i915_gem.c 130 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/slab.h>
  34. #include <linux/swap.h>
  35. #include <linux/pci.h>
  36. #include <linux/intel-gtt.h>
  37. static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
  38. static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  39. bool pipelined);
  40. static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
  41. static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
  42. static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
  43. int write);
  44. static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  45. uint64_t offset,
  46. uint64_t size);
  47. static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
  48. static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  49. bool interruptible);
  50. static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
  51. unsigned alignment);
  52. static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
  53. static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  54. struct drm_i915_gem_pwrite *args,
  55. struct drm_file *file_priv);
  56. static void i915_gem_free_object_tail(struct drm_gem_object *obj);
  57. static int
  58. i915_gem_object_get_pages(struct drm_gem_object *obj,
  59. gfp_t gfpmask);
  60. static void
  61. i915_gem_object_put_pages(struct drm_gem_object *obj);
  62. static LIST_HEAD(shrink_list);
  63. static DEFINE_SPINLOCK(shrink_list_lock);
  64. /* some bookkeeping */
  65. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  66. size_t size)
  67. {
  68. dev_priv->mm.object_count++;
  69. dev_priv->mm.object_memory += size;
  70. }
  71. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  72. size_t size)
  73. {
  74. dev_priv->mm.object_count--;
  75. dev_priv->mm.object_memory -= size;
  76. }
  77. static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
  78. size_t size)
  79. {
  80. dev_priv->mm.gtt_count++;
  81. dev_priv->mm.gtt_memory += size;
  82. }
  83. static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
  84. size_t size)
  85. {
  86. dev_priv->mm.gtt_count--;
  87. dev_priv->mm.gtt_memory -= size;
  88. }
  89. static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
  90. size_t size)
  91. {
  92. dev_priv->mm.pin_count++;
  93. dev_priv->mm.pin_memory += size;
  94. }
  95. static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
  96. size_t size)
  97. {
  98. dev_priv->mm.pin_count--;
  99. dev_priv->mm.pin_memory -= size;
  100. }
  101. int
  102. i915_gem_check_is_wedged(struct drm_device *dev)
  103. {
  104. struct drm_i915_private *dev_priv = dev->dev_private;
  105. struct completion *x = &dev_priv->error_completion;
  106. unsigned long flags;
  107. int ret;
  108. if (!atomic_read(&dev_priv->mm.wedged))
  109. return 0;
  110. ret = wait_for_completion_interruptible(x);
  111. if (ret)
  112. return ret;
  113. /* Success, we reset the GPU! */
  114. if (!atomic_read(&dev_priv->mm.wedged))
  115. return 0;
  116. /* GPU is hung, bump the completion count to account for
  117. * the token we just consumed so that we never hit zero and
  118. * end up waiting upon a subsequent completion event that
  119. * will never happen.
  120. */
  121. spin_lock_irqsave(&x->wait.lock, flags);
  122. x->done++;
  123. spin_unlock_irqrestore(&x->wait.lock, flags);
  124. return -EIO;
  125. }
  126. static int i915_mutex_lock_interruptible(struct drm_device *dev)
  127. {
  128. struct drm_i915_private *dev_priv = dev->dev_private;
  129. int ret;
  130. ret = i915_gem_check_is_wedged(dev);
  131. if (ret)
  132. return ret;
  133. ret = mutex_lock_interruptible(&dev->struct_mutex);
  134. if (ret)
  135. return ret;
  136. if (atomic_read(&dev_priv->mm.wedged)) {
  137. mutex_unlock(&dev->struct_mutex);
  138. return -EAGAIN;
  139. }
  140. WARN_ON(i915_verify_lists(dev));
  141. return 0;
  142. }
  143. static inline bool
  144. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
  145. {
  146. return obj_priv->gtt_space &&
  147. !obj_priv->active &&
  148. obj_priv->pin_count == 0;
  149. }
  150. int i915_gem_do_init(struct drm_device *dev,
  151. unsigned long start,
  152. unsigned long end)
  153. {
  154. drm_i915_private_t *dev_priv = dev->dev_private;
  155. if (start >= end ||
  156. (start & (PAGE_SIZE - 1)) != 0 ||
  157. (end & (PAGE_SIZE - 1)) != 0) {
  158. return -EINVAL;
  159. }
  160. drm_mm_init(&dev_priv->mm.gtt_space, start,
  161. end - start);
  162. dev_priv->mm.gtt_total = end - start;
  163. return 0;
  164. }
  165. int
  166. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  167. struct drm_file *file_priv)
  168. {
  169. struct drm_i915_gem_init *args = data;
  170. int ret;
  171. mutex_lock(&dev->struct_mutex);
  172. ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
  173. mutex_unlock(&dev->struct_mutex);
  174. return ret;
  175. }
  176. int
  177. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  178. struct drm_file *file_priv)
  179. {
  180. struct drm_i915_private *dev_priv = dev->dev_private;
  181. struct drm_i915_gem_get_aperture *args = data;
  182. if (!(dev->driver->driver_features & DRIVER_GEM))
  183. return -ENODEV;
  184. mutex_lock(&dev->struct_mutex);
  185. args->aper_size = dev_priv->mm.gtt_total;
  186. args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
  187. mutex_unlock(&dev->struct_mutex);
  188. return 0;
  189. }
  190. /**
  191. * Creates a new mm object and returns a handle to it.
  192. */
  193. int
  194. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  195. struct drm_file *file_priv)
  196. {
  197. struct drm_i915_gem_create *args = data;
  198. struct drm_gem_object *obj;
  199. int ret;
  200. u32 handle;
  201. args->size = roundup(args->size, PAGE_SIZE);
  202. /* Allocate the new object */
  203. obj = i915_gem_alloc_object(dev, args->size);
  204. if (obj == NULL)
  205. return -ENOMEM;
  206. ret = drm_gem_handle_create(file_priv, obj, &handle);
  207. if (ret) {
  208. drm_gem_object_release(obj);
  209. i915_gem_info_remove_obj(dev->dev_private, obj->size);
  210. kfree(obj);
  211. return ret;
  212. }
  213. /* drop reference from allocate - handle holds it now */
  214. drm_gem_object_unreference(obj);
  215. trace_i915_gem_object_create(obj);
  216. args->handle = handle;
  217. return 0;
  218. }
  219. static inline int
  220. fast_shmem_read(struct page **pages,
  221. loff_t page_base, int page_offset,
  222. char __user *data,
  223. int length)
  224. {
  225. char *vaddr;
  226. int ret;
  227. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  228. ret = __copy_to_user_inatomic(data, vaddr + page_offset, length);
  229. kunmap_atomic(vaddr);
  230. return ret;
  231. }
  232. static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
  233. {
  234. drm_i915_private_t *dev_priv = obj->dev->dev_private;
  235. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  236. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  237. obj_priv->tiling_mode != I915_TILING_NONE;
  238. }
  239. static inline void
  240. slow_shmem_copy(struct page *dst_page,
  241. int dst_offset,
  242. struct page *src_page,
  243. int src_offset,
  244. int length)
  245. {
  246. char *dst_vaddr, *src_vaddr;
  247. dst_vaddr = kmap(dst_page);
  248. src_vaddr = kmap(src_page);
  249. memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
  250. kunmap(src_page);
  251. kunmap(dst_page);
  252. }
  253. static inline void
  254. slow_shmem_bit17_copy(struct page *gpu_page,
  255. int gpu_offset,
  256. struct page *cpu_page,
  257. int cpu_offset,
  258. int length,
  259. int is_read)
  260. {
  261. char *gpu_vaddr, *cpu_vaddr;
  262. /* Use the unswizzled path if this page isn't affected. */
  263. if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
  264. if (is_read)
  265. return slow_shmem_copy(cpu_page, cpu_offset,
  266. gpu_page, gpu_offset, length);
  267. else
  268. return slow_shmem_copy(gpu_page, gpu_offset,
  269. cpu_page, cpu_offset, length);
  270. }
  271. gpu_vaddr = kmap(gpu_page);
  272. cpu_vaddr = kmap(cpu_page);
  273. /* Copy the data, XORing A6 with A17 (1). The user already knows he's
  274. * XORing with the other bits (A9 for Y, A9 and A10 for X)
  275. */
  276. while (length > 0) {
  277. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  278. int this_length = min(cacheline_end - gpu_offset, length);
  279. int swizzled_gpu_offset = gpu_offset ^ 64;
  280. if (is_read) {
  281. memcpy(cpu_vaddr + cpu_offset,
  282. gpu_vaddr + swizzled_gpu_offset,
  283. this_length);
  284. } else {
  285. memcpy(gpu_vaddr + swizzled_gpu_offset,
  286. cpu_vaddr + cpu_offset,
  287. this_length);
  288. }
  289. cpu_offset += this_length;
  290. gpu_offset += this_length;
  291. length -= this_length;
  292. }
  293. kunmap(cpu_page);
  294. kunmap(gpu_page);
  295. }
  296. /**
  297. * This is the fast shmem pread path, which attempts to copy_from_user directly
  298. * from the backing pages of the object to the user's address space. On a
  299. * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
  300. */
  301. static int
  302. i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
  303. struct drm_i915_gem_pread *args,
  304. struct drm_file *file_priv)
  305. {
  306. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  307. ssize_t remain;
  308. loff_t offset, page_base;
  309. char __user *user_data;
  310. int page_offset, page_length;
  311. user_data = (char __user *) (uintptr_t) args->data_ptr;
  312. remain = args->size;
  313. obj_priv = to_intel_bo(obj);
  314. offset = args->offset;
  315. while (remain > 0) {
  316. /* Operation in this page
  317. *
  318. * page_base = page offset within aperture
  319. * page_offset = offset within page
  320. * page_length = bytes to copy for this page
  321. */
  322. page_base = (offset & ~(PAGE_SIZE-1));
  323. page_offset = offset & (PAGE_SIZE-1);
  324. page_length = remain;
  325. if ((page_offset + remain) > PAGE_SIZE)
  326. page_length = PAGE_SIZE - page_offset;
  327. if (fast_shmem_read(obj_priv->pages,
  328. page_base, page_offset,
  329. user_data, page_length))
  330. return -EFAULT;
  331. remain -= page_length;
  332. user_data += page_length;
  333. offset += page_length;
  334. }
  335. return 0;
  336. }
  337. static int
  338. i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
  339. {
  340. int ret;
  341. ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
  342. /* If we've insufficient memory to map in the pages, attempt
  343. * to make some space by throwing out some old buffers.
  344. */
  345. if (ret == -ENOMEM) {
  346. struct drm_device *dev = obj->dev;
  347. ret = i915_gem_evict_something(dev, obj->size,
  348. i915_gem_get_gtt_alignment(obj));
  349. if (ret)
  350. return ret;
  351. ret = i915_gem_object_get_pages(obj, 0);
  352. }
  353. return ret;
  354. }
  355. /**
  356. * This is the fallback shmem pread path, which allocates temporary storage
  357. * in kernel space to copy_to_user into outside of the struct_mutex, so we
  358. * can copy out of the object's backing pages while holding the struct mutex
  359. * and not take page faults.
  360. */
  361. static int
  362. i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
  363. struct drm_i915_gem_pread *args,
  364. struct drm_file *file_priv)
  365. {
  366. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  367. struct mm_struct *mm = current->mm;
  368. struct page **user_pages;
  369. ssize_t remain;
  370. loff_t offset, pinned_pages, i;
  371. loff_t first_data_page, last_data_page, num_pages;
  372. int shmem_page_index, shmem_page_offset;
  373. int data_page_index, data_page_offset;
  374. int page_length;
  375. int ret;
  376. uint64_t data_ptr = args->data_ptr;
  377. int do_bit17_swizzling;
  378. remain = args->size;
  379. /* Pin the user pages containing the data. We can't fault while
  380. * holding the struct mutex, yet we want to hold it while
  381. * dereferencing the user data.
  382. */
  383. first_data_page = data_ptr / PAGE_SIZE;
  384. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  385. num_pages = last_data_page - first_data_page + 1;
  386. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  387. if (user_pages == NULL)
  388. return -ENOMEM;
  389. mutex_unlock(&dev->struct_mutex);
  390. down_read(&mm->mmap_sem);
  391. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  392. num_pages, 1, 0, user_pages, NULL);
  393. up_read(&mm->mmap_sem);
  394. mutex_lock(&dev->struct_mutex);
  395. if (pinned_pages < num_pages) {
  396. ret = -EFAULT;
  397. goto out;
  398. }
  399. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  400. args->offset,
  401. args->size);
  402. if (ret)
  403. goto out;
  404. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  405. obj_priv = to_intel_bo(obj);
  406. offset = args->offset;
  407. while (remain > 0) {
  408. /* Operation in this page
  409. *
  410. * shmem_page_index = page number within shmem file
  411. * shmem_page_offset = offset within page in shmem file
  412. * data_page_index = page number in get_user_pages return
  413. * data_page_offset = offset with data_page_index page.
  414. * page_length = bytes to copy for this page
  415. */
  416. shmem_page_index = offset / PAGE_SIZE;
  417. shmem_page_offset = offset & ~PAGE_MASK;
  418. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  419. data_page_offset = data_ptr & ~PAGE_MASK;
  420. page_length = remain;
  421. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  422. page_length = PAGE_SIZE - shmem_page_offset;
  423. if ((data_page_offset + page_length) > PAGE_SIZE)
  424. page_length = PAGE_SIZE - data_page_offset;
  425. if (do_bit17_swizzling) {
  426. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  427. shmem_page_offset,
  428. user_pages[data_page_index],
  429. data_page_offset,
  430. page_length,
  431. 1);
  432. } else {
  433. slow_shmem_copy(user_pages[data_page_index],
  434. data_page_offset,
  435. obj_priv->pages[shmem_page_index],
  436. shmem_page_offset,
  437. page_length);
  438. }
  439. remain -= page_length;
  440. data_ptr += page_length;
  441. offset += page_length;
  442. }
  443. out:
  444. for (i = 0; i < pinned_pages; i++) {
  445. SetPageDirty(user_pages[i]);
  446. page_cache_release(user_pages[i]);
  447. }
  448. drm_free_large(user_pages);
  449. return ret;
  450. }
  451. /**
  452. * Reads data from the object referenced by handle.
  453. *
  454. * On error, the contents of *data are undefined.
  455. */
  456. int
  457. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  458. struct drm_file *file_priv)
  459. {
  460. struct drm_i915_gem_pread *args = data;
  461. struct drm_gem_object *obj;
  462. struct drm_i915_gem_object *obj_priv;
  463. int ret = 0;
  464. ret = i915_mutex_lock_interruptible(dev);
  465. if (ret)
  466. return ret;
  467. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  468. if (obj == NULL) {
  469. ret = -ENOENT;
  470. goto unlock;
  471. }
  472. obj_priv = to_intel_bo(obj);
  473. /* Bounds check source. */
  474. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  475. ret = -EINVAL;
  476. goto out;
  477. }
  478. if (args->size == 0)
  479. goto out;
  480. if (!access_ok(VERIFY_WRITE,
  481. (char __user *)(uintptr_t)args->data_ptr,
  482. args->size)) {
  483. ret = -EFAULT;
  484. goto out;
  485. }
  486. ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
  487. args->size);
  488. if (ret) {
  489. ret = -EFAULT;
  490. goto out;
  491. }
  492. ret = i915_gem_object_get_pages_or_evict(obj);
  493. if (ret)
  494. goto out;
  495. ret = i915_gem_object_set_cpu_read_domain_range(obj,
  496. args->offset,
  497. args->size);
  498. if (ret)
  499. goto out_put;
  500. ret = -EFAULT;
  501. if (!i915_gem_object_needs_bit17_swizzle(obj))
  502. ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
  503. if (ret == -EFAULT)
  504. ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
  505. out_put:
  506. i915_gem_object_put_pages(obj);
  507. out:
  508. drm_gem_object_unreference(obj);
  509. unlock:
  510. mutex_unlock(&dev->struct_mutex);
  511. return ret;
  512. }
  513. /* This is the fast write path which cannot handle
  514. * page faults in the source data
  515. */
  516. static inline int
  517. fast_user_write(struct io_mapping *mapping,
  518. loff_t page_base, int page_offset,
  519. char __user *user_data,
  520. int length)
  521. {
  522. char *vaddr_atomic;
  523. unsigned long unwritten;
  524. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  525. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  526. user_data, length);
  527. io_mapping_unmap_atomic(vaddr_atomic);
  528. return unwritten;
  529. }
  530. /* Here's the write path which can sleep for
  531. * page faults
  532. */
  533. static inline void
  534. slow_kernel_write(struct io_mapping *mapping,
  535. loff_t gtt_base, int gtt_offset,
  536. struct page *user_page, int user_offset,
  537. int length)
  538. {
  539. char __iomem *dst_vaddr;
  540. char *src_vaddr;
  541. dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
  542. src_vaddr = kmap(user_page);
  543. memcpy_toio(dst_vaddr + gtt_offset,
  544. src_vaddr + user_offset,
  545. length);
  546. kunmap(user_page);
  547. io_mapping_unmap(dst_vaddr);
  548. }
  549. static inline int
  550. fast_shmem_write(struct page **pages,
  551. loff_t page_base, int page_offset,
  552. char __user *data,
  553. int length)
  554. {
  555. char *vaddr;
  556. int ret;
  557. vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT]);
  558. ret = __copy_from_user_inatomic(vaddr + page_offset, data, length);
  559. kunmap_atomic(vaddr);
  560. return ret;
  561. }
  562. /**
  563. * This is the fast pwrite path, where we copy the data directly from the
  564. * user into the GTT, uncached.
  565. */
  566. static int
  567. i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  568. struct drm_i915_gem_pwrite *args,
  569. struct drm_file *file_priv)
  570. {
  571. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  572. drm_i915_private_t *dev_priv = dev->dev_private;
  573. ssize_t remain;
  574. loff_t offset, page_base;
  575. char __user *user_data;
  576. int page_offset, page_length;
  577. user_data = (char __user *) (uintptr_t) args->data_ptr;
  578. remain = args->size;
  579. obj_priv = to_intel_bo(obj);
  580. offset = obj_priv->gtt_offset + args->offset;
  581. while (remain > 0) {
  582. /* Operation in this page
  583. *
  584. * page_base = page offset within aperture
  585. * page_offset = offset within page
  586. * page_length = bytes to copy for this page
  587. */
  588. page_base = (offset & ~(PAGE_SIZE-1));
  589. page_offset = offset & (PAGE_SIZE-1);
  590. page_length = remain;
  591. if ((page_offset + remain) > PAGE_SIZE)
  592. page_length = PAGE_SIZE - page_offset;
  593. /* If we get a fault while copying data, then (presumably) our
  594. * source page isn't available. Return the error and we'll
  595. * retry in the slow path.
  596. */
  597. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  598. page_offset, user_data, page_length))
  599. return -EFAULT;
  600. remain -= page_length;
  601. user_data += page_length;
  602. offset += page_length;
  603. }
  604. return 0;
  605. }
  606. /**
  607. * This is the fallback GTT pwrite path, which uses get_user_pages to pin
  608. * the memory and maps it using kmap_atomic for copying.
  609. *
  610. * This code resulted in x11perf -rgb10text consuming about 10% more CPU
  611. * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
  612. */
  613. static int
  614. i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  615. struct drm_i915_gem_pwrite *args,
  616. struct drm_file *file_priv)
  617. {
  618. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  619. drm_i915_private_t *dev_priv = dev->dev_private;
  620. ssize_t remain;
  621. loff_t gtt_page_base, offset;
  622. loff_t first_data_page, last_data_page, num_pages;
  623. loff_t pinned_pages, i;
  624. struct page **user_pages;
  625. struct mm_struct *mm = current->mm;
  626. int gtt_page_offset, data_page_offset, data_page_index, page_length;
  627. int ret;
  628. uint64_t data_ptr = args->data_ptr;
  629. remain = args->size;
  630. /* Pin the user pages containing the data. We can't fault while
  631. * holding the struct mutex, and all of the pwrite implementations
  632. * want to hold it while dereferencing the user data.
