pte_at(mm, haddr, pte, entry);
  984. pte_unmap(pte);
  985. }
  986. mm->nr_ptes++;
  987. smp_wmb(); /* make pte visible before pmd */
  988. /*
  989. * Up to this point the pmd is present and huge and
  990. * userland has the whole access to the hugepage
  991. * during the split (which happens in place). If we
  992. * overwrite the pmd with the not-huge version
  993. * pointing to the pte here (which of course we could
  994. * if all CPUs were bug free), userland could trigger
  995. * a small page size TLB miss on the small sized TLB
  996. * while the hugepage TLB entry is still established
  997. * in the huge TLB. Some CPU doesn't like that. See
  998. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  999. * Erratum 383 on page 93. Intel should be safe but is
  1000. * also warns that it's only safe if the permission
  1001. * and cache attributes of the two entries loaded in
  1002. * the two TLB is identical (which should be the case
  1003. * here). But it is generally safer to never allow
  1004. * small and huge TLB entries for the same virtual
  1005. * address to be loaded simultaneously. So instead of
  1006. * doing "pmd_populate(); flush_tlb_range();" we first
  1007. * mark the current pmd notpresent (atomically because
  1008. * here the pmd_trans_huge and pmd_trans_splitting
  1009. * must remain set at all times on the pmd until the
  1010. * split is complete for this pmd), then we flush the
  1011. * SMP TLB and finally we write the non-huge version
  1012. * of the pmd entry with pmd_populate.
  1013. */
  1014. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1015. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1016. pmd_populate(mm, pmd, pgtable);
  1017. ret = 1;
  1018. }
  1019. spin_unlock(&mm->page_table_lock);
  1020. return ret;
  1021. }
  1022. /* must be called with anon_vma->root->lock hold */
  1023. static void __split_huge_page(struct page *page,
  1024. struct anon_vma *anon_vma)
  1025. {
  1026. int mapcount, mapcount2;
  1027. struct anon_vma_chain *avc;
  1028. BUG_ON(!PageHead(page));
  1029. BUG_ON(PageTail(page));
  1030. mapcount = 0;
  1031. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1032. struct vm_area_struct *vma = avc->vma;
  1033. unsigned long addr = vma_address(page, vma);
  1034. BUG_ON(is_vma_temporary_stack(vma));
  1035. if (addr == -EFAULT)
  1036. continue;
  1037. mapcount += __split_huge_page_splitting(page, vma, addr);
  1038. }
  1039. /*
  1040. * It is critical that new vmas are added to the tail of the
  1041. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1042. * and establishes a child pmd before
  1043. * __split_huge_page_splitting() freezes the parent pmd (so if
  1044. * we fail to prevent copy_huge_pmd() from running until the
  1045. * whole __split_huge_page() is complete), we will still see
  1046. * the newly established pmd of the child later during the
  1047. * walk, to be able to set it as pmd_trans_splitting too.
  1048. */
  1049. if (mapcount != page_mapcount(page))
  1050. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1051. mapcount, page_mapcount(page));
  1052. BUG_ON(mapcount != page_mapcount(page));
  1053. __split_huge_page_refcount(page);
  1054. mapcount2 = 0;
  1055. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1056. struct vm_area_struct *vma = avc->vma;
  1057. unsigned long addr = vma_address(page, vma);
  1058. BUG_ON(is_vma_temporary_stack(vma));
  1059. if (addr == -EFAULT)
  1060. continue;
  1061. mapcount2 += __split_huge_page_map(page, vma, addr);
  1062. }
  1063. if (mapcount != mapcount2)
  1064. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1065. mapcount, mapcount2, page_mapcount(page));
  1066. BUG_ON(mapcount != mapcount2);
  1067. }
  1068. int split_huge_page(struct page *page)
  1069. {
  1070. struct anon_vma *anon_vma;
  1071. int ret = 1;
  1072. BUG_ON(!PageAnon(page));
  1073. anon_vma = page_lock_anon_vma(page);
  1074. if (!anon_vma)
  1075. goto out;
  1076. ret = 0;
  1077. if (!PageCompound(page))
  1078. goto out_unlock;
  1079. BUG_ON(!PageSwapBacked(page));
  1080. __split_huge_page(page, anon_vma);
  1081. BUG_ON(PageCompound(page));
  1082. out_unlock:
  1083. page_unlock_anon_vma(anon_vma);
  1084. out:
  1085. return ret;
  1086. }
  1087. int hugepage_madvise(unsigned long *vm_flags)
  1088. {
  1089. /*
  1090. * Be somewhat over-protective like KSM for now!
