s2io.c 233 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250
  1. /************************************************************************
  2. * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
  3. * Copyright(c) 2002-2007 Neterion Inc.
  4. * This software may be used and distributed according to the terms of
  5. * the GNU General Public License (GPL), incorporated herein by reference.
  6. * Drivers based on or derived from this code fall under the GPL and must
  7. * retain the authorship, copyright and license notice. This file is not
  8. * a complete program and may only be used when the entire operating
  9. * system is licensed under the GPL.
  10. * See the file COPYING in this distribution for more information.
  11. *
  12. * Credits:
  13. * Jeff Garzik : For pointing out the improper error condition
  14. * check in the s2io_xmit routine and also some
  15. * issues in the Tx watch dog function. Also for
  16. * patiently answering all those innumerable
  17. * questions regaring the 2.6 porting issues.
  18. * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
  19. * macros available only in 2.6 Kernel.
  20. * Francois Romieu : For pointing out all code part that were
  21. * deprecated and also styling related comments.
  22. * Grant Grundler : For helping me get rid of some Architecture
  23. * dependent code.
  24. * Christopher Hellwig : Some more 2.6 specific issues in the driver.
  25. *
  26. * The module loadable parameters that are supported by the driver and a brief
  27. * explaination of all the variables.
  28. *
  29. * rx_ring_num : This can be used to program the number of receive rings used
  30. * in the driver.
  31. * rx_ring_sz: This defines the number of receive blocks each ring can have.
  32. * This is also an array of size 8.
  33. * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
  34. * values are 1, 2.
  35. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
  36. * tx_fifo_len: This too is an array of 8. Each element defines the number of
  37. * Tx descriptors that can be associated with each corresponding FIFO.
  38. * intr_type: This defines the type of interrupt. The values can be 0(INTA),
  39. * 2(MSI_X). Default value is '2(MSI_X)'
  40. * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
  41. * Possible values '1' for enable '0' for disable. Default is '0'
  42. * lro_max_pkts: This parameter defines maximum number of packets can be
  43. * aggregated as a single large packet
  44. * napi: This parameter used to enable/disable NAPI (polling Rx)
  45. * Possible values '1' for enable and '0' for disable. Default is '1'
  46. * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
  47. * Possible values '1' for enable and '0' for disable. Default is '0'
  48. * vlan_tag_strip: This can be used to enable or disable vlan stripping.
  49. * Possible values '1' for enable , '0' for disable.
  50. * Default is '2' - which means disable in promisc mode
  51. * and enable in non-promiscuous mode.
  52. ************************************************************************/
  53. #include <linux/module.h>
  54. #include <linux/types.h>
  55. #include <linux/errno.h>
  56. #include <linux/ioport.h>
  57. #include <linux/pci.h>
  58. #include <linux/dma-mapping.h>
  59. #include <linux/kernel.h>
  60. #include <linux/netdevice.h>
  61. #include <linux/etherdevice.h>
  62. #include <linux/skbuff.h>
  63. #include <linux/init.h>
  64. #include <linux/delay.h>
  65. #include <linux/stddef.h>
  66. #include <linux/ioctl.h>
  67. #include <linux/timex.h>
  68. #include <linux/ethtool.h>
  69. #include <linux/workqueue.h>
  70. #include <linux/if_vlan.h>
  71. #include <linux/ip.h>
  72. #include <linux/tcp.h>
  73. #include <net/tcp.h>
  74. #include <asm/system.h>
  75. #include <asm/uaccess.h>
  76. #include <asm/io.h>
  77. #include <asm/div64.h>
  78. #include <asm/irq.h>
  79. /* local include */
  80. #include "s2io.h"
  81. #include "s2io-regs.h"
  82. #define DRV_VERSION "2.0.26.2"
  83. /* S2io Driver name & version. */
  84. static char s2io_driver_name[] = "Neterion";
  85. static char s2io_driver_version[] = DRV_VERSION;
  86. static int rxd_size[2] = {32,48};
  87. static int rxd_count[2] = {127,85};
  88. static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
  89. {
  90. int ret;
  91. ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
  92. (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
  93. return ret;
  94. }
  95. /*
  96. * Cards with following subsystem_id have a link state indication
  97. * problem, 600B, 600C, 600D, 640B, 640C and 640D.
  98. * macro below identifies these cards given the subsystem_id.
  99. */
  100. #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
  101. (dev_type == XFRAME_I_DEVICE) ? \
  102. ((((subid >= 0x600B) && (subid <= 0x600D)) || \
  103. ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
  104. #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
  105. ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
  106. #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
  107. #define PANIC 1
  108. #define LOW 2
  109. static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
  110. {
  111. struct mac_info *mac_control;
  112. mac_control = &sp->mac_control;
  113. if (rxb_size <= rxd_count[sp->rxd_mode])
  114. return PANIC;
  115. else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
  116. return LOW;
  117. return 0;
  118. }
  119. static inline int is_s2io_card_up(const struct s2io_nic * sp)
  120. {
  121. return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
  122. }
  123. /* Ethtool related variables and Macros. */
  124. static char s2io_gstrings[][ETH_GSTRING_LEN] = {
  125. "Register test\t(offline)",
  126. "Eeprom test\t(offline)",
  127. "Link test\t(online)",
  128. "RLDRAM test\t(offline)",
  129. "BIST Test\t(offline)"
  130. };
  131. static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
  132. {"tmac_frms"},
  133. {"tmac_data_octets"},
  134. {"tmac_drop_frms"},
  135. {"tmac_mcst_frms"},
  136. {"tmac_bcst_frms"},
  137. {"tmac_pause_ctrl_frms"},
  138. {"tmac_ttl_octets"},
  139. {"tmac_ucst_frms"},
  140. {"tmac_nucst_frms"},
  141. {"tmac_any_err_frms"},
  142. {"tmac_ttl_less_fb_octets"},
  143. {"tmac_vld_ip_octets"},
  144. {"tmac_vld_ip"},
  145. {"tmac_drop_ip"},
  146. {"tmac_icmp"},
  147. {"tmac_rst_tcp"},
  148. {"tmac_tcp"},
  149. {"tmac_udp"},
  150. {"rmac_vld_frms"},
  151. {"rmac_data_octets"},
  152. {"rmac_fcs_err_frms"},
  153. {"rmac_drop_frms"},
  154. {"rmac_vld_mcst_frms"},
  155. {"rmac_vld_bcst_frms"},
  156. {"rmac_in_rng_len_err_frms"},
  157. {"rmac_out_rng_len_err_frms"},
  158. {"rmac_long_frms"},
  159. {"rmac_pause_ctrl_frms"},
  160. {"rmac_unsup_ctrl_frms"},
  161. {"rmac_ttl_octets"},
  162. {"rmac_accepted_ucst_frms"},
  163. {"rmac_accepted_nucst_frms"},
  164. {"rmac_discarded_frms"},
  165. {"rmac_drop_events"},
  166. {"rmac_ttl_less_fb_octets"},
  167. {"rmac_ttl_frms"},
  168. {"rmac_usized_frms"},
  169. {"rmac_osized_frms"},
  170. {"rmac_frag_frms"},
  171. {"rmac_jabber_frms"},
  172. {"rmac_ttl_64_frms"},
  173. {"rmac_ttl_65_127_frms"},
  174. {"rmac_ttl_128_255_frms"},
  175. {"rmac_ttl_256_511_frms"},
  176. {"rmac_ttl_512_1023_frms"},
  177. {"rmac_ttl_1024_1518_frms"},
  178. {"rmac_ip"},
  179. {"rmac_ip_octets"},
  180. {"rmac_hdr_err_ip"},
  181. {"rmac_drop_ip"},
  182. {"rmac_icmp"},
  183. {"rmac_tcp"},
  184. {"rmac_udp"},
  185. {"rmac_err_drp_udp"},
  186. {"rmac_xgmii_err_sym"},
  187. {"rmac_frms_q0"},
  188. {"rmac_frms_q1"},
  189. {"rmac_frms_q2"},
  190. {"rmac_frms_q3"},
  191. {"rmac_frms_q4"},
  192. {"rmac_frms_q5"},
  193. {"rmac_frms_q6"},
  194. {"rmac_frms_q7"},
  195. {"rmac_full_q0"},
  196. {"rmac_full_q1"},
  197. {"rmac_full_q2"},
  198. {"rmac_full_q3"},
  199. {"rmac_full_q4"},
  200. {"rmac_full_q5"},
  201. {"rmac_full_q6"},
  202. {"rmac_full_q7"},
  203. {"rmac_pause_cnt"},
  204. {"rmac_xgmii_data_err_cnt"},
  205. {"rmac_xgmii_ctrl_err_cnt"},
  206. {"rmac_accepted_ip"},
  207. {"rmac_err_tcp"},
  208. {"rd_req_cnt"},
  209. {"new_rd_req_cnt"},
  210. {"new_rd_req_rtry_cnt"},
  211. {"rd_rtry_cnt"},
  212. {"wr_rtry_rd_ack_cnt"},
  213. {"wr_req_cnt"},
  214. {"new_wr_req_cnt"},
  215. {"new_wr_req_rtry_cnt"},
  216. {"wr_rtry_cnt"},
  217. {"wr_disc_cnt"},
  218. {"rd_rtry_wr_ack_cnt"},
  219. {"txp_wr_cnt"},
  220. {"txd_rd_cnt"},
  221. {"txd_wr_cnt"},
  222. {"rxd_rd_cnt"},
  223. {"rxd_wr_cnt"},
  224. {"txf_rd_cnt"},
  225. {"rxf_wr_cnt"}
  226. };
  227. static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
  228. {"rmac_ttl_1519_4095_frms"},
  229. {"rmac_ttl_4096_8191_frms"},
  230. {"rmac_ttl_8192_max_frms"},
  231. {"rmac_ttl_gt_max_frms"},
  232. {"rmac_osized_alt_frms"},
  233. {"rmac_jabber_alt_frms"},
  234. {"rmac_gt_max_alt_frms"},
  235. {"rmac_vlan_frms"},
  236. {"rmac_len_discard"},
  237. {"rmac_fcs_discard"},
  238. {"rmac_pf_discard"},
  239. {"rmac_da_discard"},
  240. {"rmac_red_discard"},
  241. {"rmac_rts_discard"},
  242. {"rmac_ingm_full_discard"},
  243. {"link_fault_cnt"}
  244. };
  245. static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
  246. {"\n DRIVER STATISTICS"},
  247. {"single_bit_ecc_errs"},
  248. {"double_bit_ecc_errs"},
  249. {"parity_err_cnt"},
  250. {"serious_err_cnt"},
  251. {"soft_reset_cnt"},
  252. {"fifo_full_cnt"},
  253. {"ring_0_full_cnt"},
  254. {"ring_1_full_cnt"},
  255. {"ring_2_full_cnt"},
  256. {"ring_3_full_cnt"},
  257. {"ring_4_full_cnt"},
  258. {"ring_5_full_cnt"},
  259. {"ring_6_full_cnt"},
  260. {"ring_7_full_cnt"},
  261. ("alarm_transceiver_temp_high"),
  262. ("alarm_transceiver_temp_low"),
  263. ("alarm_laser_bias_current_high"),
  264. ("alarm_laser_bias_current_low"),
  265. ("alarm_laser_output_power_high"),
  266. ("alarm_laser_output_power_low"),
  267. ("warn_transceiver_temp_high"),
  268. ("warn_transceiver_temp_low"),
  269. ("warn_laser_bias_current_high"),
  270. ("warn_laser_bias_current_low"),
  271. ("warn_laser_output_power_high"),
  272. ("warn_laser_output_power_low"),
  273. ("lro_aggregated_pkts"),
  274. ("lro_flush_both_count"),
  275. ("lro_out_of_sequence_pkts"),
  276. ("lro_flush_due_to_max_pkts"),
  277. ("lro_avg_aggr_pkts"),
  278. ("mem_alloc_fail_cnt"),
  279. ("pci_map_fail_cnt"),
  280. ("watchdog_timer_cnt"),
  281. ("mem_allocated"),
  282. ("mem_freed"),
  283. ("link_up_cnt"),
  284. ("link_down_cnt"),
  285. ("link_up_time"),
  286. ("link_down_time"),
  287. ("tx_tcode_buf_abort_cnt"),
  288. ("tx_tcode_desc_abort_cnt"),
  289. ("tx_tcode_parity_err_cnt"),
  290. ("tx_tcode_link_loss_cnt"),
  291. ("tx_tcode_list_proc_err_cnt"),
  292. ("rx_tcode_parity_err_cnt"),
  293. ("rx_tcode_abort_cnt"),
  294. ("rx_tcode_parity_abort_cnt"),
  295. ("rx_tcode_rda_fail_cnt"),
  296. ("rx_tcode_unkn_prot_cnt"),
  297. ("rx_tcode_fcs_err_cnt"),
  298. ("rx_tcode_buf_size_err_cnt"),
  299. ("rx_tcode_rxd_corrupt_cnt"),
  300. ("rx_tcode_unkn_err_cnt"),
  301. {"tda_err_cnt"},
  302. {"pfc_err_cnt"},
  303. {"pcc_err_cnt"},
  304. {"tti_err_cnt"},
  305. {"tpa_err_cnt"},
  306. {"sm_err_cnt"},
  307. {"lso_err_cnt"},
  308. {"mac_tmac_err_cnt"},
  309. {"mac_rmac_err_cnt"},
  310. {"xgxs_txgxs_err_cnt"},
  311. {"xgxs_rxgxs_err_cnt"},
  312. {"rc_err_cnt"},
  313. {"prc_pcix_err_cnt"},
  314. {"rpa_err_cnt"},
  315. {"rda_err_cnt"},
  316. {"rti_err_cnt"},
  317. {"mc_err_cnt"}
  318. };
  319. #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
  320. #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
  321. ETH_GSTRING_LEN
  322. #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
  323. #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
  324. #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
  325. #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
  326. #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
  327. #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
  328. #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
  329. #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
  330. init_timer(&timer); \
  331. timer.function = handle; \
  332. timer.data = (unsigned long) arg; \
  333. mod_timer(&timer, (jiffies + exp)) \
  334. /* Add the vlan */
  335. static void s2io_vlan_rx_register(struct net_device *dev,
  336. struct vlan_group *grp)
  337. {
  338. struct s2io_nic *nic = dev->priv;
  339. unsigned long flags;
  340. spin_lock_irqsave(&nic->tx_lock, flags);
  341. nic->vlgrp = grp;
  342. spin_unlock_irqrestore(&nic->tx_lock, flags);
  343. }
  344. /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
  345. static int vlan_strip_flag;
  346. /*
  347. * Constants to be programmed into the Xena's registers, to configure
  348. * the XAUI.
  349. */
  350. #define END_SIGN 0x0
  351. static const u64 herc_act_dtx_cfg[] = {
  352. /* Set address */
  353. 0x8000051536750000ULL, 0x80000515367500E0ULL,
  354. /* Write data */
  355. 0x8000051536750004ULL, 0x80000515367500E4ULL,
  356. /* Set address */
  357. 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
  358. /* Write data */
  359. 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
  360. /* Set address */
  361. 0x801205150D440000ULL, 0x801205150D4400E0ULL,
  362. /* Write data */
  363. 0x801205150D440004ULL, 0x801205150D4400E4ULL,
  364. /* Set address */
  365. 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
  366. /* Write data */
  367. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  368. /* Done */
  369. END_SIGN
  370. };
  371. static const u64 xena_dtx_cfg[] = {
  372. /* Set address */
  373. 0x8000051500000000ULL, 0x80000515000000E0ULL,
  374. /* Write data */
  375. 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
  376. /* Set address */
  377. 0x8001051500000000ULL, 0x80010515000000E0ULL,
  378. /* Write data */
  379. 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
  380. /* Set address */
  381. 0x8002051500000000ULL, 0x80020515000000E0ULL,
  382. /* Write data */
  383. 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
  384. END_SIGN
  385. };
  386. /*
  387. * Constants for Fixing the MacAddress problem seen mostly on
  388. * Alpha machines.
  389. */
  390. static const u64 fix_mac[] = {
  391. 0x0060000000000000ULL, 0x0060600000000000ULL,
  392. 0x0040600000000000ULL, 0x0000600000000000ULL,
  393. 0x0020600000000000ULL, 0x0060600000000000ULL,
  394. 0x0020600000000000ULL, 0x0060600000000000ULL,
  395. 0x0020600000000000ULL, 0x0060600000000000ULL,
  396. 0x0020600000000000ULL, 0x0060600000000000ULL,
  397. 0x0020600000000000ULL, 0x0060600000000000ULL,
  398. 0x0020600000000000ULL, 0x0060600000000000ULL,
  399. 0x0020600000000000ULL, 0x0060600000000000ULL,
  400. 0x0020600000000000ULL, 0x0060600000000000ULL,
  401. 0x0020600000000000ULL, 0x0060600000000000ULL,
  402. 0x0020600000000000ULL, 0x0060600000000000ULL,
  403. 0x0020600000000000ULL, 0x0000600000000000ULL,
  404. 0x0040600000000000ULL, 0x0060600000000000ULL,
  405. END_SIGN
  406. };
  407. MODULE_LICENSE("GPL");
  408. MODULE_VERSION(DRV_VERSION);
  409. /* Module Loadable parameters. */
  410. S2IO_PARM_INT(tx_fifo_num, 1);
  411. S2IO_PARM_INT(rx_ring_num, 1);
  412. S2IO_PARM_INT(rx_ring_mode, 1);
  413. S2IO_PARM_INT(use_continuous_tx_intrs, 1);
  414. S2IO_PARM_INT(rmac_pause_time, 0x100);
  415. S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
  416. S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
  417. S2IO_PARM_INT(shared_splits, 0);
  418. S2IO_PARM_INT(tmac_util_period, 5);
  419. S2IO_PARM_INT(rmac_util_period, 5);
  420. S2IO_PARM_INT(bimodal, 0);
  421. S2IO_PARM_INT(l3l4hdr_size, 128);
  422. /* Frequency of Rx desc syncs expressed as power of 2 */
  423. S2IO_PARM_INT(rxsync_frequency, 3);
  424. /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
  425. S2IO_PARM_INT(intr_type, 2);
  426. /* Large receive offload feature */
  427. S2IO_PARM_INT(lro, 0);
  428. /* Max pkts to be aggregated by LRO at one time. If not specified,
  429. * aggregation happens until we hit max IP pkt size(64K)
  430. */
  431. S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
  432. S2IO_PARM_INT(indicate_max_pkts, 0);
  433. S2IO_PARM_INT(napi, 1);
  434. S2IO_PARM_INT(ufo, 0);
  435. S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
  436. static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
  437. {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
  438. static unsigned int rx_ring_sz[MAX_RX_RINGS] =
  439. {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
  440. static unsigned int rts_frm_len[MAX_RX_RINGS] =
  441. {[0 ...(MAX_RX_RINGS - 1)] = 0 };
  442. module_param_array(tx_fifo_len, uint, NULL, 0);
  443. module_param_array(rx_ring_sz, uint, NULL, 0);
  444. module_param_array(rts_frm_len, uint, NULL, 0);
  445. /*
  446. * S2IO device table.
  447. * This table lists all the devices that this driver supports.
  448. */
  449. static struct pci_device_id s2io_tbl[] __devinitdata = {
  450. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
  451. PCI_ANY_ID, PCI_ANY_ID},
  452. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
  453. PCI_ANY_ID, PCI_ANY_ID},
  454. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
  455. PCI_ANY_ID, PCI_ANY_ID},
  456. {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
  457. PCI_ANY_ID, PCI_ANY_ID},
  458. {0,}
  459. };
  460. MODULE_DEVICE_TABLE(pci, s2io_tbl);
  461. static struct pci_error_handlers s2io_err_handler = {
  462. .error_detected = s2io_io_error_detected,
  463. .slot_reset = s2io_io_slot_reset,
  464. .resume = s2io_io_resume,
  465. };
  466. static struct pci_driver s2io_driver = {
  467. .name = "S2IO",
  468. .id_table = s2io_tbl,
  469. .probe = s2io_init_nic,
  470. .remove = __devexit_p(s2io_rem_nic),
  471. .err_handler = &s2io_err_handler,
  472. };
  473. /* A simplifier macro used both by init and free shared_mem Fns(). */
  474. #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
  475. /**
  476. * init_shared_mem - Allocation and Initialization of Memory
  477. * @nic: Device private variable.
  478. * Description: The function allocates all the memory areas shared
  479. * between the NIC and the driver. This includes Tx descriptors,
  480. * Rx descriptors and the statistics block.
  481. */
  482. static int init_shared_mem(struct s2io_nic *nic)
  483. {
  484. u32 size;
  485. void *tmp_v_addr, *tmp_v_addr_next;
  486. dma_addr_t tmp_p_addr, tmp_p_addr_next;
  487. struct RxD_block *pre_rxd_blk = NULL;
  488. int i, j, blk_cnt;
  489. int lst_size, lst_per_page;
  490. struct net_device *dev = nic->dev;
  491. unsigned long tmp;
  492. struct buffAdd *ba;
  493. struct mac_info *mac_control;
  494. struct config_param *config;
  495. unsigned long long mem_allocated = 0;
  496. mac_control = &nic->mac_control;
  497. config = &nic->config;
  498. /* Allocation and initialization of TXDLs in FIOFs */
  499. size = 0;
  500. for (i = 0; i < config->tx_fifo_num; i++) {
  501. size += config->tx_cfg[i].fifo_len;
  502. }
  503. if (size > MAX_AVAILABLE_TXDS) {
  504. DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
  505. DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
  506. return -EINVAL;
  507. }
  508. lst_size = (sizeof(struct TxD) * config->max_txds);
  509. lst_per_page = PAGE_SIZE / lst_size;
  510. for (i = 0; i < config->tx_fifo_num; i++) {
  511. int fifo_len = config->tx_cfg[i].fifo_len;
  512. int list_holder_size = fifo_len * sizeof(struct list_info_hold);
  513. mac_control->fifos[i].list_info = kmalloc(list_holder_size,
  514. GFP_KERNEL);
  515. if (!mac_control->fifos[i].list_info) {
  516. DBG_PRINT(INFO_DBG,
  517. "Malloc failed for list_info\n");
  518. return -ENOMEM;
  519. }
  520. mem_allocated += list_holder_size;
  521. memset(mac_control->fifos[i].list_info, 0, list_holder_size);
  522. }
  523. for (i = 0; i < config->tx_fifo_num; i++) {
  524. int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  525. lst_per_page);
  526. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  527. mac_control->fifos[i].tx_curr_put_info.fifo_len =
  528. config->tx_cfg[i].fifo_len - 1;
  529. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  530. mac_control->fifos[i].tx_curr_get_info.fifo_len =
  531. config->tx_cfg[i].fifo_len - 1;
  532. mac_control->fifos[i].fifo_no = i;
  533. mac_control->fifos[i].nic = nic;
  534. mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
  535. for (j = 0; j < page_num; j++) {
  536. int k = 0;
  537. dma_addr_t tmp_p;
  538. void *tmp_v;
  539. tmp_v = pci_alloc_consistent(nic->pdev,
  540. PAGE_SIZE, &tmp_p);
  541. if (!tmp_v) {
  542. DBG_PRINT(INFO_DBG,
  543. "pci_alloc_consistent ");
  544. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  545. return -ENOMEM;
  546. }
  547. /* If we got a zero DMA address(can happen on
  548. * certain platforms like PPC), reallocate.
  549. * Store virtual address of page we don't want,
  550. * to be freed later.
  551. */
  552. if (!tmp_p) {
  553. mac_control->zerodma_virt_addr = tmp_v;
  554. DBG_PRINT(INIT_DBG,
  555. "%s: Zero DMA address for TxDL. ", dev->name);
  556. DBG_PRINT(INIT_DBG,
  557. "Virtual address %p\n", tmp_v);
  558. tmp_v = pci_alloc_consistent(nic->pdev,
  559. PAGE_SIZE, &tmp_p);
  560. if (!tmp_v) {
  561. DBG_PRINT(INFO_DBG,
  562. "pci_alloc_consistent ");
  563. DBG_PRINT(INFO_DBG, "failed for TxDL\n");
  564. return -ENOMEM;
  565. }
  566. mem_allocated += PAGE_SIZE;
  567. }
  568. while (k < lst_per_page) {
  569. int l = (j * lst_per_page) + k;
  570. if (l == config->tx_cfg[i].fifo_len)
  571. break;
  572. mac_control->fifos[i].list_info[l].list_virt_addr =
  573. tmp_v + (k * lst_size);
  574. mac_control->fifos[i].list_info[l].list_phy_addr =
  575. tmp_p + (k * lst_size);
  576. k++;
  577. }
  578. }
  579. }
  580. nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
  581. if (!nic->ufo_in_band_v)
  582. return -ENOMEM;
  583. mem_allocated += (size * sizeof(u64));
  584. /* Allocation and initialization of RXDs in Rings */
  585. size = 0;
  586. for (i = 0; i < config->rx_ring_num; i++) {
  587. if (config->rx_cfg[i].num_rxd %
  588. (rxd_count[nic->rxd_mode] + 1)) {
  589. DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
  590. DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
  591. i);
  592. DBG_PRINT(ERR_DBG, "RxDs per Block");
  593. return FAILURE;
  594. }
  595. size += config->rx_cfg[i].num_rxd;
  596. mac_control->rings[i].block_count =
  597. config->rx_cfg[i].num_rxd /
  598. (rxd_count[nic->rxd_mode] + 1 );
  599. mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
  600. mac_control->rings[i].block_count;
  601. }
  602. if (nic->rxd_mode == RXD_MODE_1)
  603. size = (size * (sizeof(struct RxD1)));
  604. else
  605. size = (size * (sizeof(struct RxD3)));
  606. for (i = 0; i < config->rx_ring_num; i++) {
  607. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  608. mac_control->rings[i].rx_curr_get_info.offset = 0;
  609. mac_control->rings[i].rx_curr_get_info.ring_len =
  610. config->rx_cfg[i].num_rxd - 1;
  611. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  612. mac_control->rings[i].rx_curr_put_info.offset = 0;
  613. mac_control->rings[i].rx_curr_put_info.ring_len =
  614. config->rx_cfg[i].num_rxd - 1;
  615. mac_control->rings[i].nic = nic;
  616. mac_control->rings[i].ring_no = i;
  617. blk_cnt = config->rx_cfg[i].num_rxd /
  618. (rxd_count[nic->rxd_mode] + 1);
  619. /* Allocating all the Rx blocks */
  620. for (j = 0; j < blk_cnt; j++) {
  621. struct rx_block_info *rx_blocks;
  622. int l;
  623. rx_blocks = &mac_control->rings[i].rx_blocks[j];
  624. size = SIZE_OF_BLOCK; //size is always page size
  625. tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
  626. &tmp_p_addr);
  627. if (tmp_v_addr == NULL) {
  628. /*
  629. * In case of failure, free_shared_mem()
  630. * is called, which should free any
  631. * memory that was alloced till the
  632. * failure happened.
  633. */
  634. rx_blocks->block_virt_addr = tmp_v_addr;
  635. return -ENOMEM;
  636. }
  637. mem_allocated += size;
  638. memset(tmp_v_addr, 0, size);
  639. rx_blocks->block_virt_addr = tmp_v_addr;
  640. rx_blocks->block_dma_addr = tmp_p_addr;
  641. rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
  642. rxd_count[nic->rxd_mode],
  643. GFP_KERNEL);
  644. if (!rx_blocks->rxds)
  645. return -ENOMEM;
  646. mem_allocated +=
  647. (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  648. for (l=0; l<rxd_count[nic->rxd_mode];l++) {
  649. rx_blocks->rxds[l].virt_addr =
  650. rx_blocks->block_virt_addr +
  651. (rxd_size[nic->rxd_mode] * l);
  652. rx_blocks->rxds[l].dma_addr =
  653. rx_blocks->block_dma_addr +
  654. (rxd_size[nic->rxd_mode] * l);
  655. }
  656. }
  657. /* Interlinking all Rx Blocks */
  658. for (j = 0; j < blk_cnt; j++) {
  659. tmp_v_addr =
  660. mac_control->rings[i].rx_blocks[j].block_virt_addr;
  661. tmp_v_addr_next =
  662. mac_control->rings[i].rx_blocks[(j + 1) %
  663. blk_cnt].block_virt_addr;
  664. tmp_p_addr =
  665. mac_control->rings[i].rx_blocks[j].block_dma_addr;
  666. tmp_p_addr_next =
  667. mac_control->rings[i].rx_blocks[(j + 1) %
  668. blk_cnt].block_dma_addr;
  669. pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
  670. pre_rxd_blk->reserved_2_pNext_RxD_block =
  671. (unsigned long) tmp_v_addr_next;
  672. pre_rxd_blk->pNext_RxD_Blk_physical =
  673. (u64) tmp_p_addr_next;
  674. }
  675. }
  676. if (nic->rxd_mode == RXD_MODE_3B) {
  677. /*
  678. * Allocation of Storages for buffer addresses in 2BUFF mode
  679. * and the buffers as well.
  680. */
  681. for (i = 0; i < config->rx_ring_num; i++) {
  682. blk_cnt = config->rx_cfg[i].num_rxd /
  683. (rxd_count[nic->rxd_mode]+ 1);
  684. mac_control->rings[i].ba =
  685. kmalloc((sizeof(struct buffAdd *) * blk_cnt),
  686. GFP_KERNEL);
  687. if (!mac_control->rings[i].ba)
  688. return -ENOMEM;
  689. mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
  690. for (j = 0; j < blk_cnt; j++) {
  691. int k = 0;
  692. mac_control->rings[i].ba[j] =
  693. kmalloc((sizeof(struct buffAdd) *
  694. (rxd_count[nic->rxd_mode] + 1)),
  695. GFP_KERNEL);
  696. if (!mac_control->rings[i].ba[j])
  697. return -ENOMEM;
  698. mem_allocated += (sizeof(struct buffAdd) * \
  699. (rxd_count[nic->rxd_mode] + 1));
  700. while (k != rxd_count[nic->rxd_mode]) {
  701. ba = &mac_control->rings[i].ba[j][k];
  702. ba->ba_0_org = (void *) kmalloc
  703. (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
  704. if (!ba->ba_0_org)
  705. return -ENOMEM;
  706. mem_allocated +=
  707. (BUF0_LEN + ALIGN_SIZE);
  708. tmp = (unsigned long)ba->ba_0_org;
  709. tmp += ALIGN_SIZE;
  710. tmp &= ~((unsigned long) ALIGN_SIZE);
  711. ba->ba_0 = (void *) tmp;
  712. ba->ba_1_org = (void *) kmalloc
  713. (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
  714. if (!ba->ba_1_org)
  715. return -ENOMEM;
  716. mem_allocated
  717. += (BUF1_LEN + ALIGN_SIZE);
  718. tmp = (unsigned long) ba->ba_1_org;
  719. tmp += ALIGN_SIZE;
  720. tmp &= ~((unsigned long) ALIGN_SIZE);
  721. ba->ba_1 = (void *) tmp;
  722. k++;
  723. }
  724. }
  725. }
  726. }
  727. /* Allocation and initialization of Statistics block */
  728. size = sizeof(struct stat_block);
  729. mac_control->stats_mem = pci_alloc_consistent
  730. (nic->pdev, size, &mac_control->stats_mem_phy);
  731. if (!mac_control->stats_mem) {
  732. /*
  733. * In case of failure, free_shared_mem() is called, which
  734. * should free any memory that was alloced till the
  735. * failure happened.
  736. */
  737. return -ENOMEM;
  738. }
  739. mem_allocated += size;
  740. mac_control->stats_mem_sz = size;
  741. tmp_v_addr = mac_control->stats_mem;
  742. mac_control->stats_info = (struct stat_block *) tmp_v_addr;
  743. memset(tmp_v_addr, 0, size);
  744. DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
  745. (unsigned long long) tmp_p_addr);
  746. mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
  747. return SUCCESS;
  748. }
  749. /**
  750. * free_shared_mem - Free the allocated Memory
  751. * @nic: Device private variable.
  752. * Description: This function is to free all memory locations allocated by
  753. * the init_shared_mem() function and return it to the kernel.
  754. */
  755. static void free_shared_mem(struct s2io_nic *nic)
  756. {
  757. int i, j, blk_cnt, size;
  758. u32 ufo_size = 0;
  759. void *tmp_v_addr;
  760. dma_addr_t tmp_p_addr;
  761. struct mac_info *mac_control;
  762. struct config_param *config;
  763. int lst_size, lst_per_page;
  764. struct net_device *dev;
  765. int page_num = 0;
  766. if (!nic)
  767. return;
  768. dev = nic->dev;
  769. mac_control = &nic->mac_control;
  770. config = &nic->config;
  771. lst_size = (sizeof(struct TxD) * config->max_txds);
  772. lst_per_page = PAGE_SIZE / lst_size;
  773. for (i = 0; i < config->tx_fifo_num; i++) {
  774. ufo_size += config->tx_cfg[i].fifo_len;
  775. page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
  776. lst_per_page);
  777. for (j = 0; j < page_num; j++) {
  778. int mem_blks = (j * lst_per_page);
  779. if (!mac_control->fifos[i].list_info)
  780. return;
  781. if (!mac_control->fifos[i].list_info[mem_blks].
  782. list_virt_addr)
  783. break;
  784. pci_free_consistent(nic->pdev, PAGE_SIZE,
  785. mac_control->fifos[i].
  786. list_info[mem_blks].
  787. list_virt_addr,
  788. mac_control->fifos[i].