  633. */
  634. first_data_page = data_ptr / PAGE_SIZE;
  635. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  636. num_pages = last_data_page - first_data_page + 1;
  637. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  638. if (user_pages == NULL)
  639. return -ENOMEM;
  640. mutex_unlock(&dev->struct_mutex);
  641. down_read(&mm->mmap_sem);
  642. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  643. num_pages, 0, 0, user_pages, NULL);
  644. up_read(&mm->mmap_sem);
  645. mutex_lock(&dev->struct_mutex);
  646. if (pinned_pages < num_pages) {
  647. ret = -EFAULT;
  648. goto out_unpin_pages;
  649. }
  650. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  651. if (ret)
  652. goto out_unpin_pages;
  653. obj_priv = to_intel_bo(obj);
  654. offset = obj_priv->gtt_offset + args->offset;
  655. while (remain > 0) {
  656. /* Operation in this page
  657. *
  658. * gtt_page_base = page offset within aperture
  659. * gtt_page_offset = offset within page in aperture
  660. * data_page_index = page number in get_user_pages return
  661. * data_page_offset = offset with data_page_index page.
  662. * page_length = bytes to copy for this page
  663. */
  664. gtt_page_base = offset & PAGE_MASK;
  665. gtt_page_offset = offset & ~PAGE_MASK;
  666. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  667. data_page_offset = data_ptr & ~PAGE_MASK;
  668. page_length = remain;
  669. if ((gtt_page_offset + page_length) > PAGE_SIZE)
  670. page_length = PAGE_SIZE - gtt_page_offset;
  671. if ((data_page_offset + page_length) > PAGE_SIZE)
  672. page_length = PAGE_SIZE - data_page_offset;
  673. slow_kernel_write(dev_priv->mm.gtt_mapping,
  674. gtt_page_base, gtt_page_offset,
  675. user_pages[data_page_index],
  676. data_page_offset,
  677. page_length);
  678. remain -= page_length;
  679. offset += page_length;
  680. data_ptr += page_length;
  681. }
  682. out_unpin_pages:
  683. for (i = 0; i < pinned_pages; i++)
  684. page_cache_release(user_pages[i]);
  685. drm_free_large(user_pages);
  686. return ret;
  687. }
  688. /**
  689. * This is the fast shmem pwrite path, which attempts to directly
  690. * copy_from_user into the kmapped pages backing the object.
  691. */
  692. static int
  693. i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
  694. struct drm_i915_gem_pwrite *args,
  695. struct drm_file *file_priv)
  696. {
  697. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  698. ssize_t remain;
  699. loff_t offset, page_base;
  700. char __user *user_data;
  701. int page_offset, page_length;
  702. user_data = (char __user *) (uintptr_t) args->data_ptr;
  703. remain = args->size;
  704. obj_priv = to_intel_bo(obj);
  705. offset = args->offset;
  706. obj_priv->dirty = 1;
  707. while (remain > 0) {
  708. /* Operation in this page
  709. *
  710. * page_base = page offset within aperture
  711. * page_offset = offset within page
  712. * page_length = bytes to copy for this page
  713. */
  714. page_base = (offset & ~(PAGE_SIZE-1));
  715. page_offset = offset & (PAGE_SIZE-1);
  716. page_length = remain;
  717. if ((page_offset + remain) > PAGE_SIZE)
  718. page_length = PAGE_SIZE - page_offset;
  719. if (fast_shmem_write(obj_priv->pages,
  720. page_base, page_offset,
  721. user_data, page_length))
  722. return -EFAULT;
  723. remain -= page_length;
  724. user_data += page_length;
  725. offset += page_length;
  726. }
  727. return 0;
  728. }
  729. /**
  730. * This is the fallback shmem pwrite path, which uses get_user_pages to pin
  731. * the memory and maps it using kmap_atomic for copying.
  732. *
  733. * This avoids taking mmap_sem for faulting on the user's address while the
  734. * struct_mutex is held.
  735. */
  736. static int
  737. i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
  738. struct drm_i915_gem_pwrite *args,
  739. struct drm_file *file_priv)
  740. {
  741. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  742. struct mm_struct *mm = current->mm;
  743. struct page **user_pages;
  744. ssize_t remain;
  745. loff_t offset, pinned_pages, i;
  746. loff_t first_data_page, last_data_page, num_pages;
  747. int shmem_page_index, shmem_page_offset;
  748. int data_page_index, data_page_offset;
  749. int page_length;
  750. int ret;
  751. uint64_t data_ptr = args->data_ptr;
  752. int do_bit17_swizzling;
  753. remain = args->size;
  754. /* Pin the user pages containing the data. We can't fault while
  755. * holding the struct mutex, and all of the pwrite implementations
  756. * want to hold it while dereferencing the user data.
  757. */
  758. first_data_page = data_ptr / PAGE_SIZE;
  759. last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
  760. num_pages = last_data_page - first_data_page + 1;
  761. user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
  762. if (user_pages == NULL)
  763. return -ENOMEM;
  764. mutex_unlock(&dev->struct_mutex);
  765. down_read(&mm->mmap_sem);
  766. pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
  767. num_pages, 0, 0, user_pages, NULL);
  768. up_read(&mm->mmap_sem);
  769. mutex_lock(&dev->struct_mutex);
  770. if (pinned_pages < num_pages) {
  771. ret = -EFAULT;
  772. goto out;
  773. }
  774. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  775. if (ret)
  776. goto out;
  777. do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  778. obj_priv = to_intel_bo(obj);
  779. offset = args->offset;
  780. obj_priv->dirty = 1;
  781. while (remain > 0) {
  782. /* Operation in this page
  783. *
  784. * shmem_page_index = page number within shmem file
  785. * shmem_page_offset = offset within page in shmem file
  786. * data_page_index = page number in get_user_pages return
  787. * data_page_offset = offset with data_page_index page.
  788. * page_length = bytes to copy for this page
  789. */
  790. shmem_page_index = offset / PAGE_SIZE;
  791. shmem_page_offset = offset & ~PAGE_MASK;
  792. data_page_index = data_ptr / PAGE_SIZE - first_data_page;
  793. data_page_offset = data_ptr & ~PAGE_MASK;
  794. page_length = remain;
  795. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  796. page_length = PAGE_SIZE - shmem_page_offset;
  797. if ((data_page_offset + page_length) > PAGE_SIZE)
  798. page_length = PAGE_SIZE - data_page_offset;
  799. if (do_bit17_swizzling) {
  800. slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
  801. shmem_page_offset,
  802. user_pages[data_page_index],
  803. data_page_offset,
  804. page_length,
  805. 0);
  806. } else {
  807. slow_shmem_copy(obj_priv->pages[shmem_page_index],
  808. shmem_page_offset,
  809. user_pages[data_page_index],
  810. data_page_offset,
  811. page_length);
  812. }
  813. remain -= page_length;
  814. data_ptr += page_length;
  815. offset += page_length;
  816. }
  817. out:
  818. for (i = 0; i < pinned_pages; i++)
  819. page_cache_release(user_pages[i]);
  820. drm_free_large(user_pages);
  821. return ret;
  822. }
  823. /**
  824. * Writes data to the object referenced by handle.
  825. *
  826. * On error, the contents of the buffer that were to be modified are undefined.
  827. */
  828. int
  829. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  830. struct drm_file *file)
  831. {
  832. struct drm_i915_gem_pwrite *args = data;
  833. struct drm_gem_object *obj;
  834. struct drm_i915_gem_object *obj_priv;
  835. int ret = 0;
  836. ret = i915_mutex_lock_interruptible(dev);
  837. if (ret)
  838. return ret;
  839. obj = drm_gem_object_lookup(dev, file, args->handle);
  840. if (obj == NULL) {
  841. ret = -ENOENT;
  842. goto unlock;
  843. }
  844. obj_priv = to_intel_bo(obj);
  845. /* Bounds check destination. */
  846. if (args->offset > obj->size || args->size > obj->size - args->offset) {
  847. ret = -EINVAL;
  848. goto out;
  849. }
  850. if (args->size == 0)
  851. goto out;
  852. if (!access_ok(VERIFY_READ,
  853. (char __user *)(uintptr_t)args->data_ptr,
  854. args->size)) {
  855. ret = -EFAULT;
  856. goto out;
  857. }
  858. ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
  859. args->size);
  860. if (ret) {
  861. ret = -EFAULT;
  862. goto out;
  863. }
  864. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  865. * it would end up going through the fenced access, and we'll get
  866. * different detiling behavior between reading and writing.
  867. * pread/pwrite currently are reading and writing from the CPU
  868. * perspective, requiring manual detiling by the client.
  869. */
  870. if (obj_priv->phys_obj)
  871. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  872. else if (obj_priv->tiling_mode == I915_TILING_NONE &&
  873. obj_priv->gtt_space &&
  874. obj->write_domain != I915_GEM_DOMAIN_CPU) {
  875. ret = i915_gem_object_pin(obj, 0);
  876. if (ret)
  877. goto out;
  878. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  879. if (ret)
  880. goto out_unpin;
  881. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  882. if (ret == -EFAULT)
  883. ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
  884. out_unpin:
  885. i915_gem_object_unpin(obj);
  886. } else {
  887. ret = i915_gem_object_get_pages_or_evict(obj);
  888. if (ret)
  889. goto out;
  890. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  891. if (ret)
  892. goto out_put;
  893. ret = -EFAULT;
  894. if (!i915_gem_object_needs_bit17_swizzle(obj))
  895. ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
  896. if (ret == -EFAULT)
  897. ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
  898. out_put:
  899. i915_gem_object_put_pages(obj);
  900. }
  901. out:
  902. drm_gem_object_unreference(obj);
  903. unlock:
  904. mutex_unlock(&dev->struct_mutex);
  905. return ret;
  906. }
  907. /**
  908. * Called when user space prepares to use an object with the CPU, either
  909. * through the mmap ioctl's mapping or a GTT mapping.
  910. */
  911. int
  912. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  913. struct drm_file *file_priv)
  914. {
  915. struct drm_i915_private *dev_priv = dev->dev_private;
  916. struct drm_i915_gem_set_domain *args = data;
  917. struct drm_gem_object *obj;
  918. struct drm_i915_gem_object *obj_priv;
  919. uint32_t read_domains = args->read_domains;
  920. uint32_t write_domain = args->write_domain;
  921. int ret;
  922. if (!(dev->driver->driver_features & DRIVER_GEM))
  923. return -ENODEV;
  924. /* Only handle setting domains to types used by the CPU. */
  925. if (write_domain & I915_GEM_GPU_DOMAINS)
  926. return -EINVAL;
  927. if (read_domains & I915_GEM_GPU_DOMAINS)
  928. return -EINVAL;
  929. /* Having something in the write domain implies it's in the read
  930. * domain, and only that read domain. Enforce that in the request.
  931. */
  932. if (write_domain != 0 && read_domains != write_domain)
  933. return -EINVAL;
  934. ret = i915_mutex_lock_interruptible(dev);
  935. if (ret)
  936. return ret;
  937. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  938. if (obj == NULL) {
  939. ret = -ENOENT;
  940. goto unlock;
  941. }
  942. obj_priv = to_intel_bo(obj);
  943. intel_mark_busy(dev, obj);
  944. if (read_domains & I915_GEM_DOMAIN_GTT) {
  945. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  946. /* Update the LRU on the fence for the CPU access that's
  947. * about to occur.
  948. */
  949. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  950. struct drm_i915_fence_reg *reg =
  951. &dev_priv->fence_regs[obj_priv->fence_reg];
  952. list_move_tail(&reg->lru_list,
  953. &dev_priv->mm.fence_list);
  954. }
  955. /* Silently promote "you're not bound, there was nothing to do"
  956. * to success, since the client was just asking us to
  957. * make sure everything was done.
  958. */
  959. if (ret == -EINVAL)
  960. ret = 0;
  961. } else {
  962. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  963. }
  964. /* Maintain LRU order of "inactive" objects */
  965. if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
  966. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  967. drm_gem_object_unreference(obj);
  968. unlock:
  969. mutex_unlock(&dev->struct_mutex);
  970. return ret;
  971. }
  972. /**
  973. * Called when user space has done writes to this buffer
  974. */
  975. int
  976. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  977. struct drm_file *file_priv)
  978. {
  979. struct drm_i915_gem_sw_finish *args = data;
  980. struct drm_gem_object *obj;
  981. int ret = 0;
  982. if (!(dev->driver->driver_features & DRIVER_GEM))
  983. return -ENODEV;
  984. ret = i915_mutex_lock_interruptible(dev);
  985. if (ret)
  986. return ret;
  987. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  988. if (obj == NULL) {
  989. ret = -ENOENT;
  990. goto unlock;
  991. }
  992. /* Pinned buffers may be scanout, so flush the cache */
  993. if (to_intel_bo(obj)->pin_count)
  994. i915_gem_object_flush_cpu_write_domain(obj);
  995. drm_gem_object_unreference(obj);
  996. unlock:
  997. mutex_unlock(&dev->struct_mutex);
  998. return ret;
  999. }
  1000. /**
  1001. * Maps the contents of an object, returning the address it is mapped
  1002. * into.
  1003. *
  1004. * While the mapping holds a reference on the contents of the object, it doesn't
  1005. * imply a ref on the object itself.
  1006. */
  1007. int
  1008. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  1009. struct drm_file *file_priv)
  1010. {
  1011. struct drm_i915_gem_mmap *args = data;
  1012. struct drm_gem_object *obj;
  1013. loff_t offset;
  1014. unsigned long addr;
  1015. if (!(dev->driver->driver_features & DRIVER_GEM))
  1016. return -ENODEV;
  1017. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1018. if (obj == NULL)
  1019. return -ENOENT;
  1020. offset = args->offset;
  1021. down_write(&current->mm->mmap_sem);
  1022. addr = do_mmap(obj->filp, 0, args->size,
  1023. PROT_READ | PROT_WRITE, MAP_SHARED,
  1024. args->offset);
  1025. up_write(&current->mm->mmap_sem);
  1026. drm_gem_object_unreference_unlocked(obj);
  1027. if (IS_ERR((void *)addr))
  1028. return addr;
  1029. args->addr_ptr = (uint64_t) addr;
  1030. return 0;
  1031. }
  1032. /**
  1033. * i915_gem_fault - fault a page into the GTT
  1034. * vma: VMA in question
  1035. * vmf: fault info
  1036. *
  1037. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  1038. * from userspace. The fault handler takes care of binding the object to
  1039. * the GTT (if needed), allocating and programming a fence register (again,
  1040. * only if needed based on whether the old reg is still valid or the object
  1041. * is tiled) and inserting a new PTE into the faulting process.
  1042. *
  1043. * Note that the faulting process may involve evicting existing objects
  1044. * from the GTT and/or fence registers to make room. So performance may
  1045. * suffer if the GTT working set is large or there are few fence registers
  1046. * left.
  1047. */
  1048. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1049. {
  1050. struct drm_gem_object *obj = vma->vm_private_data;
  1051. struct drm_device *dev = obj->dev;
  1052. drm_i915_private_t *dev_priv = dev->dev_private;
  1053. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1054. pgoff_t page_offset;
  1055. unsigned long pfn;
  1056. int ret = 0;
  1057. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  1058. /* We don't use vmf->pgoff since that has the fake offset */
  1059. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  1060. PAGE_SHIFT;
  1061. /* Now bind it into the GTT if needed */
  1062. mutex_lock(&dev->struct_mutex);
  1063. if (!obj_priv->gtt_space) {
  1064. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1065. if (ret)
  1066. goto unlock;
  1067. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  1068. if (ret)
  1069. goto unlock;
  1070. }
  1071. /* Need a new fence register? */
  1072. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  1073. ret = i915_gem_object_get_fence_reg(obj, true);
  1074. if (ret)
  1075. goto unlock;
  1076. }
  1077. if (i915_gem_object_is_inactive(obj_priv))
  1078. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1079. pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
  1080. page_offset;
  1081. /* Finally, remap it using the new GTT offset */
  1082. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  1083. unlock:
  1084. mutex_unlock(&dev->struct_mutex);
  1085. switch (ret) {
  1086. case 0:
  1087. case -ERESTARTSYS:
  1088. return VM_FAULT_NOPAGE;
  1089. case -ENOMEM:
  1090. case -EAGAIN:
  1091. return VM_FAULT_OOM;
  1092. default:
  1093. return VM_FAULT_SIGBUS;
  1094. }
  1095. }
  1096. /**
  1097. * i915_gem_create_mmap_offset - create a fake mmap offset for an object
  1098. * @obj: obj in question
  1099. *
  1100. * GEM memory mapping works by handing back to userspace a fake mmap offset
  1101. * it can use in a subsequent mmap(2) call. The DRM core code then looks
  1102. * up the object based on the offset and sets up the various memory mapping
  1103. * structures.
  1104. *
  1105. * This routine allocates and attaches a fake offset for @obj.
  1106. */
  1107. static int
  1108. i915_gem_create_mmap_offset(struct drm_gem_object *obj)
  1109. {
  1110. struct drm_device *dev = obj->dev;
  1111. struct drm_gem_mm *mm = dev->mm_private;
  1112. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1113. struct drm_map_list *list;
  1114. struct drm_local_map *map;
  1115. int ret = 0;
  1116. /* Set the object up for mmap'ing */
  1117. list = &obj->map_list;
  1118. list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
  1119. if (!list->map)
  1120. return -ENOMEM;
  1121. map = list->map;
  1122. map->type = _DRM_GEM;
  1123. map->size = obj->size;
  1124. map->handle = obj;
  1125. /* Get a DRM GEM mmap offset allocated... */
  1126. list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
  1127. obj->size / PAGE_SIZE, 0, 0);
  1128. if (!list->file_offset_node) {
  1129. DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
  1130. ret = -ENOSPC;
  1131. goto out_free_list;
  1132. }
  1133. list->file_offset_node = drm_mm_get_block(list->file_offset_node,
  1134. obj->size / PAGE_SIZE, 0);
  1135. if (!list->file_offset_node) {
  1136. ret = -ENOMEM;
  1137. goto out_free_list;
  1138. }
  1139. list->hash.key = list->file_offset_node->start;
  1140. ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
  1141. if (ret) {
  1142. DRM_ERROR("failed to add to map hash\n");
  1143. goto out_free_mm;
  1144. }
  1145. /* By now we should be all set, any drm_mmap request on the offset
  1146. * below will get to our mmap & fault handler */
  1147. obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
  1148. return 0;
  1149. out_free_mm:
  1150. drm_mm_put_block(list->file_offset_node);
  1151. out_free_list:
  1152. kfree(list->map);
  1153. return ret;
  1154. }
  1155. /**
  1156. * i915_gem_release_mmap - remove physical page mappings
  1157. * @obj: obj in question
  1158. *
  1159. * Preserve the reservation of the mmapping with the DRM core code, but
  1160. * relinquish ownership of the pages back to the system.
  1161. *
  1162. * It is vital that we remove the page mapping if we have mapped a tiled
  1163. * object through the GTT and then lose the fence register due to
  1164. * resource pressure. Similarly if the object has been moved out of the
  1165. * aperture, than pages mapped into userspace must be revoked. Removing the
  1166. * mapping will then trigger a page fault on the next user access, allowing
  1167. * fixup by i915_gem_fault().