  1091. */
  1092. if (*vm_flags & (VM_HUGEPAGE | VM_SHARED | VM_MAYSHARE |
  1093. VM_PFNMAP | VM_IO | VM_DONTEXPAND |
  1094. VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
  1095. VM_MIXEDMAP | VM_SAO))
  1096. return -EINVAL;
  1097. *vm_flags |= VM_HUGEPAGE;
  1098. return 0;
  1099. }
  1100. static int __init khugepaged_slab_init(void)
  1101. {
  1102. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1103. sizeof(struct mm_slot),
  1104. __alignof__(struct mm_slot), 0, NULL);
  1105. if (!mm_slot_cache)
  1106. return -ENOMEM;
  1107. return 0;
  1108. }
  1109. static void __init khugepaged_slab_free(void)
  1110. {
  1111. kmem_cache_destroy(mm_slot_cache);
  1112. mm_slot_cache = NULL;
  1113. }
  1114. static inline struct mm_slot *alloc_mm_slot(void)
  1115. {
  1116. if (!mm_slot_cache) /* initialization failed */
  1117. return NULL;
  1118. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1119. }
  1120. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1121. {
  1122. kmem_cache_free(mm_slot_cache, mm_slot);
  1123. }
  1124. static int __init mm_slots_hash_init(void)
  1125. {
  1126. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1127. GFP_KERNEL);
  1128. if (!mm_slots_hash)
  1129. return -ENOMEM;
  1130. return 0;
  1131. }
  1132. #if 0
  1133. static void __init mm_slots_hash_free(void)
  1134. {
  1135. kfree(mm_slots_hash);
  1136. mm_slots_hash = NULL;
  1137. }
  1138. #endif
  1139. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1140. {
  1141. struct mm_slot *mm_slot;
  1142. struct hlist_head *bucket;
  1143. struct hlist_node *node;
  1144. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1145. % MM_SLOTS_HASH_HEADS];
  1146. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1147. if (mm == mm_slot->mm)
  1148. return mm_slot;
  1149. }
  1150. return NULL;
  1151. }
  1152. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1153. struct mm_slot *mm_slot)
  1154. {
  1155. struct hlist_head *bucket;
  1156. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1157. % MM_SLOTS_HASH_HEADS];
  1158. mm_slot->mm = mm;
  1159. hlist_add_head(&mm_slot->hash, bucket);
  1160. }
  1161. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1162. {
  1163. return atomic_read(&mm->mm_users) == 0;
  1164. }
  1165. int __khugepaged_enter(struct mm_struct *mm)
  1166. {
  1167. struct mm_slot *mm_slot;
  1168. int wakeup;
  1169. mm_slot = alloc_mm_slot();
  1170. if (!mm_slot)
  1171. return -ENOMEM;
  1172. /* __khugepaged_exit() must not run from under us */
  1173. VM_BUG_ON(khugepaged_test_exit(mm));
  1174. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1175. free_mm_slot(mm_slot);
  1176. return 0;
  1177. }
  1178. spin_lock(&khugepaged_mm_lock);
  1179. insert_to_mm_slots_hash(mm, mm_slot);
  1180. /*
  1181. * Insert just behind the scanning cursor, to let the area settle
  1182. * down a little.
  1183. */
  1184. wakeup = list_empty(&khugepaged_scan.mm_head);
  1185. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1186. spin_unlock(&khugepaged_mm_lock);
  1187. atomic_inc(&mm->mm_count);
  1188. if (wakeup)
  1189. wake_up_interruptible(&khugepaged_wait);
  1190. return 0;
  1191. }
  1192. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1193. {
  1194. unsigned long hstart, hend;
  1195. if (!vma->anon_vma)
  1196. /*
  1197. * Not yet faulted in so we will register later in the
  1198. * page fault if needed.