  789. list_info[mem_blks].
  790. list_phy_addr);
  791. nic->mac_control.stats_info->sw_stat.mem_freed
  792. += PAGE_SIZE;
  793. }
  794. /* If we got a zero DMA address during allocation,
  795. * free the page now
  796. */
  797. if (mac_control->zerodma_virt_addr) {
  798. pci_free_consistent(nic->pdev, PAGE_SIZE,
  799. mac_control->zerodma_virt_addr,
  800. (dma_addr_t)0);
  801. DBG_PRINT(INIT_DBG,
  802. "%s: Freeing TxDL with zero DMA addr. ",
  803. dev->name);
  804. DBG_PRINT(INIT_DBG, "Virtual address %p\n",
  805. mac_control->zerodma_virt_addr);
  806. nic->mac_control.stats_info->sw_stat.mem_freed
  807. += PAGE_SIZE;
  808. }
  809. kfree(mac_control->fifos[i].list_info);
  810. nic->mac_control.stats_info->sw_stat.mem_freed +=
  811. (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
  812. }
  813. size = SIZE_OF_BLOCK;
  814. for (i = 0; i < config->rx_ring_num; i++) {
  815. blk_cnt = mac_control->rings[i].block_count;
  816. for (j = 0; j < blk_cnt; j++) {
  817. tmp_v_addr = mac_control->rings[i].rx_blocks[j].
  818. block_virt_addr;
  819. tmp_p_addr = mac_control->rings[i].rx_blocks[j].
  820. block_dma_addr;
  821. if (tmp_v_addr == NULL)
  822. break;
  823. pci_free_consistent(nic->pdev, size,
  824. tmp_v_addr, tmp_p_addr);
  825. nic->mac_control.stats_info->sw_stat.mem_freed += size;
  826. kfree(mac_control->rings[i].rx_blocks[j].rxds);
  827. nic->mac_control.stats_info->sw_stat.mem_freed +=
  828. ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
  829. }
  830. }
  831. if (nic->rxd_mode == RXD_MODE_3B) {
  832. /* Freeing buffer storage addresses in 2BUFF mode. */
  833. for (i = 0; i < config->rx_ring_num; i++) {
  834. blk_cnt = config->rx_cfg[i].num_rxd /
  835. (rxd_count[nic->rxd_mode] + 1);
  836. for (j = 0; j < blk_cnt; j++) {
  837. int k = 0;
  838. if (!mac_control->rings[i].ba[j])
  839. continue;
  840. while (k != rxd_count[nic->rxd_mode]) {
  841. struct buffAdd *ba =
  842. &mac_control->rings[i].ba[j][k];
  843. kfree(ba->ba_0_org);
  844. nic->mac_control.stats_info->sw_stat.\
  845. mem_freed += (BUF0_LEN + ALIGN_SIZE);
  846. kfree(ba->ba_1_org);
  847. nic->mac_control.stats_info->sw_stat.\
  848. mem_freed += (BUF1_LEN + ALIGN_SIZE);
  849. k++;
  850. }
  851. kfree(mac_control->rings[i].ba[j]);
  852. nic->mac_control.stats_info->sw_stat.mem_freed +=
  853. (sizeof(struct buffAdd) *
  854. (rxd_count[nic->rxd_mode] + 1));
  855. }
  856. kfree(mac_control->rings[i].ba);
  857. nic->mac_control.stats_info->sw_stat.mem_freed +=
  858. (sizeof(struct buffAdd *) * blk_cnt);
  859. }
  860. }
  861. if (mac_control->stats_mem) {
  862. pci_free_consistent(nic->pdev,
  863. mac_control->stats_mem_sz,
  864. mac_control->stats_mem,
  865. mac_control->stats_mem_phy);
  866. nic->mac_control.stats_info->sw_stat.mem_freed +=
  867. mac_control->stats_mem_sz;
  868. }
  869. if (nic->ufo_in_band_v) {
  870. kfree(nic->ufo_in_band_v);
  871. nic->mac_control.stats_info->sw_stat.mem_freed
  872. += (ufo_size * sizeof(u64));
  873. }
  874. }
  875. /**
  876. * s2io_verify_pci_mode -
  877. */
  878. static int s2io_verify_pci_mode(struct s2io_nic *nic)
  879. {
  880. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  881. register u64 val64 = 0;
  882. int mode;
  883. val64 = readq(&bar0->pci_mode);
  884. mode = (u8)GET_PCI_MODE(val64);
  885. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  886. return -1; /* Unknown PCI mode */
  887. return mode;
  888. }
  889. #define NEC_VENID 0x1033
  890. #define NEC_DEVID 0x0125
  891. static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
  892. {
  893. struct pci_dev *tdev = NULL;
  894. while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
  895. if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
  896. if (tdev->bus == s2io_pdev->bus->parent)
  897. pci_dev_put(tdev);
  898. return 1;
  899. }
  900. }
  901. return 0;
  902. }
  903. static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
  904. /**
  905. * s2io_print_pci_mode -
  906. */
  907. static int s2io_print_pci_mode(struct s2io_nic *nic)
  908. {
  909. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  910. register u64 val64 = 0;
  911. int mode;
  912. struct config_param *config = &nic->config;
  913. val64 = readq(&bar0->pci_mode);
  914. mode = (u8)GET_PCI_MODE(val64);
  915. if ( val64 & PCI_MODE_UNKNOWN_MODE)
  916. return -1; /* Unknown PCI mode */
  917. config->bus_speed = bus_speed[mode];
  918. if (s2io_on_nec_bridge(nic->pdev)) {
  919. DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
  920. nic->dev->name);
  921. return mode;
  922. }
  923. if (val64 & PCI_MODE_32_BITS) {
  924. DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
  925. } else {
  926. DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
  927. }
  928. switch(mode) {
  929. case PCI_MODE_PCI_33:
  930. DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
  931. break;
  932. case PCI_MODE_PCI_66:
  933. DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
  934. break;
  935. case PCI_MODE_PCIX_M1_66:
  936. DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
  937. break;
  938. case PCI_MODE_PCIX_M1_100:
  939. DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
  940. break;
  941. case PCI_MODE_PCIX_M1_133:
  942. DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
  943. break;
  944. case PCI_MODE_PCIX_M2_66:
  945. DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
  946. break;
  947. case PCI_MODE_PCIX_M2_100:
  948. DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
  949. break;
  950. case PCI_MODE_PCIX_M2_133:
  951. DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
  952. break;
  953. default:
  954. return -1; /* Unsupported bus speed */
  955. }
  956. return mode;
  957. }
  958. /**
  959. * init_nic - Initialization of hardware
  960. * @nic: device peivate variable
  961. * Description: The function sequentially configures every block
  962. * of the H/W from their reset values.
  963. * Return Value: SUCCESS on success and
  964. * '-1' on failure (endian settings incorrect).
  965. */
  966. static int init_nic(struct s2io_nic *nic)
  967. {
  968. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  969. struct net_device *dev = nic->dev;
  970. register u64 val64 = 0;
  971. void __iomem *add;
  972. u32 time;
  973. int i, j;
  974. struct mac_info *mac_control;
  975. struct config_param *config;
  976. int dtx_cnt = 0;
  977. unsigned long long mem_share;
  978. int mem_size;
  979. mac_control = &nic->mac_control;
  980. config = &nic->config;
  981. /* to set the swapper controle on the card */
  982. if(s2io_set_swapper(nic)) {
  983. DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
  984. return -1;
  985. }
  986. /*
  987. * Herc requires EOI to be removed from reset before XGXS, so..
  988. */
  989. if (nic->device_type & XFRAME_II_DEVICE) {
  990. val64 = 0xA500000000ULL;
  991. writeq(val64, &bar0->sw_reset);
  992. msleep(500);
  993. val64 = readq(&bar0->sw_reset);
  994. }
  995. /* Remove XGXS from reset state */
  996. val64 = 0;
  997. writeq(val64, &bar0->sw_reset);
  998. msleep(500);
  999. val64 = readq(&bar0->sw_reset);
  1000. /* Enable Receiving broadcasts */
  1001. add = &bar0->mac_cfg;
  1002. val64 = readq(&bar0->mac_cfg);
  1003. val64 |= MAC_RMAC_BCAST_ENABLE;
  1004. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1005. writel((u32) val64, add);
  1006. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1007. writel((u32) (val64 >> 32), (add + 4));
  1008. /* Read registers in all blocks */
  1009. val64 = readq(&bar0->mac_int_mask);
  1010. val64 = readq(&bar0->mc_int_mask);
  1011. val64 = readq(&bar0->xgxs_int_mask);
  1012. /* Set MTU */
  1013. val64 = dev->mtu;
  1014. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  1015. if (nic->device_type & XFRAME_II_DEVICE) {
  1016. while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
  1017. SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
  1018. &bar0->dtx_control, UF);
  1019. if (dtx_cnt & 0x1)
  1020. msleep(1); /* Necessary!! */
  1021. dtx_cnt++;
  1022. }
  1023. } else {
  1024. while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
  1025. SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
  1026. &bar0->dtx_control, UF);
  1027. val64 = readq(&bar0->dtx_control);
  1028. dtx_cnt++;
  1029. }
  1030. }
  1031. /* Tx DMA Initialization */
  1032. val64 = 0;
  1033. writeq(val64, &bar0->tx_fifo_partition_0);
  1034. writeq(val64, &bar0->tx_fifo_partition_1);
  1035. writeq(val64, &bar0->tx_fifo_partition_2);
  1036. writeq(val64, &bar0->tx_fifo_partition_3);
  1037. for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
  1038. val64 |=
  1039. vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
  1040. 13) | vBIT(config->tx_cfg[i].fifo_priority,
  1041. ((i * 32) + 5), 3);
  1042. if (i == (config->tx_fifo_num - 1)) {
  1043. if (i % 2 == 0)
  1044. i++;
  1045. }
  1046. switch (i) {
  1047. case 1:
  1048. writeq(val64, &bar0->tx_fifo_partition_0);
  1049. val64 = 0;
  1050. break;
  1051. case 3:
  1052. writeq(val64, &bar0->tx_fifo_partition_1);
  1053. val64 = 0;
  1054. break;
  1055. case 5:
  1056. writeq(val64, &bar0->tx_fifo_partition_2);
  1057. val64 = 0;
  1058. break;
  1059. case 7:
  1060. writeq(val64, &bar0->tx_fifo_partition_3);
  1061. break;
  1062. }
  1063. }
  1064. /*
  1065. * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
  1066. * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
  1067. */
  1068. if ((nic->device_type == XFRAME_I_DEVICE) &&
  1069. (nic->pdev->revision < 4))
  1070. writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
  1071. val64 = readq(&bar0->tx_fifo_partition_0);
  1072. DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
  1073. &bar0->tx_fifo_partition_0, (unsigned long long) val64);
  1074. /*
  1075. * Initialization of Tx_PA_CONFIG register to ignore packet
  1076. * integrity checking.
  1077. */
  1078. val64 = readq(&bar0->tx_pa_cfg);
  1079. val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
  1080. TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
  1081. writeq(val64, &bar0->tx_pa_cfg);
  1082. /* Rx DMA intialization. */
  1083. val64 = 0;
  1084. for (i = 0; i < config->rx_ring_num; i++) {
  1085. val64 |=
  1086. vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
  1087. 3);
  1088. }
  1089. writeq(val64, &bar0->rx_queue_priority);
  1090. /*
  1091. * Allocating equal share of memory to all the
  1092. * configured Rings.
  1093. */
  1094. val64 = 0;
  1095. if (nic->device_type & XFRAME_II_DEVICE)
  1096. mem_size = 32;
  1097. else
  1098. mem_size = 64;
  1099. for (i = 0; i < config->rx_ring_num; i++) {
  1100. switch (i) {
  1101. case 0:
  1102. mem_share = (mem_size / config->rx_ring_num +
  1103. mem_size % config->rx_ring_num);
  1104. val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
  1105. continue;
  1106. case 1:
  1107. mem_share = (mem_size / config->rx_ring_num);
  1108. val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
  1109. continue;
  1110. case 2:
  1111. mem_share = (mem_size / config->rx_ring_num);
  1112. val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
  1113. continue;
  1114. case 3:
  1115. mem_share = (mem_size / config->rx_ring_num);
  1116. val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
  1117. continue;
  1118. case 4:
  1119. mem_share = (mem_size / config->rx_ring_num);
  1120. val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
  1121. continue;
  1122. case 5:
  1123. mem_share = (mem_size / config->rx_ring_num);
  1124. val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
  1125. continue;
  1126. case 6:
  1127. mem_share = (mem_size / config->rx_ring_num);
  1128. val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
  1129. continue;
  1130. case 7:
  1131. mem_share = (mem_size / config->rx_ring_num);
  1132. val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
  1133. continue;
  1134. }
  1135. }
  1136. writeq(val64, &bar0->rx_queue_cfg);
  1137. /*
  1138. * Filling Tx round robin registers
  1139. * as per the number of FIFOs
  1140. */
  1141. switch (config->tx_fifo_num) {
  1142. case 1:
  1143. val64 = 0x0000000000000000ULL;
  1144. writeq(val64, &bar0->tx_w_round_robin_0);
  1145. writeq(val64, &bar0->tx_w_round_robin_1);
  1146. writeq(val64, &bar0->tx_w_round_robin_2);
  1147. writeq(val64, &bar0->tx_w_round_robin_3);
  1148. writeq(val64, &bar0->tx_w_round_robin_4);
  1149. break;
  1150. case 2:
  1151. val64 = 0x0000010000010000ULL;
  1152. writeq(val64, &bar0->tx_w_round_robin_0);
  1153. val64 = 0x0100000100000100ULL;
  1154. writeq(val64, &bar0->tx_w_round_robin_1);
  1155. val64 = 0x0001000001000001ULL;
  1156. writeq(val64, &bar0->tx_w_round_robin_2);
  1157. val64 = 0x0000010000010000ULL;
  1158. writeq(val64, &bar0->tx_w_round_robin_3);
  1159. val64 = 0x0100000000000000ULL;
  1160. writeq(val64, &bar0->tx_w_round_robin_4);
  1161. break;
  1162. case 3:
  1163. val64 = 0x0001000102000001ULL;
  1164. writeq(val64, &bar0->tx_w_round_robin_0);
  1165. val64 = 0x0001020000010001ULL;
  1166. writeq(val64, &bar0->tx_w_round_robin_1);
  1167. val64 = 0x0200000100010200ULL;
  1168. writeq(val64, &bar0->tx_w_round_robin_2);
  1169. val64 = 0x0001000102000001ULL;
  1170. writeq(val64, &bar0->tx_w_round_robin_3);
  1171. val64 = 0x0001020000000000ULL;
  1172. writeq(val64, &bar0->tx_w_round_robin_4);
  1173. break;
  1174. case 4:
  1175. val64 = 0x0001020300010200ULL;
  1176. writeq(val64, &bar0->tx_w_round_robin_0);
  1177. val64 = 0x0100000102030001ULL;
  1178. writeq(val64, &bar0->tx_w_round_robin_1);
  1179. val64 = 0x0200010000010203ULL;
  1180. writeq(val64, &bar0->tx_w_round_robin_2);
  1181. val64 = 0x0001020001000001ULL;
  1182. writeq(val64, &bar0->tx_w_round_robin_3);
  1183. val64 = 0x0203000100000000ULL;
  1184. writeq(val64, &bar0->tx_w_round_robin_4);
  1185. break;
  1186. case 5:
  1187. val64 = 0x0001000203000102ULL;
  1188. writeq(val64, &bar0->tx_w_round_robin_0);
  1189. val64 = 0x0001020001030004ULL;
  1190. writeq(val64, &bar0->tx_w_round_robin_1);
  1191. val64 = 0x0001000203000102ULL;
  1192. writeq(val64, &bar0->tx_w_round_robin_2);
  1193. val64 = 0x0001020001030004ULL;
  1194. writeq(val64, &bar0->tx_w_round_robin_3);
  1195. val64 = 0x0001000000000000ULL;
  1196. writeq(val64, &bar0->tx_w_round_robin_4);
  1197. break;
  1198. case 6:
  1199. val64 = 0x0001020304000102ULL;
  1200. writeq(val64, &bar0->tx_w_round_robin_0);
  1201. val64 = 0x0304050001020001ULL;
  1202. writeq(val64, &bar0->tx_w_round_robin_1);
  1203. val64 = 0x0203000100000102ULL;
  1204. writeq(val64, &bar0->tx_w_round_robin_2);
  1205. val64 = 0x0304000102030405ULL;
  1206. writeq(val64, &bar0->tx_w_round_robin_3);
  1207. val64 = 0x0001000200000000ULL;
  1208. writeq(val64, &bar0->tx_w_round_robin_4);
  1209. break;
  1210. case 7:
  1211. val64 = 0x0001020001020300ULL;
  1212. writeq(val64, &bar0->tx_w_round_robin_0);
  1213. val64 = 0x0102030400010203ULL;
  1214. writeq(val64, &bar0->tx_w_round_robin_1);
  1215. val64 = 0x0405060001020001ULL;
  1216. writeq(val64, &bar0->tx_w_round_robin_2);
  1217. val64 = 0x0304050000010200ULL;
  1218. writeq(val64, &bar0->tx_w_round_robin_3);
  1219. val64 = 0x0102030000000000ULL;
  1220. writeq(val64, &bar0->tx_w_round_robin_4);
  1221. break;
  1222. case 8:
  1223. val64 = 0x0001020300040105ULL;
  1224. writeq(val64, &bar0->tx_w_round_robin_0);
  1225. val64 = 0x0200030106000204ULL;
  1226. writeq(val64, &bar0->tx_w_round_robin_1);
  1227. val64 = 0x0103000502010007ULL;
  1228. writeq(val64, &bar0->tx_w_round_robin_2);
  1229. val64 = 0x0304010002060500ULL;
  1230. writeq(val64, &bar0->tx_w_round_robin_3);
  1231. val64 = 0x0103020400000000ULL;
  1232. writeq(val64, &bar0->tx_w_round_robin_4);
  1233. break;
  1234. }
  1235. /* Enable all configured Tx FIFO partitions */
  1236. val64 = readq(&bar0->tx_fifo_partition_0);
  1237. val64 |= (TX_FIFO_PARTITION_EN);
  1238. writeq(val64, &bar0->tx_fifo_partition_0);
  1239. /* Filling the Rx round robin registers as per the
  1240. * number of Rings and steering based on QoS.
  1241. */
  1242. switch (config->rx_ring_num) {
  1243. case 1:
  1244. val64 = 0x8080808080808080ULL;
  1245. writeq(val64, &bar0->rts_qos_steering);
  1246. break;
  1247. case 2:
  1248. val64 = 0x0000010000010000ULL;
  1249. writeq(val64, &bar0->rx_w_round_robin_0);
  1250. val64 = 0x0100000100000100ULL;
  1251. writeq(val64, &bar0->rx_w_round_robin_1);
  1252. val64 = 0x0001000001000001ULL;
  1253. writeq(val64, &bar0->rx_w_round_robin_2);
  1254. val64 = 0x0000010000010000ULL;
  1255. writeq(val64, &bar0->rx_w_round_robin_3);
  1256. val64 = 0x0100000000000000ULL;
  1257. writeq(val64, &bar0->rx_w_round_robin_4);
  1258. val64 = 0x8080808040404040ULL;
  1259. writeq(val64, &bar0->rts_qos_steering);
  1260. break;
  1261. case 3:
  1262. val64 = 0x0001000102000001ULL;
  1263. writeq(val64, &bar0->rx_w_round_robin_0);
  1264. val64 = 0x0001020000010001ULL;
  1265. writeq(val64, &bar0->rx_w_round_robin_1);
  1266. val64 = 0x0200000100010200ULL;
  1267. writeq(val64, &bar0->rx_w_round_robin_2);
  1268. val64 = 0x0001000102000001ULL;
  1269. writeq(val64, &bar0->rx_w_round_robin_3);
  1270. val64 = 0x0001020000000000ULL;
  1271. writeq(val64, &bar0->rx_w_round_robin_4);
  1272. val64 = 0x8080804040402020ULL;
  1273. writeq(val64, &bar0->rts_qos_steering);
  1274. break;
  1275. case 4:
  1276. val64 = 0x0001020300010200ULL;
  1277. writeq(val64, &bar0->rx_w_round_robin_0);
  1278. val64 = 0x0100000102030001ULL;
  1279. writeq(val64, &bar0->rx_w_round_robin_1);
  1280. val64 = 0x0200010000010203ULL;
  1281. writeq(val64, &bar0->rx_w_round_robin_2);
  1282. val64 = 0x0001020001000001ULL;
  1283. writeq(val64, &bar0->rx_w_round_robin_3);
  1284. val64 = 0x0203000100000000ULL;
  1285. writeq(val64, &bar0->rx_w_round_robin_4);
  1286. val64 = 0x8080404020201010ULL;
  1287. writeq(val64, &bar0->rts_qos_steering);
  1288. break;
  1289. case 5:
  1290. val64 = 0x0001000203000102ULL;
  1291. writeq(val64, &bar0->rx_w_round_robin_0);
  1292. val64 = 0x0001020001030004ULL;
  1293. writeq(val64, &bar0->rx_w_round_robin_1);
  1294. val64 = 0x0001000203000102ULL;
  1295. writeq(val64, &bar0->rx_w_round_robin_2);
  1296. val64 = 0x0001020001030004ULL;
  1297. writeq(val64, &bar0->rx_w_round_robin_3);
  1298. val64 = 0x0001000000000000ULL;
  1299. writeq(val64, &bar0->rx_w_round_robin_4);
  1300. val64 = 0x8080404020201008ULL;
  1301. writeq(val64, &bar0->rts_qos_steering);
  1302. break;
  1303. case 6:
  1304. val64 = 0x0001020304000102ULL;
  1305. writeq(val64, &bar0->rx_w_round_robin_0);
  1306. val64 = 0x0304050001020001ULL;
  1307. writeq(val64, &bar0->rx_w_round_robin_1);
  1308. val64 = 0x0203000100000102ULL;
  1309. writeq(val64, &bar0->rx_w_round_robin_2);
  1310. val64 = 0x0304000102030405ULL;
  1311. writeq(val64, &bar0->rx_w_round_robin_3);
  1312. val64 = 0x0001000200000000ULL;
  1313. writeq(val64, &bar0->rx_w_round_robin_4);
  1314. val64 = 0x8080404020100804ULL;
  1315. writeq(val64, &bar0->rts_qos_steering);
  1316. break;
  1317. case 7:
  1318. val64 = 0x0001020001020300ULL;
  1319. writeq(val64, &bar0->rx_w_round_robin_0);
  1320. val64 = 0x0102030400010203ULL;
  1321. writeq(val64, &bar0->rx_w_round_robin_1);
  1322. val64 = 0x0405060001020001ULL;
  1323. writeq(val64, &bar0->rx_w_round_robin_2);
  1324. val64 = 0x0304050000010200ULL;
  1325. writeq(val64, &bar0->rx_w_round_robin_3);
  1326. val64 = 0x0102030000000000ULL;
  1327. writeq(val64, &bar0->rx_w_round_robin_4);
  1328. val64 = 0x8080402010080402ULL;
  1329. writeq(val64, &bar0->rts_qos_steering);
  1330. break;
  1331. case 8:
  1332. val64 = 0x0001020300040105ULL;
  1333. writeq(val64, &bar0->rx_w_round_robin_0);
  1334. val64 = 0x0200030106000204ULL;
  1335. writeq(val64, &bar0->rx_w_round_robin_1);
  1336. val64 = 0x0103000502010007ULL;
  1337. writeq(val64, &bar0->rx_w_round_robin_2);
  1338. val64 = 0x0304010002060500ULL;
  1339. writeq(val64, &bar0->rx_w_round_robin_3);
  1340. val64 = 0x0103020400000000ULL;
  1341. writeq(val64, &bar0->rx_w_round_robin_4);
  1342. val64 = 0x8040201008040201ULL;
  1343. writeq(val64, &bar0->rts_qos_steering);
  1344. break;
  1345. }
  1346. /* UDP Fix */
  1347. val64 = 0;
  1348. for (i = 0; i < 8; i++)
  1349. writeq(val64, &bar0->rts_frm_len_n[i]);
  1350. /* Set the default rts frame length for the rings configured */
  1351. val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
  1352. for (i = 0 ; i < config->rx_ring_num ; i++)
  1353. writeq(val64, &bar0->rts_frm_len_n[i]);
  1354. /* Set the frame length for the configured rings
  1355. * desired by the user
  1356. */
  1357. for (i = 0; i < config->rx_ring_num; i++) {
  1358. /* If rts_frm_len[i] == 0 then it is assumed that user not
  1359. * specified frame length steering.
  1360. * If the user provides the frame length then program
  1361. * the rts_frm_len register for those values or else
  1362. * leave it as it is.
  1363. */
  1364. if (rts_frm_len[i] != 0) {
  1365. writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
  1366. &bar0->rts_frm_len_n[i]);
  1367. }
  1368. }
  1369. /* Disable differentiated services steering logic */
  1370. for (i = 0; i < 64; i++) {
  1371. if (rts_ds_steer(nic, i, 0) == FAILURE) {
  1372. DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
  1373. dev->name);
  1374. DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
  1375. return FAILURE;
  1376. }
  1377. }
  1378. /* Program statistics memory */
  1379. writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
  1380. if (nic->device_type == XFRAME_II_DEVICE) {
  1381. val64 = STAT_BC(0x320);
  1382. writeq(val64, &bar0->stat_byte_cnt);
  1383. }
  1384. /*
  1385. * Initializing the sampling rate for the device to calculate the
  1386. * bandwidth utilization.
  1387. */
  1388. val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
  1389. MAC_RX_LINK_UTIL_VAL(rmac_util_period);
  1390. writeq(val64, &bar0->mac_link_util);
  1391. /*
  1392. * Initializing the Transmit and Receive Traffic Interrupt
  1393. * Scheme.
  1394. */
  1395. /*
  1396. * TTI Initialization. Default Tx timer gets us about
  1397. * 250 interrupts per sec. Continuous interrupts are enabled
  1398. * by default.
  1399. */
  1400. if (nic->device_type == XFRAME_II_DEVICE) {
  1401. int count = (nic->config.bus_speed * 125)/2;
  1402. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
  1403. } else {
  1404. val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
  1405. }
  1406. val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
  1407. TTI_DATA1_MEM_TX_URNG_B(0x10) |
  1408. TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
  1409. if (use_continuous_tx_intrs)
  1410. val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
  1411. writeq(val64, &bar0->tti_data1_mem);
  1412. val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
  1413. TTI_DATA2_MEM_TX_UFC_B(0x20) |
  1414. TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
  1415. writeq(val64, &bar0->tti_data2_mem);
  1416. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1417. writeq(val64, &bar0->tti_command_mem);
  1418. /*
  1419. * Once the operation completes, the Strobe bit of the command
  1420. * register will be reset. We poll for this particular condition
  1421. * We wait for a maximum of 500ms for the operation to complete,
  1422. * if it's not complete by then we return error.
  1423. */
  1424. time = 0;
  1425. while (TRUE) {
  1426. val64 = readq(&bar0->tti_command_mem);
  1427. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1428. break;
  1429. }
  1430. if (time > 10) {
  1431. DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
  1432. dev->name);
  1433. return -1;
  1434. }
  1435. msleep(50);
  1436. time++;
  1437. }
  1438. if (nic->config.bimodal) {
  1439. int k = 0;
  1440. for (k = 0; k < config->rx_ring_num; k++) {
  1441. val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
  1442. val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
  1443. writeq(val64, &bar0->tti_command_mem);
  1444. /*
  1445. * Once the operation completes, the Strobe bit of the command
  1446. * register will be reset. We poll for this particular condition
  1447. * We wait for a maximum of 500ms for the operation to complete,
  1448. * if it's not complete by then we return error.
  1449. */
  1450. time = 0;
  1451. while (TRUE) {
  1452. val64 = readq(&bar0->tti_command_mem);
  1453. if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
  1454. break;
  1455. }
  1456. if (time > 10) {
  1457. DBG_PRINT(ERR_DBG,
  1458. "%s: TTI init Failed\n",
  1459. dev->name);
  1460. return -1;
  1461. }
  1462. time++;
  1463. msleep(50);
  1464. }
  1465. }
  1466. } else {
  1467. /* RTI Initialization */
  1468. if (nic->device_type == XFRAME_II_DEVICE) {
  1469. /*
  1470. * Programmed to generate Apprx 500 Intrs per
  1471. * second
  1472. */
  1473. int count = (nic->config.bus_speed * 125)/4;
  1474. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
  1475. } else {
  1476. val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
  1477. }
  1478. val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
  1479. RTI_DATA1_MEM_RX_URNG_B(0x10) |
  1480. RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
  1481. writeq(val64, &bar0->rti_data1_mem);
  1482. val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
  1483. RTI_DATA2_MEM_RX_UFC_B(0x2) ;
  1484. if (nic->config.intr_type == MSI_X)
  1485. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
  1486. RTI_DATA2_MEM_RX_UFC_D(0x40));
  1487. else
  1488. val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
  1489. RTI_DATA2_MEM_RX_UFC_D(0x80));
  1490. writeq(val64, &bar0->rti_data2_mem);
  1491. for (i = 0; i < config->rx_ring_num; i++) {
  1492. val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
  1493. | RTI_CMD_MEM_OFFSET(i);
  1494. writeq(val64, &bar0->rti_command_mem);
  1495. /*
  1496. * Once the operation completes, the Strobe bit of the
  1497. * command register will be reset. We poll for this
  1498. * particular condition. We wait for a maximum of 500ms
  1499. * for the operation to complete, if it's not complete
  1500. * by then we return error.
  1501. */
  1502. time = 0;
  1503. while (TRUE) {
  1504. val64 = readq(&bar0->rti_command_mem);
  1505. if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
  1506. break;
  1507. }
  1508. if (time > 10) {
  1509. DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
  1510. dev->name);
  1511. return -1;
  1512. }
  1513. time++;
  1514. msleep(50);
  1515. }
  1516. }
  1517. }
  1518. /*
  1519. * Initializing proper values as Pause threshold into all
  1520. * the 8 Queues on Rx side.
  1521. */
  1522. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
  1523. writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
  1524. /* Disable RMAC PAD STRIPPING */
  1525. add = &bar0->mac_cfg;
  1526. val64 = readq(&bar0->mac_cfg);
  1527. val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
  1528. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1529. writel((u32) (val64), add);
  1530. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1531. writel((u32) (val64 >> 32), (add + 4));
  1532. val64 = readq(&bar0->mac_cfg);
  1533. /* Enable FCS stripping by adapter */
  1534. add = &bar0->mac_cfg;
  1535. val64 = readq(&bar0->mac_cfg);
  1536. val64 |= MAC_CFG_RMAC_STRIP_FCS;
  1537. if (nic->device_type == XFRAME_II_DEVICE)
  1538. writeq(val64, &bar0->mac_cfg);
  1539. else {
  1540. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1541. writel((u32) (val64), add);
  1542. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  1543. writel((u32) (val64 >> 32), (add + 4));
  1544. }
  1545. /*
  1546. * Set the time value to be inserted in the pause frame
  1547. * generated by xena.
  1548. */
  1549. val64 = readq(&bar0->rmac_pause_cfg);
  1550. val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
  1551. val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
  1552. writeq(val64, &bar0->rmac_pause_cfg);
  1553. /*
  1554. * Set the Threshold Limit for Generating the pause frame
  1555. * If the amount of data in any Queue exceeds ratio of
  1556. * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
  1557. * pause frame is generated
  1558. */
  1559. val64 = 0;
  1560. for (i = 0; i < 4; i++) {
  1561. val64 |=
  1562. (((u64) 0xFF00 | nic->mac_control.
  1563. mc_pause_threshold_q0q3)
  1564. << (i * 2 * 8));
  1565. }
  1566. writeq(val64, &bar0->mc_pause_thresh_q0q3);
  1567. val64 = 0;
  1568. for (i = 0; i < 4; i++) {
  1569. val64 |=
  1570. (((u64) 0xFF00 | nic->mac_control.
  1571. mc_pause_threshold_q4q7)
  1572. << (i * 2 * 8));
  1573. }
  1574. writeq(val64, &bar0->mc_pause_thresh_q4q7);
  1575. /*
  1576. * TxDMA will stop Read request if the number of read split has
  1577. * exceeded the limit pointed by shared_splits
  1578. */
  1579. val64 = readq(&bar0->pic_control);
  1580. val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
  1581. writeq(val64, &bar0->pic_control);
  1582. if (nic->config.bus_speed == 266) {
  1583. writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
  1584. writeq(0x0, &bar0->read_retry_delay);
  1585. writeq(0x0, &bar0->write_retry_delay);
  1586. }
  1587. /*
  1588. * Programming the Herc to split every write transaction
  1589. * that does not start on an ADB to reduce disconnects.