  1168. */
  1169. void
  1170. i915_gem_release_mmap(struct drm_gem_object *obj)
  1171. {
  1172. struct drm_device *dev = obj->dev;
  1173. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1174. if (dev->dev_mapping)
  1175. unmap_mapping_range(dev->dev_mapping,
  1176. obj_priv->mmap_offset, obj->size, 1);
  1177. }
  1178. static void
  1179. i915_gem_free_mmap_offset(struct drm_gem_object *obj)
  1180. {
  1181. struct drm_device *dev = obj->dev;
  1182. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1183. struct drm_gem_mm *mm = dev->mm_private;
  1184. struct drm_map_list *list;
  1185. list = &obj->map_list;
  1186. drm_ht_remove_item(&mm->offset_hash, &list->hash);
  1187. if (list->file_offset_node) {
  1188. drm_mm_put_block(list->file_offset_node);
  1189. list->file_offset_node = NULL;
  1190. }
  1191. if (list->map) {
  1192. kfree(list->map);
  1193. list->map = NULL;
  1194. }
  1195. obj_priv->mmap_offset = 0;
  1196. }
  1197. /**
  1198. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  1199. * @obj: object to check
  1200. *
  1201. * Return the required GTT alignment for an object, taking into account
  1202. * potential fence register mapping if needed.
  1203. */
  1204. static uint32_t
  1205. i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
  1206. {
  1207. struct drm_device *dev = obj->dev;
  1208. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1209. int start, i;
  1210. /*
  1211. * Minimum alignment is 4k (GTT page size), but might be greater
  1212. * if a fence register is needed for the object.
  1213. */
  1214. if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
  1215. return 4096;
  1216. /*
  1217. * Previous chips need to be aligned to the size of the smallest
  1218. * fence register that can contain the object.
  1219. */
  1220. if (INTEL_INFO(dev)->gen == 3)
  1221. start = 1024*1024;
  1222. else
  1223. start = 512*1024;
  1224. for (i = start; i < obj->size; i <<= 1)
  1225. ;
  1226. return i;
  1227. }
  1228. /**
  1229. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1230. * @dev: DRM device
  1231. * @data: GTT mapping ioctl data
  1232. * @file_priv: GEM object info
  1233. *
  1234. * Simply returns the fake offset to userspace so it can mmap it.
  1235. * The mmap call will end up in drm_gem_mmap(), which will set things
  1236. * up so we can get faults in the handler above.
  1237. *
  1238. * The fault handler will take care of binding the object into the GTT
  1239. * (since it may have been evicted to make room for something), allocating
  1240. * a fence register, and mapping the appropriate aperture address into
  1241. * userspace.
  1242. */
  1243. int
  1244. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1245. struct drm_file *file_priv)
  1246. {
  1247. struct drm_i915_gem_mmap_gtt *args = data;
  1248. struct drm_gem_object *obj;
  1249. struct drm_i915_gem_object *obj_priv;
  1250. int ret;
  1251. if (!(dev->driver->driver_features & DRIVER_GEM))
  1252. return -ENODEV;
  1253. ret = i915_mutex_lock_interruptible(dev);
  1254. if (ret)
  1255. return ret;
  1256. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  1257. if (obj == NULL) {
  1258. ret = -ENOENT;
  1259. goto unlock;
  1260. }
  1261. obj_priv = to_intel_bo(obj);
  1262. if (obj_priv->madv != I915_MADV_WILLNEED) {
  1263. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1264. ret = -EINVAL;
  1265. goto out;
  1266. }
  1267. if (!obj_priv->mmap_offset) {
  1268. ret = i915_gem_create_mmap_offset(obj);
  1269. if (ret)
  1270. goto out;
  1271. }
  1272. args->offset = obj_priv->mmap_offset;
  1273. /*
  1274. * Pull it into the GTT so that we have a page list (makes the
  1275. * initial fault faster and any subsequent flushing possible).
  1276. */
  1277. if (!obj_priv->agp_mem) {
  1278. ret = i915_gem_object_bind_to_gtt(obj, 0);
  1279. if (ret)
  1280. goto out;
  1281. }
  1282. out:
  1283. drm_gem_object_unreference(obj);
  1284. unlock:
  1285. mutex_unlock(&dev->struct_mutex);
  1286. return ret;
  1287. }
  1288. static void
  1289. i915_gem_object_put_pages(struct drm_gem_object *obj)
  1290. {
  1291. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1292. int page_count = obj->size / PAGE_SIZE;
  1293. int i;
  1294. BUG_ON(obj_priv->pages_refcount == 0);
  1295. BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
  1296. if (--obj_priv->pages_refcount != 0)
  1297. return;
  1298. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1299. i915_gem_object_save_bit_17_swizzle(obj);
  1300. if (obj_priv->madv == I915_MADV_DONTNEED)
  1301. obj_priv->dirty = 0;
  1302. for (i = 0; i < page_count; i++) {
  1303. if (obj_priv->dirty)
  1304. set_page_dirty(obj_priv->pages[i]);
  1305. if (obj_priv->madv == I915_MADV_WILLNEED)
  1306. mark_page_accessed(obj_priv->pages[i]);
  1307. page_cache_release(obj_priv->pages[i]);
  1308. }
  1309. obj_priv->dirty = 0;
  1310. drm_free_large(obj_priv->pages);
  1311. obj_priv->pages = NULL;
  1312. }
  1313. static uint32_t
  1314. i915_gem_next_request_seqno(struct drm_device *dev,
  1315. struct intel_ring_buffer *ring)
  1316. {
  1317. drm_i915_private_t *dev_priv = dev->dev_private;
  1318. ring->outstanding_lazy_request = true;
  1319. return dev_priv->next_seqno;
  1320. }
  1321. static void
  1322. i915_gem_object_move_to_active(struct drm_gem_object *obj,
  1323. struct intel_ring_buffer *ring)
  1324. {
  1325. struct drm_device *dev = obj->dev;
  1326. struct drm_i915_private *dev_priv = dev->dev_private;
  1327. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1328. uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
  1329. BUG_ON(ring == NULL);
  1330. obj_priv->ring = ring;
  1331. /* Add a reference if we're newly entering the active list. */
  1332. if (!obj_priv->active) {
  1333. drm_gem_object_reference(obj);
  1334. obj_priv->active = 1;
  1335. }
  1336. /* Move from whatever list we were on to the tail of execution. */
  1337. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
  1338. list_move_tail(&obj_priv->ring_list, &ring->active_list);
  1339. obj_priv->last_rendering_seqno = seqno;
  1340. }
  1341. static void
  1342. i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
  1343. {
  1344. struct drm_device *dev = obj->dev;
  1345. drm_i915_private_t *dev_priv = dev->dev_private;
  1346. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1347. BUG_ON(!obj_priv->active);
  1348. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
  1349. list_del_init(&obj_priv->ring_list);
  1350. obj_priv->last_rendering_seqno = 0;
  1351. }
  1352. /* Immediately discard the backing storage */
  1353. static void
  1354. i915_gem_object_truncate(struct drm_gem_object *obj)
  1355. {
  1356. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1357. struct inode *inode;
  1358. /* Our goal here is to return as much of the memory as
  1359. * is possible back to the system as we are called from OOM.
  1360. * To do this we must instruct the shmfs to drop all of its
  1361. * backing pages, *now*. Here we mirror the actions taken
  1362. * when by shmem_delete_inode() to release the backing store.
  1363. */
  1364. inode = obj->filp->f_path.dentry->d_inode;
  1365. truncate_inode_pages(inode->i_mapping, 0);
  1366. if (inode->i_op->truncate_range)
  1367. inode->i_op->truncate_range(inode, 0, (loff_t)-1);
  1368. obj_priv->madv = __I915_MADV_PURGED;
  1369. }
  1370. static inline int
  1371. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
  1372. {
  1373. return obj_priv->madv == I915_MADV_DONTNEED;
  1374. }
  1375. static void
  1376. i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
  1377. {
  1378. struct drm_device *dev = obj->dev;
  1379. drm_i915_private_t *dev_priv = dev->dev_private;
  1380. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1381. if (obj_priv->pin_count != 0)
  1382. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
  1383. else
  1384. list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  1385. list_del_init(&obj_priv->ring_list);
  1386. BUG_ON(!list_empty(&obj_priv->gpu_write_list));
  1387. obj_priv->last_rendering_seqno = 0;
  1388. obj_priv->ring = NULL;
  1389. if (obj_priv->active) {
  1390. obj_priv->active = 0;
  1391. drm_gem_object_unreference(obj);
  1392. }
  1393. WARN_ON(i915_verify_lists(dev));
  1394. }
  1395. static void
  1396. i915_gem_process_flushing_list(struct drm_device *dev,
  1397. uint32_t flush_domains,
  1398. struct intel_ring_buffer *ring)
  1399. {
  1400. drm_i915_private_t *dev_priv = dev->dev_private;
  1401. struct drm_i915_gem_object *obj_priv, *next;
  1402. list_for_each_entry_safe(obj_priv, next,
  1403. &ring->gpu_write_list,
  1404. gpu_write_list) {
  1405. struct drm_gem_object *obj = &obj_priv->base;
  1406. if (obj->write_domain & flush_domains) {
  1407. uint32_t old_write_domain = obj->write_domain;
  1408. obj->write_domain = 0;
  1409. list_del_init(&obj_priv->gpu_write_list);
  1410. i915_gem_object_move_to_active(obj, ring);
  1411. /* update the fence lru list */
  1412. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  1413. struct drm_i915_fence_reg *reg =
  1414. &dev_priv->fence_regs[obj_priv->fence_reg];
  1415. list_move_tail(&reg->lru_list,
  1416. &dev_priv->mm.fence_list);
  1417. }
  1418. trace_i915_gem_object_change_domain(obj,
  1419. obj->read_domains,
  1420. old_write_domain);
  1421. }
  1422. }
  1423. }
  1424. uint32_t
  1425. i915_add_request(struct drm_device *dev,
  1426. struct drm_file *file,
  1427. struct drm_i915_gem_request *request,
  1428. struct intel_ring_buffer *ring)
  1429. {
  1430. drm_i915_private_t *dev_priv = dev->dev_private;
  1431. struct drm_i915_file_private *file_priv = NULL;
  1432. uint32_t seqno;
  1433. int was_empty;
  1434. if (file != NULL)
  1435. file_priv = file->driver_priv;
  1436. if (request == NULL) {
  1437. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1438. if (request == NULL)
  1439. return 0;
  1440. }
  1441. seqno = ring->add_request(dev, ring, 0);
  1442. ring->outstanding_lazy_request = false;
  1443. request->seqno = seqno;
  1444. request->ring = ring;
  1445. request->emitted_jiffies = jiffies;
  1446. was_empty = list_empty(&ring->request_list);
  1447. list_add_tail(&request->list, &ring->request_list);
  1448. if (file_priv) {
  1449. spin_lock(&file_priv->mm.lock);
  1450. request->file_priv = file_priv;
  1451. list_add_tail(&request->client_list,
  1452. &file_priv->mm.request_list);
  1453. spin_unlock(&file_priv->mm.lock);
  1454. }
  1455. if (!dev_priv->mm.suspended) {
  1456. mod_timer(&dev_priv->hangcheck_timer,
  1457. jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1458. if (was_empty)
  1459. queue_delayed_work(dev_priv->wq,
  1460. &dev_priv->mm.retire_work, HZ);
  1461. }
  1462. return seqno;
  1463. }
  1464. /**
  1465. * Command execution barrier
  1466. *
  1467. * Ensures that all commands in the ring are finished
  1468. * before signalling the CPU
  1469. */
  1470. static void
  1471. i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
  1472. {
  1473. uint32_t flush_domains = 0;
  1474. /* The sampler always gets flushed on i965 (sigh) */
  1475. if (INTEL_INFO(dev)->gen >= 4)
  1476. flush_domains |= I915_GEM_DOMAIN_SAMPLER;
  1477. ring->flush(dev, ring,
  1478. I915_GEM_DOMAIN_COMMAND, flush_domains);
  1479. }
  1480. static inline void
  1481. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1482. {
  1483. struct drm_i915_file_private *file_priv = request->file_priv;
  1484. if (!file_priv)
  1485. return;
  1486. spin_lock(&file_priv->mm.lock);
  1487. list_del(&request->client_list);
  1488. request->file_priv = NULL;
  1489. spin_unlock(&file_priv->mm.lock);
  1490. }
  1491. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1492. struct intel_ring_buffer *ring)
  1493. {
  1494. while (!list_empty(&ring->request_list)) {
  1495. struct drm_i915_gem_request *request;
  1496. request = list_first_entry(&ring->request_list,
  1497. struct drm_i915_gem_request,
  1498. list);
  1499. list_del(&request->list);
  1500. i915_gem_request_remove_from_client(request);
  1501. kfree(request);
  1502. }
  1503. while (!list_empty(&ring->active_list)) {
  1504. struct drm_i915_gem_object *obj_priv;
  1505. obj_priv = list_first_entry(&ring->active_list,
  1506. struct drm_i915_gem_object,
  1507. ring_list);
  1508. obj_priv->base.write_domain = 0;
  1509. list_del_init(&obj_priv->gpu_write_list);
  1510. i915_gem_object_move_to_inactive(&obj_priv->base);
  1511. }
  1512. }
  1513. void i915_gem_reset(struct drm_device *dev)
  1514. {
  1515. struct drm_i915_private *dev_priv = dev->dev_private;
  1516. struct drm_i915_gem_object *obj_priv;
  1517. int i;
  1518. i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
  1519. i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
  1520. i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
  1521. /* Remove anything from the flushing lists. The GPU cache is likely
  1522. * to be lost on reset along with the data, so simply move the
  1523. * lost bo to the inactive list.
  1524. */
  1525. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1526. obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
  1527. struct drm_i915_gem_object,
  1528. mm_list);
  1529. obj_priv->base.write_domain = 0;
  1530. list_del_init(&obj_priv->gpu_write_list);
  1531. i915_gem_object_move_to_inactive(&obj_priv->base);
  1532. }
  1533. /* Move everything out of the GPU domains to ensure we do any
  1534. * necessary invalidation upon reuse.
  1535. */
  1536. list_for_each_entry(obj_priv,
  1537. &dev_priv->mm.inactive_list,
  1538. mm_list)
  1539. {
  1540. obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1541. }
  1542. /* The fence registers are invalidated so clear them out */
  1543. for (i = 0; i < 16; i++) {
  1544. struct drm_i915_fence_reg *reg;
  1545. reg = &dev_priv->fence_regs[i];
  1546. if (!reg->obj)
  1547. continue;
  1548. i915_gem_clear_fence_reg(reg->obj);
  1549. }
  1550. }
  1551. /**
  1552. * This function clears the request list as sequence numbers are passed.
  1553. */
  1554. static void
  1555. i915_gem_retire_requests_ring(struct drm_device *dev,
  1556. struct intel_ring_buffer *ring)
  1557. {
  1558. drm_i915_private_t *dev_priv = dev->dev_private;
  1559. uint32_t seqno;
  1560. if (!ring->status_page.page_addr ||
  1561. list_empty(&ring->request_list))
  1562. return;
  1563. WARN_ON(i915_verify_lists(dev));
  1564. seqno = ring->get_seqno(dev, ring);
  1565. while (!list_empty(&ring->request_list)) {
  1566. struct drm_i915_gem_request *request;
  1567. request = list_first_entry(&ring->request_list,
  1568. struct drm_i915_gem_request,
  1569. list);
  1570. if (!i915_seqno_passed(seqno, request->seqno))
  1571. break;
  1572. trace_i915_gem_request_retire(dev, request->seqno);
  1573. list_del(&request->list);
  1574. i915_gem_request_remove_from_client(request);
  1575. kfree(request);
  1576. }
  1577. /* Move any buffers on the active list that are no longer referenced
  1578. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1579. */
  1580. while (!list_empty(&ring->active_list)) {
  1581. struct drm_gem_object *obj;
  1582. struct drm_i915_gem_object *obj_priv;
  1583. obj_priv = list_first_entry(&ring->active_list,
  1584. struct drm_i915_gem_object,
  1585. ring_list);
  1586. if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
  1587. break;
  1588. obj = &obj_priv->base;
  1589. if (obj->write_domain != 0)
  1590. i915_gem_object_move_to_flushing(obj);
  1591. else
  1592. i915_gem_object_move_to_inactive(obj);
  1593. }
  1594. if (unlikely (dev_priv->trace_irq_seqno &&
  1595. i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
  1596. ring->user_irq_put(dev, ring);
  1597. dev_priv->trace_irq_seqno = 0;
  1598. }
  1599. WARN_ON(i915_verify_lists(dev));
  1600. }
  1601. void
  1602. i915_gem_retire_requests(struct drm_device *dev)
  1603. {
  1604. drm_i915_private_t *dev_priv = dev->dev_private;
  1605. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1606. struct drm_i915_gem_object *obj_priv, *tmp;
  1607. /* We must be careful that during unbind() we do not
  1608. * accidentally infinitely recurse into retire requests.
  1609. * Currently:
  1610. * retire -> free -> unbind -> wait -> retire_ring
  1611. */
  1612. list_for_each_entry_safe(obj_priv, tmp,
  1613. &dev_priv->mm.deferred_free_list,
  1614. mm_list)
  1615. i915_gem_free_object_tail(&obj_priv->base);
  1616. }
  1617. i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
  1618. i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
  1619. i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
  1620. }
  1621. static void
  1622. i915_gem_retire_work_handler(struct work_struct *work)
  1623. {
  1624. drm_i915_private_t *dev_priv;
  1625. struct drm_device *dev;
  1626. dev_priv = container_of(work, drm_i915_private_t,
  1627. mm.retire_work.work);
  1628. dev = dev_priv->dev;
  1629. /* Come back later if the device is busy... */
  1630. if (!mutex_trylock(&dev->struct_mutex)) {
  1631. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1632. return;
  1633. }
  1634. i915_gem_retire_requests(dev);
  1635. if (!dev_priv->mm.suspended &&
  1636. (!list_empty(&dev_priv->render_ring.request_list) ||
  1637. !list_empty(&dev_priv->bsd_ring.request_list) ||
  1638. !list_empty(&dev_priv->blt_ring.request_list)))
  1639. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1640. mutex_unlock(&dev->struct_mutex);
  1641. }
  1642. int
  1643. i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
  1644. bool interruptible, struct intel_ring_buffer *ring)
  1645. {
  1646. drm_i915_private_t *dev_priv = dev->dev_private;
  1647. u32 ier;
  1648. int ret = 0;
  1649. BUG_ON(seqno == 0);
  1650. if (atomic_read(&dev_priv->mm.wedged))
  1651. return -EAGAIN;
  1652. if (ring->outstanding_lazy_request) {
  1653. seqno = i915_add_request(dev, NULL, NULL, ring);
  1654. if (seqno == 0)
  1655. return -ENOMEM;
  1656. }
  1657. BUG_ON(seqno == dev_priv->next_seqno);
  1658. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  1659. if (HAS_PCH_SPLIT(dev))
  1660. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1661. else
  1662. ier = I915_READ(IER);
  1663. if (!ier) {
  1664. DRM_ERROR("something (likely vbetool) disabled "
  1665. "interrupts, re-enabling\n");
  1666. i915_driver_irq_preinstall(dev);
  1667. i915_driver_irq_postinstall(dev);
  1668. }
  1669. trace_i915_gem_request_wait_begin(dev, seqno);
  1670. ring->waiting_gem_seqno = seqno;
  1671. ring->user_irq_get(dev, ring);
  1672. if (interruptible)
  1673. ret = wait_event_interruptible(ring->irq_queue,
  1674. i915_seqno_passed(
  1675. ring->get_seqno(dev, ring), seqno)
  1676. || atomic_read(&dev_priv->mm.wedged));
  1677. else
  1678. wait_event(ring->irq_queue,
  1679. i915_seqno_passed(
  1680. ring->get_seqno(dev, ring), seqno)
  1681. || atomic_read(&dev_priv->mm.wedged));
  1682. ring->user_irq_put(dev, ring);
  1683. ring->waiting_gem_seqno = 0;
  1684. trace_i915_gem_request_wait_end(dev, seqno);
  1685. }
  1686. if (atomic_read(&dev_priv->mm.wedged))
  1687. ret = -EAGAIN;
  1688. if (ret && ret != -ERESTARTSYS)
  1689. DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
  1690. __func__, ret, seqno, ring->get_seqno(dev, ring),
  1691. dev_priv->next_seqno);
  1692. /* Directly dispatch request retiring. While we have the work queue
  1693. * to handle this, the waiter on a request often wants an associated
  1694. * buffer to have made it to the inactive list, and we would need
  1695. * a separate wait queue to handle that.