  1199. */
  1200. return 0;
  1201. if (vma->vm_file || vma->vm_ops)
  1202. /* khugepaged not yet working on file or special mappings */
  1203. return 0;
  1204. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1205. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1206. hend = vma->vm_end & HPAGE_PMD_MASK;
  1207. if (hstart < hend)
  1208. return khugepaged_enter(vma);
  1209. return 0;
  1210. }
  1211. void __khugepaged_exit(struct mm_struct *mm)
  1212. {
  1213. struct mm_slot *mm_slot;
  1214. int free = 0;
  1215. spin_lock(&khugepaged_mm_lock);
  1216. mm_slot = get_mm_slot(mm);
  1217. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1218. hlist_del(&mm_slot->hash);
  1219. list_del(&mm_slot->mm_node);
  1220. free = 1;
  1221. }
  1222. if (free) {
  1223. spin_unlock(&khugepaged_mm_lock);
  1224. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1225. free_mm_slot(mm_slot);
  1226. mmdrop(mm);
  1227. } else if (mm_slot) {
  1228. spin_unlock(&khugepaged_mm_lock);
  1229. /*
  1230. * This is required to serialize against
  1231. * khugepaged_test_exit() (which is guaranteed to run
  1232. * under mmap sem read mode). Stop here (after we
  1233. * return all pagetables will be destroyed) until
  1234. * khugepaged has finished working on the pagetables
  1235. * under the mmap_sem.
  1236. */
  1237. down_write(&mm->mmap_sem);
  1238. up_write(&mm->mmap_sem);
  1239. } else
  1240. spin_unlock(&khugepaged_mm_lock);
  1241. }
  1242. static void release_pte_page(struct page *page)
  1243. {
  1244. /* 0 stands for page_is_file_cache(page) == false */
  1245. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1246. unlock_page(page);
  1247. putback_lru_page(page);
  1248. }
  1249. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1250. {
  1251. while (--_pte >= pte) {
  1252. pte_t pteval = *_pte;
  1253. if (!pte_none(pteval))
  1254. release_pte_page(pte_page(pteval));
  1255. }
  1256. }
  1257. static void release_all_pte_pages(pte_t *pte)
  1258. {
  1259. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1260. }
  1261. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1262. unsigned long address,
  1263. pte_t *pte)
  1264. {
  1265. struct page *page;
  1266. pte_t *_pte;
  1267. int referenced = 0, isolated = 0, none = 0;
  1268. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1269. _pte++, address += PAGE_SIZE) {
  1270. pte_t pteval = *_pte;
  1271. if (pte_none(pteval)) {
  1272. if (++none <= khugepaged_max_ptes_none)
  1273. continue;
  1274. else {
  1275. release_pte_pages(pte, _pte);
  1276. goto out;
  1277. }
  1278. }
  1279. if (!pte_present(pteval) || !pte_write(pteval)) {
  1280. release_pte_pages(pte, _pte);
  1281. goto out;
  1282. }
  1283. page = vm_normal_page(vma, address, pteval);
  1284. if (unlikely(!page)) {
  1285. release_pte_pages(pte, _pte);
  1286. goto out;
  1287. }
  1288. VM_BUG_ON(PageCompound(page));
  1289. BUG_ON(!PageAnon(page));
  1290. VM_BUG_ON(!PageSwapBacked(page));
  1291. /* cannot use mapcount: can't collapse if there's a gup pin */
  1292. if (page_count(page) != 1) {
  1293. release_pte_pages(pte, _pte);
  1294. goto out;
  1295. }
  1296. /*
  1297. * We can do it before isolate_lru_page because the
  1298. * page can't be freed from under us. NOTE: PG_lock
  1299. * is needed to serialize against split_huge_page
  1300. * when invoked from the VM.
  1301. */
  1302. if (!trylock_page(page)) {
  1303. release_pte_pages(pte, _pte);
  1304. goto out;
  1305. }
  1306. /*
  1307. * Isolate the page to avoid collapsing an hugepage
  1308. * currently in use by the VM.