  1590. */
  1591. if (nic->device_type == XFRAME_II_DEVICE) {
  1592. val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
  1593. MISC_LINK_STABILITY_PRD(3);
  1594. writeq(val64, &bar0->misc_control);
  1595. val64 = readq(&bar0->pic_control2);
  1596. val64 &= ~(BIT(13)|BIT(14)|BIT(15));
  1597. writeq(val64, &bar0->pic_control2);
  1598. }
  1599. if (strstr(nic->product_name, "CX4")) {
  1600. val64 = TMAC_AVG_IPG(0x17);
  1601. writeq(val64, &bar0->tmac_avg_ipg);
  1602. }
  1603. return SUCCESS;
  1604. }
  1605. #define LINK_UP_DOWN_INTERRUPT 1
  1606. #define MAC_RMAC_ERR_TIMER 2
  1607. static int s2io_link_fault_indication(struct s2io_nic *nic)
  1608. {
  1609. if (nic->config.intr_type != INTA)
  1610. return MAC_RMAC_ERR_TIMER;
  1611. if (nic->device_type == XFRAME_II_DEVICE)
  1612. return LINK_UP_DOWN_INTERRUPT;
  1613. else
  1614. return MAC_RMAC_ERR_TIMER;
  1615. }
  1616. /**
  1617. * do_s2io_write_bits - update alarm bits in alarm register
  1618. * @value: alarm bits
  1619. * @flag: interrupt status
  1620. * @addr: address value
  1621. * Description: update alarm bits in alarm register
  1622. * Return Value:
  1623. * NONE.
  1624. */
  1625. static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
  1626. {
  1627. u64 temp64;
  1628. temp64 = readq(addr);
  1629. if(flag == ENABLE_INTRS)
  1630. temp64 &= ~((u64) value);
  1631. else
  1632. temp64 |= ((u64) value);
  1633. writeq(temp64, addr);
  1634. }
  1635. void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
  1636. {
  1637. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1638. register u64 gen_int_mask = 0;
  1639. if (mask & TX_DMA_INTR) {
  1640. gen_int_mask |= TXDMA_INT_M;
  1641. do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
  1642. TXDMA_PCC_INT | TXDMA_TTI_INT |
  1643. TXDMA_LSO_INT | TXDMA_TPA_INT |
  1644. TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
  1645. do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
  1646. PFC_MISC_0_ERR | PFC_MISC_1_ERR |
  1647. PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
  1648. &bar0->pfc_err_mask);
  1649. do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  1650. TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
  1651. TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
  1652. do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
  1653. PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
  1654. PCC_N_SERR | PCC_6_COF_OV_ERR |
  1655. PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
  1656. PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
  1657. PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
  1658. do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
  1659. TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
  1660. do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
  1661. LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
  1662. LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  1663. flag, &bar0->lso_err_mask);
  1664. do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
  1665. flag, &bar0->tpa_err_mask);
  1666. do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
  1667. }
  1668. if (mask & TX_MAC_INTR) {
  1669. gen_int_mask |= TXMAC_INT_M;
  1670. do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
  1671. &bar0->mac_int_mask);
  1672. do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
  1673. TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
  1674. TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  1675. flag, &bar0->mac_tmac_err_mask);
  1676. }
  1677. if (mask & TX_XGXS_INTR) {
  1678. gen_int_mask |= TXXGXS_INT_M;
  1679. do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
  1680. &bar0->xgxs_int_mask);
  1681. do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
  1682. TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  1683. flag, &bar0->xgxs_txgxs_err_mask);
  1684. }
  1685. if (mask & RX_DMA_INTR) {
  1686. gen_int_mask |= RXDMA_INT_M;
  1687. do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
  1688. RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
  1689. flag, &bar0->rxdma_int_mask);
  1690. do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
  1691. RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
  1692. RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
  1693. RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
  1694. do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
  1695. PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
  1696. PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
  1697. &bar0->prc_pcix_err_mask);
  1698. do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
  1699. RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
  1700. &bar0->rpa_err_mask);
  1701. do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
  1702. RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
  1703. RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
  1704. RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
  1705. flag, &bar0->rda_err_mask);
  1706. do_s2io_write_bits(RTI_SM_ERR_ALARM |
  1707. RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  1708. flag, &bar0->rti_err_mask);
  1709. }
  1710. if (mask & RX_MAC_INTR) {
  1711. gen_int_mask |= RXMAC_INT_M;
  1712. do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
  1713. &bar0->mac_int_mask);
  1714. do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
  1715. RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
  1716. RMAC_DOUBLE_ECC_ERR |
  1717. RMAC_LINK_STATE_CHANGE_INT,
  1718. flag, &bar0->mac_rmac_err_mask);
  1719. }
  1720. if (mask & RX_XGXS_INTR)
  1721. {
  1722. gen_int_mask |= RXXGXS_INT_M;
  1723. do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
  1724. &bar0->xgxs_int_mask);
  1725. do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
  1726. &bar0->xgxs_rxgxs_err_mask);
  1727. }
  1728. if (mask & MC_INTR) {
  1729. gen_int_mask |= MC_INT_M;
  1730. do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
  1731. do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
  1732. MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
  1733. &bar0->mc_err_mask);
  1734. }
  1735. nic->general_int_mask = gen_int_mask;
  1736. /* Remove this line when alarm interrupts are enabled */
  1737. nic->general_int_mask = 0;
  1738. }
  1739. /**
  1740. * en_dis_able_nic_intrs - Enable or Disable the interrupts
  1741. * @nic: device private variable,
  1742. * @mask: A mask indicating which Intr block must be modified and,
  1743. * @flag: A flag indicating whether to enable or disable the Intrs.
  1744. * Description: This function will either disable or enable the interrupts
  1745. * depending on the flag argument. The mask argument can be used to
  1746. * enable/disable any Intr block.
  1747. * Return Value: NONE.
  1748. */
  1749. static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
  1750. {
  1751. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1752. register u64 temp64 = 0, intr_mask = 0;
  1753. intr_mask = nic->general_int_mask;
  1754. /* Top level interrupt classification */
  1755. /* PIC Interrupts */
  1756. if (mask & TX_PIC_INTR) {
  1757. /* Enable PIC Intrs in the general intr mask register */
  1758. intr_mask |= TXPIC_INT_M;
  1759. if (flag == ENABLE_INTRS) {
  1760. /*
  1761. * If Hercules adapter enable GPIO otherwise
  1762. * disable all PCIX, Flash, MDIO, IIC and GPIO
  1763. * interrupts for now.
  1764. * TODO
  1765. */
  1766. if (s2io_link_fault_indication(nic) ==
  1767. LINK_UP_DOWN_INTERRUPT ) {
  1768. do_s2io_write_bits(PIC_INT_GPIO, flag,
  1769. &bar0->pic_int_mask);
  1770. do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
  1771. &bar0->gpio_int_mask);
  1772. } else
  1773. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1774. } else if (flag == DISABLE_INTRS) {
  1775. /*
  1776. * Disable PIC Intrs in the general
  1777. * intr mask register
  1778. */
  1779. writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
  1780. }
  1781. }
  1782. /* Tx traffic interrupts */
  1783. if (mask & TX_TRAFFIC_INTR) {
  1784. intr_mask |= TXTRAFFIC_INT_M;
  1785. if (flag == ENABLE_INTRS) {
  1786. /*
  1787. * Enable all the Tx side interrupts
  1788. * writing 0 Enables all 64 TX interrupt levels
  1789. */
  1790. writeq(0x0, &bar0->tx_traffic_mask);
  1791. } else if (flag == DISABLE_INTRS) {
  1792. /*
  1793. * Disable Tx Traffic Intrs in the general intr mask
  1794. * register.
  1795. */
  1796. writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
  1797. }
  1798. }
  1799. /* Rx traffic interrupts */
  1800. if (mask & RX_TRAFFIC_INTR) {
  1801. intr_mask |= RXTRAFFIC_INT_M;
  1802. if (flag == ENABLE_INTRS) {
  1803. /* writing 0 Enables all 8 RX interrupt levels */
  1804. writeq(0x0, &bar0->rx_traffic_mask);
  1805. } else if (flag == DISABLE_INTRS) {
  1806. /*
  1807. * Disable Rx Traffic Intrs in the general intr mask
  1808. * register.
  1809. */
  1810. writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
  1811. }
  1812. }
  1813. temp64 = readq(&bar0->general_int_mask);
  1814. if (flag == ENABLE_INTRS)
  1815. temp64 &= ~((u64) intr_mask);
  1816. else
  1817. temp64 = DISABLE_ALL_INTRS;
  1818. writeq(temp64, &bar0->general_int_mask);
  1819. nic->general_int_mask = readq(&bar0->general_int_mask);
  1820. }
  1821. /**
  1822. * verify_pcc_quiescent- Checks for PCC quiescent state
  1823. * Return: 1 If PCC is quiescence
  1824. * 0 If PCC is not quiescence
  1825. */
  1826. static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
  1827. {
  1828. int ret = 0, herc;
  1829. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1830. u64 val64 = readq(&bar0->adapter_status);
  1831. herc = (sp->device_type == XFRAME_II_DEVICE);
  1832. if (flag == FALSE) {
  1833. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1834. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
  1835. ret = 1;
  1836. } else {
  1837. if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1838. ret = 1;
  1839. }
  1840. } else {
  1841. if ((!herc && (sp->pdev->revision >= 4)) || herc) {
  1842. if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
  1843. ADAPTER_STATUS_RMAC_PCC_IDLE))
  1844. ret = 1;
  1845. } else {
  1846. if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
  1847. ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
  1848. ret = 1;
  1849. }
  1850. }
  1851. return ret;
  1852. }
  1853. /**
  1854. * verify_xena_quiescence - Checks whether the H/W is ready
  1855. * Description: Returns whether the H/W is ready to go or not. Depending
  1856. * on whether adapter enable bit was written or not the comparison
  1857. * differs and the calling function passes the input argument flag to
  1858. * indicate this.
  1859. * Return: 1 If xena is quiescence
  1860. * 0 If Xena is not quiescence
  1861. */
  1862. static int verify_xena_quiescence(struct s2io_nic *sp)
  1863. {
  1864. int mode;
  1865. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1866. u64 val64 = readq(&bar0->adapter_status);
  1867. mode = s2io_verify_pci_mode(sp);
  1868. if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
  1869. DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
  1870. return 0;
  1871. }
  1872. if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
  1873. DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
  1874. return 0;
  1875. }
  1876. if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
  1877. DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
  1878. return 0;
  1879. }
  1880. if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
  1881. DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
  1882. return 0;
  1883. }
  1884. if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
  1885. DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
  1886. return 0;
  1887. }
  1888. if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
  1889. DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
  1890. return 0;
  1891. }
  1892. if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
  1893. DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
  1894. return 0;
  1895. }
  1896. if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
  1897. DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
  1898. return 0;
  1899. }
  1900. /*
  1901. * In PCI 33 mode, the P_PLL is not used, and therefore,
  1902. * the the P_PLL_LOCK bit in the adapter_status register will
  1903. * not be asserted.
  1904. */
  1905. if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
  1906. sp->device_type == XFRAME_II_DEVICE && mode !=
  1907. PCI_MODE_PCI_33) {
  1908. DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
  1909. return 0;
  1910. }
  1911. if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
  1912. ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
  1913. DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
  1914. return 0;
  1915. }
  1916. return 1;
  1917. }
  1918. /**
  1919. * fix_mac_address - Fix for Mac addr problem on Alpha platforms
  1920. * @sp: Pointer to device specifc structure
  1921. * Description :
  1922. * New procedure to clear mac address reading problems on Alpha platforms
  1923. *
  1924. */
  1925. static void fix_mac_address(struct s2io_nic * sp)
  1926. {
  1927. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  1928. u64 val64;
  1929. int i = 0;
  1930. while (fix_mac[i] != END_SIGN) {
  1931. writeq(fix_mac[i++], &bar0->gpio_control);
  1932. udelay(10);
  1933. val64 = readq(&bar0->gpio_control);
  1934. }
  1935. }
  1936. /**
  1937. * start_nic - Turns the device on
  1938. * @nic : device private variable.
  1939. * Description:
  1940. * This function actually turns the device on. Before this function is
  1941. * called,all Registers are configured from their reset states
  1942. * and shared memory is allocated but the NIC is still quiescent. On
  1943. * calling this function, the device interrupts are cleared and the NIC is
  1944. * literally switched on by writing into the adapter control register.
  1945. * Return Value:
  1946. * SUCCESS on success and -1 on failure.
  1947. */
  1948. static int start_nic(struct s2io_nic *nic)
  1949. {
  1950. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  1951. struct net_device *dev = nic->dev;
  1952. register u64 val64 = 0;
  1953. u16 subid, i;
  1954. struct mac_info *mac_control;
  1955. struct config_param *config;
  1956. mac_control = &nic->mac_control;
  1957. config = &nic->config;
  1958. /* PRC Initialization and configuration */
  1959. for (i = 0; i < config->rx_ring_num; i++) {
  1960. writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
  1961. &bar0->prc_rxd0_n[i]);
  1962. val64 = readq(&bar0->prc_ctrl_n[i]);
  1963. if (nic->config.bimodal)
  1964. val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
  1965. if (nic->rxd_mode == RXD_MODE_1)
  1966. val64 |= PRC_CTRL_RC_ENABLED;
  1967. else
  1968. val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
  1969. if (nic->device_type == XFRAME_II_DEVICE)
  1970. val64 |= PRC_CTRL_GROUP_READS;
  1971. val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
  1972. val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
  1973. writeq(val64, &bar0->prc_ctrl_n[i]);
  1974. }
  1975. if (nic->rxd_mode == RXD_MODE_3B) {
  1976. /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
  1977. val64 = readq(&bar0->rx_pa_cfg);
  1978. val64 |= RX_PA_CFG_IGNORE_L2_ERR;
  1979. writeq(val64, &bar0->rx_pa_cfg);
  1980. }
  1981. if (vlan_tag_strip == 0) {
  1982. val64 = readq(&bar0->rx_pa_cfg);
  1983. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  1984. writeq(val64, &bar0->rx_pa_cfg);
  1985. vlan_strip_flag = 0;
  1986. }
  1987. /*
  1988. * Enabling MC-RLDRAM. After enabling the device, we timeout
  1989. * for around 100ms, which is approximately the time required
  1990. * for the device to be ready for operation.
  1991. */
  1992. val64 = readq(&bar0->mc_rldram_mrs);
  1993. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
  1994. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  1995. val64 = readq(&bar0->mc_rldram_mrs);
  1996. msleep(100); /* Delay by around 100 ms. */
  1997. /* Enabling ECC Protection. */
  1998. val64 = readq(&bar0->adapter_control);
  1999. val64 &= ~ADAPTER_ECC_EN;
  2000. writeq(val64, &bar0->adapter_control);
  2001. /*
  2002. * Verify if the device is ready to be enabled, if so enable
  2003. * it.
  2004. */
  2005. val64 = readq(&bar0->adapter_status);
  2006. if (!verify_xena_quiescence(nic)) {
  2007. DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
  2008. DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
  2009. (unsigned long long) val64);
  2010. return FAILURE;
  2011. }
  2012. /*
  2013. * With some switches, link might be already up at this point.
  2014. * Because of this weird behavior, when we enable laser,
  2015. * we may not get link. We need to handle this. We cannot
  2016. * figure out which switch is misbehaving. So we are forced to
  2017. * make a global change.
  2018. */
  2019. /* Enabling Laser. */
  2020. val64 = readq(&bar0->adapter_control);
  2021. val64 |= ADAPTER_EOI_TX_ON;
  2022. writeq(val64, &bar0->adapter_control);
  2023. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  2024. /*
  2025. * Dont see link state interrupts initally on some switches,
  2026. * so directly scheduling the link state task here.
  2027. */
  2028. schedule_work(&nic->set_link_task);
  2029. }
  2030. /* SXE-002: Initialize link and activity LED */
  2031. subid = nic->pdev->subsystem_device;
  2032. if (((subid & 0xFF) >= 0x07) &&
  2033. (nic->device_type == XFRAME_I_DEVICE)) {
  2034. val64 = readq(&bar0->gpio_control);
  2035. val64 |= 0x0000800000000000ULL;
  2036. writeq(val64, &bar0->gpio_control);
  2037. val64 = 0x0411040400000000ULL;
  2038. writeq(val64, (void __iomem *)bar0 + 0x2700);
  2039. }
  2040. return SUCCESS;
  2041. }
  2042. /**
  2043. * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
  2044. */
  2045. static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
  2046. TxD *txdlp, int get_off)
  2047. {
  2048. struct s2io_nic *nic = fifo_data->nic;
  2049. struct sk_buff *skb;
  2050. struct TxD *txds;
  2051. u16 j, frg_cnt;
  2052. txds = txdlp;
  2053. if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
  2054. pci_unmap_single(nic->pdev, (dma_addr_t)
  2055. txds->Buffer_Pointer, sizeof(u64),
  2056. PCI_DMA_TODEVICE);
  2057. txds++;
  2058. }
  2059. skb = (struct sk_buff *) ((unsigned long)
  2060. txds->Host_Control);
  2061. if (!skb) {
  2062. memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
  2063. return NULL;
  2064. }
  2065. pci_unmap_single(nic->pdev, (dma_addr_t)
  2066. txds->Buffer_Pointer,
  2067. skb->len - skb->data_len,
  2068. PCI_DMA_TODEVICE);
  2069. frg_cnt = skb_shinfo(skb)->nr_frags;
  2070. if (frg_cnt) {
  2071. txds++;
  2072. for (j = 0; j < frg_cnt; j++, txds++) {
  2073. skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
  2074. if (!txds->Buffer_Pointer)
  2075. break;
  2076. pci_unmap_page(nic->pdev, (dma_addr_t)
  2077. txds->Buffer_Pointer,
  2078. frag->size, PCI_DMA_TODEVICE);
  2079. }
  2080. }
  2081. memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
  2082. return(skb);
  2083. }
  2084. /**
  2085. * free_tx_buffers - Free all queued Tx buffers
  2086. * @nic : device private variable.
  2087. * Description:
  2088. * Free all queued Tx buffers.
  2089. * Return Value: void
  2090. */
  2091. static void free_tx_buffers(struct s2io_nic *nic)
  2092. {
  2093. struct net_device *dev = nic->dev;
  2094. struct sk_buff *skb;
  2095. struct TxD *txdp;
  2096. int i, j;
  2097. struct mac_info *mac_control;
  2098. struct config_param *config;
  2099. int cnt = 0;
  2100. mac_control = &nic->mac_control;
  2101. config = &nic->config;
  2102. for (i = 0; i < config->tx_fifo_num; i++) {
  2103. for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
  2104. txdp = (struct TxD *) \
  2105. mac_control->fifos[i].list_info[j].list_virt_addr;
  2106. skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
  2107. if (skb) {
  2108. nic->mac_control.stats_info->sw_stat.mem_freed
  2109. += skb->truesize;
  2110. dev_kfree_skb(skb);
  2111. cnt++;
  2112. }
  2113. }
  2114. DBG_PRINT(INTR_DBG,
  2115. "%s:forcibly freeing %d skbs on FIFO%d\n",
  2116. dev->name, cnt, i);
  2117. mac_control->fifos[i].tx_curr_get_info.offset = 0;
  2118. mac_control->fifos[i].tx_curr_put_info.offset = 0;
  2119. }
  2120. }
  2121. /**
  2122. * stop_nic - To stop the nic
  2123. * @nic ; device private variable.
  2124. * Description:
  2125. * This function does exactly the opposite of what the start_nic()
  2126. * function does. This function is called to stop the device.
  2127. * Return Value:
  2128. * void.
  2129. */
  2130. static void stop_nic(struct s2io_nic *nic)
  2131. {
  2132. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2133. register u64 val64 = 0;
  2134. u16 interruptible;
  2135. struct mac_info *mac_control;
  2136. struct config_param *config;
  2137. mac_control = &nic->mac_control;
  2138. config = &nic->config;
  2139. /* Disable all interrupts */
  2140. en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
  2141. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  2142. interruptible |= TX_PIC_INTR;
  2143. en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
  2144. /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
  2145. val64 = readq(&bar0->adapter_control);
  2146. val64 &= ~(ADAPTER_CNTL_EN);
  2147. writeq(val64, &bar0->adapter_control);
  2148. }
  2149. /**
  2150. * fill_rx_buffers - Allocates the Rx side skbs
  2151. * @nic: device private variable
  2152. * @ring_no: ring number
  2153. * Description:
  2154. * The function allocates Rx side skbs and puts the physical
  2155. * address of these buffers into the RxD buffer pointers, so that the NIC
  2156. * can DMA the received frame into these locations.
  2157. * The NIC supports 3 receive modes, viz
  2158. * 1. single buffer,
  2159. * 2. three buffer and
  2160. * 3. Five buffer modes.
  2161. * Each mode defines how many fragments the received frame will be split
  2162. * up into by the NIC. The frame is split into L3 header, L4 Header,
  2163. * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
  2164. * is split into 3 fragments. As of now only single buffer mode is
  2165. * supported.
  2166. * Return Value:
  2167. * SUCCESS on success or an appropriate -ve value on failure.
  2168. */
  2169. static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
  2170. {
  2171. struct net_device *dev = nic->dev;
  2172. struct sk_buff *skb;
  2173. struct RxD_t *rxdp;
  2174. int off, off1, size, block_no, block_no1;
  2175. u32 alloc_tab = 0;
  2176. u32 alloc_cnt;
  2177. struct mac_info *mac_control;
  2178. struct config_param *config;
  2179. u64 tmp;
  2180. struct buffAdd *ba;
  2181. unsigned long flags;
  2182. struct RxD_t *first_rxdp = NULL;
  2183. u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
  2184. struct RxD1 *rxdp1;
  2185. struct RxD3 *rxdp3;
  2186. struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
  2187. mac_control = &nic->mac_control;
  2188. config = &nic->config;
  2189. alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
  2190. atomic_read(&nic->rx_bufs_left[ring_no]);
  2191. block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
  2192. off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
  2193. while (alloc_tab < alloc_cnt) {
  2194. block_no = mac_control->rings[ring_no].rx_curr_put_info.
  2195. block_index;
  2196. off = mac_control->rings[ring_no].rx_curr_put_info.offset;
  2197. rxdp = mac_control->rings[ring_no].
  2198. rx_blocks[block_no].rxds[off].virt_addr;
  2199. if ((block_no == block_no1) && (off == off1) &&
  2200. (rxdp->Host_Control)) {
  2201. DBG_PRINT(INTR_DBG, "%s: Get and Put",
  2202. dev->name);
  2203. DBG_PRINT(INTR_DBG, " info equated\n");
  2204. goto end;
  2205. }
  2206. if (off && (off == rxd_count[nic->rxd_mode])) {
  2207. mac_control->rings[ring_no].rx_curr_put_info.
  2208. block_index++;
  2209. if (mac_control->rings[ring_no].rx_curr_put_info.
  2210. block_index == mac_control->rings[ring_no].
  2211. block_count)
  2212. mac_control->rings[ring_no].rx_curr_put_info.
  2213. block_index = 0;
  2214. block_no = mac_control->rings[ring_no].
  2215. rx_curr_put_info.block_index;
  2216. if (off == rxd_count[nic->rxd_mode])
  2217. off = 0;
  2218. mac_control->rings[ring_no].rx_curr_put_info.
  2219. offset = off;
  2220. rxdp = mac_control->rings[ring_no].
  2221. rx_blocks[block_no].block_virt_addr;
  2222. DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
  2223. dev->name, rxdp);
  2224. }
  2225. if(!napi) {
  2226. spin_lock_irqsave(&nic->put_lock, flags);
  2227. mac_control->rings[ring_no].put_pos =
  2228. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2229. spin_unlock_irqrestore(&nic->put_lock, flags);
  2230. } else {
  2231. mac_control->rings[ring_no].put_pos =
  2232. (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
  2233. }
  2234. if ((rxdp->Control_1 & RXD_OWN_XENA) &&
  2235. ((nic->rxd_mode == RXD_MODE_3B) &&
  2236. (rxdp->Control_2 & BIT(0)))) {
  2237. mac_control->rings[ring_no].rx_curr_put_info.
  2238. offset = off;
  2239. goto end;
  2240. }
  2241. /* calculate size of skb based on ring mode */
  2242. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  2243. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  2244. if (nic->rxd_mode == RXD_MODE_1)
  2245. size += NET_IP_ALIGN;
  2246. else
  2247. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  2248. /* allocate skb */
  2249. skb = dev_alloc_skb(size);
  2250. if(!skb) {
  2251. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  2252. DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
  2253. if (first_rxdp) {
  2254. wmb();
  2255. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2256. }
  2257. nic->mac_control.stats_info->sw_stat. \
  2258. mem_alloc_fail_cnt++;
  2259. return -ENOMEM ;
  2260. }
  2261. nic->mac_control.stats_info->sw_stat.mem_allocated
  2262. += skb->truesize;
  2263. if (nic->rxd_mode == RXD_MODE_1) {
  2264. /* 1 buffer mode - normal operation mode */
  2265. rxdp1 = (struct RxD1*)rxdp;
  2266. memset(rxdp, 0, sizeof(struct RxD1));
  2267. skb_reserve(skb, NET_IP_ALIGN);
  2268. rxdp1->Buffer0_ptr = pci_map_single
  2269. (nic->pdev, skb->data, size - NET_IP_ALIGN,
  2270. PCI_DMA_FROMDEVICE);
  2271. if( (rxdp1->Buffer0_ptr == 0) ||
  2272. (rxdp1->Buffer0_ptr ==
  2273. DMA_ERROR_CODE))
  2274. goto pci_map_failed;
  2275. rxdp->Control_2 =
  2276. SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
  2277. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2278. /*
  2279. * 2 buffer mode -
  2280. * 2 buffer mode provides 128
  2281. * byte aligned receive buffers.
  2282. */
  2283. rxdp3 = (struct RxD3*)rxdp;
  2284. /* save buffer pointers to avoid frequent dma mapping */
  2285. Buffer0_ptr = rxdp3->Buffer0_ptr;
  2286. Buffer1_ptr = rxdp3->Buffer1_ptr;
  2287. memset(rxdp, 0, sizeof(struct RxD3));
  2288. /* restore the buffer pointers for dma sync*/
  2289. rxdp3->Buffer0_ptr = Buffer0_ptr;
  2290. rxdp3->Buffer1_ptr = Buffer1_ptr;
  2291. ba = &mac_control->rings[ring_no].ba[block_no][off];
  2292. skb_reserve(skb, BUF0_LEN);
  2293. tmp = (u64)(unsigned long) skb->data;
  2294. tmp += ALIGN_SIZE;
  2295. tmp &= ~ALIGN_SIZE;
  2296. skb->data = (void *) (unsigned long)tmp;
  2297. skb_reset_tail_pointer(skb);
  2298. if (!(rxdp3->Buffer0_ptr))
  2299. rxdp3->Buffer0_ptr =
  2300. pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
  2301. PCI_DMA_FROMDEVICE);
  2302. else
  2303. pci_dma_sync_single_for_device(nic->pdev,
  2304. (dma_addr_t) rxdp3->Buffer0_ptr,
  2305. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2306. if( (rxdp3->Buffer0_ptr == 0) ||
  2307. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
  2308. goto pci_map_failed;
  2309. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  2310. if (nic->rxd_mode == RXD_MODE_3B) {
  2311. /* Two buffer mode */
  2312. /*
  2313. * Buffer2 will have L3/L4 header plus
  2314. * L4 payload
  2315. */
  2316. rxdp3->Buffer2_ptr = pci_map_single
  2317. (nic->pdev, skb->data, dev->mtu + 4,
  2318. PCI_DMA_FROMDEVICE);
  2319. if( (rxdp3->Buffer2_ptr == 0) ||
  2320. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
  2321. goto pci_map_failed;
  2322. rxdp3->Buffer1_ptr =
  2323. pci_map_single(nic->pdev,
  2324. ba->ba_1, BUF1_LEN,
  2325. PCI_DMA_FROMDEVICE);
  2326. if( (rxdp3->Buffer1_ptr == 0) ||
  2327. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  2328. pci_unmap_single
  2329. (nic->pdev,
  2330. (dma_addr_t)rxdp3->Buffer2_ptr,
  2331. dev->mtu + 4,
  2332. PCI_DMA_FROMDEVICE);
  2333. goto pci_map_failed;
  2334. }
  2335. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  2336. rxdp->Control_2 |= SET_BUFFER2_SIZE_3
  2337. (dev->mtu + 4);
  2338. }
  2339. rxdp->Control_2 |= BIT(0);
  2340. }
  2341. rxdp->Host_Control = (unsigned long) (skb);
  2342. if (alloc_tab & ((1 << rxsync_frequency) - 1))
  2343. rxdp->Control_1 |= RXD_OWN_XENA;
  2344. off++;
  2345. if (off == (rxd_count[nic->rxd_mode] + 1))
  2346. off = 0;
  2347. mac_control->rings[ring_no].rx_curr_put_info.offset = off;
  2348. rxdp->Control_2 |= SET_RXD_MARKER;
  2349. if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
  2350. if (first_rxdp) {
  2351. wmb();
  2352. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2353. }
  2354. first_rxdp = rxdp;
  2355. }
  2356. atomic_inc(&nic->rx_bufs_left[ring_no]);
  2357. alloc_tab++;
  2358. }
  2359. end:
  2360. /* Transfer ownership of first descriptor to adapter just before
  2361. * exiting. Before that, use memory barrier so that ownership
  2362. * and other fields are seen by adapter correctly.
  2363. */
  2364. if (first_rxdp) {
  2365. wmb();
  2366. first_rxdp->Control_1 |= RXD_OWN_XENA;
  2367. }
  2368. return SUCCESS;
  2369. pci_map_failed:
  2370. stats->pci_map_fail_cnt++;
  2371. stats->mem_freed += skb->truesize;
  2372. dev_kfree_skb_irq(skb);
  2373. return -ENOMEM;
  2374. }
  2375. static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
  2376. {
  2377. struct net_device *dev = sp->dev;
  2378. int j;
  2379. struct sk_buff *skb;
  2380. struct RxD_t *rxdp;
  2381. struct mac_info *mac_control;
  2382. struct buffAdd *ba;
  2383. struct RxD1 *rxdp1;
  2384. struct RxD3 *rxdp3;
  2385. mac_control = &sp->mac_control;
  2386. for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
  2387. rxdp = mac_control->rings[ring_no].
  2388. rx_blocks[blk].rxds[j].virt_addr;
  2389. skb = (struct sk_buff *)
  2390. ((unsigned long) rxdp->Host_Control);
  2391. if (!skb) {
  2392. continue;
  2393. }
  2394. if (sp->rxd_mode == RXD_MODE_1) {
  2395. rxdp1 = (struct RxD1*)rxdp;
  2396. pci_unmap_single(sp->pdev, (dma_addr_t)
  2397. rxdp1->Buffer0_ptr,
  2398. dev->mtu +
  2399. HEADER_ETHERNET_II_802_3_SIZE
  2400. + HEADER_802_2_SIZE +
  2401. HEADER_SNAP_SIZE,
  2402. PCI_DMA_FROMDEVICE);
  2403. memset(rxdp, 0, sizeof(struct RxD1));
  2404. } else if(sp->rxd_mode == RXD_MODE_3B) {
  2405. rxdp3 = (struct RxD3*)rxdp;
  2406. ba = &mac_control->rings[ring_no].
  2407. ba[blk][j];
  2408. pci_unmap_single(sp->pdev, (dma_addr_t)
  2409. rxdp3->Buffer0_ptr,
  2410. BUF0_LEN,
  2411. PCI_DMA_FROMDEVICE);
  2412. pci_unmap_single(sp->pdev, (dma_addr_t)
  2413. rxdp3->Buffer1_ptr,
  2414. BUF1_LEN,
  2415. PCI_DMA_FROMDEVICE);
  2416. pci_unmap_single(sp->pdev, (dma_addr_t)
  2417. rxdp3->Buffer2_ptr,
  2418. dev->mtu + 4,
  2419. PCI_DMA_FROMDEVICE);
  2420. memset(rxdp, 0, sizeof(struct RxD3));
  2421. }
  2422. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2423. dev_kfree_skb(skb);
  2424. atomic_dec(&sp->rx_bufs_left[ring_no]);
  2425. }
  2426. }
  2427. /**
  2428. * free_rx_buffers - Frees all Rx buffers
  2429. * @sp: device private variable.
  2430. * Description:
  2431. * This function will free all Rx buffers allocated by host.
  2432. * Return Value:
  2433. * NONE.
  2434. */
  2435. static void free_rx_buffers(struct s2io_nic *sp)
  2436. {
  2437. struct net_device *dev = sp->dev;
  2438. int i, blk = 0, buf_cnt = 0;
  2439. struct mac_info *mac_control;
  2440. struct config_param *config;
  2441. mac_control = &sp->mac_control;
  2442. config = &sp->config;
  2443. for (i = 0; i < config->rx_ring_num; i++) {
  2444. for (blk = 0; blk < rx_ring_sz[i]; blk++)
  2445. free_rxd_blk(sp,i,blk);
  2446. mac_control->rings[i].rx_curr_put_info.block_index = 0;
  2447. mac_control->rings[i].rx_curr_get_info.block_index = 0;
  2448. mac_control->rings[i].rx_curr_put_info.offset = 0;
  2449. mac_control->rings[i].rx_curr_get_info.offset = 0;
  2450. atomic_set(&sp->rx_bufs_left[i], 0);
  2451. DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
  2452. dev->name, buf_cnt, i);
  2453. }
  2454. }
  2455. /**
  2456. * s2io_poll - Rx interrupt handler for NAPI support
  2457. * @napi : pointer to the napi structure.
  2458. * @budget : The number of packets that were budgeted to be processed
  2459. * during one pass through the 'Poll" function.
  2460. * Description:
  2461. * Comes into picture only if NAPI support has been incorporated. It does
  2462. * the same thing that rx_intr_handler does, but not in a interrupt context
  2463. * also It will process only a given number of packets.