  1696. */
  1697. if (ret == 0)
  1698. i915_gem_retire_requests_ring(dev, ring);
  1699. return ret;
  1700. }
  1701. /**
  1702. * Waits for a sequence number to be signaled, and cleans up the
  1703. * request and object lists appropriately for that event.
  1704. */
  1705. static int
  1706. i915_wait_request(struct drm_device *dev, uint32_t seqno,
  1707. struct intel_ring_buffer *ring)
  1708. {
  1709. return i915_do_wait_request(dev, seqno, 1, ring);
  1710. }
  1711. static void
  1712. i915_gem_flush_ring(struct drm_device *dev,
  1713. struct drm_file *file_priv,
  1714. struct intel_ring_buffer *ring,
  1715. uint32_t invalidate_domains,
  1716. uint32_t flush_domains)
  1717. {
  1718. ring->flush(dev, ring, invalidate_domains, flush_domains);
  1719. i915_gem_process_flushing_list(dev, flush_domains, ring);
  1720. }
  1721. static void
  1722. i915_gem_flush(struct drm_device *dev,
  1723. struct drm_file *file_priv,
  1724. uint32_t invalidate_domains,
  1725. uint32_t flush_domains,
  1726. uint32_t flush_rings)
  1727. {
  1728. drm_i915_private_t *dev_priv = dev->dev_private;
  1729. if (flush_domains & I915_GEM_DOMAIN_CPU)
  1730. drm_agp_chipset_flush(dev);
  1731. if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
  1732. if (flush_rings & RING_RENDER)
  1733. i915_gem_flush_ring(dev, file_priv,
  1734. &dev_priv->render_ring,
  1735. invalidate_domains, flush_domains);
  1736. if (flush_rings & RING_BSD)
  1737. i915_gem_flush_ring(dev, file_priv,
  1738. &dev_priv->bsd_ring,
  1739. invalidate_domains, flush_domains);
  1740. if (flush_rings & RING_BLT)
  1741. i915_gem_flush_ring(dev, file_priv,
  1742. &dev_priv->blt_ring,
  1743. invalidate_domains, flush_domains);
  1744. }
  1745. }
  1746. /**
  1747. * Ensures that all rendering to the object has completed and the object is
  1748. * safe to unbind from the GTT or access from the CPU.
  1749. */
  1750. static int
  1751. i915_gem_object_wait_rendering(struct drm_gem_object *obj,
  1752. bool interruptible)
  1753. {
  1754. struct drm_device *dev = obj->dev;
  1755. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1756. int ret;
  1757. /* This function only exists to support waiting for existing rendering,
  1758. * not for emitting required flushes.
  1759. */
  1760. BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1761. /* If there is rendering queued on the buffer being evicted, wait for
  1762. * it.
  1763. */
  1764. if (obj_priv->active) {
  1765. ret = i915_do_wait_request(dev,
  1766. obj_priv->last_rendering_seqno,
  1767. interruptible,
  1768. obj_priv->ring);
  1769. if (ret)
  1770. return ret;
  1771. }
  1772. return 0;
  1773. }
  1774. /**
  1775. * Unbinds an object from the GTT aperture.
  1776. */
  1777. int
  1778. i915_gem_object_unbind(struct drm_gem_object *obj)
  1779. {
  1780. struct drm_device *dev = obj->dev;
  1781. struct drm_i915_private *dev_priv = dev->dev_private;
  1782. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1783. int ret = 0;
  1784. if (obj_priv->gtt_space == NULL)
  1785. return 0;
  1786. if (obj_priv->pin_count != 0) {
  1787. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1788. return -EINVAL;
  1789. }
  1790. /* blow away mappings if mapped through GTT */
  1791. i915_gem_release_mmap(obj);
  1792. /* Move the object to the CPU domain to ensure that
  1793. * any possible CPU writes while it's not in the GTT
  1794. * are flushed when we go to remap it. This will
  1795. * also ensure that all pending GPU writes are finished
  1796. * before we unbind.
  1797. */
  1798. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1799. if (ret == -ERESTARTSYS)
  1800. return ret;
  1801. /* Continue on if we fail due to EIO, the GPU is hung so we
  1802. * should be safe and we need to cleanup or else we might
  1803. * cause memory corruption through use-after-free.
  1804. */
  1805. if (ret) {
  1806. i915_gem_clflush_object(obj);
  1807. obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
  1808. }
  1809. /* release the fence reg _after_ flushing */
  1810. if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
  1811. i915_gem_clear_fence_reg(obj);
  1812. drm_unbind_agp(obj_priv->agp_mem);
  1813. drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
  1814. i915_gem_object_put_pages(obj);
  1815. BUG_ON(obj_priv->pages_refcount);
  1816. i915_gem_info_remove_gtt(dev_priv, obj->size);
  1817. list_del_init(&obj_priv->mm_list);
  1818. drm_mm_put_block(obj_priv->gtt_space);
  1819. obj_priv->gtt_space = NULL;
  1820. obj_priv->gtt_offset = 0;
  1821. if (i915_gem_object_is_purgeable(obj_priv))
  1822. i915_gem_object_truncate(obj);
  1823. trace_i915_gem_object_unbind(obj);
  1824. return ret;
  1825. }
  1826. static int i915_ring_idle(struct drm_device *dev,
  1827. struct intel_ring_buffer *ring)
  1828. {
  1829. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1830. return 0;
  1831. i915_gem_flush_ring(dev, NULL, ring,
  1832. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1833. return i915_wait_request(dev,
  1834. i915_gem_next_request_seqno(dev, ring),
  1835. ring);
  1836. }
  1837. int
  1838. i915_gpu_idle(struct drm_device *dev)
  1839. {
  1840. drm_i915_private_t *dev_priv = dev->dev_private;
  1841. bool lists_empty;
  1842. int ret;
  1843. lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
  1844. list_empty(&dev_priv->mm.active_list));
  1845. if (lists_empty)
  1846. return 0;
  1847. /* Flush everything onto the inactive list. */
  1848. ret = i915_ring_idle(dev, &dev_priv->render_ring);
  1849. if (ret)
  1850. return ret;
  1851. ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
  1852. if (ret)
  1853. return ret;
  1854. ret = i915_ring_idle(dev, &dev_priv->blt_ring);
  1855. if (ret)
  1856. return ret;
  1857. return 0;
  1858. }
  1859. static int
  1860. i915_gem_object_get_pages(struct drm_gem_object *obj,
  1861. gfp_t gfpmask)
  1862. {
  1863. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1864. int page_count, i;
  1865. struct address_space *mapping;
  1866. struct inode *inode;
  1867. struct page *page;
  1868. BUG_ON(obj_priv->pages_refcount
  1869. == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
  1870. if (obj_priv->pages_refcount++ != 0)
  1871. return 0;
  1872. /* Get the list of pages out of our struct file. They'll be pinned
  1873. * at this point until we release them.
  1874. */
  1875. page_count = obj->size / PAGE_SIZE;
  1876. BUG_ON(obj_priv->pages != NULL);
  1877. obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
  1878. if (obj_priv->pages == NULL) {
  1879. obj_priv->pages_refcount--;
  1880. return -ENOMEM;
  1881. }
  1882. inode = obj->filp->f_path.dentry->d_inode;
  1883. mapping = inode->i_mapping;
  1884. for (i = 0; i < page_count; i++) {
  1885. page = read_cache_page_gfp(mapping, i,
  1886. GFP_HIGHUSER |
  1887. __GFP_COLD |
  1888. __GFP_RECLAIMABLE |
  1889. gfpmask);
  1890. if (IS_ERR(page))
  1891. goto err_pages;
  1892. obj_priv->pages[i] = page;
  1893. }
  1894. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1895. i915_gem_object_do_bit_17_swizzle(obj);
  1896. return 0;
  1897. err_pages:
  1898. while (i--)
  1899. page_cache_release(obj_priv->pages[i]);
  1900. drm_free_large(obj_priv->pages);
  1901. obj_priv->pages = NULL;
  1902. obj_priv->pages_refcount--;
  1903. return PTR_ERR(page);
  1904. }
  1905. static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
  1906. {
  1907. struct drm_gem_object *obj = reg->obj;
  1908. struct drm_device *dev = obj->dev;
  1909. drm_i915_private_t *dev_priv = dev->dev_private;
  1910. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1911. int regnum = obj_priv->fence_reg;
  1912. uint64_t val;
  1913. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1914. 0xfffff000) << 32;
  1915. val |= obj_priv->gtt_offset & 0xfffff000;
  1916. val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
  1917. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1918. if (obj_priv->tiling_mode == I915_TILING_Y)
  1919. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1920. val |= I965_FENCE_REG_VALID;
  1921. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
  1922. }
  1923. static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
  1924. {
  1925. struct drm_gem_object *obj = reg->obj;
  1926. struct drm_device *dev = obj->dev;
  1927. drm_i915_private_t *dev_priv = dev->dev_private;
  1928. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1929. int regnum = obj_priv->fence_reg;
  1930. uint64_t val;
  1931. val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
  1932. 0xfffff000) << 32;
  1933. val |= obj_priv->gtt_offset & 0xfffff000;
  1934. val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1935. if (obj_priv->tiling_mode == I915_TILING_Y)
  1936. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1937. val |= I965_FENCE_REG_VALID;
  1938. I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
  1939. }
  1940. static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
  1941. {
  1942. struct drm_gem_object *obj = reg->obj;
  1943. struct drm_device *dev = obj->dev;
  1944. drm_i915_private_t *dev_priv = dev->dev_private;
  1945. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1946. int regnum = obj_priv->fence_reg;
  1947. int tile_width;
  1948. uint32_t fence_reg, val;
  1949. uint32_t pitch_val;
  1950. if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
  1951. (obj_priv->gtt_offset & (obj->size - 1))) {
  1952. WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
  1953. __func__, obj_priv->gtt_offset, obj->size);
  1954. return;
  1955. }
  1956. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1957. HAS_128_BYTE_Y_TILING(dev))
  1958. tile_width = 128;
  1959. else
  1960. tile_width = 512;
  1961. /* Note: pitch better be a power of two tile widths */
  1962. pitch_val = obj_priv->stride / tile_width;
  1963. pitch_val = ffs(pitch_val) - 1;
  1964. if (obj_priv->tiling_mode == I915_TILING_Y &&
  1965. HAS_128_BYTE_Y_TILING(dev))
  1966. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  1967. else
  1968. WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
  1969. val = obj_priv->gtt_offset;
  1970. if (obj_priv->tiling_mode == I915_TILING_Y)
  1971. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1972. val |= I915_FENCE_SIZE_BITS(obj->size);
  1973. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1974. val |= I830_FENCE_REG_VALID;
  1975. if (regnum < 8)
  1976. fence_reg = FENCE_REG_830_0 + (regnum * 4);
  1977. else
  1978. fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
  1979. I915_WRITE(fence_reg, val);
  1980. }
  1981. static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
  1982. {
  1983. struct drm_gem_object *obj = reg->obj;
  1984. struct drm_device *dev = obj->dev;
  1985. drm_i915_private_t *dev_priv = dev->dev_private;
  1986. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  1987. int regnum = obj_priv->fence_reg;
  1988. uint32_t val;
  1989. uint32_t pitch_val;
  1990. uint32_t fence_size_bits;
  1991. if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
  1992. (obj_priv->gtt_offset & (obj->size - 1))) {
  1993. WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
  1994. __func__, obj_priv->gtt_offset);
  1995. return;
  1996. }
  1997. pitch_val = obj_priv->stride / 128;
  1998. pitch_val = ffs(pitch_val) - 1;
  1999. WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
  2000. val = obj_priv->gtt_offset;
  2001. if (obj_priv->tiling_mode == I915_TILING_Y)
  2002. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  2003. fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
  2004. WARN_ON(fence_size_bits & ~0x00000f00);
  2005. val |= fence_size_bits;
  2006. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  2007. val |= I830_FENCE_REG_VALID;
  2008. I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
  2009. }
  2010. static int i915_find_fence_reg(struct drm_device *dev,
  2011. bool interruptible)
  2012. {
  2013. struct drm_i915_fence_reg *reg = NULL;
  2014. struct drm_i915_gem_object *obj_priv = NULL;
  2015. struct drm_i915_private *dev_priv = dev->dev_private;
  2016. struct drm_gem_object *obj = NULL;
  2017. int i, avail, ret;
  2018. /* First try to find a free reg */
  2019. avail = 0;
  2020. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2021. reg = &dev_priv->fence_regs[i];
  2022. if (!reg->obj)
  2023. return i;
  2024. obj_priv = to_intel_bo(reg->obj);
  2025. if (!obj_priv->pin_count)
  2026. avail++;
  2027. }
  2028. if (avail == 0)
  2029. return -ENOSPC;
  2030. /* None available, try to steal one or wait for a user to finish */
  2031. i = I915_FENCE_REG_NONE;
  2032. list_for_each_entry(reg, &dev_priv->mm.fence_list,
  2033. lru_list) {
  2034. obj = reg->obj;
  2035. obj_priv = to_intel_bo(obj);
  2036. if (obj_priv->pin_count)
  2037. continue;
  2038. /* found one! */
  2039. i = obj_priv->fence_reg;
  2040. break;
  2041. }
  2042. BUG_ON(i == I915_FENCE_REG_NONE);
  2043. /* We only have a reference on obj from the active list. put_fence_reg
  2044. * might drop that one, causing a use-after-free in it. So hold a
  2045. * private reference to obj like the other callers of put_fence_reg
  2046. * (set_tiling ioctl) do. */
  2047. drm_gem_object_reference(obj);
  2048. ret = i915_gem_object_put_fence_reg(obj, interruptible);
  2049. drm_gem_object_unreference(obj);
  2050. if (ret != 0)
  2051. return ret;
  2052. return i;
  2053. }
  2054. /**
  2055. * i915_gem_object_get_fence_reg - set up a fence reg for an object
  2056. * @obj: object to map through a fence reg
  2057. *
  2058. * When mapping objects through the GTT, userspace wants to be able to write
  2059. * to them without having to worry about swizzling if the object is tiled.
  2060. *
  2061. * This function walks the fence regs looking for a free one for @obj,
  2062. * stealing one if it can't find any.
  2063. *
  2064. * It then sets up the reg based on the object's properties: address, pitch
  2065. * and tiling format.
  2066. */
  2067. int
  2068. i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
  2069. bool interruptible)
  2070. {
  2071. struct drm_device *dev = obj->dev;
  2072. struct drm_i915_private *dev_priv = dev->dev_private;
  2073. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2074. struct drm_i915_fence_reg *reg = NULL;
  2075. int ret;
  2076. /* Just update our place in the LRU if our fence is getting used. */
  2077. if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
  2078. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2079. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2080. return 0;
  2081. }
  2082. switch (obj_priv->tiling_mode) {
  2083. case I915_TILING_NONE:
  2084. WARN(1, "allocating a fence for non-tiled object?\n");
  2085. break;
  2086. case I915_TILING_X:
  2087. if (!obj_priv->stride)
  2088. return -EINVAL;
  2089. WARN((obj_priv->stride & (512 - 1)),
  2090. "object 0x%08x is X tiled but has non-512B pitch\n",
  2091. obj_priv->gtt_offset);
  2092. break;
  2093. case I915_TILING_Y:
  2094. if (!obj_priv->stride)
  2095. return -EINVAL;
  2096. WARN((obj_priv->stride & (128 - 1)),
  2097. "object 0x%08x is Y tiled but has non-128B pitch\n",
  2098. obj_priv->gtt_offset);
  2099. break;
  2100. }
  2101. ret = i915_find_fence_reg(dev, interruptible);
  2102. if (ret < 0)
  2103. return ret;
  2104. obj_priv->fence_reg = ret;
  2105. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2106. list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2107. reg->obj = obj;
  2108. switch (INTEL_INFO(dev)->gen) {
  2109. case 6:
  2110. sandybridge_write_fence_reg(reg);
  2111. break;
  2112. case 5:
  2113. case 4:
  2114. i965_write_fence_reg(reg);
  2115. break;
  2116. case 3:
  2117. i915_write_fence_reg(reg);
  2118. break;
  2119. case 2:
  2120. i830_write_fence_reg(reg);
  2121. break;
  2122. }
  2123. trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
  2124. obj_priv->tiling_mode);
  2125. return 0;
  2126. }
  2127. /**
  2128. * i915_gem_clear_fence_reg - clear out fence register info
  2129. * @obj: object to clear
  2130. *
  2131. * Zeroes out the fence register itself and clears out the associated
  2132. * data structures in dev_priv and obj_priv.
  2133. */
  2134. static void
  2135. i915_gem_clear_fence_reg(struct drm_gem_object *obj)
  2136. {
  2137. struct drm_device *dev = obj->dev;
  2138. drm_i915_private_t *dev_priv = dev->dev_private;
  2139. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2140. struct drm_i915_fence_reg *reg =
  2141. &dev_priv->fence_regs[obj_priv->fence_reg];
  2142. uint32_t fence_reg;
  2143. switch (INTEL_INFO(dev)->gen) {
  2144. case 6:
  2145. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
  2146. (obj_priv->fence_reg * 8), 0);
  2147. break;
  2148. case 5:
  2149. case 4:
  2150. I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
  2151. break;
  2152. case 3:
  2153. if (obj_priv->fence_reg >= 8)
  2154. fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
  2155. else
  2156. case 2:
  2157. fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
  2158. I915_WRITE(fence_reg, 0);
  2159. break;
  2160. }
  2161. reg->obj = NULL;
  2162. obj_priv->fence_reg = I915_FENCE_REG_NONE;
  2163. list_del_init(&reg->lru_list);
  2164. }
  2165. /**
  2166. * i915_gem_object_put_fence_reg - waits on outstanding fenced access
  2167. * to the buffer to finish, and then resets the fence register.
  2168. * @obj: tiled object holding a fence register.
  2169. * @bool: whether the wait upon the fence is interruptible
  2170. *
  2171. * Zeroes out the fence register itself and clears out the associated
  2172. * data structures in dev_priv and obj_priv.
  2173. */
  2174. int
  2175. i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
  2176. bool interruptible)
  2177. {
  2178. struct drm_device *dev = obj->dev;
  2179. struct drm_i915_private *dev_priv = dev->dev_private;
  2180. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2181. struct drm_i915_fence_reg *reg;
  2182. if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
  2183. return 0;
  2184. /* If we've changed tiling, GTT-mappings of the object
  2185. * need to re-fault to ensure that the correct fence register
  2186. * setup is in place.
  2187. */
  2188. i915_gem_release_mmap(obj);
  2189. /* On the i915, GPU access to tiled buffers is via a fence,
  2190. * therefore we must wait for any outstanding access to complete
  2191. * before clearing the fence.
  2192. */
  2193. reg = &dev_priv->fence_regs[obj_priv->fence_reg];
  2194. if (reg->gpu) {
  2195. int ret;
  2196. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2197. if (ret)
  2198. return ret;
  2199. ret = i915_gem_object_wait_rendering(obj, interruptible);
  2200. if (ret)
  2201. return ret;
  2202. reg->gpu = false;
  2203. }
  2204. i915_gem_object_flush_gtt_write_domain(obj);
  2205. i915_gem_clear_fence_reg(obj);
  2206. return 0;
  2207. }
  2208. /**
  2209. * Finds free space in the GTT aperture and binds the object there.