  1309. */
  1310. if (isolate_lru_page(page)) {
  1311. unlock_page(page);
  1312. release_pte_pages(pte, _pte);
  1313. goto out;
  1314. }
  1315. /* 0 stands for page_is_file_cache(page) == false */
  1316. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1317. VM_BUG_ON(!PageLocked(page));
  1318. VM_BUG_ON(PageLRU(page));
  1319. /* If there is no mapped pte young don't collapse the page */
  1320. if (pte_young(pteval))
  1321. referenced = 1;
  1322. }
  1323. if (unlikely(!referenced))
  1324. release_all_pte_pages(pte);
  1325. else
  1326. isolated = 1;
  1327. out:
  1328. return isolated;
  1329. }
  1330. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1331. struct vm_area_struct *vma,
  1332. unsigned long address,
  1333. spinlock_t *ptl)
  1334. {
  1335. pte_t *_pte;
  1336. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1337. pte_t pteval = *_pte;
  1338. struct page *src_page;
  1339. if (pte_none(pteval)) {
  1340. clear_user_highpage(page, address);
  1341. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1342. } else {
  1343. src_page = pte_page(pteval);
  1344. copy_user_highpage(page, src_page, address, vma);
  1345. VM_BUG_ON(page_mapcount(src_page) != 1);
  1346. VM_BUG_ON(page_count(src_page) != 2);
  1347. release_pte_page(src_page);
  1348. /*
  1349. * ptl mostly unnecessary, but preempt has to
  1350. * be disabled to update the per-cpu stats
  1351. * inside page_remove_rmap().
  1352. */
  1353. spin_lock(ptl);
  1354. /*
  1355. * paravirt calls inside pte_clear here are
  1356. * superfluous.
  1357. */
  1358. pte_clear(vma->vm_mm, address, _pte);
  1359. page_remove_rmap(src_page);
  1360. spin_unlock(ptl);
  1361. free_page_and_swap_cache(src_page);
  1362. }
  1363. address += PAGE_SIZE;
  1364. page++;
  1365. }
  1366. }
  1367. static void collapse_huge_page(struct mm_struct *mm,
  1368. unsigned long address,
  1369. struct page **hpage)
  1370. {
  1371. struct vm_area_struct *vma;
  1372. pgd_t *pgd;
  1373. pud_t *pud;
  1374. pmd_t *pmd, _pmd;
  1375. pte_t *pte;
  1376. pgtable_t pgtable;
  1377. struct page *new_page;
  1378. spinlock_t *ptl;
  1379. int isolated;
  1380. unsigned long hstart, hend;
  1381. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1382. VM_BUG_ON(!*hpage);
  1383. /*
  1384. * Prevent all access to pagetables with the exception of
  1385. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1386. * handled by the anon_vma lock + PG_lock.
  1387. */
  1388. down_write(&mm->mmap_sem);
  1389. if (unlikely(khugepaged_test_exit(mm)))
  1390. goto out;
  1391. vma = find_vma(mm, address);
  1392. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1393. hend = vma->vm_end & HPAGE_PMD_MASK;
  1394. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1395. goto out;
  1396. if (!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always())
  1397. goto out;
  1398. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1399. if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
  1400. goto out;
  1401. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1402. pgd = pgd_offset(mm, address);
  1403. if (!pgd_present(*pgd))
  1404. goto out;
  1405. pud = pud_offset(pgd, address);
  1406. if (!pud_present(*pud))
  1407. goto out;
  1408. pmd = pmd_offset(pud, address);
  1409. /* pmd can't go away or become huge under us */
  1410. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1411. goto out;
  1412. new_page = *hpage;
  1413. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
  1414. goto out;
  1415. anon_vma_lock(vma->anon_vma);
  1416. pte = pte_offset_map(pmd, address);
  1417. ptl = pte_lockptr(mm, pmd);
  1418. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1419. /*
  1420. * After this gup_fast can't run anymore. This also removes
  1421. * any huge TLB entry from the CPU so we won't allow
  1422. * huge and small TLB entries for the same virtual address
  1423. * to avoid the risk of CPU bugs in that area.
  1424. */
  1425. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1426. spin_unlock(&mm->page_table_lock);
  1427. spin_lock(ptl);
  1428. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1429. spin_unlock(ptl);
  1430. pte_unmap(pte);
  1431. if (unlikely(!isolated)) {
  1432. spin_lock(&mm->page_table_lock);
  1433. BUG_ON(!pmd_none(*pmd));
  1434. set_pmd_at(mm, address, pmd, _pmd);
  1435. spin_unlock(&mm->page_table_lock);
  1436. anon_vma_unlock(vma->anon_vma);
  1437. mem_cgroup_uncharge_page(new_page);
  1438. goto out;
  1439. }
  1440. /*
  1441. * All pages are isolated and locked so anon_vma rmap
  1442. * can't run anymore.