  2464. * Return value:
  2465. * 0 on success and 1 if there are No Rx packets to be processed.
  2466. */
  2467. static int s2io_poll(struct napi_struct *napi, int budget)
  2468. {
  2469. struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
  2470. struct net_device *dev = nic->dev;
  2471. int pkt_cnt = 0, org_pkts_to_process;
  2472. struct mac_info *mac_control;
  2473. struct config_param *config;
  2474. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2475. int i;
  2476. if (!is_s2io_card_up(nic))
  2477. return 0;
  2478. mac_control = &nic->mac_control;
  2479. config = &nic->config;
  2480. nic->pkts_to_process = budget;
  2481. org_pkts_to_process = nic->pkts_to_process;
  2482. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  2483. readl(&bar0->rx_traffic_int);
  2484. for (i = 0; i < config->rx_ring_num; i++) {
  2485. rx_intr_handler(&mac_control->rings[i]);
  2486. pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
  2487. if (!nic->pkts_to_process) {
  2488. /* Quota for the current iteration has been met */
  2489. goto no_rx;
  2490. }
  2491. }
  2492. netif_rx_complete(dev, napi);
  2493. for (i = 0; i < config->rx_ring_num; i++) {
  2494. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2495. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2496. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2497. break;
  2498. }
  2499. }
  2500. /* Re enable the Rx interrupts. */
  2501. writeq(0x0, &bar0->rx_traffic_mask);
  2502. readl(&bar0->rx_traffic_mask);
  2503. return pkt_cnt;
  2504. no_rx:
  2505. for (i = 0; i < config->rx_ring_num; i++) {
  2506. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2507. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2508. DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
  2509. break;
  2510. }
  2511. }
  2512. return pkt_cnt;
  2513. }
  2514. #ifdef CONFIG_NET_POLL_CONTROLLER
  2515. /**
  2516. * s2io_netpoll - netpoll event handler entry point
  2517. * @dev : pointer to the device structure.
  2518. * Description:
  2519. * This function will be called by upper layer to check for events on the
  2520. * interface in situations where interrupts are disabled. It is used for
  2521. * specific in-kernel networking tasks, such as remote consoles and kernel
  2522. * debugging over the network (example netdump in RedHat).
  2523. */
  2524. static void s2io_netpoll(struct net_device *dev)
  2525. {
  2526. struct s2io_nic *nic = dev->priv;
  2527. struct mac_info *mac_control;
  2528. struct config_param *config;
  2529. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  2530. u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
  2531. int i;
  2532. if (pci_channel_offline(nic->pdev))
  2533. return;
  2534. disable_irq(dev->irq);
  2535. mac_control = &nic->mac_control;
  2536. config = &nic->config;
  2537. writeq(val64, &bar0->rx_traffic_int);
  2538. writeq(val64, &bar0->tx_traffic_int);
  2539. /* we need to free up the transmitted skbufs or else netpoll will
  2540. * run out of skbs and will fail and eventually netpoll application such
  2541. * as netdump will fail.
  2542. */
  2543. for (i = 0; i < config->tx_fifo_num; i++)
  2544. tx_intr_handler(&mac_control->fifos[i]);
  2545. /* check for received packet and indicate up to network */
  2546. for (i = 0; i < config->rx_ring_num; i++)
  2547. rx_intr_handler(&mac_control->rings[i]);
  2548. for (i = 0; i < config->rx_ring_num; i++) {
  2549. if (fill_rx_buffers(nic, i) == -ENOMEM) {
  2550. DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
  2551. DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
  2552. break;
  2553. }
  2554. }
  2555. enable_irq(dev->irq);
  2556. return;
  2557. }
  2558. #endif
  2559. /**
  2560. * rx_intr_handler - Rx interrupt handler
  2561. * @nic: device private variable.
  2562. * Description:
  2563. * If the interrupt is because of a received frame or if the
  2564. * receive ring contains fresh as yet un-processed frames,this function is
  2565. * called. It picks out the RxD at which place the last Rx processing had
  2566. * stopped and sends the skb to the OSM's Rx handler and then increments
  2567. * the offset.
  2568. * Return Value:
  2569. * NONE.
  2570. */
  2571. static void rx_intr_handler(struct ring_info *ring_data)
  2572. {
  2573. struct s2io_nic *nic = ring_data->nic;
  2574. struct net_device *dev = (struct net_device *) nic->dev;
  2575. int get_block, put_block, put_offset;
  2576. struct rx_curr_get_info get_info, put_info;
  2577. struct RxD_t *rxdp;
  2578. struct sk_buff *skb;
  2579. int pkt_cnt = 0;
  2580. int i;
  2581. struct RxD1* rxdp1;
  2582. struct RxD3* rxdp3;
  2583. spin_lock(&nic->rx_lock);
  2584. get_info = ring_data->rx_curr_get_info;
  2585. get_block = get_info.block_index;
  2586. memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
  2587. put_block = put_info.block_index;
  2588. rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
  2589. if (!napi) {
  2590. spin_lock(&nic->put_lock);
  2591. put_offset = ring_data->put_pos;
  2592. spin_unlock(&nic->put_lock);
  2593. } else
  2594. put_offset = ring_data->put_pos;
  2595. while (RXD_IS_UP2DT(rxdp)) {
  2596. /*
  2597. * If your are next to put index then it's
  2598. * FIFO full condition
  2599. */
  2600. if ((get_block == put_block) &&
  2601. (get_info.offset + 1) == put_info.offset) {
  2602. DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
  2603. break;
  2604. }
  2605. skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
  2606. if (skb == NULL) {
  2607. DBG_PRINT(ERR_DBG, "%s: The skb is ",
  2608. dev->name);
  2609. DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
  2610. spin_unlock(&nic->rx_lock);
  2611. return;
  2612. }
  2613. if (nic->rxd_mode == RXD_MODE_1) {
  2614. rxdp1 = (struct RxD1*)rxdp;
  2615. pci_unmap_single(nic->pdev, (dma_addr_t)
  2616. rxdp1->Buffer0_ptr,
  2617. dev->mtu +
  2618. HEADER_ETHERNET_II_802_3_SIZE +
  2619. HEADER_802_2_SIZE +
  2620. HEADER_SNAP_SIZE,
  2621. PCI_DMA_FROMDEVICE);
  2622. } else if (nic->rxd_mode == RXD_MODE_3B) {
  2623. rxdp3 = (struct RxD3*)rxdp;
  2624. pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
  2625. rxdp3->Buffer0_ptr,
  2626. BUF0_LEN, PCI_DMA_FROMDEVICE);
  2627. pci_unmap_single(nic->pdev, (dma_addr_t)
  2628. rxdp3->Buffer2_ptr,
  2629. dev->mtu + 4,
  2630. PCI_DMA_FROMDEVICE);
  2631. }
  2632. prefetch(skb->data);
  2633. rx_osm_handler(ring_data, rxdp);
  2634. get_info.offset++;
  2635. ring_data->rx_curr_get_info.offset = get_info.offset;
  2636. rxdp = ring_data->rx_blocks[get_block].
  2637. rxds[get_info.offset].virt_addr;
  2638. if (get_info.offset == rxd_count[nic->rxd_mode]) {
  2639. get_info.offset = 0;
  2640. ring_data->rx_curr_get_info.offset = get_info.offset;
  2641. get_block++;
  2642. if (get_block == ring_data->block_count)
  2643. get_block = 0;
  2644. ring_data->rx_curr_get_info.block_index = get_block;
  2645. rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
  2646. }
  2647. nic->pkts_to_process -= 1;
  2648. if ((napi) && (!nic->pkts_to_process))
  2649. break;
  2650. pkt_cnt++;
  2651. if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
  2652. break;
  2653. }
  2654. if (nic->lro) {
  2655. /* Clear all LRO sessions before exiting */
  2656. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  2657. struct lro *lro = &nic->lro0_n[i];
  2658. if (lro->in_use) {
  2659. update_L3L4_header(nic, lro);
  2660. queue_rx_frame(lro->parent);
  2661. clear_lro_session(lro);
  2662. }
  2663. }
  2664. }
  2665. spin_unlock(&nic->rx_lock);
  2666. }
  2667. /**
  2668. * tx_intr_handler - Transmit interrupt handler
  2669. * @nic : device private variable
  2670. * Description:
  2671. * If an interrupt was raised to indicate DMA complete of the
  2672. * Tx packet, this function is called. It identifies the last TxD
  2673. * whose buffer was freed and frees all skbs whose data have already
  2674. * DMA'ed into the NICs internal memory.
  2675. * Return Value:
  2676. * NONE
  2677. */
  2678. static void tx_intr_handler(struct fifo_info *fifo_data)
  2679. {
  2680. struct s2io_nic *nic = fifo_data->nic;
  2681. struct net_device *dev = (struct net_device *) nic->dev;
  2682. struct tx_curr_get_info get_info, put_info;
  2683. struct sk_buff *skb;
  2684. struct TxD *txdlp;
  2685. u8 err_mask;
  2686. get_info = fifo_data->tx_curr_get_info;
  2687. memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
  2688. txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
  2689. list_virt_addr;
  2690. while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
  2691. (get_info.offset != put_info.offset) &&
  2692. (txdlp->Host_Control)) {
  2693. /* Check for TxD errors */
  2694. if (txdlp->Control_1 & TXD_T_CODE) {
  2695. unsigned long long err;
  2696. err = txdlp->Control_1 & TXD_T_CODE;
  2697. if (err & 0x1) {
  2698. nic->mac_control.stats_info->sw_stat.
  2699. parity_err_cnt++;
  2700. }
  2701. /* update t_code statistics */
  2702. err_mask = err >> 48;
  2703. switch(err_mask) {
  2704. case 2:
  2705. nic->mac_control.stats_info->sw_stat.
  2706. tx_buf_abort_cnt++;
  2707. break;
  2708. case 3:
  2709. nic->mac_control.stats_info->sw_stat.
  2710. tx_desc_abort_cnt++;
  2711. break;
  2712. case 7:
  2713. nic->mac_control.stats_info->sw_stat.
  2714. tx_parity_err_cnt++;
  2715. break;
  2716. case 10:
  2717. nic->mac_control.stats_info->sw_stat.
  2718. tx_link_loss_cnt++;
  2719. break;
  2720. case 15:
  2721. nic->mac_control.stats_info->sw_stat.
  2722. tx_list_proc_err_cnt++;
  2723. break;
  2724. }
  2725. }
  2726. skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
  2727. if (skb == NULL) {
  2728. DBG_PRINT(ERR_DBG, "%s: Null skb ",
  2729. __FUNCTION__);
  2730. DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
  2731. return;
  2732. }
  2733. /* Updating the statistics block */
  2734. nic->stats.tx_bytes += skb->len;
  2735. nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  2736. dev_kfree_skb_irq(skb);
  2737. get_info.offset++;
  2738. if (get_info.offset == get_info.fifo_len + 1)
  2739. get_info.offset = 0;
  2740. txdlp = (struct TxD *) fifo_data->list_info
  2741. [get_info.offset].list_virt_addr;
  2742. fifo_data->tx_curr_get_info.offset =
  2743. get_info.offset;
  2744. }
  2745. spin_lock(&nic->tx_lock);
  2746. if (netif_queue_stopped(dev))
  2747. netif_wake_queue(dev);
  2748. spin_unlock(&nic->tx_lock);
  2749. }
  2750. /**
  2751. * s2io_mdio_write - Function to write in to MDIO registers
  2752. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2753. * @addr : address value
  2754. * @value : data value
  2755. * @dev : pointer to net_device structure
  2756. * Description:
  2757. * This function is used to write values to the MDIO registers
  2758. * NONE
  2759. */
  2760. static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
  2761. {
  2762. u64 val64 = 0x0;
  2763. struct s2io_nic *sp = dev->priv;
  2764. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2765. //address transaction
  2766. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2767. | MDIO_MMD_DEV_ADDR(mmd_type)
  2768. | MDIO_MMS_PRT_ADDR(0x0);
  2769. writeq(val64, &bar0->mdio_control);
  2770. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2771. writeq(val64, &bar0->mdio_control);
  2772. udelay(100);
  2773. //Data transaction
  2774. val64 = 0x0;
  2775. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2776. | MDIO_MMD_DEV_ADDR(mmd_type)
  2777. | MDIO_MMS_PRT_ADDR(0x0)
  2778. | MDIO_MDIO_DATA(value)
  2779. | MDIO_OP(MDIO_OP_WRITE_TRANS);
  2780. writeq(val64, &bar0->mdio_control);
  2781. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2782. writeq(val64, &bar0->mdio_control);
  2783. udelay(100);
  2784. val64 = 0x0;
  2785. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2786. | MDIO_MMD_DEV_ADDR(mmd_type)
  2787. | MDIO_MMS_PRT_ADDR(0x0)
  2788. | MDIO_OP(MDIO_OP_READ_TRANS);
  2789. writeq(val64, &bar0->mdio_control);
  2790. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2791. writeq(val64, &bar0->mdio_control);
  2792. udelay(100);
  2793. }
  2794. /**
  2795. * s2io_mdio_read - Function to write in to MDIO registers
  2796. * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
  2797. * @addr : address value
  2798. * @dev : pointer to net_device structure
  2799. * Description:
  2800. * This function is used to read values to the MDIO registers
  2801. * NONE
  2802. */
  2803. static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
  2804. {
  2805. u64 val64 = 0x0;
  2806. u64 rval64 = 0x0;
  2807. struct s2io_nic *sp = dev->priv;
  2808. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  2809. /* address transaction */
  2810. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2811. | MDIO_MMD_DEV_ADDR(mmd_type)
  2812. | MDIO_MMS_PRT_ADDR(0x0);
  2813. writeq(val64, &bar0->mdio_control);
  2814. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2815. writeq(val64, &bar0->mdio_control);
  2816. udelay(100);
  2817. /* Data transaction */
  2818. val64 = 0x0;
  2819. val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
  2820. | MDIO_MMD_DEV_ADDR(mmd_type)
  2821. | MDIO_MMS_PRT_ADDR(0x0)
  2822. | MDIO_OP(MDIO_OP_READ_TRANS);
  2823. writeq(val64, &bar0->mdio_control);
  2824. val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
  2825. writeq(val64, &bar0->mdio_control);
  2826. udelay(100);
  2827. /* Read the value from regs */
  2828. rval64 = readq(&bar0->mdio_control);
  2829. rval64 = rval64 & 0xFFFF0000;
  2830. rval64 = rval64 >> 16;
  2831. return rval64;
  2832. }
  2833. /**
  2834. * s2io_chk_xpak_counter - Function to check the status of the xpak counters
  2835. * @counter : couter value to be updated
  2836. * @flag : flag to indicate the status
  2837. * @type : counter type
  2838. * Description:
  2839. * This function is to check the status of the xpak counters value
  2840. * NONE
  2841. */
  2842. static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
  2843. {
  2844. u64 mask = 0x3;
  2845. u64 val64;
  2846. int i;
  2847. for(i = 0; i <index; i++)
  2848. mask = mask << 0x2;
  2849. if(flag > 0)
  2850. {
  2851. *counter = *counter + 1;
  2852. val64 = *regs_stat & mask;
  2853. val64 = val64 >> (index * 0x2);
  2854. val64 = val64 + 1;
  2855. if(val64 == 3)
  2856. {
  2857. switch(type)
  2858. {
  2859. case 1:
  2860. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2861. "service. Excessive temperatures may "
  2862. "result in premature transceiver "
  2863. "failure \n");
  2864. break;
  2865. case 2:
  2866. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2867. "service Excessive bias currents may "
  2868. "indicate imminent laser diode "
  2869. "failure \n");
  2870. break;
  2871. case 3:
  2872. DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
  2873. "service Excessive laser output "
  2874. "power may saturate far-end "
  2875. "receiver\n");
  2876. break;
  2877. default:
  2878. DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
  2879. "type \n");
  2880. }
  2881. val64 = 0x0;
  2882. }
  2883. val64 = val64 << (index * 0x2);
  2884. *regs_stat = (*regs_stat & (~mask)) | (val64);
  2885. } else {
  2886. *regs_stat = *regs_stat & (~mask);
  2887. }
  2888. }
  2889. /**
  2890. * s2io_updt_xpak_counter - Function to update the xpak counters
  2891. * @dev : pointer to net_device struct
  2892. * Description:
  2893. * This function is to upate the status of the xpak counters value
  2894. * NONE
  2895. */
  2896. static void s2io_updt_xpak_counter(struct net_device *dev)
  2897. {
  2898. u16 flag = 0x0;
  2899. u16 type = 0x0;
  2900. u16 val16 = 0x0;
  2901. u64 val64 = 0x0;
  2902. u64 addr = 0x0;
  2903. struct s2io_nic *sp = dev->priv;
  2904. struct stat_block *stat_info = sp->mac_control.stats_info;
  2905. /* Check the communication with the MDIO slave */
  2906. addr = 0x0000;
  2907. val64 = 0x0;
  2908. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2909. if((val64 == 0xFFFF) || (val64 == 0x0000))
  2910. {
  2911. DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
  2912. "Returned %llx\n", (unsigned long long)val64);
  2913. return;
  2914. }
  2915. /* Check for the expecte value of 2040 at PMA address 0x0000 */
  2916. if(val64 != 0x2040)
  2917. {
  2918. DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
  2919. DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
  2920. (unsigned long long)val64);
  2921. return;
  2922. }
  2923. /* Loading the DOM register to MDIO register */
  2924. addr = 0xA100;
  2925. s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
  2926. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2927. /* Reading the Alarm flags */
  2928. addr = 0xA070;
  2929. val64 = 0x0;
  2930. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2931. flag = CHECKBIT(val64, 0x7);
  2932. type = 1;
  2933. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
  2934. &stat_info->xpak_stat.xpak_regs_stat,
  2935. 0x0, flag, type);
  2936. if(CHECKBIT(val64, 0x6))
  2937. stat_info->xpak_stat.alarm_transceiver_temp_low++;
  2938. flag = CHECKBIT(val64, 0x3);
  2939. type = 2;
  2940. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
  2941. &stat_info->xpak_stat.xpak_regs_stat,
  2942. 0x2, flag, type);
  2943. if(CHECKBIT(val64, 0x2))
  2944. stat_info->xpak_stat.alarm_laser_bias_current_low++;
  2945. flag = CHECKBIT(val64, 0x1);
  2946. type = 3;
  2947. s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
  2948. &stat_info->xpak_stat.xpak_regs_stat,
  2949. 0x4, flag, type);
  2950. if(CHECKBIT(val64, 0x0))
  2951. stat_info->xpak_stat.alarm_laser_output_power_low++;
  2952. /* Reading the Warning flags */
  2953. addr = 0xA074;
  2954. val64 = 0x0;
  2955. val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
  2956. if(CHECKBIT(val64, 0x7))
  2957. stat_info->xpak_stat.warn_transceiver_temp_high++;
  2958. if(CHECKBIT(val64, 0x6))
  2959. stat_info->xpak_stat.warn_transceiver_temp_low++;
  2960. if(CHECKBIT(val64, 0x3))
  2961. stat_info->xpak_stat.warn_laser_bias_current_high++;
  2962. if(CHECKBIT(val64, 0x2))
  2963. stat_info->xpak_stat.warn_laser_bias_current_low++;
  2964. if(CHECKBIT(val64, 0x1))
  2965. stat_info->xpak_stat.warn_laser_output_power_high++;
  2966. if(CHECKBIT(val64, 0x0))
  2967. stat_info->xpak_stat.warn_laser_output_power_low++;
  2968. }
  2969. /**
  2970. * wait_for_cmd_complete - waits for a command to complete.
  2971. * @sp : private member of the device structure, which is a pointer to the
  2972. * s2io_nic structure.
  2973. * Description: Function that waits for a command to Write into RMAC
  2974. * ADDR DATA registers to be completed and returns either success or
  2975. * error depending on whether the command was complete or not.
  2976. * Return value:
  2977. * SUCCESS on success and FAILURE on failure.
  2978. */
  2979. static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
  2980. int bit_state)
  2981. {
  2982. int ret = FAILURE, cnt = 0, delay = 1;
  2983. u64 val64;
  2984. if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
  2985. return FAILURE;
  2986. do {
  2987. val64 = readq(addr);
  2988. if (bit_state == S2IO_BIT_RESET) {
  2989. if (!(val64 & busy_bit)) {
  2990. ret = SUCCESS;
  2991. break;
  2992. }
  2993. } else {
  2994. if (!(val64 & busy_bit)) {
  2995. ret = SUCCESS;
  2996. break;
  2997. }
  2998. }
  2999. if(in_interrupt())
  3000. mdelay(delay);
  3001. else
  3002. msleep(delay);
  3003. if (++cnt >= 10)
  3004. delay = 50;
  3005. } while (cnt < 20);
  3006. return ret;
  3007. }
  3008. /*
  3009. * check_pci_device_id - Checks if the device id is supported
  3010. * @id : device id
  3011. * Description: Function to check if the pci device id is supported by driver.
  3012. * Return value: Actual device id if supported else PCI_ANY_ID
  3013. */
  3014. static u16 check_pci_device_id(u16 id)
  3015. {
  3016. switch (id) {
  3017. case PCI_DEVICE_ID_HERC_WIN:
  3018. case PCI_DEVICE_ID_HERC_UNI:
  3019. return XFRAME_II_DEVICE;
  3020. case PCI_DEVICE_ID_S2IO_UNI:
  3021. case PCI_DEVICE_ID_S2IO_WIN:
  3022. return XFRAME_I_DEVICE;
  3023. default:
  3024. return PCI_ANY_ID;
  3025. }
  3026. }
  3027. /**
  3028. * s2io_reset - Resets the card.
  3029. * @sp : private member of the device structure.
  3030. * Description: Function to Reset the card. This function then also
  3031. * restores the previously saved PCI configuration space registers as
  3032. * the card reset also resets the configuration space.
  3033. * Return value:
  3034. * void.
  3035. */
  3036. static void s2io_reset(struct s2io_nic * sp)
  3037. {
  3038. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3039. u64 val64;
  3040. u16 subid, pci_cmd;
  3041. int i;
  3042. u16 val16;
  3043. unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
  3044. unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
  3045. DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
  3046. __FUNCTION__, sp->dev->name);
  3047. /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
  3048. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
  3049. val64 = SW_RESET_ALL;
  3050. writeq(val64, &bar0->sw_reset);
  3051. if (strstr(sp->product_name, "CX4")) {
  3052. msleep(750);
  3053. }
  3054. msleep(250);
  3055. for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
  3056. /* Restore the PCI state saved during initialization. */
  3057. pci_restore_state(sp->pdev);
  3058. pci_read_config_word(sp->pdev, 0x2, &val16);
  3059. if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
  3060. break;
  3061. msleep(200);
  3062. }
  3063. if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
  3064. DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
  3065. }
  3066. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
  3067. s2io_init_pci(sp);
  3068. /* Set swapper to enable I/O register access */
  3069. s2io_set_swapper(sp);
  3070. /* Restore the MSIX table entries from local variables */
  3071. restore_xmsi_data(sp);
  3072. /* Clear certain PCI/PCI-X fields after reset */
  3073. if (sp->device_type == XFRAME_II_DEVICE) {
  3074. /* Clear "detected parity error" bit */
  3075. pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
  3076. /* Clearing PCIX Ecc status register */
  3077. pci_write_config_dword(sp->pdev, 0x68, 0x7C);
  3078. /* Clearing PCI_STATUS error reflected here */
  3079. writeq(BIT(62), &bar0->txpic_int_reg);
  3080. }
  3081. /* Reset device statistics maintained by OS */
  3082. memset(&sp->stats, 0, sizeof (struct net_device_stats));
  3083. up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
  3084. down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
  3085. up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
  3086. down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
  3087. reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
  3088. mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
  3089. mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
  3090. watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
  3091. /* save link up/down time/cnt, reset/memory/watchdog cnt */
  3092. memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
  3093. /* restore link up/down time/cnt, reset/memory/watchdog cnt */
  3094. sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
  3095. sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
  3096. sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
  3097. sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
  3098. sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
  3099. sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
  3100. sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
  3101. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
  3102. /* SXE-002: Configure link and activity LED to turn it off */
  3103. subid = sp->pdev->subsystem_device;
  3104. if (((subid & 0xFF) >= 0x07) &&
  3105. (sp->device_type == XFRAME_I_DEVICE)) {
  3106. val64 = readq(&bar0->gpio_control);
  3107. val64 |= 0x0000800000000000ULL;
  3108. writeq(val64, &bar0->gpio_control);
  3109. val64 = 0x0411040400000000ULL;
  3110. writeq(val64, (void __iomem *)bar0 + 0x2700);
  3111. }
  3112. /*
  3113. * Clear spurious ECC interrupts that would have occured on
  3114. * XFRAME II cards after reset.
  3115. */
  3116. if (sp->device_type == XFRAME_II_DEVICE) {
  3117. val64 = readq(&bar0->pcc_err_reg);
  3118. writeq(val64, &bar0->pcc_err_reg);
  3119. }
  3120. /* restore the previously assigned mac address */
  3121. s2io_set_mac_addr(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
  3122. sp->device_enabled_once = FALSE;
  3123. }
  3124. /**
  3125. * s2io_set_swapper - to set the swapper controle on the card
  3126. * @sp : private member of the device structure,
  3127. * pointer to the s2io_nic structure.
  3128. * Description: Function to set the swapper control on the card
  3129. * correctly depending on the 'endianness' of the system.
  3130. * Return value:
  3131. * SUCCESS on success and FAILURE on failure.
  3132. */
  3133. static int s2io_set_swapper(struct s2io_nic * sp)
  3134. {
  3135. struct net_device *dev = sp->dev;
  3136. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3137. u64 val64, valt, valr;
  3138. /*
  3139. * Set proper endian settings and verify the same by reading
  3140. * the PIF Feed-back register.
  3141. */
  3142. val64 = readq(&bar0->pif_rd_swapper_fb);
  3143. if (val64 != 0x0123456789ABCDEFULL) {
  3144. int i = 0;
  3145. u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
  3146. 0x8100008181000081ULL, /* FE=1, SE=0 */
  3147. 0x4200004242000042ULL, /* FE=0, SE=1 */
  3148. 0}; /* FE=0, SE=0 */
  3149. while(i<4) {
  3150. writeq(value[i], &bar0->swapper_ctrl);
  3151. val64 = readq(&bar0->pif_rd_swapper_fb);
  3152. if (val64 == 0x0123456789ABCDEFULL)
  3153. break;
  3154. i++;
  3155. }
  3156. if (i == 4) {
  3157. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3158. dev->name);
  3159. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3160. (unsigned long long) val64);
  3161. return FAILURE;
  3162. }
  3163. valr = value[i];
  3164. } else {
  3165. valr = readq(&bar0->swapper_ctrl);
  3166. }
  3167. valt = 0x0123456789ABCDEFULL;
  3168. writeq(valt, &bar0->xmsi_address);
  3169. val64 = readq(&bar0->xmsi_address);
  3170. if(val64 != valt) {
  3171. int i = 0;
  3172. u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
  3173. 0x0081810000818100ULL, /* FE=1, SE=0 */
  3174. 0x0042420000424200ULL, /* FE=0, SE=1 */
  3175. 0}; /* FE=0, SE=0 */
  3176. while(i<4) {
  3177. writeq((value[i] | valr), &bar0->swapper_ctrl);
  3178. writeq(valt, &bar0->xmsi_address);
  3179. val64 = readq(&bar0->xmsi_address);
  3180. if(val64 == valt)
  3181. break;
  3182. i++;
  3183. }
  3184. if(i == 4) {
  3185. unsigned long long x = val64;
  3186. DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
  3187. DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
  3188. return FAILURE;
  3189. }
  3190. }
  3191. val64 = readq(&bar0->swapper_ctrl);
  3192. val64 &= 0xFFFF000000000000ULL;
  3193. #ifdef __BIG_ENDIAN
  3194. /*
  3195. * The device by default set to a big endian format, so a
  3196. * big endian driver need not set anything.
  3197. */
  3198. val64 |= (SWAPPER_CTRL_TXP_FE |
  3199. SWAPPER_CTRL_TXP_SE |
  3200. SWAPPER_CTRL_TXD_R_FE |
  3201. SWAPPER_CTRL_TXD_W_FE |
  3202. SWAPPER_CTRL_TXF_R_FE |
  3203. SWAPPER_CTRL_RXD_R_FE |
  3204. SWAPPER_CTRL_RXD_W_FE |
  3205. SWAPPER_CTRL_RXF_W_FE |
  3206. SWAPPER_CTRL_XMSI_FE |
  3207. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3208. if (sp->config.intr_type == INTA)
  3209. val64 |= SWAPPER_CTRL_XMSI_SE;
  3210. writeq(val64, &bar0->swapper_ctrl);
  3211. #else
  3212. /*
  3213. * Initially we enable all bits to make it accessible by the
  3214. * driver, then we selectively enable only those bits that
  3215. * we want to set.
  3216. */
  3217. val64 |= (SWAPPER_CTRL_TXP_FE |
  3218. SWAPPER_CTRL_TXP_SE |
  3219. SWAPPER_CTRL_TXD_R_FE |
  3220. SWAPPER_CTRL_TXD_R_SE |
  3221. SWAPPER_CTRL_TXD_W_FE |
  3222. SWAPPER_CTRL_TXD_W_SE |
  3223. SWAPPER_CTRL_TXF_R_FE |
  3224. SWAPPER_CTRL_RXD_R_FE |
  3225. SWAPPER_CTRL_RXD_R_SE |
  3226. SWAPPER_CTRL_RXD_W_FE |
  3227. SWAPPER_CTRL_RXD_W_SE |
  3228. SWAPPER_CTRL_RXF_W_FE |
  3229. SWAPPER_CTRL_XMSI_FE |
  3230. SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
  3231. if (sp->config.intr_type == INTA)
  3232. val64 |= SWAPPER_CTRL_XMSI_SE;
  3233. writeq(val64, &bar0->swapper_ctrl);
  3234. #endif
  3235. val64 = readq(&bar0->swapper_ctrl);
  3236. /*
  3237. * Verifying if endian settings are accurate by reading a
  3238. * feedback register.