  2210. */
  2211. static int
  2212. i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
  2213. {
  2214. struct drm_device *dev = obj->dev;
  2215. drm_i915_private_t *dev_priv = dev->dev_private;
  2216. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2217. struct drm_mm_node *free_space;
  2218. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2219. int ret;
  2220. if (obj_priv->madv != I915_MADV_WILLNEED) {
  2221. DRM_ERROR("Attempting to bind a purgeable object\n");
  2222. return -EINVAL;
  2223. }
  2224. if (alignment == 0)
  2225. alignment = i915_gem_get_gtt_alignment(obj);
  2226. if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
  2227. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2228. return -EINVAL;
  2229. }
  2230. /* If the object is bigger than the entire aperture, reject it early
  2231. * before evicting everything in a vain attempt to find space.
  2232. */
  2233. if (obj->size > dev_priv->mm.gtt_total) {
  2234. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2235. return -E2BIG;
  2236. }
  2237. search_free:
  2238. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2239. obj->size, alignment, 0);
  2240. if (free_space != NULL)
  2241. obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
  2242. alignment);
  2243. if (obj_priv->gtt_space == NULL) {
  2244. /* If the gtt is empty and we're still having trouble
  2245. * fitting our object in, we're out of memory.
  2246. */
  2247. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2248. if (ret)
  2249. return ret;
  2250. goto search_free;
  2251. }
  2252. ret = i915_gem_object_get_pages(obj, gfpmask);
  2253. if (ret) {
  2254. drm_mm_put_block(obj_priv->gtt_space);
  2255. obj_priv->gtt_space = NULL;
  2256. if (ret == -ENOMEM) {
  2257. /* first try to clear up some space from the GTT */
  2258. ret = i915_gem_evict_something(dev, obj->size,
  2259. alignment);
  2260. if (ret) {
  2261. /* now try to shrink everyone else */
  2262. if (gfpmask) {
  2263. gfpmask = 0;
  2264. goto search_free;
  2265. }
  2266. return ret;
  2267. }
  2268. goto search_free;
  2269. }
  2270. return ret;
  2271. }
  2272. /* Create an AGP memory structure pointing at our pages, and bind it
  2273. * into the GTT.
  2274. */
  2275. obj_priv->agp_mem = drm_agp_bind_pages(dev,
  2276. obj_priv->pages,
  2277. obj->size >> PAGE_SHIFT,
  2278. obj_priv->gtt_space->start,
  2279. obj_priv->agp_type);
  2280. if (obj_priv->agp_mem == NULL) {
  2281. i915_gem_object_put_pages(obj);
  2282. drm_mm_put_block(obj_priv->gtt_space);
  2283. obj_priv->gtt_space = NULL;
  2284. ret = i915_gem_evict_something(dev, obj->size, alignment);
  2285. if (ret)
  2286. return ret;
  2287. goto search_free;
  2288. }
  2289. /* keep track of bounds object by adding it to the inactive list */
  2290. list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
  2291. i915_gem_info_add_gtt(dev_priv, obj->size);
  2292. /* Assert that the object is not currently in any GPU domain. As it
  2293. * wasn't in the GTT, there shouldn't be any way it could have been in
  2294. * a GPU cache
  2295. */
  2296. BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
  2297. BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
  2298. obj_priv->gtt_offset = obj_priv->gtt_space->start;
  2299. trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
  2300. return 0;
  2301. }
  2302. void
  2303. i915_gem_clflush_object(struct drm_gem_object *obj)
  2304. {
  2305. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2306. /* If we don't have a page list set up, then we're not pinned
  2307. * to GPU, and we can ignore the cache flush because it'll happen
  2308. * again at bind time.
  2309. */
  2310. if (obj_priv->pages == NULL)
  2311. return;
  2312. trace_i915_gem_object_clflush(obj);
  2313. drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
  2314. }
  2315. /** Flushes any GPU write domain for the object if it's dirty. */
  2316. static int
  2317. i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
  2318. bool pipelined)
  2319. {
  2320. struct drm_device *dev = obj->dev;
  2321. uint32_t old_write_domain;
  2322. if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2323. return 0;
  2324. /* Queue the GPU write cache flushing we need. */
  2325. old_write_domain = obj->write_domain;
  2326. i915_gem_flush_ring(dev, NULL,
  2327. to_intel_bo(obj)->ring,
  2328. 0, obj->write_domain);
  2329. BUG_ON(obj->write_domain);
  2330. trace_i915_gem_object_change_domain(obj,
  2331. obj->read_domains,
  2332. old_write_domain);
  2333. if (pipelined)
  2334. return 0;
  2335. return i915_gem_object_wait_rendering(obj, true);
  2336. }
  2337. /** Flushes the GTT write domain for the object if it's dirty. */
  2338. static void
  2339. i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
  2340. {
  2341. uint32_t old_write_domain;
  2342. if (obj->write_domain != I915_GEM_DOMAIN_GTT)
  2343. return;
  2344. /* No actual flushing is required for the GTT write domain. Writes
  2345. * to it immediately go to main memory as far as we know, so there's
  2346. * no chipset flush. It also doesn't land in render cache.
  2347. */
  2348. old_write_domain = obj->write_domain;
  2349. obj->write_domain = 0;
  2350. trace_i915_gem_object_change_domain(obj,
  2351. obj->read_domains,
  2352. old_write_domain);
  2353. }
  2354. /** Flushes the CPU write domain for the object if it's dirty. */
  2355. static void
  2356. i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
  2357. {
  2358. struct drm_device *dev = obj->dev;
  2359. uint32_t old_write_domain;
  2360. if (obj->write_domain != I915_GEM_DOMAIN_CPU)
  2361. return;
  2362. i915_gem_clflush_object(obj);
  2363. drm_agp_chipset_flush(dev);
  2364. old_write_domain = obj->write_domain;
  2365. obj->write_domain = 0;
  2366. trace_i915_gem_object_change_domain(obj,
  2367. obj->read_domains,
  2368. old_write_domain);
  2369. }
  2370. /**
  2371. * Moves a single object to the GTT read, and possibly write domain.
  2372. *
  2373. * This function returns when the move is complete, including waiting on
  2374. * flushes to occur.
  2375. */
  2376. int
  2377. i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
  2378. {
  2379. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2380. uint32_t old_write_domain, old_read_domains;
  2381. int ret;
  2382. /* Not valid to be called on unbound objects. */
  2383. if (obj_priv->gtt_space == NULL)
  2384. return -EINVAL;
  2385. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2386. if (ret != 0)
  2387. return ret;
  2388. i915_gem_object_flush_cpu_write_domain(obj);
  2389. if (write) {
  2390. ret = i915_gem_object_wait_rendering(obj, true);
  2391. if (ret)
  2392. return ret;
  2393. }
  2394. old_write_domain = obj->write_domain;
  2395. old_read_domains = obj->read_domains;
  2396. /* It should now be out of any other write domains, and we can update
  2397. * the domain values for our changes.
  2398. */
  2399. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2400. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2401. if (write) {
  2402. obj->read_domains = I915_GEM_DOMAIN_GTT;
  2403. obj->write_domain = I915_GEM_DOMAIN_GTT;
  2404. obj_priv->dirty = 1;
  2405. }
  2406. trace_i915_gem_object_change_domain(obj,
  2407. old_read_domains,
  2408. old_write_domain);
  2409. return 0;
  2410. }
  2411. /*
  2412. * Prepare buffer for display plane. Use uninterruptible for possible flush
  2413. * wait, as in modesetting process we're not supposed to be interrupted.
  2414. */
  2415. int
  2416. i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
  2417. bool pipelined)
  2418. {
  2419. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2420. uint32_t old_read_domains;
  2421. int ret;
  2422. /* Not valid to be called on unbound objects. */
  2423. if (obj_priv->gtt_space == NULL)
  2424. return -EINVAL;
  2425. ret = i915_gem_object_flush_gpu_write_domain(obj, true);
  2426. if (ret)
  2427. return ret;
  2428. /* Currently, we are always called from an non-interruptible context. */
  2429. if (!pipelined) {
  2430. ret = i915_gem_object_wait_rendering(obj, false);
  2431. if (ret)
  2432. return ret;
  2433. }
  2434. i915_gem_object_flush_cpu_write_domain(obj);
  2435. old_read_domains = obj->read_domains;
  2436. obj->read_domains |= I915_GEM_DOMAIN_GTT;
  2437. trace_i915_gem_object_change_domain(obj,
  2438. old_read_domains,
  2439. obj->write_domain);
  2440. return 0;
  2441. }
  2442. /**
  2443. * Moves a single object to the CPU read, and possibly write domain.
  2444. *
  2445. * This function returns when the move is complete, including waiting on
  2446. * flushes to occur.
  2447. */
  2448. static int
  2449. i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
  2450. {
  2451. uint32_t old_write_domain, old_read_domains;
  2452. int ret;
  2453. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2454. if (ret != 0)
  2455. return ret;
  2456. i915_gem_object_flush_gtt_write_domain(obj);
  2457. /* If we have a partially-valid cache of the object in the CPU,
  2458. * finish invalidating it and free the per-page flags.
  2459. */
  2460. i915_gem_object_set_to_full_cpu_read_domain(obj);
  2461. if (write) {
  2462. ret = i915_gem_object_wait_rendering(obj, true);
  2463. if (ret)
  2464. return ret;
  2465. }
  2466. old_write_domain = obj->write_domain;
  2467. old_read_domains = obj->read_domains;
  2468. /* Flush the CPU cache if it's still invalid. */
  2469. if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2470. i915_gem_clflush_object(obj);
  2471. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2472. }
  2473. /* It should now be out of any other write domains, and we can update
  2474. * the domain values for our changes.
  2475. */
  2476. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2477. /* If we're writing through the CPU, then the GPU read domains will
  2478. * need to be invalidated at next use.
  2479. */
  2480. if (write) {
  2481. obj->read_domains = I915_GEM_DOMAIN_CPU;
  2482. obj->write_domain = I915_GEM_DOMAIN_CPU;
  2483. }
  2484. trace_i915_gem_object_change_domain(obj,
  2485. old_read_domains,
  2486. old_write_domain);
  2487. return 0;
  2488. }
  2489. /*
  2490. * Set the next domain for the specified object. This
  2491. * may not actually perform the necessary flushing/invaliding though,
  2492. * as that may want to be batched with other set_domain operations
  2493. *
  2494. * This is (we hope) the only really tricky part of gem. The goal
  2495. * is fairly simple -- track which caches hold bits of the object
  2496. * and make sure they remain coherent. A few concrete examples may
  2497. * help to explain how it works. For shorthand, we use the notation
  2498. * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
  2499. * a pair of read and write domain masks.
  2500. *
  2501. * Case 1: the batch buffer
  2502. *
  2503. * 1. Allocated
  2504. * 2. Written by CPU
  2505. * 3. Mapped to GTT
  2506. * 4. Read by GPU
  2507. * 5. Unmapped from GTT
  2508. * 6. Freed
  2509. *
  2510. * Let's take these a step at a time
  2511. *
  2512. * 1. Allocated
  2513. * Pages allocated from the kernel may still have
  2514. * cache contents, so we set them to (CPU, CPU) always.
  2515. * 2. Written by CPU (using pwrite)
  2516. * The pwrite function calls set_domain (CPU, CPU) and
  2517. * this function does nothing (as nothing changes)
  2518. * 3. Mapped by GTT
  2519. * This function asserts that the object is not
  2520. * currently in any GPU-based read or write domains
  2521. * 4. Read by GPU
  2522. * i915_gem_execbuffer calls set_domain (COMMAND, 0).
  2523. * As write_domain is zero, this function adds in the
  2524. * current read domains (CPU+COMMAND, 0).
  2525. * flush_domains is set to CPU.
  2526. * invalidate_domains is set to COMMAND
  2527. * clflush is run to get data out of the CPU caches
  2528. * then i915_dev_set_domain calls i915_gem_flush to
  2529. * emit an MI_FLUSH and drm_agp_chipset_flush
  2530. * 5. Unmapped from GTT
  2531. * i915_gem_object_unbind calls set_domain (CPU, CPU)
  2532. * flush_domains and invalidate_domains end up both zero
  2533. * so no flushing/invalidating happens
  2534. * 6. Freed
  2535. * yay, done
  2536. *
  2537. * Case 2: The shared render buffer
  2538. *
  2539. * 1. Allocated
  2540. * 2. Mapped to GTT
  2541. * 3. Read/written by GPU
  2542. * 4. set_domain to (CPU,CPU)
  2543. * 5. Read/written by CPU
  2544. * 6. Read/written by GPU
  2545. *
  2546. * 1. Allocated
  2547. * Same as last example, (CPU, CPU)
  2548. * 2. Mapped to GTT
  2549. * Nothing changes (assertions find that it is not in the GPU)
  2550. * 3. Read/written by GPU
  2551. * execbuffer calls set_domain (RENDER, RENDER)
  2552. * flush_domains gets CPU
  2553. * invalidate_domains gets GPU
  2554. * clflush (obj)
  2555. * MI_FLUSH and drm_agp_chipset_flush
  2556. * 4. set_domain (CPU, CPU)
  2557. * flush_domains gets GPU
  2558. * invalidate_domains gets CPU
  2559. * wait_rendering (obj) to make sure all drawing is complete.
  2560. * This will include an MI_FLUSH to get the data from GPU
  2561. * to memory
  2562. * clflush (obj) to invalidate the CPU cache
  2563. * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
  2564. * 5. Read/written by CPU
  2565. * cache lines are loaded and dirtied
  2566. * 6. Read written by GPU
  2567. * Same as last GPU access
  2568. *
  2569. * Case 3: The constant buffer
  2570. *
  2571. * 1. Allocated
  2572. * 2. Written by CPU
  2573. * 3. Read by GPU
  2574. * 4. Updated (written) by CPU again
  2575. * 5. Read by GPU
  2576. *
  2577. * 1. Allocated
  2578. * (CPU, CPU)
  2579. * 2. Written by CPU
  2580. * (CPU, CPU)
  2581. * 3. Read by GPU
  2582. * (CPU+RENDER, 0)
  2583. * flush_domains = CPU
  2584. * invalidate_domains = RENDER
  2585. * clflush (obj)
  2586. * MI_FLUSH
  2587. * drm_agp_chipset_flush
  2588. * 4. Updated (written) by CPU again
  2589. * (CPU, CPU)
  2590. * flush_domains = 0 (no previous write domain)
  2591. * invalidate_domains = 0 (no new read domains)
  2592. * 5. Read by GPU
  2593. * (CPU+RENDER, 0)
  2594. * flush_domains = CPU
  2595. * invalidate_domains = RENDER
  2596. * clflush (obj)
  2597. * MI_FLUSH
  2598. * drm_agp_chipset_flush
  2599. */
  2600. static void
  2601. i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
  2602. struct intel_ring_buffer *ring)
  2603. {
  2604. struct drm_device *dev = obj->dev;
  2605. struct drm_i915_private *dev_priv = dev->dev_private;
  2606. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2607. uint32_t invalidate_domains = 0;
  2608. uint32_t flush_domains = 0;
  2609. uint32_t old_read_domains;
  2610. intel_mark_busy(dev, obj);
  2611. /*
  2612. * If the object isn't moving to a new write domain,
  2613. * let the object stay in multiple read domains
  2614. */
  2615. if (obj->pending_write_domain == 0)
  2616. obj->pending_read_domains |= obj->read_domains;
  2617. else
  2618. obj_priv->dirty = 1;
  2619. /*
  2620. * Flush the current write domain if
  2621. * the new read domains don't match. Invalidate
  2622. * any read domains which differ from the old
  2623. * write domain
  2624. */
  2625. if (obj->write_domain &&
  2626. (obj->write_domain != obj->pending_read_domains ||
  2627. obj_priv->ring != ring)) {
  2628. flush_domains |= obj->write_domain;
  2629. invalidate_domains |=
  2630. obj->pending_read_domains & ~obj->write_domain;
  2631. }
  2632. /*
  2633. * Invalidate any read caches which may have
  2634. * stale data. That is, any new read domains.
  2635. */
  2636. invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
  2637. if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
  2638. i915_gem_clflush_object(obj);
  2639. old_read_domains = obj->read_domains;
  2640. /* The actual obj->write_domain will be updated with
  2641. * pending_write_domain after we emit the accumulated flush for all
  2642. * of our domain changes in execbuffers (which clears objects'
  2643. * write_domains). So if we have a current write domain that we
  2644. * aren't changing, set pending_write_domain to that.
  2645. */
  2646. if (flush_domains == 0 && obj->pending_write_domain == 0)
  2647. obj->pending_write_domain = obj->write_domain;
  2648. obj->read_domains = obj->pending_read_domains;
  2649. dev->invalidate_domains |= invalidate_domains;
  2650. dev->flush_domains |= flush_domains;
  2651. if (flush_domains & I915_GEM_GPU_DOMAINS)
  2652. dev_priv->mm.flush_rings |= obj_priv->ring->id;
  2653. if (invalidate_domains & I915_GEM_GPU_DOMAINS)
  2654. dev_priv->mm.flush_rings |= ring->id;
  2655. trace_i915_gem_object_change_domain(obj,
  2656. old_read_domains,
  2657. obj->write_domain);
  2658. }
  2659. /**
  2660. * Moves the object from a partially CPU read to a full one.
  2661. *
  2662. * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
  2663. * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
  2664. */
  2665. static void
  2666. i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
  2667. {
  2668. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2669. if (!obj_priv->page_cpu_valid)
  2670. return;
  2671. /* If we're partially in the CPU read domain, finish moving it in.
  2672. */
  2673. if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
  2674. int i;
  2675. for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
  2676. if (obj_priv->page_cpu_valid[i])
  2677. continue;
  2678. drm_clflush_pages(obj_priv->pages + i, 1);
  2679. }
  2680. }
  2681. /* Free the page_cpu_valid mappings which are now stale, whether
  2682. * or not we've got I915_GEM_DOMAIN_CPU.
  2683. */
  2684. kfree(obj_priv->page_cpu_valid);
  2685. obj_priv->page_cpu_valid = NULL;
  2686. }
  2687. /**
  2688. * Set the CPU read domain on a range of the object.
  2689. *
  2690. * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
  2691. * not entirely valid. The page_cpu_valid member of the object flags which
  2692. * pages have been flushed, and will be respected by
  2693. * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
  2694. * of the whole object.
  2695. *
  2696. * This function returns when the move is complete, including waiting on
  2697. * flushes to occur.
  2698. */
  2699. static int
  2700. i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
  2701. uint64_t offset, uint64_t size)
  2702. {
  2703. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  2704. uint32_t old_read_domains;
  2705. int i, ret;
  2706. if (offset == 0 && size == obj->size)
  2707. return i915_gem_object_set_to_cpu_domain(obj, 0);
  2708. ret = i915_gem_object_flush_gpu_write_domain(obj, false);
  2709. if (ret != 0)
  2710. return ret;
  2711. i915_gem_object_flush_gtt_write_domain(obj);
  2712. /* If we're already fully in the CPU read domain, we're done. */
  2713. if (obj_priv->page_cpu_valid == NULL &&
  2714. (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
  2715. return 0;
  2716. /* Otherwise, create/clear the per-page CPU read domain flag if we're
  2717. * newly adding I915_GEM_DOMAIN_CPU
  2718. */
  2719. if (obj_priv->page_cpu_valid == NULL) {
  2720. obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
  2721. GFP_KERNEL);
  2722. if (obj_priv->page_cpu_valid == NULL)
  2723. return -ENOMEM;
  2724. } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
  2725. memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
  2726. /* Flush the cache on any pages that are still invalid from the CPU's
  2727. * perspective.
  2728. */
  2729. for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
  2730. i++) {
  2731. if (obj_priv->page_cpu_valid[i])
  2732. continue;
  2733. drm_clflush_pages(obj_priv->pages + i, 1);
  2734. obj_priv->page_cpu_valid[i] = 1;
  2735. }
  2736. /* It should now be out of any other write domains, and we can update
  2737. * the domain values for our changes.