  1443. */
  1444. anon_vma_unlock(vma->anon_vma);
  1445. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1446. __SetPageUptodate(new_page);
  1447. pgtable = pmd_pgtable(_pmd);
  1448. VM_BUG_ON(page_count(pgtable) != 1);
  1449. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1450. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1451. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1452. _pmd = pmd_mkhuge(_pmd);
  1453. /*
  1454. * spin_lock() below is not the equivalent of smp_wmb(), so
  1455. * this is needed to avoid the copy_huge_page writes to become
  1456. * visible after the set_pmd_at() write.
  1457. */
  1458. smp_wmb();
  1459. spin_lock(&mm->page_table_lock);
  1460. BUG_ON(!pmd_none(*pmd));
  1461. page_add_new_anon_rmap(new_page, vma, address);
  1462. set_pmd_at(mm, address, pmd, _pmd);
  1463. update_mmu_cache(vma, address, entry);
  1464. prepare_pmd_huge_pte(pgtable, mm);
  1465. mm->nr_ptes--;
  1466. spin_unlock(&mm->page_table_lock);
  1467. *hpage = NULL;
  1468. khugepaged_pages_collapsed++;
  1469. out:
  1470. up_write(&mm->mmap_sem);
  1471. }
  1472. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1473. struct vm_area_struct *vma,
  1474. unsigned long address,
  1475. struct page **hpage)
  1476. {
  1477. pgd_t *pgd;
  1478. pud_t *pud;
  1479. pmd_t *pmd;
  1480. pte_t *pte, *_pte;
  1481. int ret = 0, referenced = 0, none = 0;
  1482. struct page *page;
  1483. unsigned long _address;
  1484. spinlock_t *ptl;
  1485. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1486. pgd = pgd_offset(mm, address);
  1487. if (!pgd_present(*pgd))
  1488. goto out;
  1489. pud = pud_offset(pgd, address);
  1490. if (!pud_present(*pud))
  1491. goto out;
  1492. pmd = pmd_offset(pud, address);
  1493. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1494. goto out;
  1495. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1496. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1497. _pte++, _address += PAGE_SIZE) {
  1498. pte_t pteval = *_pte;
  1499. if (pte_none(pteval)) {
  1500. if (++none <= khugepaged_max_ptes_none)
  1501. continue;
  1502. else
  1503. goto out_unmap;
  1504. }
  1505. if (!pte_present(pteval) || !pte_write(pteval))
  1506. goto out_unmap;
  1507. page = vm_normal_page(vma, _address, pteval);
  1508. if (unlikely(!page))
  1509. goto out_unmap;
  1510. VM_BUG_ON(PageCompound(page));
  1511. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1512. goto out_unmap;
  1513. /* cannot use mapcount: can't collapse if there's a gup pin */
  1514. if (page_count(page) != 1)
  1515. goto out_unmap;
  1516. if (pte_young(pteval))
  1517. referenced = 1;
  1518. }
  1519. if (referenced)
  1520. ret = 1;
  1521. out_unmap:
  1522. pte_unmap_unlock(pte, ptl);
  1523. if (ret) {
  1524. up_read(&mm->mmap_sem);
  1525. collapse_huge_page(mm, address, hpage);
  1526. }
  1527. out:
  1528. return ret;
  1529. }
  1530. static void collect_mm_slot(struct mm_slot *mm_slot)
  1531. {
  1532. struct mm_struct *mm = mm_slot->mm;
  1533. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1534. if (khugepaged_test_exit(mm)) {
  1535. /* free mm_slot */
  1536. hlist_del(&mm_slot->hash);
  1537. list_del(&mm_slot->mm_node);
  1538. /*
  1539. * Not strictly needed because the mm exited already.