  3239. */
  3240. val64 = readq(&bar0->pif_rd_swapper_fb);
  3241. if (val64 != 0x0123456789ABCDEFULL) {
  3242. /* Endian settings are incorrect, calls for another dekko. */
  3243. DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
  3244. dev->name);
  3245. DBG_PRINT(ERR_DBG, "feedback read %llx\n",
  3246. (unsigned long long) val64);
  3247. return FAILURE;
  3248. }
  3249. return SUCCESS;
  3250. }
  3251. static int wait_for_msix_trans(struct s2io_nic *nic, int i)
  3252. {
  3253. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3254. u64 val64;
  3255. int ret = 0, cnt = 0;
  3256. do {
  3257. val64 = readq(&bar0->xmsi_access);
  3258. if (!(val64 & BIT(15)))
  3259. break;
  3260. mdelay(1);
  3261. cnt++;
  3262. } while(cnt < 5);
  3263. if (cnt == 5) {
  3264. DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
  3265. ret = 1;
  3266. }
  3267. return ret;
  3268. }
  3269. static void restore_xmsi_data(struct s2io_nic *nic)
  3270. {
  3271. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3272. u64 val64;
  3273. int i;
  3274. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3275. writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
  3276. writeq(nic->msix_info[i].data, &bar0->xmsi_data);
  3277. val64 = (BIT(7) | BIT(15) | vBIT(i, 26, 6));
  3278. writeq(val64, &bar0->xmsi_access);
  3279. if (wait_for_msix_trans(nic, i)) {
  3280. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3281. continue;
  3282. }
  3283. }
  3284. }
  3285. static void store_xmsi_data(struct s2io_nic *nic)
  3286. {
  3287. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3288. u64 val64, addr, data;
  3289. int i;
  3290. /* Store and display */
  3291. for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
  3292. val64 = (BIT(15) | vBIT(i, 26, 6));
  3293. writeq(val64, &bar0->xmsi_access);
  3294. if (wait_for_msix_trans(nic, i)) {
  3295. DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
  3296. continue;
  3297. }
  3298. addr = readq(&bar0->xmsi_address);
  3299. data = readq(&bar0->xmsi_data);
  3300. if (addr && data) {
  3301. nic->msix_info[i].addr = addr;
  3302. nic->msix_info[i].data = data;
  3303. }
  3304. }
  3305. }
  3306. static int s2io_enable_msi_x(struct s2io_nic *nic)
  3307. {
  3308. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  3309. u64 tx_mat, rx_mat;
  3310. u16 msi_control; /* Temp variable */
  3311. int ret, i, j, msix_indx = 1;
  3312. nic->entries = kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct msix_entry),
  3313. GFP_KERNEL);
  3314. if (nic->entries == NULL) {
  3315. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
  3316. __FUNCTION__);
  3317. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3318. return -ENOMEM;
  3319. }
  3320. nic->mac_control.stats_info->sw_stat.mem_allocated
  3321. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3322. memset(nic->entries, 0,MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3323. nic->s2io_entries =
  3324. kmalloc(MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry),
  3325. GFP_KERNEL);
  3326. if (nic->s2io_entries == NULL) {
  3327. DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
  3328. __FUNCTION__);
  3329. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  3330. kfree(nic->entries);
  3331. nic->mac_control.stats_info->sw_stat.mem_freed
  3332. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3333. return -ENOMEM;
  3334. }
  3335. nic->mac_control.stats_info->sw_stat.mem_allocated
  3336. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3337. memset(nic->s2io_entries, 0,
  3338. MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3339. for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
  3340. nic->entries[i].entry = i;
  3341. nic->s2io_entries[i].entry = i;
  3342. nic->s2io_entries[i].arg = NULL;
  3343. nic->s2io_entries[i].in_use = 0;
  3344. }
  3345. tx_mat = readq(&bar0->tx_mat0_n[0]);
  3346. for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
  3347. tx_mat |= TX_MAT_SET(i, msix_indx);
  3348. nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
  3349. nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
  3350. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3351. }
  3352. writeq(tx_mat, &bar0->tx_mat0_n[0]);
  3353. if (!nic->config.bimodal) {
  3354. rx_mat = readq(&bar0->rx_mat);
  3355. for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
  3356. rx_mat |= RX_MAT_SET(j, msix_indx);
  3357. nic->s2io_entries[msix_indx].arg
  3358. = &nic->mac_control.rings[j];
  3359. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3360. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3361. }
  3362. writeq(rx_mat, &bar0->rx_mat);
  3363. } else {
  3364. tx_mat = readq(&bar0->tx_mat0_n[7]);
  3365. for (j=0; j<nic->config.rx_ring_num; j++, msix_indx++) {
  3366. tx_mat |= TX_MAT_SET(i, msix_indx);
  3367. nic->s2io_entries[msix_indx].arg
  3368. = &nic->mac_control.rings[j];
  3369. nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
  3370. nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
  3371. }
  3372. writeq(tx_mat, &bar0->tx_mat0_n[7]);
  3373. }
  3374. nic->avail_msix_vectors = 0;
  3375. ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
  3376. /* We fail init if error or we get less vectors than min required */
  3377. if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
  3378. nic->avail_msix_vectors = ret;
  3379. ret = pci_enable_msix(nic->pdev, nic->entries, ret);
  3380. }
  3381. if (ret) {
  3382. DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
  3383. kfree(nic->entries);
  3384. nic->mac_control.stats_info->sw_stat.mem_freed
  3385. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3386. kfree(nic->s2io_entries);
  3387. nic->mac_control.stats_info->sw_stat.mem_freed
  3388. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3389. nic->entries = NULL;
  3390. nic->s2io_entries = NULL;
  3391. nic->avail_msix_vectors = 0;
  3392. return -ENOMEM;
  3393. }
  3394. if (!nic->avail_msix_vectors)
  3395. nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
  3396. /*
  3397. * To enable MSI-X, MSI also needs to be enabled, due to a bug
  3398. * in the herc NIC. (Temp change, needs to be removed later)
  3399. */
  3400. pci_read_config_word(nic->pdev, 0x42, &msi_control);
  3401. msi_control |= 0x1; /* Enable MSI */
  3402. pci_write_config_word(nic->pdev, 0x42, msi_control);
  3403. return 0;
  3404. }
  3405. /* Handle software interrupt used during MSI(X) test */
  3406. static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
  3407. {
  3408. struct s2io_nic *sp = dev_id;
  3409. sp->msi_detected = 1;
  3410. wake_up(&sp->msi_wait);
  3411. return IRQ_HANDLED;
  3412. }
  3413. /* Test interrupt path by forcing a a software IRQ */
  3414. static int __devinit s2io_test_msi(struct s2io_nic *sp)
  3415. {
  3416. struct pci_dev *pdev = sp->pdev;
  3417. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3418. int err;
  3419. u64 val64, saved64;
  3420. err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
  3421. sp->name, sp);
  3422. if (err) {
  3423. DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
  3424. sp->dev->name, pci_name(pdev), pdev->irq);
  3425. return err;
  3426. }
  3427. init_waitqueue_head (&sp->msi_wait);
  3428. sp->msi_detected = 0;
  3429. saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
  3430. val64 |= SCHED_INT_CTRL_ONE_SHOT;
  3431. val64 |= SCHED_INT_CTRL_TIMER_EN;
  3432. val64 |= SCHED_INT_CTRL_INT2MSI(1);
  3433. writeq(val64, &bar0->scheduled_int_ctrl);
  3434. wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
  3435. if (!sp->msi_detected) {
  3436. /* MSI(X) test failed, go back to INTx mode */
  3437. DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
  3438. "using MSI(X) during test\n", sp->dev->name,
  3439. pci_name(pdev));
  3440. err = -EOPNOTSUPP;
  3441. }
  3442. free_irq(sp->entries[1].vector, sp);
  3443. writeq(saved64, &bar0->scheduled_int_ctrl);
  3444. return err;
  3445. }
  3446. /* ********************************************************* *
  3447. * Functions defined below concern the OS part of the driver *
  3448. * ********************************************************* */
  3449. /**
  3450. * s2io_open - open entry point of the driver
  3451. * @dev : pointer to the device structure.
  3452. * Description:
  3453. * This function is the open entry point of the driver. It mainly calls a
  3454. * function to allocate Rx buffers and inserts them into the buffer
  3455. * descriptors and then enables the Rx part of the NIC.
  3456. * Return value:
  3457. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3458. * file on failure.
  3459. */
  3460. static int s2io_open(struct net_device *dev)
  3461. {
  3462. struct s2io_nic *sp = dev->priv;
  3463. int err = 0;
  3464. /*
  3465. * Make sure you have link off by default every time
  3466. * Nic is initialized
  3467. */
  3468. netif_carrier_off(dev);
  3469. sp->last_link_state = 0;
  3470. napi_enable(&sp->napi);
  3471. if (sp->config.intr_type == MSI_X) {
  3472. int ret = s2io_enable_msi_x(sp);
  3473. if (!ret) {
  3474. u16 msi_control;
  3475. ret = s2io_test_msi(sp);
  3476. /* rollback MSI-X, will re-enable during add_isr() */
  3477. kfree(sp->entries);
  3478. sp->mac_control.stats_info->sw_stat.mem_freed +=
  3479. (MAX_REQUESTED_MSI_X *
  3480. sizeof(struct msix_entry));
  3481. kfree(sp->s2io_entries);
  3482. sp->mac_control.stats_info->sw_stat.mem_freed +=
  3483. (MAX_REQUESTED_MSI_X *
  3484. sizeof(struct s2io_msix_entry));
  3485. sp->entries = NULL;
  3486. sp->s2io_entries = NULL;
  3487. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  3488. msi_control &= 0xFFFE; /* Disable MSI */
  3489. pci_write_config_word(sp->pdev, 0x42, msi_control);
  3490. pci_disable_msix(sp->pdev);
  3491. }
  3492. if (ret) {
  3493. DBG_PRINT(ERR_DBG,
  3494. "%s: MSI-X requested but failed to enable\n",
  3495. dev->name);
  3496. sp->config.intr_type = INTA;
  3497. }
  3498. }
  3499. /* NAPI doesn't work well with MSI(X) */
  3500. if (sp->config.intr_type != INTA) {
  3501. if(sp->config.napi)
  3502. sp->config.napi = 0;
  3503. }
  3504. /* Initialize H/W and enable interrupts */
  3505. err = s2io_card_up(sp);
  3506. if (err) {
  3507. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  3508. dev->name);
  3509. goto hw_init_failed;
  3510. }
  3511. if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
  3512. DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
  3513. s2io_card_down(sp);
  3514. err = -ENODEV;
  3515. goto hw_init_failed;
  3516. }
  3517. netif_start_queue(dev);
  3518. return 0;
  3519. hw_init_failed:
  3520. napi_disable(&sp->napi);
  3521. if (sp->config.intr_type == MSI_X) {
  3522. if (sp->entries) {
  3523. kfree(sp->entries);
  3524. sp->mac_control.stats_info->sw_stat.mem_freed
  3525. += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  3526. }
  3527. if (sp->s2io_entries) {
  3528. kfree(sp->s2io_entries);
  3529. sp->mac_control.stats_info->sw_stat.mem_freed
  3530. += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  3531. }
  3532. }
  3533. return err;
  3534. }
  3535. /**
  3536. * s2io_close -close entry point of the driver
  3537. * @dev : device pointer.
  3538. * Description:
  3539. * This is the stop entry point of the driver. It needs to undo exactly
  3540. * whatever was done by the open entry point,thus it's usually referred to
  3541. * as the close function.Among other things this function mainly stops the
  3542. * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
  3543. * Return value:
  3544. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  3545. * file on failure.
  3546. */
  3547. static int s2io_close(struct net_device *dev)
  3548. {
  3549. struct s2io_nic *sp = dev->priv;
  3550. netif_stop_queue(dev);
  3551. napi_disable(&sp->napi);
  3552. /* Reset card, kill tasklet and free Tx and Rx buffers. */
  3553. s2io_card_down(sp);
  3554. return 0;
  3555. }
  3556. /**
  3557. * s2io_xmit - Tx entry point of te driver
  3558. * @skb : the socket buffer containing the Tx data.
  3559. * @dev : device pointer.
  3560. * Description :
  3561. * This function is the Tx entry point of the driver. S2IO NIC supports
  3562. * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
  3563. * NOTE: when device cant queue the pkt,just the trans_start variable will
  3564. * not be upadted.
  3565. * Return value:
  3566. * 0 on success & 1 on failure.
  3567. */
  3568. static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
  3569. {
  3570. struct s2io_nic *sp = dev->priv;
  3571. u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
  3572. register u64 val64;
  3573. struct TxD *txdp;
  3574. struct TxFIFO_element __iomem *tx_fifo;
  3575. unsigned long flags;
  3576. u16 vlan_tag = 0;
  3577. int vlan_priority = 0;
  3578. struct mac_info *mac_control;
  3579. struct config_param *config;
  3580. int offload_type;
  3581. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  3582. mac_control = &sp->mac_control;
  3583. config = &sp->config;
  3584. DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
  3585. if (unlikely(skb->len <= 0)) {
  3586. DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
  3587. dev_kfree_skb_any(skb);
  3588. return 0;
  3589. }
  3590. spin_lock_irqsave(&sp->tx_lock, flags);
  3591. if (!is_s2io_card_up(sp)) {
  3592. DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
  3593. dev->name);
  3594. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3595. dev_kfree_skb(skb);
  3596. return 0;
  3597. }
  3598. queue = 0;
  3599. /* Get Fifo number to Transmit based on vlan priority */
  3600. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3601. vlan_tag = vlan_tx_tag_get(skb);
  3602. vlan_priority = vlan_tag >> 13;
  3603. queue = config->fifo_mapping[vlan_priority];
  3604. }
  3605. put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
  3606. get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
  3607. txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
  3608. list_virt_addr;
  3609. queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
  3610. /* Avoid "put" pointer going beyond "get" pointer */
  3611. if (txdp->Host_Control ||
  3612. ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3613. DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
  3614. netif_stop_queue(dev);
  3615. dev_kfree_skb(skb);
  3616. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3617. return 0;
  3618. }
  3619. offload_type = s2io_offload_type(skb);
  3620. if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
  3621. txdp->Control_1 |= TXD_TCP_LSO_EN;
  3622. txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
  3623. }
  3624. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  3625. txdp->Control_2 |=
  3626. (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
  3627. TXD_TX_CKO_UDP_EN);
  3628. }
  3629. txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
  3630. txdp->Control_1 |= TXD_LIST_OWN_XENA;
  3631. txdp->Control_2 |= config->tx_intr_type;
  3632. if (sp->vlgrp && vlan_tx_tag_present(skb)) {
  3633. txdp->Control_2 |= TXD_VLAN_ENABLE;
  3634. txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
  3635. }
  3636. frg_len = skb->len - skb->data_len;
  3637. if (offload_type == SKB_GSO_UDP) {
  3638. int ufo_size;
  3639. ufo_size = s2io_udp_mss(skb);
  3640. ufo_size &= ~7;
  3641. txdp->Control_1 |= TXD_UFO_EN;
  3642. txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
  3643. txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
  3644. #ifdef __BIG_ENDIAN
  3645. sp->ufo_in_band_v[put_off] =
  3646. (u64)skb_shinfo(skb)->ip6_frag_id;
  3647. #else
  3648. sp->ufo_in_band_v[put_off] =
  3649. (u64)skb_shinfo(skb)->ip6_frag_id << 32;
  3650. #endif
  3651. txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
  3652. txdp->Buffer_Pointer = pci_map_single(sp->pdev,
  3653. sp->ufo_in_band_v,
  3654. sizeof(u64), PCI_DMA_TODEVICE);
  3655. if((txdp->Buffer_Pointer == 0) ||
  3656. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3657. goto pci_map_failed;
  3658. txdp++;
  3659. }
  3660. txdp->Buffer_Pointer = pci_map_single
  3661. (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
  3662. if((txdp->Buffer_Pointer == 0) ||
  3663. (txdp->Buffer_Pointer == DMA_ERROR_CODE))
  3664. goto pci_map_failed;
  3665. txdp->Host_Control = (unsigned long) skb;
  3666. txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
  3667. if (offload_type == SKB_GSO_UDP)
  3668. txdp->Control_1 |= TXD_UFO_EN;
  3669. frg_cnt = skb_shinfo(skb)->nr_frags;
  3670. /* For fragmented SKB. */
  3671. for (i = 0; i < frg_cnt; i++) {
  3672. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  3673. /* A '0' length fragment will be ignored */
  3674. if (!frag->size)
  3675. continue;
  3676. txdp++;
  3677. txdp->Buffer_Pointer = (u64) pci_map_page
  3678. (sp->pdev, frag->page, frag->page_offset,
  3679. frag->size, PCI_DMA_TODEVICE);
  3680. txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
  3681. if (offload_type == SKB_GSO_UDP)
  3682. txdp->Control_1 |= TXD_UFO_EN;
  3683. }
  3684. txdp->Control_1 |= TXD_GATHER_CODE_LAST;
  3685. if (offload_type == SKB_GSO_UDP)
  3686. frg_cnt++; /* as Txd0 was used for inband header */
  3687. tx_fifo = mac_control->tx_FIFO_start[queue];
  3688. val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
  3689. writeq(val64, &tx_fifo->TxDL_Pointer);
  3690. val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
  3691. TX_FIFO_LAST_LIST);
  3692. if (offload_type)
  3693. val64 |= TX_FIFO_SPECIAL_FUNC;
  3694. writeq(val64, &tx_fifo->List_Control);
  3695. mmiowb();
  3696. put_off++;
  3697. if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
  3698. put_off = 0;
  3699. mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
  3700. /* Avoid "put" pointer going beyond "get" pointer */
  3701. if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
  3702. sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
  3703. DBG_PRINT(TX_DBG,
  3704. "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
  3705. put_off, get_off);
  3706. netif_stop_queue(dev);
  3707. }
  3708. mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
  3709. dev->trans_start = jiffies;
  3710. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3711. return 0;
  3712. pci_map_failed:
  3713. stats->pci_map_fail_cnt++;
  3714. netif_stop_queue(dev);
  3715. stats->mem_freed += skb->truesize;
  3716. dev_kfree_skb(skb);
  3717. spin_unlock_irqrestore(&sp->tx_lock, flags);
  3718. return 0;
  3719. }
  3720. static void
  3721. s2io_alarm_handle(unsigned long data)
  3722. {
  3723. struct s2io_nic *sp = (struct s2io_nic *)data;
  3724. struct net_device *dev = sp->dev;
  3725. s2io_handle_errors(dev);
  3726. mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
  3727. }
  3728. static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
  3729. {
  3730. int rxb_size, level;
  3731. if (!sp->lro) {
  3732. rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
  3733. level = rx_buffer_level(sp, rxb_size, rng_n);
  3734. if ((level == PANIC) && (!TASKLET_IN_USE)) {
  3735. int ret;
  3736. DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
  3737. DBG_PRINT(INTR_DBG, "PANIC levels\n");
  3738. if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
  3739. DBG_PRINT(INFO_DBG, "Out of memory in %s",
  3740. __FUNCTION__);
  3741. clear_bit(0, (&sp->tasklet_status));
  3742. return -1;
  3743. }
  3744. clear_bit(0, (&sp->tasklet_status));
  3745. } else if (level == LOW)
  3746. tasklet_schedule(&sp->task);
  3747. } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
  3748. DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
  3749. DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
  3750. }
  3751. return 0;
  3752. }
  3753. static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
  3754. {
  3755. struct ring_info *ring = (struct ring_info *)dev_id;
  3756. struct s2io_nic *sp = ring->nic;
  3757. if (!is_s2io_card_up(sp))
  3758. return IRQ_HANDLED;
  3759. rx_intr_handler(ring);
  3760. s2io_chk_rx_buffers(sp, ring->ring_no);
  3761. return IRQ_HANDLED;
  3762. }
  3763. static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
  3764. {
  3765. struct fifo_info *fifo = (struct fifo_info *)dev_id;
  3766. struct s2io_nic *sp = fifo->nic;
  3767. if (!is_s2io_card_up(sp))
  3768. return IRQ_HANDLED;
  3769. tx_intr_handler(fifo);
  3770. return IRQ_HANDLED;
  3771. }
  3772. static void s2io_txpic_intr_handle(struct s2io_nic *sp)
  3773. {
  3774. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3775. u64 val64;
  3776. val64 = readq(&bar0->pic_int_status);
  3777. if (val64 & PIC_INT_GPIO) {
  3778. val64 = readq(&bar0->gpio_int_reg);
  3779. if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
  3780. (val64 & GPIO_INT_REG_LINK_UP)) {
  3781. /*
  3782. * This is unstable state so clear both up/down
  3783. * interrupt and adapter to re-evaluate the link state.
  3784. */
  3785. val64 |= GPIO_INT_REG_LINK_DOWN;
  3786. val64 |= GPIO_INT_REG_LINK_UP;
  3787. writeq(val64, &bar0->gpio_int_reg);
  3788. val64 = readq(&bar0->gpio_int_mask);
  3789. val64 &= ~(GPIO_INT_MASK_LINK_UP |
  3790. GPIO_INT_MASK_LINK_DOWN);
  3791. writeq(val64, &bar0->gpio_int_mask);
  3792. }
  3793. else if (val64 & GPIO_INT_REG_LINK_UP) {
  3794. val64 = readq(&bar0->adapter_status);
  3795. /* Enable Adapter */
  3796. val64 = readq(&bar0->adapter_control);
  3797. val64 |= ADAPTER_CNTL_EN;
  3798. writeq(val64, &bar0->adapter_control);
  3799. val64 |= ADAPTER_LED_ON;
  3800. writeq(val64, &bar0->adapter_control);
  3801. if (!sp->device_enabled_once)
  3802. sp->device_enabled_once = 1;
  3803. s2io_link(sp, LINK_UP);
  3804. /*
  3805. * unmask link down interrupt and mask link-up
  3806. * intr
  3807. */
  3808. val64 = readq(&bar0->gpio_int_mask);
  3809. val64 &= ~GPIO_INT_MASK_LINK_DOWN;
  3810. val64 |= GPIO_INT_MASK_LINK_UP;
  3811. writeq(val64, &bar0->gpio_int_mask);
  3812. }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
  3813. val64 = readq(&bar0->adapter_status);
  3814. s2io_link(sp, LINK_DOWN);
  3815. /* Link is down so unmaks link up interrupt */
  3816. val64 = readq(&bar0->gpio_int_mask);
  3817. val64 &= ~GPIO_INT_MASK_LINK_UP;
  3818. val64 |= GPIO_INT_MASK_LINK_DOWN;
  3819. writeq(val64, &bar0->gpio_int_mask);
  3820. /* turn off LED */
  3821. val64 = readq(&bar0->adapter_control);
  3822. val64 = val64 &(~ADAPTER_LED_ON);
  3823. writeq(val64, &bar0->adapter_control);
  3824. }
  3825. }
  3826. val64 = readq(&bar0->gpio_int_mask);
  3827. }
  3828. /**
  3829. * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
  3830. * @value: alarm bits
  3831. * @addr: address value
  3832. * @cnt: counter variable
  3833. * Description: Check for alarm and increment the counter
  3834. * Return Value:
  3835. * 1 - if alarm bit set
  3836. * 0 - if alarm bit is not set
  3837. */
  3838. int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
  3839. unsigned long long *cnt)
  3840. {
  3841. u64 val64;
  3842. val64 = readq(addr);
  3843. if ( val64 & value ) {
  3844. writeq(val64, addr);
  3845. (*cnt)++;
  3846. return 1;
  3847. }
  3848. return 0;
  3849. }
  3850. /**
  3851. * s2io_handle_errors - Xframe error indication handler
  3852. * @nic: device private variable
  3853. * Description: Handle alarms such as loss of link, single or
  3854. * double ECC errors, critical and serious errors.
  3855. * Return Value:
  3856. * NONE
  3857. */
  3858. static void s2io_handle_errors(void * dev_id)
  3859. {
  3860. struct net_device *dev = (struct net_device *) dev_id;
  3861. struct s2io_nic *sp = dev->priv;
  3862. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  3863. u64 temp64 = 0,val64=0;
  3864. int i = 0;
  3865. struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
  3866. struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
  3867. if (!is_s2io_card_up(sp))
  3868. return;
  3869. if (pci_channel_offline(sp->pdev))
  3870. return;
  3871. memset(&sw_stat->ring_full_cnt, 0,
  3872. sizeof(sw_stat->ring_full_cnt));
  3873. /* Handling the XPAK counters update */
  3874. if(stats->xpak_timer_count < 72000) {
  3875. /* waiting for an hour */
  3876. stats->xpak_timer_count++;
  3877. } else {
  3878. s2io_updt_xpak_counter(dev);
  3879. /* reset the count to zero */
  3880. stats->xpak_timer_count = 0;
  3881. }
  3882. /* Handling link status change error Intr */
  3883. if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
  3884. val64 = readq(&bar0->mac_rmac_err_reg);
  3885. writeq(val64, &bar0->mac_rmac_err_reg);
  3886. if (val64 & RMAC_LINK_STATE_CHANGE_INT)
  3887. schedule_work(&sp->set_link_task);
  3888. }
  3889. /* In case of a serious error, the device will be Reset. */
  3890. if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
  3891. &sw_stat->serious_err_cnt))
  3892. goto reset;
  3893. /* Check for data parity error */
  3894. if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
  3895. &sw_stat->parity_err_cnt))
  3896. goto reset;
  3897. /* Check for ring full counter */
  3898. if (sp->device_type == XFRAME_II_DEVICE) {
  3899. val64 = readq(&bar0->ring_bump_counter1);
  3900. for (i=0; i<4; i++) {
  3901. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3902. temp64 >>= 64 - ((i+1)*16);
  3903. sw_stat->ring_full_cnt[i] += temp64;
  3904. }
  3905. val64 = readq(&bar0->ring_bump_counter2);
  3906. for (i=0; i<4; i++) {
  3907. temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
  3908. temp64 >>= 64 - ((i+1)*16);
  3909. sw_stat->ring_full_cnt[i+4] += temp64;
  3910. }
  3911. }
  3912. val64 = readq(&bar0->txdma_int_status);
  3913. /*check for pfc_err*/
  3914. if (val64 & TXDMA_PFC_INT) {
  3915. if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
  3916. PFC_MISC_0_ERR | PFC_MISC_1_ERR|
  3917. PFC_PCIX_ERR, &bar0->pfc_err_reg,
  3918. &sw_stat->pfc_err_cnt))
  3919. goto reset;
  3920. do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
  3921. &sw_stat->pfc_err_cnt);
  3922. }
  3923. /*check for tda_err*/
  3924. if (val64 & TXDMA_TDA_INT) {
  3925. if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
  3926. TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
  3927. &sw_stat->tda_err_cnt))
  3928. goto reset;
  3929. do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
  3930. &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
  3931. }
  3932. /*check for pcc_err*/
  3933. if (val64 & TXDMA_PCC_INT) {
  3934. if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
  3935. | PCC_N_SERR | PCC_6_COF_OV_ERR
  3936. | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
  3937. | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
  3938. | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
  3939. &sw_stat->pcc_err_cnt))
  3940. goto reset;
  3941. do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
  3942. &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
  3943. }
  3944. /*check for tti_err*/
  3945. if (val64 & TXDMA_TTI_INT) {
  3946. if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
  3947. &sw_stat->tti_err_cnt))
  3948. goto reset;
  3949. do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
  3950. &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
  3951. }
  3952. /*check for lso_err*/
  3953. if (val64 & TXDMA_LSO_INT) {
  3954. if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
  3955. | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
  3956. &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
  3957. goto reset;
  3958. do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
  3959. &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
  3960. }
  3961. /*check for tpa_err*/
  3962. if (val64 & TXDMA_TPA_INT) {
  3963. if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
  3964. &sw_stat->tpa_err_cnt))
  3965. goto reset;
  3966. do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
  3967. &sw_stat->tpa_err_cnt);
  3968. }
  3969. /*check for sm_err*/
  3970. if (val64 & TXDMA_SM_INT) {
  3971. if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
  3972. &sw_stat->sm_err_cnt))
  3973. goto reset;
  3974. }
  3975. val64 = readq(&bar0->mac_int_status);
  3976. if (val64 & MAC_INT_STATUS_TMAC_INT) {
  3977. if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
  3978. &bar0->mac_tmac_err_reg,
  3979. &sw_stat->mac_tmac_err_cnt))
  3980. goto reset;
  3981. do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
  3982. | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
  3983. &bar0->mac_tmac_err_reg,
  3984. &sw_stat->mac_tmac_err_cnt);
  3985. }
  3986. val64 = readq(&bar0->xgxs_int_status);
  3987. if (val64 & XGXS_INT_STATUS_TXGXS) {
  3988. if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
  3989. &bar0->xgxs_txgxs_err_reg,
  3990. &sw_stat->xgxs_txgxs_err_cnt))
  3991. goto reset;
  3992. do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
  3993. &bar0->xgxs_txgxs_err_reg,
  3994. &sw_stat->xgxs_txgxs_err_cnt);
  3995. }
  3996. val64 = readq(&bar0->rxdma_int_status);
  3997. if (val64 & RXDMA_INT_RC_INT_M) {
  3998. if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
  3999. | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
  4000. &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
  4001. goto reset;
  4002. do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
  4003. | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
  4004. &sw_stat->rc_err_cnt);
  4005. if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
  4006. | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
  4007. &sw_stat->prc_pcix_err_cnt))
  4008. goto reset;
  4009. do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
  4010. | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
  4011. &sw_stat->prc_pcix_err_cnt);
  4012. }
  4013. if (val64 & RXDMA_INT_RPA_INT_M) {
  4014. if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
  4015. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
  4016. goto reset;
  4017. do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
  4018. &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
  4019. }
  4020. if (val64 & RXDMA_INT_RDA_INT_M) {
  4021. if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
  4022. | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
  4023. | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
  4024. &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
  4025. goto reset;
  4026. do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
  4027. | RDA_MISC_ERR | RDA_PCIX_ERR,
  4028. &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
  4029. }
  4030. if (val64 & RXDMA_INT_RTI_INT_M) {
  4031. if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
  4032. &sw_stat->rti_err_cnt))
  4033. goto reset;
  4034. do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
  4035. &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
  4036. }
  4037. val64 = readq(&bar0->mac_int_status);
  4038. if (val64 & MAC_INT_STATUS_RMAC_INT) {
  4039. if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
  4040. &bar0->mac_rmac_err_reg,
  4041. &sw_stat->mac_rmac_err_cnt))
  4042. goto reset;
  4043. do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
  4044. RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
  4045. &sw_stat->mac_rmac_err_cnt);
  4046. }
  4047. val64 = readq(&bar0->xgxs_int_status);
  4048. if (val64 & XGXS_INT_STATUS_RXGXS) {
  4049. if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
  4050. &bar0->xgxs_rxgxs_err_reg,
  4051. &sw_stat->xgxs_rxgxs_err_cnt))
  4052. goto reset;
  4053. }
  4054. val64 = readq(&bar0->mc_int_status);
  4055. if(val64 & MC_INT_STATUS_MC_INT) {
  4056. if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
  4057. &sw_stat->mc_err_cnt))
  4058. goto reset;
  4059. /* Handling Ecc errors */
  4060. if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
  4061. writeq(val64, &bar0->mc_err_reg);
  4062. if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
  4063. sw_stat->double_ecc_errs++;
  4064. if (sp->device_type != XFRAME_II_DEVICE) {
  4065. /*
  4066. * Reset XframeI only if critical error
  4067. */
  4068. if (val64 &
  4069. (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
  4070. MC_ERR_REG_MIRI_ECC_DB_ERR_1))
  4071. goto reset;
  4072. }
  4073. } else
  4074. sw_stat->single_ecc_errs++;
  4075. }
  4076. }
  4077. return;
  4078. reset:
  4079. netif_stop_queue(dev);
  4080. schedule_work(&sp->rst_timer_task);
  4081. sw_stat->soft_reset_cnt++;
  4082. return;
  4083. }
  4084. /**
  4085. * s2io_isr - ISR handler of the device .
  4086. * @irq: the irq of the device.
  4087. * @dev_id: a void pointer to the dev structure of the NIC.
  4088. * Description: This function is the ISR handler of the device. It
  4089. * identifies the reason for the interrupt and calls the relevant
  4090. * service routines. As a contongency measure, this ISR allocates the
  4091. * recv buffers, if their numbers are below the panic value which is
  4092. * presently set to 25% of the original number of rcv buffers allocated.
  4093. * Return value:
  4094. * IRQ_HANDLED: will be returned if IRQ was handled by this routine
  4095. * IRQ_NONE: will be returned if interrupt is not from our device
  4096. */
  4097. static irqreturn_t s2io_isr(int irq, void *dev_id)
  4098. {
  4099. struct net_device *dev = (struct net_device *) dev_id;
  4100. struct s2io_nic *sp = dev->priv;
  4101. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4102. int i;
  4103. u64 reason = 0;
  4104. struct mac_info *mac_control;
  4105. struct config_param *config;
  4106. /* Pretend we handled any irq's from a disconnected card */
  4107. if (pci_channel_offline(sp->pdev))
  4108. return IRQ_NONE;
  4109. if (!is_s2io_card_up(sp))
  4110. return IRQ_NONE;
  4111. mac_control = &sp->mac_control;
  4112. config = &sp->config;
  4113. /*
  4114. * Identify the cause for interrupt and call the appropriate
  4115. * interrupt handler. Causes for the interrupt could be;
  4116. * 1. Rx of packet.
  4117. * 2. Tx complete.
  4118. * 3. Link down.
  4119. */
  4120. reason = readq(&bar0->general_int_status);
  4121. if (unlikely(reason == S2IO_MINUS_ONE) ) {
  4122. /* Nothing much can be done. Get out */
  4123. return IRQ_HANDLED;
  4124. }
  4125. if (reason & (GEN_INTR_RXTRAFFIC |
  4126. GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
  4127. {
  4128. writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
  4129. if (config->napi) {
  4130. if (reason & GEN_INTR_RXTRAFFIC) {
  4131. if (likely(netif_rx_schedule_prep(dev,
  4132. &sp->napi))) {
  4133. __netif_rx_schedule(dev, &sp->napi);
  4134. writeq(S2IO_MINUS_ONE,
  4135. &bar0->rx_traffic_mask);
  4136. } else
  4137. writeq(S2IO_MINUS_ONE,
  4138. &bar0->rx_traffic_int);
  4139. }
  4140. } else {
  4141. /*
  4142. * rx_traffic_int reg is an R1 register, writing all 1's
  4143. * will ensure that the actual interrupt causing bit
  4144. * get's cleared and hence a read can be avoided.
  4145. */
  4146. if (reason & GEN_INTR_RXTRAFFIC)
  4147. writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
  4148. for (i = 0; i < config->rx_ring_num; i++)
  4149. rx_intr_handler(&mac_control->rings[i]);
  4150. }
  4151. /*
  4152. * tx_traffic_int reg is an R1 register, writing all 1's
  4153. * will ensure that the actual interrupt causing bit get's
  4154. * cleared and hence a read can be avoided.
  4155. */
  4156. if (reason & GEN_INTR_TXTRAFFIC)
  4157. writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
  4158. for (i = 0; i < config->tx_fifo_num; i++)
  4159. tx_intr_handler(&mac_control->fifos[i]);
  4160. if (reason & GEN_INTR_TXPIC)
  4161. s2io_txpic_intr_handle(sp);
  4162. /*
  4163. * Reallocate the buffers from the interrupt handler itself.
  4164. */
  4165. if (!config->napi) {
  4166. for (i = 0; i < config->rx_ring_num; i++)
  4167. s2io_chk_rx_buffers(sp, i);
  4168. }
  4169. writeq(sp->general_int_mask, &bar0->general_int_mask);
  4170. readl(&bar0->general_int_status);
  4171. return IRQ_HANDLED;
  4172. }
  4173. else if (!reason) {
  4174. /* The interrupt was not raised by us */
  4175. return IRQ_NONE;
  4176. }
  4177. return IRQ_HANDLED;
  4178. }
  4179. /**
  4180. * s2io_updt_stats -
  4181. */
  4182. static void s2io_updt_stats(struct s2io_nic *sp)
  4183. {
  4184. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4185. u64 val64;
  4186. int cnt = 0;
  4187. if (is_s2io_card_up(sp)) {
  4188. /* Apprx 30us on a 133 MHz bus */
  4189. val64 = SET_UPDT_CLICKS(10) |
  4190. STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
  4191. writeq(val64, &bar0->stat_cfg);
  4192. do {
  4193. udelay(100);
  4194. val64 = readq(&bar0->stat_cfg);
  4195. if (!(val64 & BIT(0)))
  4196. break;
  4197. cnt++;
  4198. if (cnt == 5)
  4199. break; /* Updt failed */
  4200. } while(1);
  4201. }
  4202. }
  4203. /**
  4204. * s2io_get_stats - Updates the device statistics structure.