  2738. */
  2739. BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2740. old_read_domains = obj->read_domains;
  2741. obj->read_domains |= I915_GEM_DOMAIN_CPU;
  2742. trace_i915_gem_object_change_domain(obj,
  2743. old_read_domains,
  2744. obj->write_domain);
  2745. return 0;
  2746. }
  2747. /**
  2748. * Pin an object to the GTT and evaluate the relocations landing in it.
  2749. */
  2750. static int
  2751. i915_gem_execbuffer_relocate(struct drm_i915_gem_object *obj,
  2752. struct drm_file *file_priv,
  2753. struct drm_i915_gem_exec_object2 *entry)
  2754. {
  2755. struct drm_device *dev = obj->base.dev;
  2756. drm_i915_private_t *dev_priv = dev->dev_private;
  2757. struct drm_i915_gem_relocation_entry __user *user_relocs;
  2758. struct drm_gem_object *target_obj = NULL;
  2759. uint32_t target_handle = 0;
  2760. int i, ret = 0;
  2761. user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
  2762. for (i = 0; i < entry->relocation_count; i++) {
  2763. struct drm_i915_gem_relocation_entry reloc;
  2764. uint32_t target_offset;
  2765. if (__copy_from_user_inatomic(&reloc,
  2766. user_relocs+i,
  2767. sizeof(reloc))) {
  2768. ret = -EFAULT;
  2769. break;
  2770. }
  2771. if (reloc.target_handle != target_handle) {
  2772. drm_gem_object_unreference(target_obj);
  2773. target_obj = drm_gem_object_lookup(dev, file_priv,
  2774. reloc.target_handle);
  2775. if (target_obj == NULL) {
  2776. ret = -ENOENT;
  2777. break;
  2778. }
  2779. target_handle = reloc.target_handle;
  2780. }
  2781. target_offset = to_intel_bo(target_obj)->gtt_offset;
  2782. #if WATCH_RELOC
  2783. DRM_INFO("%s: obj %p offset %08x target %d "
  2784. "read %08x write %08x gtt %08x "
  2785. "presumed %08x delta %08x\n",
  2786. __func__,
  2787. obj,
  2788. (int) reloc.offset,
  2789. (int) reloc.target_handle,
  2790. (int) reloc.read_domains,
  2791. (int) reloc.write_domain,
  2792. (int) target_offset,
  2793. (int) reloc.presumed_offset,
  2794. reloc.delta);
  2795. #endif
  2796. /* The target buffer should have appeared before us in the
  2797. * exec_object list, so it should have a GTT space bound by now.
  2798. */
  2799. if (target_offset == 0) {
  2800. DRM_ERROR("No GTT space found for object %d\n",
  2801. reloc.target_handle);
  2802. ret = -EINVAL;
  2803. break;
  2804. }
  2805. /* Validate that the target is in a valid r/w GPU domain */
  2806. if (reloc.write_domain & (reloc.write_domain - 1)) {
  2807. DRM_ERROR("reloc with multiple write domains: "
  2808. "obj %p target %d offset %d "
  2809. "read %08x write %08x",
  2810. obj, reloc.target_handle,
  2811. (int) reloc.offset,
  2812. reloc.read_domains,
  2813. reloc.write_domain);
  2814. ret = -EINVAL;
  2815. break;
  2816. }
  2817. if (reloc.write_domain & I915_GEM_DOMAIN_CPU ||
  2818. reloc.read_domains & I915_GEM_DOMAIN_CPU) {
  2819. DRM_ERROR("reloc with read/write CPU domains: "
  2820. "obj %p target %d offset %d "
  2821. "read %08x write %08x",
  2822. obj, reloc.target_handle,
  2823. (int) reloc.offset,
  2824. reloc.read_domains,
  2825. reloc.write_domain);
  2826. ret = -EINVAL;
  2827. break;
  2828. }
  2829. if (reloc.write_domain && target_obj->pending_write_domain &&
  2830. reloc.write_domain != target_obj->pending_write_domain) {
  2831. DRM_ERROR("Write domain conflict: "
  2832. "obj %p target %d offset %d "
  2833. "new %08x old %08x\n",
  2834. obj, reloc.target_handle,
  2835. (int) reloc.offset,
  2836. reloc.write_domain,
  2837. target_obj->pending_write_domain);
  2838. ret = -EINVAL;
  2839. break;
  2840. }
  2841. target_obj->pending_read_domains |= reloc.read_domains;
  2842. target_obj->pending_write_domain |= reloc.write_domain;
  2843. /* If the relocation already has the right value in it, no
  2844. * more work needs to be done.
  2845. */
  2846. if (target_offset == reloc.presumed_offset)
  2847. continue;
  2848. /* Check that the relocation address is valid... */
  2849. if (reloc.offset > obj->base.size - 4) {
  2850. DRM_ERROR("Relocation beyond object bounds: "
  2851. "obj %p target %d offset %d size %d.\n",
  2852. obj, reloc.target_handle,
  2853. (int) reloc.offset, (int) obj->base.size);
  2854. ret = -EINVAL;
  2855. break;
  2856. }
  2857. if (reloc.offset & 3) {
  2858. DRM_ERROR("Relocation not 4-byte aligned: "
  2859. "obj %p target %d offset %d.\n",
  2860. obj, reloc.target_handle,
  2861. (int) reloc.offset);
  2862. ret = -EINVAL;
  2863. break;
  2864. }
  2865. /* and points to somewhere within the target object. */
  2866. if (reloc.delta >= target_obj->size) {
  2867. DRM_ERROR("Relocation beyond target object bounds: "
  2868. "obj %p target %d delta %d size %d.\n",
  2869. obj, reloc.target_handle,
  2870. (int) reloc.delta, (int) target_obj->size);
  2871. ret = -EINVAL;
  2872. break;
  2873. }
  2874. reloc.delta += target_offset;
  2875. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
  2876. uint32_t page_offset = reloc.offset & ~PAGE_MASK;
  2877. char *vaddr;
  2878. vaddr = kmap_atomic(obj->pages[reloc.offset >> PAGE_SHIFT]);
  2879. *(uint32_t *)(vaddr + page_offset) = reloc.delta;
  2880. kunmap_atomic(vaddr);
  2881. } else {
  2882. uint32_t __iomem *reloc_entry;
  2883. void __iomem *reloc_page;
  2884. ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
  2885. if (ret)
  2886. break;
  2887. /* Map the page containing the relocation we're going to perform. */
  2888. reloc.offset += obj->gtt_offset;
  2889. reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
  2890. reloc.offset & PAGE_MASK);
  2891. reloc_entry = (uint32_t __iomem *)
  2892. (reloc_page + (reloc.offset & ~PAGE_MASK));
  2893. iowrite32(reloc.delta, reloc_entry);
  2894. io_mapping_unmap_atomic(reloc_page);
  2895. }
  2896. /* and update the user's relocation entry */
  2897. reloc.presumed_offset = target_offset;
  2898. if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
  2899. &reloc.presumed_offset,
  2900. sizeof(reloc.presumed_offset))) {
  2901. ret = -EFAULT;
  2902. break;
  2903. }
  2904. }
  2905. drm_gem_object_unreference(target_obj);
  2906. return ret;
  2907. }
  2908. static int
  2909. i915_gem_execbuffer_pin(struct drm_device *dev,
  2910. struct drm_file *file,
  2911. struct drm_gem_object **object_list,
  2912. struct drm_i915_gem_exec_object2 *exec_list,
  2913. int count)
  2914. {
  2915. struct drm_i915_private *dev_priv = dev->dev_private;
  2916. int ret, i, retry;
  2917. /* attempt to pin all of the buffers into the GTT */
  2918. for (retry = 0; retry < 2; retry++) {
  2919. ret = 0;
  2920. for (i = 0; i < count; i++) {
  2921. struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
  2922. struct drm_i915_gem_object *obj= to_intel_bo(object_list[i]);
  2923. bool need_fence =
  2924. entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
  2925. obj->tiling_mode != I915_TILING_NONE;
  2926. /* Check fence reg constraints and rebind if necessary */
  2927. if (need_fence &&
  2928. !i915_gem_object_fence_offset_ok(&obj->base,
  2929. obj->tiling_mode)) {
  2930. ret = i915_gem_object_unbind(&obj->base);
  2931. if (ret)
  2932. break;
  2933. }
  2934. ret = i915_gem_object_pin(&obj->base, entry->alignment);
  2935. if (ret)
  2936. break;
  2937. /*
  2938. * Pre-965 chips need a fence register set up in order
  2939. * to properly handle blits to/from tiled surfaces.
  2940. */
  2941. if (need_fence) {
  2942. ret = i915_gem_object_get_fence_reg(&obj->base, true);
  2943. if (ret) {
  2944. i915_gem_object_unpin(&obj->base);
  2945. break;
  2946. }
  2947. dev_priv->fence_regs[obj->fence_reg].gpu = true;
  2948. }
  2949. entry->offset = obj->gtt_offset;
  2950. }
  2951. while (i--)
  2952. i915_gem_object_unpin(object_list[i]);
  2953. if (ret == 0)
  2954. break;
  2955. if (ret != -ENOSPC || retry)
  2956. return ret;
  2957. ret = i915_gem_evict_everything(dev);
  2958. if (ret)
  2959. return ret;
  2960. }
  2961. return 0;
  2962. }
  2963. static int
  2964. i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
  2965. struct drm_file *file,
  2966. struct intel_ring_buffer *ring,
  2967. struct drm_gem_object **objects,
  2968. int count)
  2969. {
  2970. struct drm_i915_private *dev_priv = dev->dev_private;
  2971. int ret, i;
  2972. /* Zero the global flush/invalidate flags. These
  2973. * will be modified as new domains are computed
  2974. * for each object
  2975. */
  2976. dev->invalidate_domains = 0;
  2977. dev->flush_domains = 0;
  2978. dev_priv->mm.flush_rings = 0;
  2979. for (i = 0; i < count; i++)
  2980. i915_gem_object_set_to_gpu_domain(objects[i], ring);
  2981. if (dev->invalidate_domains | dev->flush_domains) {
  2982. #if WATCH_EXEC
  2983. DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
  2984. __func__,
  2985. dev->invalidate_domains,
  2986. dev->flush_domains);
  2987. #endif
  2988. i915_gem_flush(dev, file,
  2989. dev->invalidate_domains,
  2990. dev->flush_domains,
  2991. dev_priv->mm.flush_rings);
  2992. }
  2993. for (i = 0; i < count; i++) {
  2994. struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
  2995. /* XXX replace with semaphores */
  2996. if (obj->ring && ring != obj->ring) {
  2997. ret = i915_gem_object_wait_rendering(&obj->base, true);
  2998. if (ret)
  2999. return ret;
  3000. }
  3001. }
  3002. return 0;
  3003. }
  3004. /* Throttle our rendering by waiting until the ring has completed our requests
  3005. * emitted over 20 msec ago.
  3006. *
  3007. * Note that if we were to use the current jiffies each time around the loop,
  3008. * we wouldn't escape the function with any frames outstanding if the time to
  3009. * render a frame was over 20ms.
  3010. *
  3011. * This should get us reasonable parallelism between CPU and GPU but also
  3012. * relatively low latency when blocking on a particular request to finish.
  3013. */
  3014. static int
  3015. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  3016. {
  3017. struct drm_i915_private *dev_priv = dev->dev_private;
  3018. struct drm_i915_file_private *file_priv = file->driver_priv;
  3019. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  3020. struct drm_i915_gem_request *request;
  3021. struct intel_ring_buffer *ring = NULL;
  3022. u32 seqno = 0;
  3023. int ret;
  3024. spin_lock(&file_priv->mm.lock);
  3025. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  3026. if (time_after_eq(request->emitted_jiffies, recent_enough))
  3027. break;
  3028. ring = request->ring;
  3029. seqno = request->seqno;
  3030. }
  3031. spin_unlock(&file_priv->mm.lock);
  3032. if (seqno == 0)
  3033. return 0;
  3034. ret = 0;
  3035. if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
  3036. /* And wait for the seqno passing without holding any locks and
  3037. * causing extra latency for others. This is safe as the irq
  3038. * generation is designed to be run atomically and so is
  3039. * lockless.
  3040. */
  3041. ring->user_irq_get(dev, ring);
  3042. ret = wait_event_interruptible(ring->irq_queue,
  3043. i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
  3044. || atomic_read(&dev_priv->mm.wedged));
  3045. ring->user_irq_put(dev, ring);
  3046. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  3047. ret = -EIO;
  3048. }
  3049. if (ret == 0)
  3050. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  3051. return ret;
  3052. }
  3053. static int
  3054. i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
  3055. uint64_t exec_offset)
  3056. {
  3057. uint32_t exec_start, exec_len;
  3058. exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
  3059. exec_len = (uint32_t) exec->batch_len;
  3060. if ((exec_start | exec_len) & 0x7)
  3061. return -EINVAL;
  3062. if (!exec_start)
  3063. return -EINVAL;
  3064. return 0;
  3065. }
  3066. static int
  3067. validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
  3068. int count)
  3069. {
  3070. int i;
  3071. for (i = 0; i < count; i++) {
  3072. char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
  3073. size_t length = exec[i].relocation_count * sizeof(struct drm_i915_gem_relocation_entry);
  3074. if (!access_ok(VERIFY_READ, ptr, length))
  3075. return -EFAULT;
  3076. /* we may also need to update the presumed offsets */
  3077. if (!access_ok(VERIFY_WRITE, ptr, length))
  3078. return -EFAULT;
  3079. if (fault_in_pages_readable(ptr, length))
  3080. return -EFAULT;
  3081. }
  3082. return 0;
  3083. }
  3084. static int
  3085. i915_gem_do_execbuffer(struct drm_device *dev, void *data,
  3086. struct drm_file *file,
  3087. struct drm_i915_gem_execbuffer2 *args,
  3088. struct drm_i915_gem_exec_object2 *exec_list)
  3089. {
  3090. drm_i915_private_t *dev_priv = dev->dev_private;
  3091. struct drm_gem_object **object_list = NULL;
  3092. struct drm_gem_object *batch_obj;
  3093. struct drm_i915_gem_object *obj_priv;
  3094. struct drm_clip_rect *cliprects = NULL;
  3095. struct drm_i915_gem_request *request = NULL;
  3096. int ret, i, flips;
  3097. uint64_t exec_offset;
  3098. struct intel_ring_buffer *ring = NULL;
  3099. ret = i915_gem_check_is_wedged(dev);
  3100. if (ret)
  3101. return ret;
  3102. ret = validate_exec_list(exec_list, args->buffer_count);
  3103. if (ret)
  3104. return ret;
  3105. #if WATCH_EXEC
  3106. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3107. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3108. #endif
  3109. switch (args->flags & I915_EXEC_RING_MASK) {
  3110. case I915_EXEC_DEFAULT:
  3111. case I915_EXEC_RENDER:
  3112. ring = &dev_priv->render_ring;
  3113. break;
  3114. case I915_EXEC_BSD:
  3115. if (!HAS_BSD(dev)) {
  3116. DRM_ERROR("execbuf with invalid ring (BSD)\n");
  3117. return -EINVAL;
  3118. }
  3119. ring = &dev_priv->bsd_ring;
  3120. break;
  3121. case I915_EXEC_BLT:
  3122. if (!HAS_BLT(dev)) {
  3123. DRM_ERROR("execbuf with invalid ring (BLT)\n");
  3124. return -EINVAL;
  3125. }
  3126. ring = &dev_priv->blt_ring;
  3127. break;
  3128. default:
  3129. DRM_ERROR("execbuf with unknown ring: %d\n",
  3130. (int)(args->flags & I915_EXEC_RING_MASK));
  3131. return -EINVAL;
  3132. }
  3133. if (args->buffer_count < 1) {
  3134. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3135. return -EINVAL;
  3136. }
  3137. object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
  3138. if (object_list == NULL) {
  3139. DRM_ERROR("Failed to allocate object list for %d buffers\n",
  3140. args->buffer_count);
  3141. ret = -ENOMEM;
  3142. goto pre_mutex_err;
  3143. }
  3144. if (args->num_cliprects != 0) {
  3145. cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
  3146. GFP_KERNEL);
  3147. if (cliprects == NULL) {
  3148. ret = -ENOMEM;
  3149. goto pre_mutex_err;
  3150. }
  3151. ret = copy_from_user(cliprects,
  3152. (struct drm_clip_rect __user *)
  3153. (uintptr_t) args->cliprects_ptr,
  3154. sizeof(*cliprects) * args->num_cliprects);
  3155. if (ret != 0) {
  3156. DRM_ERROR("copy %d cliprects failed: %d\n",
  3157. args->num_cliprects, ret);
  3158. ret = -EFAULT;
  3159. goto pre_mutex_err;
  3160. }
  3161. }
  3162. request = kzalloc(sizeof(*request), GFP_KERNEL);
  3163. if (request == NULL) {
  3164. ret = -ENOMEM;
  3165. goto pre_mutex_err;
  3166. }
  3167. ret = i915_mutex_lock_interruptible(dev);
  3168. if (ret)
  3169. goto pre_mutex_err;
  3170. if (dev_priv->mm.suspended) {
  3171. mutex_unlock(&dev->struct_mutex);
  3172. ret = -EBUSY;
  3173. goto pre_mutex_err;
  3174. }
  3175. /* Look up object handles */
  3176. for (i = 0; i < args->buffer_count; i++) {
  3177. object_list[i] = drm_gem_object_lookup(dev, file,
  3178. exec_list[i].handle);
  3179. if (object_list[i] == NULL) {
  3180. DRM_ERROR("Invalid object handle %d at index %d\n",
  3181. exec_list[i].handle, i);
  3182. /* prevent error path from reading uninitialized data */
  3183. args->buffer_count = i + 1;
  3184. ret = -ENOENT;
  3185. goto err;
  3186. }
  3187. obj_priv = to_intel_bo(object_list[i]);
  3188. if (obj_priv->in_execbuffer) {
  3189. DRM_ERROR("Object %p appears more than once in object list\n",
  3190. object_list[i]);
  3191. /* prevent error path from reading uninitialized data */
  3192. args->buffer_count = i + 1;
  3193. ret = -EINVAL;
  3194. goto err;
  3195. }
  3196. obj_priv->in_execbuffer = true;
  3197. }
  3198. /* Move the objects en-masse into the GTT, evicting if necessary. */
  3199. ret = i915_gem_execbuffer_pin(dev, file,
  3200. object_list, exec_list,
  3201. args->buffer_count);
  3202. if (ret)
  3203. goto err;
  3204. /* The objects are in their final locations, apply the relocations. */
  3205. for (i = 0; i < args->buffer_count; i++) {
  3206. struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
  3207. obj->base.pending_read_domains = 0;
  3208. obj->base.pending_write_domain = 0;
  3209. ret = i915_gem_execbuffer_relocate(obj, file, &exec_list[i]);
  3210. if (ret)
  3211. goto err;
  3212. }
  3213. /* Set the pending read domains for the batch buffer to COMMAND */
  3214. batch_obj = object_list[args->buffer_count-1];
  3215. if (batch_obj->pending_write_domain) {
  3216. DRM_ERROR("Attempting to use self-modifying batch buffer\n");
  3217. ret = -EINVAL;
  3218. goto err;
  3219. }
  3220. batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
  3221. /* Sanity check the batch buffer */
  3222. exec_offset = to_intel_bo(batch_obj)->gtt_offset;
  3223. ret = i915_gem_check_execbuffer(args, exec_offset);
  3224. if (ret != 0) {
  3225. DRM_ERROR("execbuf with invalid offset/length\n");
  3226. goto err;
  3227. }
  3228. ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
  3229. object_list, args->buffer_count);
  3230. if (ret)
  3231. goto err;
  3232. for (i = 0; i < args->buffer_count; i++) {
  3233. struct drm_gem_object *obj = object_list[i];
  3234. uint32_t old_write_domain = obj->write_domain;
  3235. obj->write_domain = obj->pending_write_domain;
  3236. trace_i915_gem_object_change_domain(obj,
  3237. obj->read_domains,
  3238. old_write_domain);
  3239. }
  3240. #if WATCH_COHERENCY
  3241. for (i = 0; i < args->buffer_count; i++) {
  3242. i915_gem_object_check_coherency(object_list[i],
  3243. exec_list[i].handle);
  3244. }
  3245. #endif
  3246. #if WATCH_EXEC
  3247. i915_gem_dump_object(batch_obj,
  3248. args->batch_len,
  3249. __func__,
  3250. ~0);
  3251. #endif
  3252. /* Check for any pending flips. As we only maintain a flip queue depth
  3253. * of 1, we can simply insert a WAIT for the next display flip prior
  3254. * to executing the batch and avoid stalling the CPU.