  1540. *
  1541. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1542. */
  1543. /* khugepaged_mm_lock actually not necessary for the below */
  1544. free_mm_slot(mm_slot);
  1545. mmdrop(mm);
  1546. }
  1547. }
  1548. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1549. struct page **hpage)
  1550. {
  1551. struct mm_slot *mm_slot;
  1552. struct mm_struct *mm;
  1553. struct vm_area_struct *vma;
  1554. int progress = 0;
  1555. VM_BUG_ON(!pages);
  1556. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1557. if (khugepaged_scan.mm_slot)
  1558. mm_slot = khugepaged_scan.mm_slot;
  1559. else {
  1560. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1561. struct mm_slot, mm_node);
  1562. khugepaged_scan.address = 0;
  1563. khugepaged_scan.mm_slot = mm_slot;
  1564. }
  1565. spin_unlock(&khugepaged_mm_lock);
  1566. mm = mm_slot->mm;
  1567. down_read(&mm->mmap_sem);
  1568. if (unlikely(khugepaged_test_exit(mm)))
  1569. vma = NULL;
  1570. else
  1571. vma = find_vma(mm, khugepaged_scan.address);
  1572. progress++;
  1573. for (; vma; vma = vma->vm_next) {
  1574. unsigned long hstart, hend;
  1575. cond_resched();
  1576. if (unlikely(khugepaged_test_exit(mm))) {
  1577. progress++;
  1578. break;
  1579. }
  1580. if (!(vma->vm_flags & VM_HUGEPAGE) &&
  1581. !khugepaged_always()) {
  1582. progress++;
  1583. continue;
  1584. }
  1585. /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
  1586. if (!vma->anon_vma || vma->vm_ops || vma->vm_file) {
  1587. khugepaged_scan.address = vma->vm_end;
  1588. progress++;
  1589. continue;
  1590. }
  1591. VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
  1592. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1593. hend = vma->vm_end & HPAGE_PMD_MASK;
  1594. if (hstart >= hend) {
  1595. progress++;
  1596. continue;
  1597. }
  1598. if (khugepaged_scan.address < hstart)
  1599. khugepaged_scan.address = hstart;
  1600. if (khugepaged_scan.address > hend) {
  1601. khugepaged_scan.address = hend + HPAGE_PMD_SIZE;
  1602. progress++;
  1603. continue;
  1604. }
  1605. BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1606. while (khugepaged_scan.address < hend) {
  1607. int ret;
  1608. cond_resched();
  1609. if (unlikely(khugepaged_test_exit(mm)))
  1610. goto breakouterloop;
  1611. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1612. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1613. hend);
  1614. ret = khugepaged_scan_pmd(mm, vma,
  1615. khugepaged_scan.address,
  1616. hpage);
  1617. /* move to next address */
  1618. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1619. progress += HPAGE_PMD_NR;
  1620. if (ret)
  1621. /* we released mmap_sem so break loop */
  1622. goto breakouterloop_mmap_sem;
  1623. if (progress >= pages)
  1624. goto breakouterloop;
  1625. }
  1626. }
  1627. breakouterloop:
  1628. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1629. breakouterloop_mmap_sem:
  1630. spin_lock(&khugepaged_mm_lock);
  1631. BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1632. /*
  1633. * Release the current mm_slot if this mm is about to die, or
  1634. * if we scanned all vmas of this mm.
  1635. */
  1636. if (khugepaged_test_exit(mm) || !vma) {
  1637. /*
  1638. * Make sure that if mm_users is reaching zero while
  1639. * khugepaged runs here, khugepaged_exit will find
  1640. * mm_slot not pointing to the exiting mm.