  4205. * @dev : pointer to the device structure.
  4206. * Description:
  4207. * This function updates the device statistics structure in the s2io_nic
  4208. * structure and returns a pointer to the same.
  4209. * Return value:
  4210. * pointer to the updated net_device_stats structure.
  4211. */
  4212. static struct net_device_stats *s2io_get_stats(struct net_device *dev)
  4213. {
  4214. struct s2io_nic *sp = dev->priv;
  4215. struct mac_info *mac_control;
  4216. struct config_param *config;
  4217. mac_control = &sp->mac_control;
  4218. config = &sp->config;
  4219. /* Configure Stats for immediate updt */
  4220. s2io_updt_stats(sp);
  4221. sp->stats.tx_packets =
  4222. le32_to_cpu(mac_control->stats_info->tmac_frms);
  4223. sp->stats.tx_errors =
  4224. le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
  4225. sp->stats.rx_errors =
  4226. le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
  4227. sp->stats.multicast =
  4228. le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
  4229. sp->stats.rx_length_errors =
  4230. le64_to_cpu(mac_control->stats_info->rmac_long_frms);
  4231. return (&sp->stats);
  4232. }
  4233. /**
  4234. * s2io_set_multicast - entry point for multicast address enable/disable.
  4235. * @dev : pointer to the device structure
  4236. * Description:
  4237. * This function is a driver entry point which gets called by the kernel
  4238. * whenever multicast addresses must be enabled/disabled. This also gets
  4239. * called to set/reset promiscuous mode. Depending on the deivce flag, we
  4240. * determine, if multicast address must be enabled or if promiscuous mode
  4241. * is to be disabled etc.
  4242. * Return value:
  4243. * void.
  4244. */
  4245. static void s2io_set_multicast(struct net_device *dev)
  4246. {
  4247. int i, j, prev_cnt;
  4248. struct dev_mc_list *mclist;
  4249. struct s2io_nic *sp = dev->priv;
  4250. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4251. u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
  4252. 0xfeffffffffffULL;
  4253. u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
  4254. void __iomem *add;
  4255. if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
  4256. /* Enable all Multicast addresses */
  4257. writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
  4258. &bar0->rmac_addr_data0_mem);
  4259. writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
  4260. &bar0->rmac_addr_data1_mem);
  4261. val64 = RMAC_ADDR_CMD_MEM_WE |
  4262. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4263. RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
  4264. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4265. /* Wait till command completes */
  4266. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4267. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4268. S2IO_BIT_RESET);
  4269. sp->m_cast_flg = 1;
  4270. sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
  4271. } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
  4272. /* Disable all Multicast addresses */
  4273. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4274. &bar0->rmac_addr_data0_mem);
  4275. writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
  4276. &bar0->rmac_addr_data1_mem);
  4277. val64 = RMAC_ADDR_CMD_MEM_WE |
  4278. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4279. RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
  4280. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4281. /* Wait till command completes */
  4282. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4283. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4284. S2IO_BIT_RESET);
  4285. sp->m_cast_flg = 0;
  4286. sp->all_multi_pos = 0;
  4287. }
  4288. if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
  4289. /* Put the NIC into promiscuous mode */
  4290. add = &bar0->mac_cfg;
  4291. val64 = readq(&bar0->mac_cfg);
  4292. val64 |= MAC_CFG_RMAC_PROM_ENABLE;
  4293. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4294. writel((u32) val64, add);
  4295. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4296. writel((u32) (val64 >> 32), (add + 4));
  4297. if (vlan_tag_strip != 1) {
  4298. val64 = readq(&bar0->rx_pa_cfg);
  4299. val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
  4300. writeq(val64, &bar0->rx_pa_cfg);
  4301. vlan_strip_flag = 0;
  4302. }
  4303. val64 = readq(&bar0->mac_cfg);
  4304. sp->promisc_flg = 1;
  4305. DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
  4306. dev->name);
  4307. } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
  4308. /* Remove the NIC from promiscuous mode */
  4309. add = &bar0->mac_cfg;
  4310. val64 = readq(&bar0->mac_cfg);
  4311. val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
  4312. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4313. writel((u32) val64, add);
  4314. writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
  4315. writel((u32) (val64 >> 32), (add + 4));
  4316. if (vlan_tag_strip != 0) {
  4317. val64 = readq(&bar0->rx_pa_cfg);
  4318. val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
  4319. writeq(val64, &bar0->rx_pa_cfg);
  4320. vlan_strip_flag = 1;
  4321. }
  4322. val64 = readq(&bar0->mac_cfg);
  4323. sp->promisc_flg = 0;
  4324. DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
  4325. dev->name);
  4326. }
  4327. /* Update individual M_CAST address list */
  4328. if ((!sp->m_cast_flg) && dev->mc_count) {
  4329. if (dev->mc_count >
  4330. (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
  4331. DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
  4332. dev->name);
  4333. DBG_PRINT(ERR_DBG, "can be added, please enable ");
  4334. DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
  4335. return;
  4336. }
  4337. prev_cnt = sp->mc_addr_count;
  4338. sp->mc_addr_count = dev->mc_count;
  4339. /* Clear out the previous list of Mc in the H/W. */
  4340. for (i = 0; i < prev_cnt; i++) {
  4341. writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
  4342. &bar0->rmac_addr_data0_mem);
  4343. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4344. &bar0->rmac_addr_data1_mem);
  4345. val64 = RMAC_ADDR_CMD_MEM_WE |
  4346. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4347. RMAC_ADDR_CMD_MEM_OFFSET
  4348. (MAC_MC_ADDR_START_OFFSET + i);
  4349. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4350. /* Wait for command completes */
  4351. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4352. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4353. S2IO_BIT_RESET)) {
  4354. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4355. dev->name);
  4356. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4357. return;
  4358. }
  4359. }
  4360. /* Create the new Rx filter list and update the same in H/W. */
  4361. for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
  4362. i++, mclist = mclist->next) {
  4363. memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
  4364. ETH_ALEN);
  4365. mac_addr = 0;
  4366. for (j = 0; j < ETH_ALEN; j++) {
  4367. mac_addr |= mclist->dmi_addr[j];
  4368. mac_addr <<= 8;
  4369. }
  4370. mac_addr >>= 8;
  4371. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4372. &bar0->rmac_addr_data0_mem);
  4373. writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
  4374. &bar0->rmac_addr_data1_mem);
  4375. val64 = RMAC_ADDR_CMD_MEM_WE |
  4376. RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4377. RMAC_ADDR_CMD_MEM_OFFSET
  4378. (i + MAC_MC_ADDR_START_OFFSET);
  4379. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4380. /* Wait for command completes */
  4381. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4382. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
  4383. S2IO_BIT_RESET)) {
  4384. DBG_PRINT(ERR_DBG, "%s: Adding ",
  4385. dev->name);
  4386. DBG_PRINT(ERR_DBG, "Multicasts failed\n");
  4387. return;
  4388. }
  4389. }
  4390. }
  4391. }
  4392. /**
  4393. * s2io_set_mac_addr - Programs the Xframe mac address
  4394. * @dev : pointer to the device structure.
  4395. * @addr: a uchar pointer to the new mac address which is to be set.
  4396. * Description : This procedure will program the Xframe to receive
  4397. * frames with new Mac Address
  4398. * Return value: SUCCESS on success and an appropriate (-)ve integer
  4399. * as defined in errno.h file on failure.
  4400. */
  4401. static int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
  4402. {
  4403. struct s2io_nic *sp = dev->priv;
  4404. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4405. register u64 val64, mac_addr = 0;
  4406. int i;
  4407. u64 old_mac_addr = 0;
  4408. /*
  4409. * Set the new MAC address as the new unicast filter and reflect this
  4410. * change on the device address registered with the OS. It will be
  4411. * at offset 0.
  4412. */
  4413. for (i = 0; i < ETH_ALEN; i++) {
  4414. mac_addr <<= 8;
  4415. mac_addr |= addr[i];
  4416. old_mac_addr <<= 8;
  4417. old_mac_addr |= sp->def_mac_addr[0].mac_addr[i];
  4418. }
  4419. if(0 == mac_addr)
  4420. return SUCCESS;
  4421. /* Update the internal structure with this new mac address */
  4422. if(mac_addr != old_mac_addr) {
  4423. memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
  4424. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_addr);
  4425. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_addr >> 8);
  4426. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_addr >> 16);
  4427. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_addr >> 24);
  4428. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_addr >> 32);
  4429. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_addr >> 40);
  4430. }
  4431. writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
  4432. &bar0->rmac_addr_data0_mem);
  4433. val64 =
  4434. RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  4435. RMAC_ADDR_CMD_MEM_OFFSET(0);
  4436. writeq(val64, &bar0->rmac_addr_cmd_mem);
  4437. /* Wait till command completes */
  4438. if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  4439. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET)) {
  4440. DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
  4441. return FAILURE;
  4442. }
  4443. return SUCCESS;
  4444. }
  4445. /**
  4446. * s2io_ethtool_sset - Sets different link parameters.
  4447. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4448. * @info: pointer to the structure with parameters given by ethtool to set
  4449. * link information.
  4450. * Description:
  4451. * The function sets different link parameters provided by the user onto
  4452. * the NIC.
  4453. * Return value:
  4454. * 0 on success.
  4455. */
  4456. static int s2io_ethtool_sset(struct net_device *dev,
  4457. struct ethtool_cmd *info)
  4458. {
  4459. struct s2io_nic *sp = dev->priv;
  4460. if ((info->autoneg == AUTONEG_ENABLE) ||
  4461. (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
  4462. return -EINVAL;
  4463. else {
  4464. s2io_close(sp->dev);
  4465. s2io_open(sp->dev);
  4466. }
  4467. return 0;
  4468. }
  4469. /**
  4470. * s2io_ethtol_gset - Return link specific information.
  4471. * @sp : private member of the device structure, pointer to the
  4472. * s2io_nic structure.
  4473. * @info : pointer to the structure with parameters given by ethtool
  4474. * to return link information.
  4475. * Description:
  4476. * Returns link specific information like speed, duplex etc.. to ethtool.
  4477. * Return value :
  4478. * return 0 on success.
  4479. */
  4480. static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
  4481. {
  4482. struct s2io_nic *sp = dev->priv;
  4483. info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4484. info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
  4485. info->port = PORT_FIBRE;
  4486. /* info->transceiver?? TODO */
  4487. if (netif_carrier_ok(sp->dev)) {
  4488. info->speed = 10000;
  4489. info->duplex = DUPLEX_FULL;
  4490. } else {
  4491. info->speed = -1;
  4492. info->duplex = -1;
  4493. }
  4494. info->autoneg = AUTONEG_DISABLE;
  4495. return 0;
  4496. }
  4497. /**
  4498. * s2io_ethtool_gdrvinfo - Returns driver specific information.
  4499. * @sp : private member of the device structure, which is a pointer to the
  4500. * s2io_nic structure.
  4501. * @info : pointer to the structure with parameters given by ethtool to
  4502. * return driver information.
  4503. * Description:
  4504. * Returns driver specefic information like name, version etc.. to ethtool.
  4505. * Return value:
  4506. * void
  4507. */
  4508. static void s2io_ethtool_gdrvinfo(struct net_device *dev,
  4509. struct ethtool_drvinfo *info)
  4510. {
  4511. struct s2io_nic *sp = dev->priv;
  4512. strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
  4513. strncpy(info->version, s2io_driver_version, sizeof(info->version));
  4514. strncpy(info->fw_version, "", sizeof(info->fw_version));
  4515. strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
  4516. info->regdump_len = XENA_REG_SPACE;
  4517. info->eedump_len = XENA_EEPROM_SPACE;
  4518. }
  4519. /**
  4520. * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
  4521. * @sp: private member of the device structure, which is a pointer to the
  4522. * s2io_nic structure.
  4523. * @regs : pointer to the structure with parameters given by ethtool for
  4524. * dumping the registers.
  4525. * @reg_space: The input argumnet into which all the registers are dumped.
  4526. * Description:
  4527. * Dumps the entire register space of xFrame NIC into the user given
  4528. * buffer area.
  4529. * Return value :
  4530. * void .
  4531. */
  4532. static void s2io_ethtool_gregs(struct net_device *dev,
  4533. struct ethtool_regs *regs, void *space)
  4534. {
  4535. int i;
  4536. u64 reg;
  4537. u8 *reg_space = (u8 *) space;
  4538. struct s2io_nic *sp = dev->priv;
  4539. regs->len = XENA_REG_SPACE;
  4540. regs->version = sp->pdev->subsystem_device;
  4541. for (i = 0; i < regs->len; i += 8) {
  4542. reg = readq(sp->bar0 + i);
  4543. memcpy((reg_space + i), &reg, 8);
  4544. }
  4545. }
  4546. /**
  4547. * s2io_phy_id - timer function that alternates adapter LED.
  4548. * @data : address of the private member of the device structure, which
  4549. * is a pointer to the s2io_nic structure, provided as an u32.
  4550. * Description: This is actually the timer function that alternates the
  4551. * adapter LED bit of the adapter control bit to set/reset every time on
  4552. * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
  4553. * once every second.
  4554. */
  4555. static void s2io_phy_id(unsigned long data)
  4556. {
  4557. struct s2io_nic *sp = (struct s2io_nic *) data;
  4558. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4559. u64 val64 = 0;
  4560. u16 subid;
  4561. subid = sp->pdev->subsystem_device;
  4562. if ((sp->device_type == XFRAME_II_DEVICE) ||
  4563. ((subid & 0xFF) >= 0x07)) {
  4564. val64 = readq(&bar0->gpio_control);
  4565. val64 ^= GPIO_CTRL_GPIO_0;
  4566. writeq(val64, &bar0->gpio_control);
  4567. } else {
  4568. val64 = readq(&bar0->adapter_control);
  4569. val64 ^= ADAPTER_LED_ON;
  4570. writeq(val64, &bar0->adapter_control);
  4571. }
  4572. mod_timer(&sp->id_timer, jiffies + HZ / 2);
  4573. }
  4574. /**
  4575. * s2io_ethtool_idnic - To physically identify the nic on the system.
  4576. * @sp : private member of the device structure, which is a pointer to the
  4577. * s2io_nic structure.
  4578. * @id : pointer to the structure with identification parameters given by
  4579. * ethtool.
  4580. * Description: Used to physically identify the NIC on the system.
  4581. * The Link LED will blink for a time specified by the user for
  4582. * identification.
  4583. * NOTE: The Link has to be Up to be able to blink the LED. Hence
  4584. * identification is possible only if it's link is up.
  4585. * Return value:
  4586. * int , returns 0 on success
  4587. */
  4588. static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
  4589. {
  4590. u64 val64 = 0, last_gpio_ctrl_val;
  4591. struct s2io_nic *sp = dev->priv;
  4592. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4593. u16 subid;
  4594. subid = sp->pdev->subsystem_device;
  4595. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4596. if ((sp->device_type == XFRAME_I_DEVICE) &&
  4597. ((subid & 0xFF) < 0x07)) {
  4598. val64 = readq(&bar0->adapter_control);
  4599. if (!(val64 & ADAPTER_CNTL_EN)) {
  4600. printk(KERN_ERR
  4601. "Adapter Link down, cannot blink LED\n");
  4602. return -EFAULT;
  4603. }
  4604. }
  4605. if (sp->id_timer.function == NULL) {
  4606. init_timer(&sp->id_timer);
  4607. sp->id_timer.function = s2io_phy_id;
  4608. sp->id_timer.data = (unsigned long) sp;
  4609. }
  4610. mod_timer(&sp->id_timer, jiffies);
  4611. if (data)
  4612. msleep_interruptible(data * HZ);
  4613. else
  4614. msleep_interruptible(MAX_FLICKER_TIME);
  4615. del_timer_sync(&sp->id_timer);
  4616. if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
  4617. writeq(last_gpio_ctrl_val, &bar0->gpio_control);
  4618. last_gpio_ctrl_val = readq(&bar0->gpio_control);
  4619. }
  4620. return 0;
  4621. }
  4622. static void s2io_ethtool_gringparam(struct net_device *dev,
  4623. struct ethtool_ringparam *ering)
  4624. {
  4625. struct s2io_nic *sp = dev->priv;
  4626. int i,tx_desc_count=0,rx_desc_count=0;
  4627. if (sp->rxd_mode == RXD_MODE_1)
  4628. ering->rx_max_pending = MAX_RX_DESC_1;
  4629. else if (sp->rxd_mode == RXD_MODE_3B)
  4630. ering->rx_max_pending = MAX_RX_DESC_2;
  4631. ering->tx_max_pending = MAX_TX_DESC;
  4632. for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
  4633. tx_desc_count += sp->config.tx_cfg[i].fifo_len;
  4634. DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
  4635. ering->tx_pending = tx_desc_count;
  4636. rx_desc_count = 0;
  4637. for (i = 0 ; i < sp->config.rx_ring_num ; i++)
  4638. rx_desc_count += sp->config.rx_cfg[i].num_rxd;
  4639. ering->rx_pending = rx_desc_count;
  4640. ering->rx_mini_max_pending = 0;
  4641. ering->rx_mini_pending = 0;
  4642. if(sp->rxd_mode == RXD_MODE_1)
  4643. ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
  4644. else if (sp->rxd_mode == RXD_MODE_3B)
  4645. ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
  4646. ering->rx_jumbo_pending = rx_desc_count;
  4647. }
  4648. /**
  4649. * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
  4650. * @sp : private member of the device structure, which is a pointer to the
  4651. * s2io_nic structure.
  4652. * @ep : pointer to the structure with pause parameters given by ethtool.
  4653. * Description:
  4654. * Returns the Pause frame generation and reception capability of the NIC.
  4655. * Return value:
  4656. * void
  4657. */
  4658. static void s2io_ethtool_getpause_data(struct net_device *dev,
  4659. struct ethtool_pauseparam *ep)
  4660. {
  4661. u64 val64;
  4662. struct s2io_nic *sp = dev->priv;
  4663. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4664. val64 = readq(&bar0->rmac_pause_cfg);
  4665. if (val64 & RMAC_PAUSE_GEN_ENABLE)
  4666. ep->tx_pause = TRUE;
  4667. if (val64 & RMAC_PAUSE_RX_ENABLE)
  4668. ep->rx_pause = TRUE;
  4669. ep->autoneg = FALSE;
  4670. }
  4671. /**
  4672. * s2io_ethtool_setpause_data - set/reset pause frame generation.
  4673. * @sp : private member of the device structure, which is a pointer to the
  4674. * s2io_nic structure.
  4675. * @ep : pointer to the structure with pause parameters given by ethtool.
  4676. * Description:
  4677. * It can be used to set or reset Pause frame generation or reception
  4678. * support of the NIC.
  4679. * Return value:
  4680. * int, returns 0 on Success
  4681. */
  4682. static int s2io_ethtool_setpause_data(struct net_device *dev,
  4683. struct ethtool_pauseparam *ep)
  4684. {
  4685. u64 val64;
  4686. struct s2io_nic *sp = dev->priv;
  4687. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4688. val64 = readq(&bar0->rmac_pause_cfg);
  4689. if (ep->tx_pause)
  4690. val64 |= RMAC_PAUSE_GEN_ENABLE;
  4691. else
  4692. val64 &= ~RMAC_PAUSE_GEN_ENABLE;
  4693. if (ep->rx_pause)
  4694. val64 |= RMAC_PAUSE_RX_ENABLE;
  4695. else
  4696. val64 &= ~RMAC_PAUSE_RX_ENABLE;
  4697. writeq(val64, &bar0->rmac_pause_cfg);
  4698. return 0;
  4699. }
  4700. /**
  4701. * read_eeprom - reads 4 bytes of data from user given offset.
  4702. * @sp : private member of the device structure, which is a pointer to the
  4703. * s2io_nic structure.
  4704. * @off : offset at which the data must be written
  4705. * @data : Its an output parameter where the data read at the given
  4706. * offset is stored.
  4707. * Description:
  4708. * Will read 4 bytes of data from the user given offset and return the
  4709. * read data.
  4710. * NOTE: Will allow to read only part of the EEPROM visible through the
  4711. * I2C bus.
  4712. * Return value:
  4713. * -1 on failure and 0 on success.
  4714. */
  4715. #define S2IO_DEV_ID 5
  4716. static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
  4717. {
  4718. int ret = -1;
  4719. u32 exit_cnt = 0;
  4720. u64 val64;
  4721. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4722. if (sp->device_type == XFRAME_I_DEVICE) {
  4723. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4724. I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
  4725. I2C_CONTROL_CNTL_START;
  4726. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4727. while (exit_cnt < 5) {
  4728. val64 = readq(&bar0->i2c_control);
  4729. if (I2C_CONTROL_CNTL_END(val64)) {
  4730. *data = I2C_CONTROL_GET_DATA(val64);
  4731. ret = 0;
  4732. break;
  4733. }
  4734. msleep(50);
  4735. exit_cnt++;
  4736. }
  4737. }
  4738. if (sp->device_type == XFRAME_II_DEVICE) {
  4739. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4740. SPI_CONTROL_BYTECNT(0x3) |
  4741. SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
  4742. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4743. val64 |= SPI_CONTROL_REQ;
  4744. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4745. while (exit_cnt < 5) {
  4746. val64 = readq(&bar0->spi_control);
  4747. if (val64 & SPI_CONTROL_NACK) {
  4748. ret = 1;
  4749. break;
  4750. } else if (val64 & SPI_CONTROL_DONE) {
  4751. *data = readq(&bar0->spi_data);
  4752. *data &= 0xffffff;
  4753. ret = 0;
  4754. break;
  4755. }
  4756. msleep(50);
  4757. exit_cnt++;
  4758. }
  4759. }
  4760. return ret;
  4761. }
  4762. /**
  4763. * write_eeprom - actually writes the relevant part of the data value.
  4764. * @sp : private member of the device structure, which is a pointer to the
  4765. * s2io_nic structure.
  4766. * @off : offset at which the data must be written
  4767. * @data : The data that is to be written
  4768. * @cnt : Number of bytes of the data that are actually to be written into
  4769. * the Eeprom. (max of 3)
  4770. * Description:
  4771. * Actually writes the relevant part of the data value into the Eeprom
  4772. * through the I2C bus.
  4773. * Return value:
  4774. * 0 on success, -1 on failure.
  4775. */
  4776. static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
  4777. {
  4778. int exit_cnt = 0, ret = -1;
  4779. u64 val64;
  4780. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4781. if (sp->device_type == XFRAME_I_DEVICE) {
  4782. val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
  4783. I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
  4784. I2C_CONTROL_CNTL_START;
  4785. SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
  4786. while (exit_cnt < 5) {
  4787. val64 = readq(&bar0->i2c_control);
  4788. if (I2C_CONTROL_CNTL_END(val64)) {
  4789. if (!(val64 & I2C_CONTROL_NACK))
  4790. ret = 0;
  4791. break;
  4792. }
  4793. msleep(50);
  4794. exit_cnt++;
  4795. }
  4796. }
  4797. if (sp->device_type == XFRAME_II_DEVICE) {
  4798. int write_cnt = (cnt == 8) ? 0 : cnt;
  4799. writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
  4800. val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
  4801. SPI_CONTROL_BYTECNT(write_cnt) |
  4802. SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
  4803. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4804. val64 |= SPI_CONTROL_REQ;
  4805. SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
  4806. while (exit_cnt < 5) {
  4807. val64 = readq(&bar0->spi_control);
  4808. if (val64 & SPI_CONTROL_NACK) {
  4809. ret = 1;
  4810. break;
  4811. } else if (val64 & SPI_CONTROL_DONE) {
  4812. ret = 0;
  4813. break;
  4814. }
  4815. msleep(50);
  4816. exit_cnt++;
  4817. }
  4818. }
  4819. return ret;
  4820. }
  4821. static void s2io_vpd_read(struct s2io_nic *nic)
  4822. {
  4823. u8 *vpd_data;
  4824. u8 data;
  4825. int i=0, cnt, fail = 0;
  4826. int vpd_addr = 0x80;
  4827. if (nic->device_type == XFRAME_II_DEVICE) {
  4828. strcpy(nic->product_name, "Xframe II 10GbE network adapter");
  4829. vpd_addr = 0x80;
  4830. }
  4831. else {
  4832. strcpy(nic->product_name, "Xframe I 10GbE network adapter");
  4833. vpd_addr = 0x50;
  4834. }
  4835. strcpy(nic->serial_num, "NOT AVAILABLE");
  4836. vpd_data = kmalloc(256, GFP_KERNEL);
  4837. if (!vpd_data) {
  4838. nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
  4839. return;
  4840. }
  4841. nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
  4842. for (i = 0; i < 256; i +=4 ) {
  4843. pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
  4844. pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
  4845. pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
  4846. for (cnt = 0; cnt <5; cnt++) {
  4847. msleep(2);
  4848. pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
  4849. if (data == 0x80)
  4850. break;
  4851. }
  4852. if (cnt >= 5) {
  4853. DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
  4854. fail = 1;
  4855. break;
  4856. }
  4857. pci_read_config_dword(nic->pdev, (vpd_addr + 4),
  4858. (u32 *)&vpd_data[i]);
  4859. }
  4860. if(!fail) {
  4861. /* read serial number of adapter */
  4862. for (cnt = 0; cnt < 256; cnt++) {
  4863. if ((vpd_data[cnt] == 'S') &&
  4864. (vpd_data[cnt+1] == 'N') &&
  4865. (vpd_data[cnt+2] < VPD_STRING_LEN)) {
  4866. memset(nic->serial_num, 0, VPD_STRING_LEN);
  4867. memcpy(nic->serial_num, &vpd_data[cnt + 3],
  4868. vpd_data[cnt+2]);
  4869. break;
  4870. }
  4871. }
  4872. }
  4873. if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
  4874. memset(nic->product_name, 0, vpd_data[1]);
  4875. memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
  4876. }
  4877. kfree(vpd_data);
  4878. nic->mac_control.stats_info->sw_stat.mem_freed += 256;
  4879. }
  4880. /**
  4881. * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
  4882. * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
  4883. * @eeprom : pointer to the user level structure provided by ethtool,
  4884. * containing all relevant information.
  4885. * @data_buf : user defined value to be written into Eeprom.
  4886. * Description: Reads the values stored in the Eeprom at given offset
  4887. * for a given length. Stores these values int the input argument data
  4888. * buffer 'data_buf' and returns these to the caller (ethtool.)
  4889. * Return value:
  4890. * int 0 on success
  4891. */
  4892. static int s2io_ethtool_geeprom(struct net_device *dev,
  4893. struct ethtool_eeprom *eeprom, u8 * data_buf)
  4894. {
  4895. u32 i, valid;
  4896. u64 data;
  4897. struct s2io_nic *sp = dev->priv;
  4898. eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
  4899. if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
  4900. eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
  4901. for (i = 0; i < eeprom->len; i += 4) {
  4902. if (read_eeprom(sp, (eeprom->offset + i), &data)) {
  4903. DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
  4904. return -EFAULT;
  4905. }
  4906. valid = INV(data);
  4907. memcpy((data_buf + i), &valid, 4);
  4908. }
  4909. return 0;
  4910. }
  4911. /**
  4912. * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
  4913. * @sp : private member of the device structure, which is a pointer to the
  4914. * s2io_nic structure.
  4915. * @eeprom : pointer to the user level structure provided by ethtool,
  4916. * containing all relevant information.
  4917. * @data_buf ; user defined value to be written into Eeprom.
  4918. * Description:
  4919. * Tries to write the user provided value in the Eeprom, at the offset
  4920. * given by the user.
  4921. * Return value:
  4922. * 0 on success, -EFAULT on failure.
  4923. */
  4924. static int s2io_ethtool_seeprom(struct net_device *dev,
  4925. struct ethtool_eeprom *eeprom,
  4926. u8 * data_buf)
  4927. {
  4928. int len = eeprom->len, cnt = 0;
  4929. u64 valid = 0, data;
  4930. struct s2io_nic *sp = dev->priv;
  4931. if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
  4932. DBG_PRINT(ERR_DBG,
  4933. "ETHTOOL_WRITE_EEPROM Err: Magic value ");
  4934. DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
  4935. eeprom->magic);
  4936. return -EFAULT;
  4937. }
  4938. while (len) {
  4939. data = (u32) data_buf[cnt] & 0x000000FF;
  4940. if (data) {
  4941. valid = (u32) (data << 24);
  4942. } else
  4943. valid = data;
  4944. if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
  4945. DBG_PRINT(ERR_DBG,
  4946. "ETHTOOL_WRITE_EEPROM Err: Cannot ");
  4947. DBG_PRINT(ERR_DBG,
  4948. "write into the specified offset\n");
  4949. return -EFAULT;
  4950. }
  4951. cnt++;
  4952. len--;
  4953. }
  4954. return 0;
  4955. }
  4956. /**
  4957. * s2io_register_test - reads and writes into all clock domains.
  4958. * @sp : private member of the device structure, which is a pointer to the
  4959. * s2io_nic structure.
  4960. * @data : variable that returns the result of each of the test conducted b
  4961. * by the driver.
  4962. * Description:
  4963. * Read and write into all clock domains. The NIC has 3 clock domains,
  4964. * see that registers in all the three regions are accessible.
  4965. * Return value:
  4966. * 0 on success.
  4967. */
  4968. static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
  4969. {
  4970. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  4971. u64 val64 = 0, exp_val;
  4972. int fail = 0;
  4973. val64 = readq(&bar0->pif_rd_swapper_fb);
  4974. if (val64 != 0x123456789abcdefULL) {
  4975. fail = 1;
  4976. DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
  4977. }
  4978. val64 = readq(&bar0->rmac_pause_cfg);
  4979. if (val64 != 0xc000ffff00000000ULL) {
  4980. fail = 1;
  4981. DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
  4982. }
  4983. val64 = readq(&bar0->rx_queue_cfg);
  4984. if (sp->device_type == XFRAME_II_DEVICE)
  4985. exp_val = 0x0404040404040404ULL;
  4986. else
  4987. exp_val = 0x0808080808080808ULL;
  4988. if (val64 != exp_val) {
  4989. fail = 1;
  4990. DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
  4991. }
  4992. val64 = readq(&bar0->xgxs_efifo_cfg);
  4993. if (val64 != 0x000000001923141EULL) {
  4994. fail = 1;
  4995. DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
  4996. }
  4997. val64 = 0x5A5A5A5A5A5A5A5AULL;
  4998. writeq(val64, &bar0->xmsi_data);
  4999. val64 = readq(&bar0->xmsi_data);
  5000. if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
  5001. fail = 1;
  5002. DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
  5003. }
  5004. val64 = 0xA5A5A5A5A5A5A5A5ULL;
  5005. writeq(val64, &bar0->xmsi_data);
  5006. val64 = readq(&bar0->xmsi_data);
  5007. if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
  5008. fail = 1;
  5009. DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
  5010. }
  5011. *data = fail;
  5012. return fail;
  5013. }
  5014. /**
  5015. * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
  5016. * @sp : private member of the device structure, which is a pointer to the
  5017. * s2io_nic structure.
  5018. * @data:variable that returns the result of each of the test conducted by
  5019. * the driver.
  5020. * Description:
  5021. * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
  5022. * register.
  5023. * Return value:
  5024. * 0 on success.
  5025. */
  5026. static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
  5027. {
  5028. int fail = 0;
  5029. u64 ret_data, org_4F0, org_7F0;
  5030. u8 saved_4F0 = 0, saved_7F0 = 0;
  5031. struct net_device *dev = sp->dev;
  5032. /* Test Write Error at offset 0 */
  5033. /* Note that SPI interface allows write access to all areas
  5034. * of EEPROM. Hence doing all negative testing only for Xframe I.
  5035. */
  5036. if (sp->device_type == XFRAME_I_DEVICE)
  5037. if (!write_eeprom(sp, 0, 0, 3))
  5038. fail = 1;
  5039. /* Save current values at offsets 0x4F0 and 0x7F0 */
  5040. if (!read_eeprom(sp, 0x4F0, &org_4F0))
  5041. saved_4F0 = 1;
  5042. if (!read_eeprom(sp, 0x7F0, &org_7F0))
  5043. saved_7F0 = 1;
  5044. /* Test Write at offset 4f0 */
  5045. if (write_eeprom(sp, 0x4F0, 0x012345, 3))
  5046. fail = 1;
  5047. if (read_eeprom(sp, 0x4F0, &ret_data))
  5048. fail = 1;
  5049. if (ret_data != 0x012345) {
  5050. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
  5051. "Data written %llx Data read %llx\n",
  5052. dev->name, (unsigned long long)0x12345,
  5053. (unsigned long long)ret_data);
  5054. fail = 1;
  5055. }
  5056. /* Reset the EEPROM data go FFFF */
  5057. write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
  5058. /* Test Write Request Error at offset 0x7c */
  5059. if (sp->device_type == XFRAME_I_DEVICE)
  5060. if (!write_eeprom(sp, 0x07C, 0, 3))
  5061. fail = 1;
  5062. /* Test Write Request at offset 0x7f0 */
  5063. if (write_eeprom(sp, 0x7F0, 0x012345, 3))
  5064. fail = 1;
  5065. if (read_eeprom(sp, 0x7F0, &ret_data))
  5066. fail = 1;
  5067. if (ret_data != 0x012345) {
  5068. DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
  5069. "Data written %llx Data read %llx\n",
  5070. dev->name, (unsigned long long)0x12345,
  5071. (unsigned long long)ret_data);
  5072. fail = 1;
  5073. }
  5074. /* Reset the EEPROM data go FFFF */
  5075. write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
  5076. if (sp->device_type == XFRAME_I_DEVICE) {
  5077. /* Test Write Error at offset 0x80 */
  5078. if (!write_eeprom(sp, 0x080, 0, 3))
  5079. fail = 1;
  5080. /* Test Write Error at offset 0xfc */
  5081. if (!write_eeprom(sp, 0x0FC, 0, 3))
  5082. fail = 1;
  5083. /* Test Write Error at offset 0x100 */
  5084. if (!write_eeprom(sp, 0x100, 0, 3))
  5085. fail = 1;
  5086. /* Test Write Error at offset 4ec */
  5087. if (!write_eeprom(sp, 0x4EC, 0, 3))
  5088. fail = 1;
  5089. }
  5090. /* Restore values at offsets 0x4F0 and 0x7F0 */
  5091. if (saved_4F0)
  5092. write_eeprom(sp, 0x4F0, org_4F0, 3);
  5093. if (saved_7F0)
  5094. write_eeprom(sp, 0x7F0, org_7F0, 3);
  5095. *data = fail;
  5096. return fail;
  5097. }
  5098. /**
  5099. * s2io_bist_test - invokes the MemBist test of the card .