  3255. */
  3256. flips = 0;
  3257. for (i = 0; i < args->buffer_count; i++) {
  3258. if (object_list[i]->write_domain)
  3259. flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
  3260. }
  3261. if (flips) {
  3262. int plane, flip_mask;
  3263. for (plane = 0; flips >> plane; plane++) {
  3264. if (((flips >> plane) & 1) == 0)
  3265. continue;
  3266. if (plane)
  3267. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  3268. else
  3269. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  3270. intel_ring_begin(dev, ring, 2);
  3271. intel_ring_emit(dev, ring,
  3272. MI_WAIT_FOR_EVENT | flip_mask);
  3273. intel_ring_emit(dev, ring, MI_NOOP);
  3274. intel_ring_advance(dev, ring);
  3275. }
  3276. }
  3277. /* Exec the batchbuffer */
  3278. ret = ring->dispatch_gem_execbuffer(dev, ring, args,
  3279. cliprects, exec_offset);
  3280. if (ret) {
  3281. DRM_ERROR("dispatch failed %d\n", ret);
  3282. goto err;
  3283. }
  3284. /*
  3285. * Ensure that the commands in the batch buffer are
  3286. * finished before the interrupt fires
  3287. */
  3288. i915_retire_commands(dev, ring);
  3289. for (i = 0; i < args->buffer_count; i++) {
  3290. struct drm_gem_object *obj = object_list[i];
  3291. i915_gem_object_move_to_active(obj, ring);
  3292. if (obj->write_domain)
  3293. list_move_tail(&to_intel_bo(obj)->gpu_write_list,
  3294. &ring->gpu_write_list);
  3295. }
  3296. i915_add_request(dev, file, request, ring);
  3297. request = NULL;
  3298. err:
  3299. for (i = 0; i < args->buffer_count; i++) {
  3300. if (object_list[i]) {
  3301. obj_priv = to_intel_bo(object_list[i]);
  3302. obj_priv->in_execbuffer = false;
  3303. }
  3304. drm_gem_object_unreference(object_list[i]);
  3305. }
  3306. mutex_unlock(&dev->struct_mutex);
  3307. pre_mutex_err:
  3308. drm_free_large(object_list);
  3309. kfree(cliprects);
  3310. kfree(request);
  3311. return ret;
  3312. }
  3313. /*
  3314. * Legacy execbuffer just creates an exec2 list from the original exec object
  3315. * list array and passes it to the real function.
  3316. */
  3317. int
  3318. i915_gem_execbuffer(struct drm_device *dev, void *data,
  3319. struct drm_file *file_priv)
  3320. {
  3321. struct drm_i915_gem_execbuffer *args = data;
  3322. struct drm_i915_gem_execbuffer2 exec2;
  3323. struct drm_i915_gem_exec_object *exec_list = NULL;
  3324. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3325. int ret, i;
  3326. #if WATCH_EXEC
  3327. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3328. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3329. #endif
  3330. if (args->buffer_count < 1) {
  3331. DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
  3332. return -EINVAL;
  3333. }
  3334. /* Copy in the exec list from userland */
  3335. exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
  3336. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3337. if (exec_list == NULL || exec2_list == NULL) {
  3338. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3339. args->buffer_count);
  3340. drm_free_large(exec_list);
  3341. drm_free_large(exec2_list);
  3342. return -ENOMEM;
  3343. }
  3344. ret = copy_from_user(exec_list,
  3345. (struct drm_i915_relocation_entry __user *)
  3346. (uintptr_t) args->buffers_ptr,
  3347. sizeof(*exec_list) * args->buffer_count);
  3348. if (ret != 0) {
  3349. DRM_ERROR("copy %d exec entries failed %d\n",
  3350. args->buffer_count, ret);
  3351. drm_free_large(exec_list);
  3352. drm_free_large(exec2_list);
  3353. return -EFAULT;
  3354. }
  3355. for (i = 0; i < args->buffer_count; i++) {
  3356. exec2_list[i].handle = exec_list[i].handle;
  3357. exec2_list[i].relocation_count = exec_list[i].relocation_count;
  3358. exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
  3359. exec2_list[i].alignment = exec_list[i].alignment;
  3360. exec2_list[i].offset = exec_list[i].offset;
  3361. if (INTEL_INFO(dev)->gen < 4)
  3362. exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
  3363. else
  3364. exec2_list[i].flags = 0;
  3365. }
  3366. exec2.buffers_ptr = args->buffers_ptr;
  3367. exec2.buffer_count = args->buffer_count;
  3368. exec2.batch_start_offset = args->batch_start_offset;
  3369. exec2.batch_len = args->batch_len;
  3370. exec2.DR1 = args->DR1;
  3371. exec2.DR4 = args->DR4;
  3372. exec2.num_cliprects = args->num_cliprects;
  3373. exec2.cliprects_ptr = args->cliprects_ptr;
  3374. exec2.flags = I915_EXEC_RENDER;
  3375. ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
  3376. if (!ret) {
  3377. /* Copy the new buffer offsets back to the user's exec list. */
  3378. for (i = 0; i < args->buffer_count; i++)
  3379. exec_list[i].offset = exec2_list[i].offset;
  3380. /* ... and back out to userspace */
  3381. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3382. (uintptr_t) args->buffers_ptr,
  3383. exec_list,
  3384. sizeof(*exec_list) * args->buffer_count);
  3385. if (ret) {
  3386. ret = -EFAULT;
  3387. DRM_ERROR("failed to copy %d exec entries "
  3388. "back to user (%d)\n",
  3389. args->buffer_count, ret);
  3390. }
  3391. }
  3392. drm_free_large(exec_list);
  3393. drm_free_large(exec2_list);
  3394. return ret;
  3395. }
  3396. int
  3397. i915_gem_execbuffer2(struct drm_device *dev, void *data,
  3398. struct drm_file *file_priv)
  3399. {
  3400. struct drm_i915_gem_execbuffer2 *args = data;
  3401. struct drm_i915_gem_exec_object2 *exec2_list = NULL;
  3402. int ret;
  3403. #if WATCH_EXEC
  3404. DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
  3405. (int) args->buffers_ptr, args->buffer_count, args->batch_len);
  3406. #endif
  3407. if (args->buffer_count < 1) {
  3408. DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
  3409. return -EINVAL;
  3410. }
  3411. exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
  3412. if (exec2_list == NULL) {
  3413. DRM_ERROR("Failed to allocate exec list for %d buffers\n",
  3414. args->buffer_count);
  3415. return -ENOMEM;
  3416. }
  3417. ret = copy_from_user(exec2_list,
  3418. (struct drm_i915_relocation_entry __user *)
  3419. (uintptr_t) args->buffers_ptr,
  3420. sizeof(*exec2_list) * args->buffer_count);
  3421. if (ret != 0) {
  3422. DRM_ERROR("copy %d exec entries failed %d\n",
  3423. args->buffer_count, ret);
  3424. drm_free_large(exec2_list);
  3425. return -EFAULT;
  3426. }
  3427. ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
  3428. if (!ret) {
  3429. /* Copy the new buffer offsets back to the user's exec list. */
  3430. ret = copy_to_user((struct drm_i915_relocation_entry __user *)
  3431. (uintptr_t) args->buffers_ptr,
  3432. exec2_list,
  3433. sizeof(*exec2_list) * args->buffer_count);
  3434. if (ret) {
  3435. ret = -EFAULT;
  3436. DRM_ERROR("failed to copy %d exec entries "
  3437. "back to user (%d)\n",
  3438. args->buffer_count, ret);
  3439. }
  3440. }
  3441. drm_free_large(exec2_list);
  3442. return ret;
  3443. }
  3444. int
  3445. i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
  3446. {
  3447. struct drm_device *dev = obj->dev;
  3448. struct drm_i915_private *dev_priv = dev->dev_private;
  3449. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3450. int ret;
  3451. BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  3452. WARN_ON(i915_verify_lists(dev));
  3453. if (obj_priv->gtt_space != NULL) {
  3454. if (alignment == 0)
  3455. alignment = i915_gem_get_gtt_alignment(obj);
  3456. if (obj_priv->gtt_offset & (alignment - 1)) {
  3457. WARN(obj_priv->pin_count,
  3458. "bo is already pinned with incorrect alignment: offset=%x, req.alignment=%x\n",
  3459. obj_priv->gtt_offset, alignment);
  3460. ret = i915_gem_object_unbind(obj);
  3461. if (ret)
  3462. return ret;
  3463. }
  3464. }
  3465. if (obj_priv->gtt_space == NULL) {
  3466. ret = i915_gem_object_bind_to_gtt(obj, alignment);
  3467. if (ret)
  3468. return ret;
  3469. }
  3470. obj_priv->pin_count++;
  3471. /* If the object is not active and not pending a flush,
  3472. * remove it from the inactive list
  3473. */
  3474. if (obj_priv->pin_count == 1) {
  3475. i915_gem_info_add_pin(dev_priv, obj->size);
  3476. if (!obj_priv->active)
  3477. list_move_tail(&obj_priv->mm_list,
  3478. &dev_priv->mm.pinned_list);
  3479. }
  3480. WARN_ON(i915_verify_lists(dev));
  3481. return 0;
  3482. }
  3483. void
  3484. i915_gem_object_unpin(struct drm_gem_object *obj)
  3485. {
  3486. struct drm_device *dev = obj->dev;
  3487. drm_i915_private_t *dev_priv = dev->dev_private;
  3488. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3489. WARN_ON(i915_verify_lists(dev));
  3490. obj_priv->pin_count--;
  3491. BUG_ON(obj_priv->pin_count < 0);
  3492. BUG_ON(obj_priv->gtt_space == NULL);
  3493. /* If the object is no longer pinned, and is
  3494. * neither active nor being flushed, then stick it on
  3495. * the inactive list
  3496. */
  3497. if (obj_priv->pin_count == 0) {
  3498. if (!obj_priv->active)
  3499. list_move_tail(&obj_priv->mm_list,
  3500. &dev_priv->mm.inactive_list);
  3501. i915_gem_info_remove_pin(dev_priv, obj->size);
  3502. }
  3503. WARN_ON(i915_verify_lists(dev));
  3504. }
  3505. int
  3506. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  3507. struct drm_file *file_priv)
  3508. {
  3509. struct drm_i915_gem_pin *args = data;
  3510. struct drm_gem_object *obj;
  3511. struct drm_i915_gem_object *obj_priv;
  3512. int ret;
  3513. ret = i915_mutex_lock_interruptible(dev);
  3514. if (ret)
  3515. return ret;
  3516. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3517. if (obj == NULL) {
  3518. ret = -ENOENT;
  3519. goto unlock;
  3520. }
  3521. obj_priv = to_intel_bo(obj);
  3522. if (obj_priv->madv != I915_MADV_WILLNEED) {
  3523. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  3524. ret = -EINVAL;
  3525. goto out;
  3526. }
  3527. if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
  3528. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  3529. args->handle);
  3530. ret = -EINVAL;
  3531. goto out;
  3532. }
  3533. obj_priv->user_pin_count++;
  3534. obj_priv->pin_filp = file_priv;
  3535. if (obj_priv->user_pin_count == 1) {
  3536. ret = i915_gem_object_pin(obj, args->alignment);
  3537. if (ret)
  3538. goto out;
  3539. }
  3540. /* XXX - flush the CPU caches for pinned objects
  3541. * as the X server doesn't manage domains yet
  3542. */
  3543. i915_gem_object_flush_cpu_write_domain(obj);
  3544. args->offset = obj_priv->gtt_offset;
  3545. out:
  3546. drm_gem_object_unreference(obj);
  3547. unlock:
  3548. mutex_unlock(&dev->struct_mutex);
  3549. return ret;
  3550. }
  3551. int
  3552. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  3553. struct drm_file *file_priv)
  3554. {
  3555. struct drm_i915_gem_pin *args = data;
  3556. struct drm_gem_object *obj;
  3557. struct drm_i915_gem_object *obj_priv;
  3558. int ret;
  3559. ret = i915_mutex_lock_interruptible(dev);
  3560. if (ret)
  3561. return ret;
  3562. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3563. if (obj == NULL) {
  3564. ret = -ENOENT;
  3565. goto unlock;
  3566. }
  3567. obj_priv = to_intel_bo(obj);
  3568. if (obj_priv->pin_filp != file_priv) {
  3569. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  3570. args->handle);
  3571. ret = -EINVAL;
  3572. goto out;
  3573. }
  3574. obj_priv->user_pin_count--;
  3575. if (obj_priv->user_pin_count == 0) {
  3576. obj_priv->pin_filp = NULL;
  3577. i915_gem_object_unpin(obj);
  3578. }
  3579. out:
  3580. drm_gem_object_unreference(obj);
  3581. unlock:
  3582. mutex_unlock(&dev->struct_mutex);
  3583. return ret;
  3584. }
  3585. int
  3586. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  3587. struct drm_file *file_priv)
  3588. {
  3589. struct drm_i915_gem_busy *args = data;
  3590. struct drm_gem_object *obj;
  3591. struct drm_i915_gem_object *obj_priv;
  3592. int ret;
  3593. ret = i915_mutex_lock_interruptible(dev);
  3594. if (ret)
  3595. return ret;
  3596. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3597. if (obj == NULL) {
  3598. ret = -ENOENT;
  3599. goto unlock;
  3600. }
  3601. obj_priv = to_intel_bo(obj);
  3602. /* Count all active objects as busy, even if they are currently not used
  3603. * by the gpu. Users of this interface expect objects to eventually
  3604. * become non-busy without any further actions, therefore emit any
  3605. * necessary flushes here.
  3606. */
  3607. args->busy = obj_priv->active;
  3608. if (args->busy) {
  3609. /* Unconditionally flush objects, even when the gpu still uses this
  3610. * object. Userspace calling this function indicates that it wants to
  3611. * use this buffer rather sooner than later, so issuing the required
  3612. * flush earlier is beneficial.
  3613. */
  3614. if (obj->write_domain & I915_GEM_GPU_DOMAINS)
  3615. i915_gem_flush_ring(dev, file_priv,
  3616. obj_priv->ring,
  3617. 0, obj->write_domain);
  3618. /* Update the active list for the hardware's current position.
  3619. * Otherwise this only updates on a delayed timer or when irqs
  3620. * are actually unmasked, and our working set ends up being
  3621. * larger than required.
  3622. */
  3623. i915_gem_retire_requests_ring(dev, obj_priv->ring);
  3624. args->busy = obj_priv->active;
  3625. }
  3626. drm_gem_object_unreference(obj);
  3627. unlock:
  3628. mutex_unlock(&dev->struct_mutex);
  3629. return ret;
  3630. }
  3631. int
  3632. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  3633. struct drm_file *file_priv)
  3634. {
  3635. return i915_gem_ring_throttle(dev, file_priv);
  3636. }
  3637. int
  3638. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  3639. struct drm_file *file_priv)
  3640. {
  3641. struct drm_i915_gem_madvise *args = data;
  3642. struct drm_gem_object *obj;
  3643. struct drm_i915_gem_object *obj_priv;
  3644. int ret;
  3645. switch (args->madv) {
  3646. case I915_MADV_DONTNEED:
  3647. case I915_MADV_WILLNEED:
  3648. break;
  3649. default:
  3650. return -EINVAL;
  3651. }
  3652. ret = i915_mutex_lock_interruptible(dev);
  3653. if (ret)
  3654. return ret;
  3655. obj = drm_gem_object_lookup(dev, file_priv, args->handle);
  3656. if (obj == NULL) {
  3657. ret = -ENOENT;
  3658. goto unlock;
  3659. }
  3660. obj_priv = to_intel_bo(obj);
  3661. if (obj_priv->pin_count) {
  3662. ret = -EINVAL;
  3663. goto out;
  3664. }
  3665. if (obj_priv->madv != __I915_MADV_PURGED)
  3666. obj_priv->madv = args->madv;
  3667. /* if the object is no longer bound, discard its backing storage */
  3668. if (i915_gem_object_is_purgeable(obj_priv) &&
  3669. obj_priv->gtt_space == NULL)
  3670. i915_gem_object_truncate(obj);
  3671. args->retained = obj_priv->madv != __I915_MADV_PURGED;
  3672. out:
  3673. drm_gem_object_unreference(obj);
  3674. unlock:
  3675. mutex_unlock(&dev->struct_mutex);
  3676. return ret;
  3677. }
  3678. struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
  3679. size_t size)
  3680. {
  3681. struct drm_i915_private *dev_priv = dev->dev_private;
  3682. struct drm_i915_gem_object *obj;
  3683. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  3684. if (obj == NULL)
  3685. return NULL;
  3686. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  3687. kfree(obj);
  3688. return NULL;
  3689. }
  3690. i915_gem_info_add_obj(dev_priv, size);
  3691. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  3692. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  3693. obj->agp_type = AGP_USER_MEMORY;
  3694. obj->base.driver_private = NULL;
  3695. obj->fence_reg = I915_FENCE_REG_NONE;
  3696. INIT_LIST_HEAD(&obj->mm_list);
  3697. INIT_LIST_HEAD(&obj->ring_list);
  3698. INIT_LIST_HEAD(&obj->gpu_write_list);
  3699. obj->madv = I915_MADV_WILLNEED;
  3700. return &obj->base;
  3701. }
  3702. int i915_gem_init_object(struct drm_gem_object *obj)
  3703. {
  3704. BUG();
  3705. return 0;
  3706. }
  3707. static void i915_gem_free_object_tail(struct drm_gem_object *obj)
  3708. {
  3709. struct drm_device *dev = obj->dev;
  3710. drm_i915_private_t *dev_priv = dev->dev_private;
  3711. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3712. int ret;
  3713. ret = i915_gem_object_unbind(obj);
  3714. if (ret == -ERESTARTSYS) {
  3715. list_move(&obj_priv->mm_list,
  3716. &dev_priv->mm.deferred_free_list);
  3717. return;
  3718. }
  3719. if (obj_priv->mmap_offset)
  3720. i915_gem_free_mmap_offset(obj);
  3721. drm_gem_object_release(obj);
  3722. i915_gem_info_remove_obj(dev_priv, obj->size);
  3723. kfree(obj_priv->page_cpu_valid);
  3724. kfree(obj_priv->bit_17);
  3725. kfree(obj_priv);
  3726. }
  3727. void i915_gem_free_object(struct drm_gem_object *obj)
  3728. {
  3729. struct drm_device *dev = obj->dev;
  3730. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  3731. trace_i915_gem_object_destroy(obj);
  3732. while (obj_priv->pin_count > 0)
  3733. i915_gem_object_unpin(obj);
  3734. if (obj_priv->phys_obj)
  3735. i915_gem_detach_phys_object(dev, obj);
  3736. i915_gem_free_object_tail(obj);
  3737. }
  3738. int
  3739. i915_gem_idle(struct drm_device *dev)
  3740. {
  3741. drm_i915_private_t *dev_priv = dev->dev_private;
  3742. int ret;
  3743. mutex_lock(&dev->struct_mutex);
  3744. if (dev_priv->mm.suspended) {
  3745. mutex_unlock(&dev->struct_mutex);
  3746. return 0;
  3747. }
  3748. ret = i915_gpu_idle(dev);
  3749. if (ret) {
  3750. mutex_unlock(&dev->struct_mutex);
  3751. return ret;
  3752. }
  3753. /* Under UMS, be paranoid and evict. */
  3754. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  3755. ret = i915_gem_evict_inactive(dev);
  3756. if (ret) {
  3757. mutex_unlock(&dev->struct_mutex);
  3758. return ret;
  3759. }
  3760. }
  3761. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  3762. * We need to replace this with a semaphore, or something.