  1641. */
  1642. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1643. khugepaged_scan.mm_slot = list_entry(
  1644. mm_slot->mm_node.next,
  1645. struct mm_slot, mm_node);
  1646. khugepaged_scan.address = 0;
  1647. } else {
  1648. khugepaged_scan.mm_slot = NULL;
  1649. khugepaged_full_scans++;
  1650. }
  1651. collect_mm_slot(mm_slot);
  1652. }
  1653. return progress;
  1654. }
  1655. static int khugepaged_has_work(void)
  1656. {
  1657. return !list_empty(&khugepaged_scan.mm_head) &&
  1658. khugepaged_enabled();
  1659. }
  1660. static int khugepaged_wait_event(void)
  1661. {
  1662. return !list_empty(&khugepaged_scan.mm_head) ||
  1663. !khugepaged_enabled();
  1664. }
  1665. static void khugepaged_do_scan(struct page **hpage)
  1666. {
  1667. unsigned int progress = 0, pass_through_head = 0;
  1668. unsigned int pages = khugepaged_pages_to_scan;
  1669. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1670. while (progress < pages) {
  1671. cond_resched();
  1672. if (!*hpage) {
  1673. *hpage = alloc_hugepage(khugepaged_defrag());
  1674. if (unlikely(!*hpage))
  1675. break;
  1676. }
  1677. spin_lock(&khugepaged_mm_lock);
  1678. if (!khugepaged_scan.mm_slot)
  1679. pass_through_head++;
  1680. if (khugepaged_has_work() &&
  1681. pass_through_head < 2)
  1682. progress += khugepaged_scan_mm_slot(pages - progress,
  1683. hpage);
  1684. else
  1685. progress = pages;
  1686. spin_unlock(&khugepaged_mm_lock);
  1687. }
  1688. }
  1689. static struct page *khugepaged_alloc_hugepage(void)
  1690. {
  1691. struct page *hpage;
  1692. do {
  1693. hpage = alloc_hugepage(khugepaged_defrag());
  1694. if (!hpage) {
  1695. DEFINE_WAIT(wait);
  1696. add_wait_queue(&khugepaged_wait, &wait);
  1697. schedule_timeout_interruptible(
  1698. msecs_to_jiffies(
  1699. khugepaged_alloc_sleep_millisecs));
  1700. remove_wait_queue(&khugepaged_wait, &wait);
  1701. }
  1702. } while (unlikely(!hpage) &&
  1703. likely(khugepaged_enabled()));
  1704. return hpage;
  1705. }
  1706. static void khugepaged_loop(void)
  1707. {
  1708. struct page *hpage;
  1709. while (likely(khugepaged_enabled())) {
  1710. hpage = khugepaged_alloc_hugepage();
  1711. if (unlikely(!hpage))
  1712. break;
  1713. khugepaged_do_scan(&hpage);
  1714. if (hpage)
  1715. put_page(hpage);
  1716. if (khugepaged_has_work()) {
  1717. DEFINE_WAIT(wait);
  1718. if (!khugepaged_scan_sleep_millisecs)
  1719. continue;
  1720. add_wait_queue(&khugepaged_wait, &wait);
  1721. schedule_timeout_interruptible(
  1722. msecs_to_jiffies(
  1723. khugepaged_scan_sleep_millisecs));
  1724. remove_wait_queue(&khugepaged_wait, &wait);
  1725. } else if (khugepaged_enabled())
  1726. wait_event_interruptible(khugepaged_wait,
  1727. khugepaged_wait_event());
  1728. }
  1729. }
  1730. static int khugepaged(void *none)
  1731. {
  1732. struct mm_slot *mm_slot;
  1733. set_user_nice(current, 19);
  1734. /* serialize with start_khugepaged() */
  1735. mutex_lock(&khugepaged_mutex);
  1736. for (;;) {
  1737. mutex_unlock(&khugepaged_mutex);
  1738. BUG_ON(khugepaged_thread != current);
  1739. khugepaged_loop();
  1740. BUG_ON(khugepaged_thread != current);
  1741. mutex_lock(&khugepaged_mutex);
  1742. if (!khugepaged_enabled())
  1743. break;
  1744. }
  1745. spin_lock(&khugepaged_mm_lock);
  1746. mm_slot = khugepaged_scan.mm_slot;
  1747. khugepaged_scan.mm_slot = NULL;
  1748. if (mm_slot)
  1749. collect_mm_slot(mm_slot);
  1750. spin_unlock(&khugepaged_mm_lock);
  1751. khugepaged_thread = NULL;
  1752. mutex_unlock(&khugepaged_mutex);
  1753. return 0;
  1754. }
  1755. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  1756. {
  1757. struct page *page;
  1758. spin_lock(&mm->page_table_lock);
  1759. if (unlikely(!pmd_trans_huge(*pmd))) {
  1760. spin_unlock(&mm->page_table_lock);
  1761. return;
  1762. }
  1763. page = pmd_page(*pmd);
  1764. VM_BUG_ON(!page_count(page));
  1765. get_page(page);
  1766. spin_unlock(&mm->page_table_lock);
  1767. split_huge_page(page);
  1768. put_page(page);
  1769. BUG_ON(pmd_trans_huge(*pmd));
  1770. }