  5100. * @sp : private member of the device structure, which is a pointer to the
  5101. * s2io_nic structure.
  5102. * @data:variable that returns the result of each of the test conducted by
  5103. * the driver.
  5104. * Description:
  5105. * This invokes the MemBist test of the card. We give around
  5106. * 2 secs time for the Test to complete. If it's still not complete
  5107. * within this peiod, we consider that the test failed.
  5108. * Return value:
  5109. * 0 on success and -1 on failure.
  5110. */
  5111. static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
  5112. {
  5113. u8 bist = 0;
  5114. int cnt = 0, ret = -1;
  5115. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5116. bist |= PCI_BIST_START;
  5117. pci_write_config_word(sp->pdev, PCI_BIST, bist);
  5118. while (cnt < 20) {
  5119. pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
  5120. if (!(bist & PCI_BIST_START)) {
  5121. *data = (bist & PCI_BIST_CODE_MASK);
  5122. ret = 0;
  5123. break;
  5124. }
  5125. msleep(100);
  5126. cnt++;
  5127. }
  5128. return ret;
  5129. }
  5130. /**
  5131. * s2io-link_test - verifies the link state of the nic
  5132. * @sp ; private member of the device structure, which is a pointer to the
  5133. * s2io_nic structure.
  5134. * @data: variable that returns the result of each of the test conducted by
  5135. * the driver.
  5136. * Description:
  5137. * The function verifies the link state of the NIC and updates the input
  5138. * argument 'data' appropriately.
  5139. * Return value:
  5140. * 0 on success.
  5141. */
  5142. static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
  5143. {
  5144. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5145. u64 val64;
  5146. val64 = readq(&bar0->adapter_status);
  5147. if(!(LINK_IS_UP(val64)))
  5148. *data = 1;
  5149. else
  5150. *data = 0;
  5151. return *data;
  5152. }
  5153. /**
  5154. * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
  5155. * @sp - private member of the device structure, which is a pointer to the
  5156. * s2io_nic structure.
  5157. * @data - variable that returns the result of each of the test
  5158. * conducted by the driver.
  5159. * Description:
  5160. * This is one of the offline test that tests the read and write
  5161. * access to the RldRam chip on the NIC.
  5162. * Return value:
  5163. * 0 on success.
  5164. */
  5165. static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
  5166. {
  5167. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5168. u64 val64;
  5169. int cnt, iteration = 0, test_fail = 0;
  5170. val64 = readq(&bar0->adapter_control);
  5171. val64 &= ~ADAPTER_ECC_EN;
  5172. writeq(val64, &bar0->adapter_control);
  5173. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5174. val64 |= MC_RLDRAM_TEST_MODE;
  5175. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5176. val64 = readq(&bar0->mc_rldram_mrs);
  5177. val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
  5178. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5179. val64 |= MC_RLDRAM_MRS_ENABLE;
  5180. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
  5181. while (iteration < 2) {
  5182. val64 = 0x55555555aaaa0000ULL;
  5183. if (iteration == 1) {
  5184. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5185. }
  5186. writeq(val64, &bar0->mc_rldram_test_d0);
  5187. val64 = 0xaaaa5a5555550000ULL;
  5188. if (iteration == 1) {
  5189. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5190. }
  5191. writeq(val64, &bar0->mc_rldram_test_d1);
  5192. val64 = 0x55aaaaaaaa5a0000ULL;
  5193. if (iteration == 1) {
  5194. val64 ^= 0xFFFFFFFFFFFF0000ULL;
  5195. }
  5196. writeq(val64, &bar0->mc_rldram_test_d2);
  5197. val64 = (u64) (0x0000003ffffe0100ULL);
  5198. writeq(val64, &bar0->mc_rldram_test_add);
  5199. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
  5200. MC_RLDRAM_TEST_GO;
  5201. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5202. for (cnt = 0; cnt < 5; cnt++) {
  5203. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5204. if (val64 & MC_RLDRAM_TEST_DONE)
  5205. break;
  5206. msleep(200);
  5207. }
  5208. if (cnt == 5)
  5209. break;
  5210. val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
  5211. SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
  5212. for (cnt = 0; cnt < 5; cnt++) {
  5213. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5214. if (val64 & MC_RLDRAM_TEST_DONE)
  5215. break;
  5216. msleep(500);
  5217. }
  5218. if (cnt == 5)
  5219. break;
  5220. val64 = readq(&bar0->mc_rldram_test_ctrl);
  5221. if (!(val64 & MC_RLDRAM_TEST_PASS))
  5222. test_fail = 1;
  5223. iteration++;
  5224. }
  5225. *data = test_fail;
  5226. /* Bring the adapter out of test mode */
  5227. SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
  5228. return test_fail;
  5229. }
  5230. /**
  5231. * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
  5232. * @sp : private member of the device structure, which is a pointer to the
  5233. * s2io_nic structure.
  5234. * @ethtest : pointer to a ethtool command specific structure that will be
  5235. * returned to the user.
  5236. * @data : variable that returns the result of each of the test
  5237. * conducted by the driver.
  5238. * Description:
  5239. * This function conducts 6 tests ( 4 offline and 2 online) to determine
  5240. * the health of the card.
  5241. * Return value:
  5242. * void
  5243. */
  5244. static void s2io_ethtool_test(struct net_device *dev,
  5245. struct ethtool_test *ethtest,
  5246. uint64_t * data)
  5247. {
  5248. struct s2io_nic *sp = dev->priv;
  5249. int orig_state = netif_running(sp->dev);
  5250. if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
  5251. /* Offline Tests. */
  5252. if (orig_state)
  5253. s2io_close(sp->dev);
  5254. if (s2io_register_test(sp, &data[0]))
  5255. ethtest->flags |= ETH_TEST_FL_FAILED;
  5256. s2io_reset(sp);
  5257. if (s2io_rldram_test(sp, &data[3]))
  5258. ethtest->flags |= ETH_TEST_FL_FAILED;
  5259. s2io_reset(sp);
  5260. if (s2io_eeprom_test(sp, &data[1]))
  5261. ethtest->flags |= ETH_TEST_FL_FAILED;
  5262. if (s2io_bist_test(sp, &data[4]))
  5263. ethtest->flags |= ETH_TEST_FL_FAILED;
  5264. if (orig_state)
  5265. s2io_open(sp->dev);
  5266. data[2] = 0;
  5267. } else {
  5268. /* Online Tests. */
  5269. if (!orig_state) {
  5270. DBG_PRINT(ERR_DBG,
  5271. "%s: is not up, cannot run test\n",
  5272. dev->name);
  5273. data[0] = -1;
  5274. data[1] = -1;
  5275. data[2] = -1;
  5276. data[3] = -1;
  5277. data[4] = -1;
  5278. }
  5279. if (s2io_link_test(sp, &data[2]))
  5280. ethtest->flags |= ETH_TEST_FL_FAILED;
  5281. data[0] = 0;
  5282. data[1] = 0;
  5283. data[3] = 0;
  5284. data[4] = 0;
  5285. }
  5286. }
  5287. static void s2io_get_ethtool_stats(struct net_device *dev,
  5288. struct ethtool_stats *estats,
  5289. u64 * tmp_stats)
  5290. {
  5291. int i = 0, k;
  5292. struct s2io_nic *sp = dev->priv;
  5293. struct stat_block *stat_info = sp->mac_control.stats_info;
  5294. s2io_updt_stats(sp);
  5295. tmp_stats[i++] =
  5296. (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
  5297. le32_to_cpu(stat_info->tmac_frms);
  5298. tmp_stats[i++] =
  5299. (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
  5300. le32_to_cpu(stat_info->tmac_data_octets);
  5301. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
  5302. tmp_stats[i++] =
  5303. (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
  5304. le32_to_cpu(stat_info->tmac_mcst_frms);
  5305. tmp_stats[i++] =
  5306. (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
  5307. le32_to_cpu(stat_info->tmac_bcst_frms);
  5308. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
  5309. tmp_stats[i++] =
  5310. (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
  5311. le32_to_cpu(stat_info->tmac_ttl_octets);
  5312. tmp_stats[i++] =
  5313. (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
  5314. le32_to_cpu(stat_info->tmac_ucst_frms);
  5315. tmp_stats[i++] =
  5316. (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
  5317. le32_to_cpu(stat_info->tmac_nucst_frms);
  5318. tmp_stats[i++] =
  5319. (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
  5320. le32_to_cpu(stat_info->tmac_any_err_frms);
  5321. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
  5322. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
  5323. tmp_stats[i++] =
  5324. (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
  5325. le32_to_cpu(stat_info->tmac_vld_ip);
  5326. tmp_stats[i++] =
  5327. (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
  5328. le32_to_cpu(stat_info->tmac_drop_ip);
  5329. tmp_stats[i++] =
  5330. (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
  5331. le32_to_cpu(stat_info->tmac_icmp);
  5332. tmp_stats[i++] =
  5333. (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
  5334. le32_to_cpu(stat_info->tmac_rst_tcp);
  5335. tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
  5336. tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
  5337. le32_to_cpu(stat_info->tmac_udp);
  5338. tmp_stats[i++] =
  5339. (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
  5340. le32_to_cpu(stat_info->rmac_vld_frms);
  5341. tmp_stats[i++] =
  5342. (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
  5343. le32_to_cpu(stat_info->rmac_data_octets);
  5344. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
  5345. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
  5346. tmp_stats[i++] =
  5347. (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
  5348. le32_to_cpu(stat_info->rmac_vld_mcst_frms);
  5349. tmp_stats[i++] =
  5350. (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
  5351. le32_to_cpu(stat_info->rmac_vld_bcst_frms);
  5352. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
  5353. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
  5354. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
  5355. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
  5356. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
  5357. tmp_stats[i++] =
  5358. (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
  5359. le32_to_cpu(stat_info->rmac_ttl_octets);
  5360. tmp_stats[i++] =
  5361. (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
  5362. << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
  5363. tmp_stats[i++] =
  5364. (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
  5365. << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
  5366. tmp_stats[i++] =
  5367. (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
  5368. le32_to_cpu(stat_info->rmac_discarded_frms);
  5369. tmp_stats[i++] =
  5370. (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
  5371. << 32 | le32_to_cpu(stat_info->rmac_drop_events);
  5372. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
  5373. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
  5374. tmp_stats[i++] =
  5375. (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
  5376. le32_to_cpu(stat_info->rmac_usized_frms);
  5377. tmp_stats[i++] =
  5378. (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
  5379. le32_to_cpu(stat_info->rmac_osized_frms);
  5380. tmp_stats[i++] =
  5381. (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
  5382. le32_to_cpu(stat_info->rmac_frag_frms);
  5383. tmp_stats[i++] =
  5384. (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
  5385. le32_to_cpu(stat_info->rmac_jabber_frms);
  5386. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
  5387. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
  5388. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
  5389. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
  5390. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
  5391. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
  5392. tmp_stats[i++] =
  5393. (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
  5394. le32_to_cpu(stat_info->rmac_ip);
  5395. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
  5396. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
  5397. tmp_stats[i++] =
  5398. (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
  5399. le32_to_cpu(stat_info->rmac_drop_ip);
  5400. tmp_stats[i++] =
  5401. (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
  5402. le32_to_cpu(stat_info->rmac_icmp);
  5403. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
  5404. tmp_stats[i++] =
  5405. (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
  5406. le32_to_cpu(stat_info->rmac_udp);
  5407. tmp_stats[i++] =
  5408. (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
  5409. le32_to_cpu(stat_info->rmac_err_drp_udp);
  5410. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
  5411. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
  5412. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
  5413. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
  5414. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
  5415. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
  5416. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
  5417. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
  5418. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
  5419. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
  5420. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
  5421. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
  5422. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
  5423. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
  5424. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
  5425. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
  5426. tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
  5427. tmp_stats[i++] =
  5428. (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
  5429. le32_to_cpu(stat_info->rmac_pause_cnt);
  5430. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
  5431. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
  5432. tmp_stats[i++] =
  5433. (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
  5434. le32_to_cpu(stat_info->rmac_accepted_ip);
  5435. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
  5436. tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
  5437. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
  5438. tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
  5439. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
  5440. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
  5441. tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
  5442. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
  5443. tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
  5444. tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
  5445. tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
  5446. tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
  5447. tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
  5448. tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
  5449. tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
  5450. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
  5451. tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
  5452. tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
  5453. tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
  5454. /* Enhanced statistics exist only for Hercules */
  5455. if(sp->device_type == XFRAME_II_DEVICE) {
  5456. tmp_stats[i++] =
  5457. le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
  5458. tmp_stats[i++] =
  5459. le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
  5460. tmp_stats[i++] =
  5461. le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
  5462. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
  5463. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
  5464. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
  5465. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
  5466. tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
  5467. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
  5468. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
  5469. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
  5470. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
  5471. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
  5472. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
  5473. tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
  5474. tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
  5475. }
  5476. tmp_stats[i++] = 0;
  5477. tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
  5478. tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
  5479. tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
  5480. tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
  5481. tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
  5482. tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
  5483. for (k = 0; k < MAX_RX_RINGS; k++)
  5484. tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
  5485. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
  5486. tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
  5487. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
  5488. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
  5489. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
  5490. tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
  5491. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
  5492. tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
  5493. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
  5494. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
  5495. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
  5496. tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
  5497. tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
  5498. tmp_stats[i++] = stat_info->sw_stat.sending_both;
  5499. tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
  5500. tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
  5501. if (stat_info->sw_stat.num_aggregations) {
  5502. u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
  5503. int count = 0;
  5504. /*
  5505. * Since 64-bit divide does not work on all platforms,
  5506. * do repeated subtraction.
  5507. */
  5508. while (tmp >= stat_info->sw_stat.num_aggregations) {
  5509. tmp -= stat_info->sw_stat.num_aggregations;
  5510. count++;
  5511. }
  5512. tmp_stats[i++] = count;
  5513. }
  5514. else
  5515. tmp_stats[i++] = 0;
  5516. tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
  5517. tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
  5518. tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
  5519. tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
  5520. tmp_stats[i++] = stat_info->sw_stat.mem_freed;
  5521. tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
  5522. tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
  5523. tmp_stats[i++] = stat_info->sw_stat.link_up_time;
  5524. tmp_stats[i++] = stat_info->sw_stat.link_down_time;
  5525. tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
  5526. tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
  5527. tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
  5528. tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
  5529. tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
  5530. tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
  5531. tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
  5532. tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
  5533. tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
  5534. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
  5535. tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
  5536. tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
  5537. tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
  5538. tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
  5539. tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
  5540. tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
  5541. tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
  5542. tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
  5543. tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
  5544. tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
  5545. tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
  5546. tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
  5547. tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
  5548. tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
  5549. tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
  5550. tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
  5551. tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
  5552. tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
  5553. tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
  5554. tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
  5555. tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
  5556. }
  5557. static int s2io_ethtool_get_regs_len(struct net_device *dev)
  5558. {
  5559. return (XENA_REG_SPACE);
  5560. }
  5561. static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
  5562. {
  5563. struct s2io_nic *sp = dev->priv;
  5564. return (sp->rx_csum);
  5565. }
  5566. static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
  5567. {
  5568. struct s2io_nic *sp = dev->priv;
  5569. if (data)
  5570. sp->rx_csum = 1;
  5571. else
  5572. sp->rx_csum = 0;
  5573. return 0;
  5574. }
  5575. static int s2io_get_eeprom_len(struct net_device *dev)
  5576. {
  5577. return (XENA_EEPROM_SPACE);
  5578. }
  5579. static int s2io_get_sset_count(struct net_device *dev, int sset)
  5580. {
  5581. struct s2io_nic *sp = dev->priv;
  5582. switch (sset) {
  5583. case ETH_SS_TEST:
  5584. return S2IO_TEST_LEN;
  5585. case ETH_SS_STATS:
  5586. switch(sp->device_type) {
  5587. case XFRAME_I_DEVICE:
  5588. return XFRAME_I_STAT_LEN;
  5589. case XFRAME_II_DEVICE:
  5590. return XFRAME_II_STAT_LEN;
  5591. default:
  5592. return 0;
  5593. }
  5594. default:
  5595. return -EOPNOTSUPP;
  5596. }
  5597. }
  5598. static void s2io_ethtool_get_strings(struct net_device *dev,
  5599. u32 stringset, u8 * data)
  5600. {
  5601. int stat_size = 0;
  5602. struct s2io_nic *sp = dev->priv;
  5603. switch (stringset) {
  5604. case ETH_SS_TEST:
  5605. memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
  5606. break;
  5607. case ETH_SS_STATS:
  5608. stat_size = sizeof(ethtool_xena_stats_keys);
  5609. memcpy(data, &ethtool_xena_stats_keys,stat_size);
  5610. if(sp->device_type == XFRAME_II_DEVICE) {
  5611. memcpy(data + stat_size,
  5612. &ethtool_enhanced_stats_keys,
  5613. sizeof(ethtool_enhanced_stats_keys));
  5614. stat_size += sizeof(ethtool_enhanced_stats_keys);
  5615. }
  5616. memcpy(data + stat_size, &ethtool_driver_stats_keys,
  5617. sizeof(ethtool_driver_stats_keys));
  5618. }
  5619. }
  5620. static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
  5621. {
  5622. if (data)
  5623. dev->features |= NETIF_F_IP_CSUM;
  5624. else
  5625. dev->features &= ~NETIF_F_IP_CSUM;
  5626. return 0;
  5627. }
  5628. static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
  5629. {
  5630. return (dev->features & NETIF_F_TSO) != 0;
  5631. }
  5632. static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
  5633. {
  5634. if (data)
  5635. dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
  5636. else
  5637. dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
  5638. return 0;
  5639. }
  5640. static const struct ethtool_ops netdev_ethtool_ops = {
  5641. .get_settings = s2io_ethtool_gset,
  5642. .set_settings = s2io_ethtool_sset,
  5643. .get_drvinfo = s2io_ethtool_gdrvinfo,
  5644. .get_regs_len = s2io_ethtool_get_regs_len,
  5645. .get_regs = s2io_ethtool_gregs,
  5646. .get_link = ethtool_op_get_link,
  5647. .get_eeprom_len = s2io_get_eeprom_len,
  5648. .get_eeprom = s2io_ethtool_geeprom,
  5649. .set_eeprom = s2io_ethtool_seeprom,
  5650. .get_ringparam = s2io_ethtool_gringparam,
  5651. .get_pauseparam = s2io_ethtool_getpause_data,
  5652. .set_pauseparam = s2io_ethtool_setpause_data,
  5653. .get_rx_csum = s2io_ethtool_get_rx_csum,
  5654. .set_rx_csum = s2io_ethtool_set_rx_csum,
  5655. .set_tx_csum = s2io_ethtool_op_set_tx_csum,
  5656. .set_sg = ethtool_op_set_sg,
  5657. .get_tso = s2io_ethtool_op_get_tso,
  5658. .set_tso = s2io_ethtool_op_set_tso,
  5659. .set_ufo = ethtool_op_set_ufo,
  5660. .self_test = s2io_ethtool_test,
  5661. .get_strings = s2io_ethtool_get_strings,
  5662. .phys_id = s2io_ethtool_idnic,
  5663. .get_ethtool_stats = s2io_get_ethtool_stats,
  5664. .get_sset_count = s2io_get_sset_count,
  5665. };
  5666. /**
  5667. * s2io_ioctl - Entry point for the Ioctl
  5668. * @dev : Device pointer.
  5669. * @ifr : An IOCTL specefic structure, that can contain a pointer to
  5670. * a proprietary structure used to pass information to the driver.
  5671. * @cmd : This is used to distinguish between the different commands that
  5672. * can be passed to the IOCTL functions.
  5673. * Description:
  5674. * Currently there are no special functionality supported in IOCTL, hence
  5675. * function always return EOPNOTSUPPORTED
  5676. */
  5677. static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
  5678. {
  5679. return -EOPNOTSUPP;
  5680. }
  5681. /**
  5682. * s2io_change_mtu - entry point to change MTU size for the device.
  5683. * @dev : device pointer.
  5684. * @new_mtu : the new MTU size for the device.
  5685. * Description: A driver entry point to change MTU size for the device.
  5686. * Before changing the MTU the device must be stopped.
  5687. * Return value:
  5688. * 0 on success and an appropriate (-)ve integer as defined in errno.h
  5689. * file on failure.
  5690. */
  5691. static int s2io_change_mtu(struct net_device *dev, int new_mtu)
  5692. {
  5693. struct s2io_nic *sp = dev->priv;
  5694. if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
  5695. DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
  5696. dev->name);
  5697. return -EPERM;
  5698. }
  5699. dev->mtu = new_mtu;
  5700. if (netif_running(dev)) {
  5701. s2io_card_down(sp);
  5702. netif_stop_queue(dev);
  5703. if (s2io_card_up(sp)) {
  5704. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  5705. __FUNCTION__);
  5706. }
  5707. if (netif_queue_stopped(dev))
  5708. netif_wake_queue(dev);
  5709. } else { /* Device is down */
  5710. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  5711. u64 val64 = new_mtu;
  5712. writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
  5713. }
  5714. return 0;
  5715. }
  5716. /**
  5717. * s2io_tasklet - Bottom half of the ISR.
  5718. * @dev_adr : address of the device structure in dma_addr_t format.
  5719. * Description:
  5720. * This is the tasklet or the bottom half of the ISR. This is
  5721. * an extension of the ISR which is scheduled by the scheduler to be run
  5722. * when the load on the CPU is low. All low priority tasks of the ISR can
  5723. * be pushed into the tasklet. For now the tasklet is used only to
  5724. * replenish the Rx buffers in the Rx buffer descriptors.
  5725. * Return value:
  5726. * void.
  5727. */
  5728. static void s2io_tasklet(unsigned long dev_addr)
  5729. {
  5730. struct net_device *dev = (struct net_device *) dev_addr;
  5731. struct s2io_nic *sp = dev->priv;
  5732. int i, ret;
  5733. struct mac_info *mac_control;
  5734. struct config_param *config;
  5735. mac_control = &sp->mac_control;
  5736. config = &sp->config;
  5737. if (!TASKLET_IN_USE) {
  5738. for (i = 0; i < config->rx_ring_num; i++) {
  5739. ret = fill_rx_buffers(sp, i);
  5740. if (ret == -ENOMEM) {
  5741. DBG_PRINT(INFO_DBG, "%s: Out of ",
  5742. dev->name);
  5743. DBG_PRINT(INFO_DBG, "memory in tasklet\n");
  5744. break;
  5745. } else if (ret == -EFILL) {
  5746. DBG_PRINT(INFO_DBG,
  5747. "%s: Rx Ring %d is full\n",
  5748. dev->name, i);
  5749. break;
  5750. }
  5751. }
  5752. clear_bit(0, (&sp->tasklet_status));
  5753. }
  5754. }
  5755. /**
  5756. * s2io_set_link - Set the LInk status
  5757. * @data: long pointer to device private structue
  5758. * Description: Sets the link status for the adapter
  5759. */
  5760. static void s2io_set_link(struct work_struct *work)
  5761. {
  5762. struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
  5763. struct net_device *dev = nic->dev;
  5764. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  5765. register u64 val64;
  5766. u16 subid;
  5767. rtnl_lock();
  5768. if (!netif_running(dev))
  5769. goto out_unlock;
  5770. if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
  5771. /* The card is being reset, no point doing anything */
  5772. goto out_unlock;
  5773. }
  5774. subid = nic->pdev->subsystem_device;
  5775. if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
  5776. /*
  5777. * Allow a small delay for the NICs self initiated
  5778. * cleanup to complete.
  5779. */
  5780. msleep(100);
  5781. }
  5782. val64 = readq(&bar0->adapter_status);
  5783. if (LINK_IS_UP(val64)) {
  5784. if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
  5785. if (verify_xena_quiescence(nic)) {
  5786. val64 = readq(&bar0->adapter_control);
  5787. val64 |= ADAPTER_CNTL_EN;
  5788. writeq(val64, &bar0->adapter_control);
  5789. if (CARDS_WITH_FAULTY_LINK_INDICATORS(
  5790. nic->device_type, subid)) {
  5791. val64 = readq(&bar0->gpio_control);
  5792. val64 |= GPIO_CTRL_GPIO_0;
  5793. writeq(val64, &bar0->gpio_control);
  5794. val64 = readq(&bar0->gpio_control);
  5795. } else {
  5796. val64 |= ADAPTER_LED_ON;
  5797. writeq(val64, &bar0->adapter_control);
  5798. }
  5799. nic->device_enabled_once = TRUE;
  5800. } else {
  5801. DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
  5802. DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
  5803. netif_stop_queue(dev);
  5804. }
  5805. }
  5806. val64 = readq(&bar0->adapter_control);
  5807. val64 |= ADAPTER_LED_ON;
  5808. writeq(val64, &bar0->adapter_control);
  5809. s2io_link(nic, LINK_UP);
  5810. } else {
  5811. if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
  5812. subid)) {
  5813. val64 = readq(&bar0->gpio_control);
  5814. val64 &= ~GPIO_CTRL_GPIO_0;
  5815. writeq(val64, &bar0->gpio_control);
  5816. val64 = readq(&bar0->gpio_control);
  5817. }
  5818. /* turn off LED */
  5819. val64 = readq(&bar0->adapter_control);
  5820. val64 = val64 &(~ADAPTER_LED_ON);
  5821. writeq(val64, &bar0->adapter_control);
  5822. s2io_link(nic, LINK_DOWN);
  5823. }
  5824. clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
  5825. out_unlock:
  5826. rtnl_unlock();
  5827. }
  5828. static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
  5829. struct buffAdd *ba,
  5830. struct sk_buff **skb, u64 *temp0, u64 *temp1,
  5831. u64 *temp2, int size)
  5832. {
  5833. struct net_device *dev = sp->dev;
  5834. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  5835. if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
  5836. struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
  5837. /* allocate skb */
  5838. if (*skb) {
  5839. DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
  5840. /*
  5841. * As Rx frame are not going to be processed,
  5842. * using same mapped address for the Rxd
  5843. * buffer pointer
  5844. */
  5845. rxdp1->Buffer0_ptr = *temp0;
  5846. } else {
  5847. *skb = dev_alloc_skb(size);
  5848. if (!(*skb)) {
  5849. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5850. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5851. DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
  5852. sp->mac_control.stats_info->sw_stat. \
  5853. mem_alloc_fail_cnt++;
  5854. return -ENOMEM ;
  5855. }
  5856. sp->mac_control.stats_info->sw_stat.mem_allocated
  5857. += (*skb)->truesize;
  5858. /* storing the mapped addr in a temp variable
  5859. * such it will be used for next rxd whose
  5860. * Host Control is NULL
  5861. */
  5862. rxdp1->Buffer0_ptr = *temp0 =
  5863. pci_map_single( sp->pdev, (*skb)->data,
  5864. size - NET_IP_ALIGN,
  5865. PCI_DMA_FROMDEVICE);
  5866. if( (rxdp1->Buffer0_ptr == 0) ||
  5867. (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
  5868. goto memalloc_failed;
  5869. }
  5870. rxdp->Host_Control = (unsigned long) (*skb);
  5871. }
  5872. } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
  5873. struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
  5874. /* Two buffer Mode */
  5875. if (*skb) {
  5876. rxdp3->Buffer2_ptr = *temp2;
  5877. rxdp3->Buffer0_ptr = *temp0;
  5878. rxdp3->Buffer1_ptr = *temp1;
  5879. } else {
  5880. *skb = dev_alloc_skb(size);
  5881. if (!(*skb)) {
  5882. DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
  5883. DBG_PRINT(INFO_DBG, "memory to allocate ");
  5884. DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
  5885. sp->mac_control.stats_info->sw_stat. \
  5886. mem_alloc_fail_cnt++;
  5887. return -ENOMEM;
  5888. }
  5889. sp->mac_control.stats_info->sw_stat.mem_allocated
  5890. += (*skb)->truesize;
  5891. rxdp3->Buffer2_ptr = *temp2 =
  5892. pci_map_single(sp->pdev, (*skb)->data,
  5893. dev->mtu + 4,
  5894. PCI_DMA_FROMDEVICE);
  5895. if( (rxdp3->Buffer2_ptr == 0) ||
  5896. (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
  5897. goto memalloc_failed;
  5898. }
  5899. rxdp3->Buffer0_ptr = *temp0 =
  5900. pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
  5901. PCI_DMA_FROMDEVICE);
  5902. if( (rxdp3->Buffer0_ptr == 0) ||
  5903. (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
  5904. pci_unmap_single (sp->pdev,
  5905. (dma_addr_t)rxdp3->Buffer2_ptr,
  5906. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5907. goto memalloc_failed;
  5908. }
  5909. rxdp->Host_Control = (unsigned long) (*skb);
  5910. /* Buffer-1 will be dummy buffer not used */
  5911. rxdp3->Buffer1_ptr = *temp1 =
  5912. pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
  5913. PCI_DMA_FROMDEVICE);
  5914. if( (rxdp3->Buffer1_ptr == 0) ||
  5915. (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
  5916. pci_unmap_single (sp->pdev,
  5917. (dma_addr_t)rxdp3->Buffer0_ptr,
  5918. BUF0_LEN, PCI_DMA_FROMDEVICE);
  5919. pci_unmap_single (sp->pdev,
  5920. (dma_addr_t)rxdp3->Buffer2_ptr,
  5921. dev->mtu + 4, PCI_DMA_FROMDEVICE);
  5922. goto memalloc_failed;
  5923. }
  5924. }
  5925. }
  5926. return 0;
  5927. memalloc_failed:
  5928. stats->pci_map_fail_cnt++;
  5929. stats->mem_freed += (*skb)->truesize;
  5930. dev_kfree_skb(*skb);
  5931. return -ENOMEM;
  5932. }
  5933. static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
  5934. int size)
  5935. {
  5936. struct net_device *dev = sp->dev;
  5937. if (sp->rxd_mode == RXD_MODE_1) {
  5938. rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
  5939. } else if (sp->rxd_mode == RXD_MODE_3B) {
  5940. rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
  5941. rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
  5942. rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
  5943. }
  5944. }
  5945. static int rxd_owner_bit_reset(struct s2io_nic *sp)
  5946. {
  5947. int i, j, k, blk_cnt = 0, size;
  5948. struct mac_info * mac_control = &sp->mac_control;
  5949. struct config_param *config = &sp->config;
  5950. struct net_device *dev = sp->dev;
  5951. struct RxD_t *rxdp = NULL;
  5952. struct sk_buff *skb = NULL;
  5953. struct buffAdd *ba = NULL;
  5954. u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
  5955. /* Calculate the size based on ring mode */
  5956. size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
  5957. HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
  5958. if (sp->rxd_mode == RXD_MODE_1)
  5959. size += NET_IP_ALIGN;
  5960. else if (sp->rxd_mode == RXD_MODE_3B)
  5961. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
  5962. for (i = 0; i < config->rx_ring_num; i++) {
  5963. blk_cnt = config->rx_cfg[i].num_rxd /
  5964. (rxd_count[sp->rxd_mode] +1);
  5965. for (j = 0; j < blk_cnt; j++) {
  5966. for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
  5967. rxdp = mac_control->rings[i].