  3763. * And not confound mm.suspended!
  3764. */
  3765. dev_priv->mm.suspended = 1;
  3766. del_timer_sync(&dev_priv->hangcheck_timer);
  3767. i915_kernel_lost_context(dev);
  3768. i915_gem_cleanup_ringbuffer(dev);
  3769. mutex_unlock(&dev->struct_mutex);
  3770. /* Cancel the retire work handler, which should be idle now. */
  3771. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  3772. return 0;
  3773. }
  3774. /*
  3775. * 965+ support PIPE_CONTROL commands, which provide finer grained control
  3776. * over cache flushing.
  3777. */
  3778. static int
  3779. i915_gem_init_pipe_control(struct drm_device *dev)
  3780. {
  3781. drm_i915_private_t *dev_priv = dev->dev_private;
  3782. struct drm_gem_object *obj;
  3783. struct drm_i915_gem_object *obj_priv;
  3784. int ret;
  3785. obj = i915_gem_alloc_object(dev, 4096);
  3786. if (obj == NULL) {
  3787. DRM_ERROR("Failed to allocate seqno page\n");
  3788. ret = -ENOMEM;
  3789. goto err;
  3790. }
  3791. obj_priv = to_intel_bo(obj);
  3792. obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
  3793. ret = i915_gem_object_pin(obj, 4096);
  3794. if (ret)
  3795. goto err_unref;
  3796. dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
  3797. dev_priv->seqno_page = kmap(obj_priv->pages[0]);
  3798. if (dev_priv->seqno_page == NULL)
  3799. goto err_unpin;
  3800. dev_priv->seqno_obj = obj;
  3801. memset(dev_priv->seqno_page, 0, PAGE_SIZE);
  3802. return 0;
  3803. err_unpin:
  3804. i915_gem_object_unpin(obj);
  3805. err_unref:
  3806. drm_gem_object_unreference(obj);
  3807. err:
  3808. return ret;
  3809. }
  3810. static void
  3811. i915_gem_cleanup_pipe_control(struct drm_device *dev)
  3812. {
  3813. drm_i915_private_t *dev_priv = dev->dev_private;
  3814. struct drm_gem_object *obj;
  3815. struct drm_i915_gem_object *obj_priv;
  3816. obj = dev_priv->seqno_obj;
  3817. obj_priv = to_intel_bo(obj);
  3818. kunmap(obj_priv->pages[0]);
  3819. i915_gem_object_unpin(obj);
  3820. drm_gem_object_unreference(obj);
  3821. dev_priv->seqno_obj = NULL;
  3822. dev_priv->seqno_page = NULL;
  3823. }
  3824. int
  3825. i915_gem_init_ringbuffer(struct drm_device *dev)
  3826. {
  3827. drm_i915_private_t *dev_priv = dev->dev_private;
  3828. int ret;
  3829. if (HAS_PIPE_CONTROL(dev)) {
  3830. ret = i915_gem_init_pipe_control(dev);
  3831. if (ret)
  3832. return ret;
  3833. }
  3834. ret = intel_init_render_ring_buffer(dev);
  3835. if (ret)
  3836. goto cleanup_pipe_control;
  3837. if (HAS_BSD(dev)) {
  3838. ret = intel_init_bsd_ring_buffer(dev);
  3839. if (ret)
  3840. goto cleanup_render_ring;
  3841. }
  3842. if (HAS_BLT(dev)) {
  3843. ret = intel_init_blt_ring_buffer(dev);
  3844. if (ret)
  3845. goto cleanup_bsd_ring;
  3846. }
  3847. dev_priv->next_seqno = 1;
  3848. return 0;
  3849. cleanup_bsd_ring:
  3850. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3851. cleanup_render_ring:
  3852. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3853. cleanup_pipe_control:
  3854. if (HAS_PIPE_CONTROL(dev))
  3855. i915_gem_cleanup_pipe_control(dev);
  3856. return ret;
  3857. }
  3858. void
  3859. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3860. {
  3861. drm_i915_private_t *dev_priv = dev->dev_private;
  3862. intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
  3863. intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
  3864. intel_cleanup_ring_buffer(dev, &dev_priv->blt_ring);
  3865. if (HAS_PIPE_CONTROL(dev))
  3866. i915_gem_cleanup_pipe_control(dev);
  3867. }
  3868. int
  3869. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3870. struct drm_file *file_priv)
  3871. {
  3872. drm_i915_private_t *dev_priv = dev->dev_private;
  3873. int ret;
  3874. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3875. return 0;
  3876. if (atomic_read(&dev_priv->mm.wedged)) {
  3877. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3878. atomic_set(&dev_priv->mm.wedged, 0);
  3879. }
  3880. mutex_lock(&dev->struct_mutex);
  3881. dev_priv->mm.suspended = 0;
  3882. ret = i915_gem_init_ringbuffer(dev);
  3883. if (ret != 0) {
  3884. mutex_unlock(&dev->struct_mutex);
  3885. return ret;
  3886. }
  3887. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3888. BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
  3889. BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
  3890. BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
  3891. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3892. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3893. BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
  3894. BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
  3895. BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
  3896. mutex_unlock(&dev->struct_mutex);
  3897. ret = drm_irq_install(dev);
  3898. if (ret)
  3899. goto cleanup_ringbuffer;
  3900. return 0;
  3901. cleanup_ringbuffer:
  3902. mutex_lock(&dev->struct_mutex);
  3903. i915_gem_cleanup_ringbuffer(dev);
  3904. dev_priv->mm.suspended = 1;
  3905. mutex_unlock(&dev->struct_mutex);
  3906. return ret;
  3907. }
  3908. int
  3909. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3910. struct drm_file *file_priv)
  3911. {
  3912. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3913. return 0;
  3914. drm_irq_uninstall(dev);
  3915. return i915_gem_idle(dev);
  3916. }
  3917. void
  3918. i915_gem_lastclose(struct drm_device *dev)
  3919. {
  3920. int ret;
  3921. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3922. return;
  3923. ret = i915_gem_idle(dev);
  3924. if (ret)
  3925. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3926. }
  3927. static void
  3928. init_ring_lists(struct intel_ring_buffer *ring)
  3929. {
  3930. INIT_LIST_HEAD(&ring->active_list);
  3931. INIT_LIST_HEAD(&ring->request_list);
  3932. INIT_LIST_HEAD(&ring->gpu_write_list);
  3933. }
  3934. void
  3935. i915_gem_load(struct drm_device *dev)
  3936. {
  3937. int i;
  3938. drm_i915_private_t *dev_priv = dev->dev_private;
  3939. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3940. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3941. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3942. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3943. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3944. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3945. init_ring_lists(&dev_priv->render_ring);
  3946. init_ring_lists(&dev_priv->bsd_ring);
  3947. init_ring_lists(&dev_priv->blt_ring);
  3948. for (i = 0; i < 16; i++)
  3949. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3950. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3951. i915_gem_retire_work_handler);
  3952. init_completion(&dev_priv->error_completion);
  3953. spin_lock(&shrink_list_lock);
  3954. list_add(&dev_priv->mm.shrink_list, &shrink_list);
  3955. spin_unlock(&shrink_list_lock);
  3956. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3957. if (IS_GEN3(dev)) {
  3958. u32 tmp = I915_READ(MI_ARB_STATE);
  3959. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3960. /* arb state is a masked write, so set bit + bit in mask */
  3961. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3962. I915_WRITE(MI_ARB_STATE, tmp);
  3963. }
  3964. }
  3965. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3966. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3967. dev_priv->fence_reg_start = 3;
  3968. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3969. dev_priv->num_fence_regs = 16;
  3970. else
  3971. dev_priv->num_fence_regs = 8;
  3972. /* Initialize fence registers to zero */
  3973. switch (INTEL_INFO(dev)->gen) {
  3974. case 6:
  3975. for (i = 0; i < 16; i++)
  3976. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
  3977. break;
  3978. case 5:
  3979. case 4:
  3980. for (i = 0; i < 16; i++)
  3981. I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
  3982. break;
  3983. case 3:
  3984. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3985. for (i = 0; i < 8; i++)
  3986. I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
  3987. case 2:
  3988. for (i = 0; i < 8; i++)
  3989. I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
  3990. break;
  3991. }
  3992. i915_gem_detect_bit_6_swizzle(dev);
  3993. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3994. }
  3995. /*
  3996. * Create a physically contiguous memory object for this object
  3997. * e.g. for cursor + overlay regs
  3998. */
  3999. static int i915_gem_init_phys_object(struct drm_device *dev,
  4000. int id, int size, int align)
  4001. {
  4002. drm_i915_private_t *dev_priv = dev->dev_private;
  4003. struct drm_i915_gem_phys_object *phys_obj;
  4004. int ret;
  4005. if (dev_priv->mm.phys_objs[id - 1] || !size)
  4006. return 0;
  4007. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  4008. if (!phys_obj)
  4009. return -ENOMEM;
  4010. phys_obj->id = id;
  4011. phys_obj->handle = drm_pci_alloc(dev, size, align);
  4012. if (!phys_obj->handle) {
  4013. ret = -ENOMEM;
  4014. goto kfree_obj;
  4015. }
  4016. #ifdef CONFIG_X86
  4017. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4018. #endif
  4019. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  4020. return 0;
  4021. kfree_obj:
  4022. kfree(phys_obj);
  4023. return ret;
  4024. }
  4025. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  4026. {
  4027. drm_i915_private_t *dev_priv = dev->dev_private;
  4028. struct drm_i915_gem_phys_object *phys_obj;
  4029. if (!dev_priv->mm.phys_objs[id - 1])
  4030. return;
  4031. phys_obj = dev_priv->mm.phys_objs[id - 1];
  4032. if (phys_obj->cur_obj) {
  4033. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  4034. }
  4035. #ifdef CONFIG_X86
  4036. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  4037. #endif
  4038. drm_pci_free(dev, phys_obj->handle);
  4039. kfree(phys_obj);
  4040. dev_priv->mm.phys_objs[id - 1] = NULL;
  4041. }
  4042. void i915_gem_free_all_phys_object(struct drm_device *dev)
  4043. {
  4044. int i;
  4045. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  4046. i915_gem_free_phys_object(dev, i);
  4047. }
  4048. void i915_gem_detach_phys_object(struct drm_device *dev,
  4049. struct drm_gem_object *obj)
  4050. {
  4051. struct drm_i915_gem_object *obj_priv;
  4052. int i;
  4053. int ret;
  4054. int page_count;
  4055. obj_priv = to_intel_bo(obj);
  4056. if (!obj_priv->phys_obj)
  4057. return;
  4058. ret = i915_gem_object_get_pages(obj, 0);
  4059. if (ret)
  4060. goto out;
  4061. page_count = obj->size / PAGE_SIZE;
  4062. for (i = 0; i < page_count; i++) {
  4063. char *dst = kmap_atomic(obj_priv->pages[i]);
  4064. char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4065. memcpy(dst, src, PAGE_SIZE);
  4066. kunmap_atomic(dst);
  4067. }
  4068. drm_clflush_pages(obj_priv->pages, page_count);
  4069. drm_agp_chipset_flush(dev);
  4070. i915_gem_object_put_pages(obj);
  4071. out:
  4072. obj_priv->phys_obj->cur_obj = NULL;
  4073. obj_priv->phys_obj = NULL;
  4074. }
  4075. int
  4076. i915_gem_attach_phys_object(struct drm_device *dev,
  4077. struct drm_gem_object *obj,
  4078. int id,
  4079. int align)
  4080. {
  4081. drm_i915_private_t *dev_priv = dev->dev_private;
  4082. struct drm_i915_gem_object *obj_priv;
  4083. int ret = 0;
  4084. int page_count;
  4085. int i;
  4086. if (id > I915_MAX_PHYS_OBJECT)
  4087. return -EINVAL;
  4088. obj_priv = to_intel_bo(obj);
  4089. if (obj_priv->phys_obj) {
  4090. if (obj_priv->phys_obj->id == id)
  4091. return 0;
  4092. i915_gem_detach_phys_object(dev, obj);
  4093. }
  4094. /* create a new object */
  4095. if (!dev_priv->mm.phys_objs[id - 1]) {
  4096. ret = i915_gem_init_phys_object(dev, id,
  4097. obj->size, align);
  4098. if (ret) {
  4099. DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
  4100. goto out;
  4101. }
  4102. }
  4103. /* bind to the object */
  4104. obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
  4105. obj_priv->phys_obj->cur_obj = obj;
  4106. ret = i915_gem_object_get_pages(obj, 0);
  4107. if (ret) {
  4108. DRM_ERROR("failed to get page list\n");
  4109. goto out;
  4110. }
  4111. page_count = obj->size / PAGE_SIZE;
  4112. for (i = 0; i < page_count; i++) {
  4113. char *src = kmap_atomic(obj_priv->pages[i]);
  4114. char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  4115. memcpy(dst, src, PAGE_SIZE);
  4116. kunmap_atomic(src);
  4117. }
  4118. i915_gem_object_put_pages(obj);
  4119. return 0;
  4120. out:
  4121. return ret;
  4122. }
  4123. static int
  4124. i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
  4125. struct drm_i915_gem_pwrite *args,
  4126. struct drm_file *file_priv)
  4127. {
  4128. struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
  4129. void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
  4130. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  4131. DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
  4132. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  4133. unsigned long unwritten;
  4134. /* The physical object once assigned is fixed for the lifetime
  4135. * of the obj, so we can safely drop the lock and continue
  4136. * to access vaddr.
  4137. */
  4138. mutex_unlock(&dev->struct_mutex);
  4139. unwritten = copy_from_user(vaddr, user_data, args->size);
  4140. mutex_lock(&dev->struct_mutex);
  4141. if (unwritten)
  4142. return -EFAULT;
  4143. }
  4144. drm_agp_chipset_flush(dev);
  4145. return 0;
  4146. }
  4147. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  4148. {
  4149. struct drm_i915_file_private *file_priv = file->driver_priv;
  4150. /* Clean up our request list when the client is going away, so that
  4151. * later retire_requests won't dereference our soon-to-be-gone
  4152. * file_priv.
  4153. */
  4154. spin_lock(&file_priv->mm.lock);
  4155. while (!list_empty(&file_priv->mm.request_list)) {
  4156. struct drm_i915_gem_request *request;
  4157. request = list_first_entry(&file_priv->mm.request_list,
  4158. struct drm_i915_gem_request,
  4159. client_list);
  4160. list_del(&request->client_list);
  4161. request->file_priv = NULL;
  4162. }
  4163. spin_unlock(&file_priv->mm.lock);
  4164. }
  4165. static int
  4166. i915_gpu_is_active(struct drm_device *dev)
  4167. {
  4168. drm_i915_private_t *dev_priv = dev->dev_private;
  4169. int lists_empty;
  4170. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  4171. list_empty(&dev_priv->mm.active_list);
  4172. return !lists_empty;
  4173. }
  4174. static int
  4175. i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  4176. {
  4177. drm_i915_private_t *dev_priv, *next_dev;
  4178. struct drm_i915_gem_object *obj_priv, *next_obj;
  4179. int cnt = 0;
  4180. int would_deadlock = 1;
  4181. /* "fast-path" to count number of available objects */
  4182. if (nr_to_scan == 0) {
  4183. spin_lock(&shrink_list_lock);
  4184. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4185. struct drm_device *dev = dev_priv->dev;
  4186. if (mutex_trylock(&dev->struct_mutex)) {
  4187. list_for_each_entry(obj_priv,
  4188. &dev_priv->mm.inactive_list,
  4189. mm_list)
  4190. cnt++;
  4191. mutex_unlock(&dev->struct_mutex);
  4192. }
  4193. }
  4194. spin_unlock(&shrink_list_lock);
  4195. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4196. }
  4197. spin_lock(&shrink_list_lock);
  4198. rescan:
  4199. /* first scan for clean buffers */
  4200. list_for_each_entry_safe(dev_priv, next_dev,
  4201. &shrink_list, mm.shrink_list) {
  4202. struct drm_device *dev = dev_priv->dev;
  4203. if (! mutex_trylock(&dev->struct_mutex))
  4204. continue;
  4205. spin_unlock(&shrink_list_lock);
  4206. i915_gem_retire_requests(dev);
  4207. list_for_each_entry_safe(obj_priv, next_obj,
  4208. &dev_priv->mm.inactive_list,
  4209. mm_list) {
  4210. if (i915_gem_object_is_purgeable(obj_priv)) {
  4211. i915_gem_object_unbind(&obj_priv->base);
  4212. if (--nr_to_scan <= 0)
  4213. break;
  4214. }
  4215. }
  4216. spin_lock(&shrink_list_lock);
  4217. mutex_unlock(&dev->struct_mutex);
  4218. would_deadlock = 0;
  4219. if (nr_to_scan <= 0)
  4220. break;
  4221. }
  4222. /* second pass, evict/count anything still on the inactive list */
  4223. list_for_each_entry_safe(dev_priv, next_dev,
  4224. &shrink_list, mm.shrink_list) {
  4225. struct drm_device *dev = dev_priv->dev;
  4226. if (! mutex_trylock(&dev->struct_mutex))
  4227. continue;
  4228. spin_unlock(&shrink_list_lock);
  4229. list_for_each_entry_safe(obj_priv, next_obj,
  4230. &dev_priv->mm.inactive_list,
  4231. mm_list) {
  4232. if (nr_to_scan > 0) {
  4233. i915_gem_object_unbind(&obj_priv->base);
  4234. nr_to_scan--;
  4235. } else
  4236. cnt++;
  4237. }
  4238. spin_lock(&shrink_list_lock);
  4239. mutex_unlock(&dev->struct_mutex);
  4240. would_deadlock = 0;
  4241. }
  4242. if (nr_to_scan) {
  4243. int active = 0;
  4244. /*
  4245. * We are desperate for pages, so as a last resort, wait
  4246. * for the GPU to finish and discard whatever we can.
  4247. * This has a dramatic impact to reduce the number of
  4248. * OOM-killer events whilst running the GPU aggressively.
  4249. */
  4250. list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
  4251. struct drm_device *dev = dev_priv->dev;
  4252. if (!mutex_trylock(&dev->struct_mutex))
  4253. continue;
  4254. spin_unlock(&shrink_list_lock);
  4255. if (i915_gpu_is_active(dev)) {
  4256. i915_gpu_idle(dev);
  4257. active++;
  4258. }
  4259. spin_lock(&shrink_list_lock);
  4260. mutex_unlock(&dev->struct_mutex);
  4261. }
  4262. if (active)
  4263. goto rescan;
  4264. }
  4265. spin_unlock(&shrink_list_lock);
  4266. if (would_deadlock)
  4267. return -1;
  4268. else if (cnt > 0)
  4269. return (cnt / 100) * sysctl_vfs_cache_pressure;
  4270. else
  4271. return 0;
  4272. }
  4273. static struct shrinker shrinker = {
  4274. .shrink = i915_gem_shrink,
  4275. .seeks = DEFAULT_SEEKS,
  4276. };
  4277. __init void
  4278. i915_gem_shrinker_init(void)
  4279. {
  4280. register_shrinker(&shrinker);
  4281. }
  4282. __exit void
  4283. i915_gem_shrinker_exit(void)
  4284. {
  4285. unregister_shrinker(&shrinker);
  4286. }