  5968. rx_blocks[j].rxds[k].virt_addr;
  5969. if(sp->rxd_mode == RXD_MODE_3B)
  5970. ba = &mac_control->rings[i].ba[j][k];
  5971. if (set_rxd_buffer_pointer(sp, rxdp, ba,
  5972. &skb,(u64 *)&temp0_64,
  5973. (u64 *)&temp1_64,
  5974. (u64 *)&temp2_64,
  5975. size) == ENOMEM) {
  5976. return 0;
  5977. }
  5978. set_rxd_buffer_size(sp, rxdp, size);
  5979. wmb();
  5980. /* flip the Ownership bit to Hardware */
  5981. rxdp->Control_1 |= RXD_OWN_XENA;
  5982. }
  5983. }
  5984. }
  5985. return 0;
  5986. }
  5987. static int s2io_add_isr(struct s2io_nic * sp)
  5988. {
  5989. int ret = 0;
  5990. struct net_device *dev = sp->dev;
  5991. int err = 0;
  5992. if (sp->config.intr_type == MSI_X)
  5993. ret = s2io_enable_msi_x(sp);
  5994. if (ret) {
  5995. DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
  5996. sp->config.intr_type = INTA;
  5997. }
  5998. /* Store the values of the MSIX table in the struct s2io_nic structure */
  5999. store_xmsi_data(sp);
  6000. /* After proper initialization of H/W, register ISR */
  6001. if (sp->config.intr_type == MSI_X) {
  6002. int i, msix_tx_cnt=0,msix_rx_cnt=0;
  6003. for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
  6004. if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
  6005. sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
  6006. dev->name, i);
  6007. err = request_irq(sp->entries[i].vector,
  6008. s2io_msix_fifo_handle, 0, sp->desc[i],
  6009. sp->s2io_entries[i].arg);
  6010. /* If either data or addr is zero print it */
  6011. if(!(sp->msix_info[i].addr &&
  6012. sp->msix_info[i].data)) {
  6013. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  6014. "Data:0x%lx\n",sp->desc[i],
  6015. (unsigned long long)
  6016. sp->msix_info[i].addr,
  6017. (unsigned long)
  6018. ntohl(sp->msix_info[i].data));
  6019. } else {
  6020. msix_tx_cnt++;
  6021. }
  6022. } else {
  6023. sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
  6024. dev->name, i);
  6025. err = request_irq(sp->entries[i].vector,
  6026. s2io_msix_ring_handle, 0, sp->desc[i],
  6027. sp->s2io_entries[i].arg);
  6028. /* If either data or addr is zero print it */
  6029. if(!(sp->msix_info[i].addr &&
  6030. sp->msix_info[i].data)) {
  6031. DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
  6032. "Data:0x%lx\n",sp->desc[i],
  6033. (unsigned long long)
  6034. sp->msix_info[i].addr,
  6035. (unsigned long)
  6036. ntohl(sp->msix_info[i].data));
  6037. } else {
  6038. msix_rx_cnt++;
  6039. }
  6040. }
  6041. if (err) {
  6042. DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
  6043. "failed\n", dev->name, i);
  6044. DBG_PRINT(ERR_DBG, "Returned: %d\n", err);
  6045. return -1;
  6046. }
  6047. sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
  6048. }
  6049. printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt);
  6050. printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt);
  6051. }
  6052. if (sp->config.intr_type == INTA) {
  6053. err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
  6054. sp->name, dev);
  6055. if (err) {
  6056. DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
  6057. dev->name);
  6058. return -1;
  6059. }
  6060. }
  6061. return 0;
  6062. }
  6063. static void s2io_rem_isr(struct s2io_nic * sp)
  6064. {
  6065. struct net_device *dev = sp->dev;
  6066. struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
  6067. if (sp->config.intr_type == MSI_X) {
  6068. int i;
  6069. u16 msi_control;
  6070. for (i=1; (sp->s2io_entries[i].in_use ==
  6071. MSIX_REGISTERED_SUCCESS); i++) {
  6072. int vector = sp->entries[i].vector;
  6073. void *arg = sp->s2io_entries[i].arg;
  6074. synchronize_irq(vector);
  6075. free_irq(vector, arg);
  6076. }
  6077. kfree(sp->entries);
  6078. stats->mem_freed +=
  6079. (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
  6080. kfree(sp->s2io_entries);
  6081. stats->mem_freed +=
  6082. (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
  6083. sp->entries = NULL;
  6084. sp->s2io_entries = NULL;
  6085. pci_read_config_word(sp->pdev, 0x42, &msi_control);
  6086. msi_control &= 0xFFFE; /* Disable MSI */
  6087. pci_write_config_word(sp->pdev, 0x42, msi_control);
  6088. pci_disable_msix(sp->pdev);
  6089. } else {
  6090. synchronize_irq(sp->pdev->irq);
  6091. free_irq(sp->pdev->irq, dev);
  6092. }
  6093. }
  6094. static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
  6095. {
  6096. int cnt = 0;
  6097. struct XENA_dev_config __iomem *bar0 = sp->bar0;
  6098. unsigned long flags;
  6099. register u64 val64 = 0;
  6100. del_timer_sync(&sp->alarm_timer);
  6101. /* If s2io_set_link task is executing, wait till it completes. */
  6102. while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
  6103. msleep(50);
  6104. }
  6105. clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6106. /* disable Tx and Rx traffic on the NIC */
  6107. if (do_io)
  6108. stop_nic(sp);
  6109. s2io_rem_isr(sp);
  6110. /* Kill tasklet. */
  6111. tasklet_kill(&sp->task);
  6112. /* Check if the device is Quiescent and then Reset the NIC */
  6113. while(do_io) {
  6114. /* As per the HW requirement we need to replenish the
  6115. * receive buffer to avoid the ring bump. Since there is
  6116. * no intention of processing the Rx frame at this pointwe are
  6117. * just settting the ownership bit of rxd in Each Rx
  6118. * ring to HW and set the appropriate buffer size
  6119. * based on the ring mode
  6120. */
  6121. rxd_owner_bit_reset(sp);
  6122. val64 = readq(&bar0->adapter_status);
  6123. if (verify_xena_quiescence(sp)) {
  6124. if(verify_pcc_quiescent(sp, sp->device_enabled_once))
  6125. break;
  6126. }
  6127. msleep(50);
  6128. cnt++;
  6129. if (cnt == 10) {
  6130. DBG_PRINT(ERR_DBG,
  6131. "s2io_close:Device not Quiescent ");
  6132. DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
  6133. (unsigned long long) val64);
  6134. break;
  6135. }
  6136. }
  6137. if (do_io)
  6138. s2io_reset(sp);
  6139. spin_lock_irqsave(&sp->tx_lock, flags);
  6140. /* Free all Tx buffers */
  6141. free_tx_buffers(sp);
  6142. spin_unlock_irqrestore(&sp->tx_lock, flags);
  6143. /* Free all Rx buffers */
  6144. spin_lock_irqsave(&sp->rx_lock, flags);
  6145. free_rx_buffers(sp);
  6146. spin_unlock_irqrestore(&sp->rx_lock, flags);
  6147. clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
  6148. }
  6149. static void s2io_card_down(struct s2io_nic * sp)
  6150. {
  6151. do_s2io_card_down(sp, 1);
  6152. }
  6153. static int s2io_card_up(struct s2io_nic * sp)
  6154. {
  6155. int i, ret = 0;
  6156. struct mac_info *mac_control;
  6157. struct config_param *config;
  6158. struct net_device *dev = (struct net_device *) sp->dev;
  6159. u16 interruptible;
  6160. /* Initialize the H/W I/O registers */
  6161. if (init_nic(sp) != 0) {
  6162. DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
  6163. dev->name);
  6164. s2io_reset(sp);
  6165. return -ENODEV;
  6166. }
  6167. /*
  6168. * Initializing the Rx buffers. For now we are considering only 1
  6169. * Rx ring and initializing buffers into 30 Rx blocks
  6170. */
  6171. mac_control = &sp->mac_control;
  6172. config = &sp->config;
  6173. for (i = 0; i < config->rx_ring_num; i++) {
  6174. if ((ret = fill_rx_buffers(sp, i))) {
  6175. DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
  6176. dev->name);
  6177. s2io_reset(sp);
  6178. free_rx_buffers(sp);
  6179. return -ENOMEM;
  6180. }
  6181. DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
  6182. atomic_read(&sp->rx_bufs_left[i]));
  6183. }
  6184. /* Maintain the state prior to the open */
  6185. if (sp->promisc_flg)
  6186. sp->promisc_flg = 0;
  6187. if (sp->m_cast_flg) {
  6188. sp->m_cast_flg = 0;
  6189. sp->all_multi_pos= 0;
  6190. }
  6191. /* Setting its receive mode */
  6192. s2io_set_multicast(dev);
  6193. if (sp->lro) {
  6194. /* Initialize max aggregatable pkts per session based on MTU */
  6195. sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
  6196. /* Check if we can use(if specified) user provided value */
  6197. if (lro_max_pkts < sp->lro_max_aggr_per_sess)
  6198. sp->lro_max_aggr_per_sess = lro_max_pkts;
  6199. }
  6200. /* Enable Rx Traffic and interrupts on the NIC */
  6201. if (start_nic(sp)) {
  6202. DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
  6203. s2io_reset(sp);
  6204. free_rx_buffers(sp);
  6205. return -ENODEV;
  6206. }
  6207. /* Add interrupt service routine */
  6208. if (s2io_add_isr(sp) != 0) {
  6209. if (sp->config.intr_type == MSI_X)
  6210. s2io_rem_isr(sp);
  6211. s2io_reset(sp);
  6212. free_rx_buffers(sp);
  6213. return -ENODEV;
  6214. }
  6215. S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
  6216. /* Enable tasklet for the device */
  6217. tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
  6218. /* Enable select interrupts */
  6219. en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
  6220. if (sp->config.intr_type != INTA)
  6221. en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
  6222. else {
  6223. interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
  6224. interruptible |= TX_PIC_INTR;
  6225. en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
  6226. }
  6227. set_bit(__S2IO_STATE_CARD_UP, &sp->state);
  6228. return 0;
  6229. }
  6230. /**
  6231. * s2io_restart_nic - Resets the NIC.
  6232. * @data : long pointer to the device private structure
  6233. * Description:
  6234. * This function is scheduled to be run by the s2io_tx_watchdog
  6235. * function after 0.5 secs to reset the NIC. The idea is to reduce
  6236. * the run time of the watch dog routine which is run holding a
  6237. * spin lock.
  6238. */
  6239. static void s2io_restart_nic(struct work_struct *work)
  6240. {
  6241. struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
  6242. struct net_device *dev = sp->dev;
  6243. rtnl_lock();
  6244. if (!netif_running(dev))
  6245. goto out_unlock;
  6246. s2io_card_down(sp);
  6247. if (s2io_card_up(sp)) {
  6248. DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
  6249. dev->name);
  6250. }
  6251. netif_wake_queue(dev);
  6252. DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
  6253. dev->name);
  6254. out_unlock:
  6255. rtnl_unlock();
  6256. }
  6257. /**
  6258. * s2io_tx_watchdog - Watchdog for transmit side.
  6259. * @dev : Pointer to net device structure
  6260. * Description:
  6261. * This function is triggered if the Tx Queue is stopped
  6262. * for a pre-defined amount of time when the Interface is still up.
  6263. * If the Interface is jammed in such a situation, the hardware is
  6264. * reset (by s2io_close) and restarted again (by s2io_open) to
  6265. * overcome any problem that might have been caused in the hardware.
  6266. * Return value:
  6267. * void
  6268. */
  6269. static void s2io_tx_watchdog(struct net_device *dev)
  6270. {
  6271. struct s2io_nic *sp = dev->priv;
  6272. if (netif_carrier_ok(dev)) {
  6273. sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
  6274. schedule_work(&sp->rst_timer_task);
  6275. sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
  6276. }
  6277. }
  6278. /**
  6279. * rx_osm_handler - To perform some OS related operations on SKB.
  6280. * @sp: private member of the device structure,pointer to s2io_nic structure.
  6281. * @skb : the socket buffer pointer.
  6282. * @len : length of the packet
  6283. * @cksum : FCS checksum of the frame.
  6284. * @ring_no : the ring from which this RxD was extracted.
  6285. * Description:
  6286. * This function is called by the Rx interrupt serivce routine to perform
  6287. * some OS related operations on the SKB before passing it to the upper
  6288. * layers. It mainly checks if the checksum is OK, if so adds it to the
  6289. * SKBs cksum variable, increments the Rx packet count and passes the SKB
  6290. * to the upper layer. If the checksum is wrong, it increments the Rx
  6291. * packet error count, frees the SKB and returns error.
  6292. * Return value:
  6293. * SUCCESS on success and -1 on failure.
  6294. */
  6295. static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
  6296. {
  6297. struct s2io_nic *sp = ring_data->nic;
  6298. struct net_device *dev = (struct net_device *) sp->dev;
  6299. struct sk_buff *skb = (struct sk_buff *)
  6300. ((unsigned long) rxdp->Host_Control);
  6301. int ring_no = ring_data->ring_no;
  6302. u16 l3_csum, l4_csum;
  6303. unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
  6304. struct lro *lro;
  6305. u8 err_mask;
  6306. skb->dev = dev;
  6307. if (err) {
  6308. /* Check for parity error */
  6309. if (err & 0x1) {
  6310. sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
  6311. }
  6312. err_mask = err >> 48;
  6313. switch(err_mask) {
  6314. case 1:
  6315. sp->mac_control.stats_info->sw_stat.
  6316. rx_parity_err_cnt++;
  6317. break;
  6318. case 2:
  6319. sp->mac_control.stats_info->sw_stat.
  6320. rx_abort_cnt++;
  6321. break;
  6322. case 3:
  6323. sp->mac_control.stats_info->sw_stat.
  6324. rx_parity_abort_cnt++;
  6325. break;
  6326. case 4:
  6327. sp->mac_control.stats_info->sw_stat.
  6328. rx_rda_fail_cnt++;
  6329. break;
  6330. case 5:
  6331. sp->mac_control.stats_info->sw_stat.
  6332. rx_unkn_prot_cnt++;
  6333. break;
  6334. case 6:
  6335. sp->mac_control.stats_info->sw_stat.
  6336. rx_fcs_err_cnt++;
  6337. break;
  6338. case 7:
  6339. sp->mac_control.stats_info->sw_stat.
  6340. rx_buf_size_err_cnt++;
  6341. break;
  6342. case 8:
  6343. sp->mac_control.stats_info->sw_stat.
  6344. rx_rxd_corrupt_cnt++;
  6345. break;
  6346. case 15:
  6347. sp->mac_control.stats_info->sw_stat.
  6348. rx_unkn_err_cnt++;
  6349. break;
  6350. }
  6351. /*
  6352. * Drop the packet if bad transfer code. Exception being
  6353. * 0x5, which could be due to unsupported IPv6 extension header.
  6354. * In this case, we let stack handle the packet.
  6355. * Note that in this case, since checksum will be incorrect,
  6356. * stack will validate the same.
  6357. */
  6358. if (err_mask != 0x5) {
  6359. DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
  6360. dev->name, err_mask);
  6361. sp->stats.rx_crc_errors++;
  6362. sp->mac_control.stats_info->sw_stat.mem_freed
  6363. += skb->truesize;
  6364. dev_kfree_skb(skb);
  6365. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6366. rxdp->Host_Control = 0;
  6367. return 0;
  6368. }
  6369. }
  6370. /* Updating statistics */
  6371. sp->stats.rx_packets++;
  6372. rxdp->Host_Control = 0;
  6373. if (sp->rxd_mode == RXD_MODE_1) {
  6374. int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
  6375. sp->stats.rx_bytes += len;
  6376. skb_put(skb, len);
  6377. } else if (sp->rxd_mode == RXD_MODE_3B) {
  6378. int get_block = ring_data->rx_curr_get_info.block_index;
  6379. int get_off = ring_data->rx_curr_get_info.offset;
  6380. int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
  6381. int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
  6382. unsigned char *buff = skb_push(skb, buf0_len);
  6383. struct buffAdd *ba = &ring_data->ba[get_block][get_off];
  6384. sp->stats.rx_bytes += buf0_len + buf2_len;
  6385. memcpy(buff, ba->ba_0, buf0_len);
  6386. skb_put(skb, buf2_len);
  6387. }
  6388. if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
  6389. (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
  6390. (sp->rx_csum)) {
  6391. l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
  6392. l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
  6393. if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
  6394. /*
  6395. * NIC verifies if the Checksum of the received
  6396. * frame is Ok or not and accordingly returns
  6397. * a flag in the RxD.
  6398. */
  6399. skb->ip_summed = CHECKSUM_UNNECESSARY;
  6400. if (sp->lro) {
  6401. u32 tcp_len;
  6402. u8 *tcp;
  6403. int ret = 0;
  6404. ret = s2io_club_tcp_session(skb->data, &tcp,
  6405. &tcp_len, &lro, rxdp, sp);
  6406. switch (ret) {
  6407. case 3: /* Begin anew */
  6408. lro->parent = skb;
  6409. goto aggregate;
  6410. case 1: /* Aggregate */
  6411. {
  6412. lro_append_pkt(sp, lro,
  6413. skb, tcp_len);
  6414. goto aggregate;
  6415. }
  6416. case 4: /* Flush session */
  6417. {
  6418. lro_append_pkt(sp, lro,
  6419. skb, tcp_len);
  6420. queue_rx_frame(lro->parent);
  6421. clear_lro_session(lro);
  6422. sp->mac_control.stats_info->
  6423. sw_stat.flush_max_pkts++;
  6424. goto aggregate;
  6425. }
  6426. case 2: /* Flush both */
  6427. lro->parent->data_len =
  6428. lro->frags_len;
  6429. sp->mac_control.stats_info->
  6430. sw_stat.sending_both++;
  6431. queue_rx_frame(lro->parent);
  6432. clear_lro_session(lro);
  6433. goto send_up;
  6434. case 0: /* sessions exceeded */
  6435. case -1: /* non-TCP or not
  6436. * L2 aggregatable
  6437. */
  6438. case 5: /*
  6439. * First pkt in session not
  6440. * L3/L4 aggregatable
  6441. */
  6442. break;
  6443. default:
  6444. DBG_PRINT(ERR_DBG,
  6445. "%s: Samadhana!!\n",
  6446. __FUNCTION__);
  6447. BUG();
  6448. }
  6449. }
  6450. } else {
  6451. /*
  6452. * Packet with erroneous checksum, let the
  6453. * upper layers deal with it.
  6454. */
  6455. skb->ip_summed = CHECKSUM_NONE;
  6456. }
  6457. } else {
  6458. skb->ip_summed = CHECKSUM_NONE;
  6459. }
  6460. sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
  6461. if (!sp->lro) {
  6462. skb->protocol = eth_type_trans(skb, dev);
  6463. if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
  6464. vlan_strip_flag)) {
  6465. /* Queueing the vlan frame to the upper layer */
  6466. if (napi)
  6467. vlan_hwaccel_receive_skb(skb, sp->vlgrp,
  6468. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6469. else
  6470. vlan_hwaccel_rx(skb, sp->vlgrp,
  6471. RXD_GET_VLAN_TAG(rxdp->Control_2));
  6472. } else {
  6473. if (napi)
  6474. netif_receive_skb(skb);
  6475. else
  6476. netif_rx(skb);
  6477. }
  6478. } else {
  6479. send_up:
  6480. queue_rx_frame(skb);
  6481. }
  6482. dev->last_rx = jiffies;
  6483. aggregate:
  6484. atomic_dec(&sp->rx_bufs_left[ring_no]);
  6485. return SUCCESS;
  6486. }
  6487. /**
  6488. * s2io_link - stops/starts the Tx queue.
  6489. * @sp : private member of the device structure, which is a pointer to the
  6490. * s2io_nic structure.
  6491. * @link : inidicates whether link is UP/DOWN.
  6492. * Description:
  6493. * This function stops/starts the Tx queue depending on whether the link
  6494. * status of the NIC is is down or up. This is called by the Alarm
  6495. * interrupt handler whenever a link change interrupt comes up.
  6496. * Return value:
  6497. * void.
  6498. */
  6499. static void s2io_link(struct s2io_nic * sp, int link)
  6500. {
  6501. struct net_device *dev = (struct net_device *) sp->dev;
  6502. if (link != sp->last_link_state) {
  6503. if (link == LINK_DOWN) {
  6504. DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
  6505. netif_carrier_off(dev);
  6506. if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
  6507. sp->mac_control.stats_info->sw_stat.link_up_time =
  6508. jiffies - sp->start_time;
  6509. sp->mac_control.stats_info->sw_stat.link_down_cnt++;
  6510. } else {
  6511. DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
  6512. if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
  6513. sp->mac_control.stats_info->sw_stat.link_down_time =
  6514. jiffies - sp->start_time;
  6515. sp->mac_control.stats_info->sw_stat.link_up_cnt++;
  6516. netif_carrier_on(dev);
  6517. }
  6518. }
  6519. sp->last_link_state = link;
  6520. sp->start_time = jiffies;
  6521. }
  6522. /**
  6523. * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
  6524. * @sp : private member of the device structure, which is a pointer to the
  6525. * s2io_nic structure.
  6526. * Description:
  6527. * This function initializes a few of the PCI and PCI-X configuration registers
  6528. * with recommended values.
  6529. * Return value:
  6530. * void
  6531. */
  6532. static void s2io_init_pci(struct s2io_nic * sp)
  6533. {
  6534. u16 pci_cmd = 0, pcix_cmd = 0;
  6535. /* Enable Data Parity Error Recovery in PCI-X command register. */
  6536. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6537. &(pcix_cmd));
  6538. pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6539. (pcix_cmd | 1));
  6540. pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
  6541. &(pcix_cmd));
  6542. /* Set the PErr Response bit in PCI command register. */
  6543. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6544. pci_write_config_word(sp->pdev, PCI_COMMAND,
  6545. (pci_cmd | PCI_COMMAND_PARITY));
  6546. pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
  6547. }
  6548. static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
  6549. {
  6550. if ( tx_fifo_num > 8) {
  6551. DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
  6552. "supported\n");
  6553. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
  6554. tx_fifo_num = 8;
  6555. }
  6556. if ( rx_ring_num > 8) {
  6557. DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
  6558. "supported\n");
  6559. DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
  6560. rx_ring_num = 8;
  6561. }
  6562. if (*dev_intr_type != INTA)
  6563. napi = 0;
  6564. if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
  6565. DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
  6566. "Defaulting to INTA\n");
  6567. *dev_intr_type = INTA;
  6568. }
  6569. if ((*dev_intr_type == MSI_X) &&
  6570. ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
  6571. (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
  6572. DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
  6573. "Defaulting to INTA\n");
  6574. *dev_intr_type = INTA;
  6575. }
  6576. if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
  6577. DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
  6578. DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
  6579. rx_ring_mode = 1;
  6580. }
  6581. return SUCCESS;
  6582. }
  6583. /**
  6584. * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
  6585. * or Traffic class respectively.
  6586. * @nic: device peivate variable
  6587. * Description: The function configures the receive steering to
  6588. * desired receive ring.
  6589. * Return Value: SUCCESS on success and
  6590. * '-1' on failure (endian settings incorrect).
  6591. */
  6592. static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
  6593. {
  6594. struct XENA_dev_config __iomem *bar0 = nic->bar0;
  6595. register u64 val64 = 0;
  6596. if (ds_codepoint > 63)
  6597. return FAILURE;
  6598. val64 = RTS_DS_MEM_DATA(ring);
  6599. writeq(val64, &bar0->rts_ds_mem_data);
  6600. val64 = RTS_DS_MEM_CTRL_WE |
  6601. RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
  6602. RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
  6603. writeq(val64, &bar0->rts_ds_mem_ctrl);
  6604. return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
  6605. RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
  6606. S2IO_BIT_RESET);
  6607. }
  6608. /**
  6609. * s2io_init_nic - Initialization of the adapter .
  6610. * @pdev : structure containing the PCI related information of the device.
  6611. * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
  6612. * Description:
  6613. * The function initializes an adapter identified by the pci_dec structure.
  6614. * All OS related initialization including memory and device structure and
  6615. * initlaization of the device private variable is done. Also the swapper
  6616. * control register is initialized to enable read and write into the I/O
  6617. * registers of the device.
  6618. * Return value:
  6619. * returns 0 on success and negative on failure.
  6620. */
  6621. static int __devinit
  6622. s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
  6623. {
  6624. struct s2io_nic *sp;
  6625. struct net_device *dev;
  6626. int i, j, ret;
  6627. int dma_flag = FALSE;
  6628. u32 mac_up, mac_down;
  6629. u64 val64 = 0, tmp64 = 0;
  6630. struct XENA_dev_config __iomem *bar0 = NULL;
  6631. u16 subid;
  6632. struct mac_info *mac_control;
  6633. struct config_param *config;
  6634. int mode;
  6635. u8 dev_intr_type = intr_type;
  6636. DECLARE_MAC_BUF(mac);
  6637. if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
  6638. return ret;
  6639. if ((ret = pci_enable_device(pdev))) {
  6640. DBG_PRINT(ERR_DBG,
  6641. "s2io_init_nic: pci_enable_device failed\n");
  6642. return ret;
  6643. }
  6644. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  6645. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
  6646. dma_flag = TRUE;
  6647. if (pci_set_consistent_dma_mask
  6648. (pdev, DMA_64BIT_MASK)) {
  6649. DBG_PRINT(ERR_DBG,
  6650. "Unable to obtain 64bit DMA for \
  6651. consistent allocations\n");
  6652. pci_disable_device(pdev);
  6653. return -ENOMEM;
  6654. }
  6655. } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
  6656. DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
  6657. } else {
  6658. pci_disable_device(pdev);
  6659. return -ENOMEM;
  6660. }
  6661. if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
  6662. DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
  6663. pci_disable_device(pdev);
  6664. return -ENODEV;
  6665. }
  6666. dev = alloc_etherdev(sizeof(struct s2io_nic));
  6667. if (dev == NULL) {
  6668. DBG_PRINT(ERR_DBG, "Device allocation failed\n");
  6669. pci_disable_device(pdev);
  6670. pci_release_regions(pdev);
  6671. return -ENODEV;
  6672. }
  6673. pci_set_master(pdev);
  6674. pci_set_drvdata(pdev, dev);
  6675. SET_NETDEV_DEV(dev, &pdev->dev);
  6676. /* Private member variable initialized to s2io NIC structure */
  6677. sp = dev->priv;
  6678. memset(sp, 0, sizeof(struct s2io_nic));
  6679. sp->dev = dev;
  6680. sp->pdev = pdev;
  6681. sp->high_dma_flag = dma_flag;
  6682. sp->device_enabled_once = FALSE;
  6683. if (rx_ring_mode == 1)
  6684. sp->rxd_mode = RXD_MODE_1;
  6685. if (rx_ring_mode == 2)
  6686. sp->rxd_mode = RXD_MODE_3B;
  6687. sp->config.intr_type = dev_intr_type;
  6688. if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
  6689. (pdev->device == PCI_DEVICE_ID_HERC_UNI))
  6690. sp->device_type = XFRAME_II_DEVICE;
  6691. else
  6692. sp->device_type = XFRAME_I_DEVICE;
  6693. sp->lro = lro;
  6694. /* Initialize some PCI/PCI-X fields of the NIC. */
  6695. s2io_init_pci(sp);
  6696. /*
  6697. * Setting the device configuration parameters.
  6698. * Most of these parameters can be specified by the user during
  6699. * module insertion as they are module loadable parameters. If
  6700. * these parameters are not not specified during load time, they
  6701. * are initialized with default values.
  6702. */
  6703. mac_control = &sp->mac_control;
  6704. config = &sp->config;
  6705. config->napi = napi;
  6706. /* Tx side parameters. */
  6707. config->tx_fifo_num = tx_fifo_num;
  6708. for (i = 0; i < MAX_TX_FIFOS; i++) {
  6709. config->tx_cfg[i].fifo_len = tx_fifo_len[i];
  6710. config->tx_cfg[i].fifo_priority = i;
  6711. }
  6712. /* mapping the QoS priority to the configured fifos */
  6713. for (i = 0; i < MAX_TX_FIFOS; i++)
  6714. config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
  6715. config->tx_intr_type = TXD_INT_TYPE_UTILZ;
  6716. for (i = 0; i < config->tx_fifo_num; i++) {
  6717. config->tx_cfg[i].f_no_snoop =
  6718. (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
  6719. if (config->tx_cfg[i].fifo_len < 65) {
  6720. config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
  6721. break;
  6722. }
  6723. }
  6724. /* + 2 because one Txd for skb->data and one Txd for UFO */
  6725. config->max_txds = MAX_SKB_FRAGS + 2;
  6726. /* Rx side parameters. */
  6727. config->rx_ring_num = rx_ring_num;
  6728. for (i = 0; i < MAX_RX_RINGS; i++) {
  6729. config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
  6730. (rxd_count[sp->rxd_mode] + 1);
  6731. config->rx_cfg[i].ring_priority = i;
  6732. }
  6733. for (i = 0; i < rx_ring_num; i++) {
  6734. config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
  6735. config->rx_cfg[i].f_no_snoop =
  6736. (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
  6737. }
  6738. /* Setting Mac Control parameters */
  6739. mac_control->rmac_pause_time = rmac_pause_time;
  6740. mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
  6741. mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
  6742. /* Initialize Ring buffer parameters. */
  6743. for (i = 0; i < config->rx_ring_num; i++)
  6744. atomic_set(&sp->rx_bufs_left[i], 0);
  6745. /* initialize the shared memory used by the NIC and the host */
  6746. if (init_shared_mem(sp)) {
  6747. DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
  6748. dev->name);
  6749. ret = -ENOMEM;
  6750. goto mem_alloc_failed;
  6751. }
  6752. sp->bar0 = ioremap(pci_resource_start(pdev, 0),
  6753. pci_resource_len(pdev, 0));
  6754. if (!sp->bar0) {
  6755. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
  6756. dev->name);
  6757. ret = -ENOMEM;
  6758. goto bar0_remap_failed;
  6759. }
  6760. sp->bar1 = ioremap(pci_resource_start(pdev, 2),
  6761. pci_resource_len(pdev, 2));
  6762. if (!sp->bar1) {
  6763. DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
  6764. dev->name);
  6765. ret = -ENOMEM;
  6766. goto bar1_remap_failed;
  6767. }
  6768. dev->irq = pdev->irq;
  6769. dev->base_addr = (unsigned long) sp->bar0;
  6770. /* Initializing the BAR1 address as the start of the FIFO pointer. */
  6771. for (j = 0; j < MAX_TX_FIFOS; j++) {
  6772. mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
  6773. (sp->bar1 + (j * 0x00020000));
  6774. }
  6775. /* Driver entry points */
  6776. dev->open = &s2io_open;
  6777. dev->stop = &s2io_close;
  6778. dev->hard_start_xmit = &s2io_xmit;
  6779. dev->get_stats = &s2io_get_stats;
  6780. dev->set_multicast_list = &s2io_set_multicast;
  6781. dev->do_ioctl = &s2io_ioctl;
  6782. dev->change_mtu = &s2io_change_mtu;
  6783. SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
  6784. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  6785. dev->vlan_rx_register = s2io_vlan_rx_register;
  6786. /*
  6787. * will use eth_mac_addr() for dev->set_mac_address
  6788. * mac address will be set every time dev->open() is called
  6789. */
  6790. netif_napi_add(dev, &sp->napi, s2io_poll, 32);
  6791. #ifdef CONFIG_NET_POLL_CONTROLLER
  6792. dev->poll_controller = s2io_netpoll;
  6793. #endif
  6794. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  6795. if (sp->high_dma_flag == TRUE)
  6796. dev->features |= NETIF_F_HIGHDMA;
  6797. dev->features |= NETIF_F_TSO;
  6798. dev->features |= NETIF_F_TSO6;
  6799. if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
  6800. dev->features |= NETIF_F_UFO;
  6801. dev->features |= NETIF_F_HW_CSUM;
  6802. }
  6803. dev->tx_timeout = &s2io_tx_watchdog;
  6804. dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
  6805. INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
  6806. INIT_WORK(&sp->set_link_task, s2io_set_link);
  6807. pci_save_state(sp->pdev);
  6808. /* Setting swapper control on the NIC, for proper reset operation */
  6809. if (s2io_set_swapper(sp)) {
  6810. DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
  6811. dev->name);
  6812. ret = -EAGAIN;
  6813. goto set_swap_failed;
  6814. }
  6815. /* Verify if the Herc works on the slot its placed into */
  6816. if (sp->device_type & XFRAME_II_DEVICE) {
  6817. mode = s2io_verify_pci_mode(sp);
  6818. if (mode < 0) {
  6819. DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
  6820. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6821. ret = -EBADSLT;
  6822. goto set_swap_failed;
  6823. }
  6824. }
  6825. /* Not needed for Herc */
  6826. if (sp->device_type & XFRAME_I_DEVICE) {
  6827. /*
  6828. * Fix for all "FFs" MAC address problems observed on
  6829. * Alpha platforms
  6830. */
  6831. fix_mac_address(sp);
  6832. s2io_reset(sp);
  6833. }
  6834. /*
  6835. * MAC address initialization.
  6836. * For now only one mac address will be read and used.
  6837. */
  6838. bar0 = sp->bar0;
  6839. val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
  6840. RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
  6841. writeq(val64, &bar0->rmac_addr_cmd_mem);
  6842. wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
  6843. RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
  6844. tmp64 = readq(&bar0->rmac_addr_data0_mem);
  6845. mac_down = (u32) tmp64;
  6846. mac_up = (u32) (tmp64 >> 32);
  6847. sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
  6848. sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
  6849. sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
  6850. sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
  6851. sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
  6852. sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
  6853. /* Set the factory defined MAC address initially */
  6854. dev->addr_len = ETH_ALEN;
  6855. memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
  6856. /* Store the values of the MSIX table in the s2io_nic structure */
  6857. store_xmsi_data(sp);
  6858. /* reset Nic and bring it to known state */
  6859. s2io_reset(sp);
  6860. /*
  6861. * Initialize the tasklet status and link state flags
  6862. * and the card state parameter
  6863. */
  6864. sp->tasklet_status = 0;
  6865. sp->state = 0;
  6866. /* Initialize spinlocks */
  6867. spin_lock_init(&sp->tx_lock);
  6868. if (!napi)
  6869. spin_lock_init(&sp->put_lock);
  6870. spin_lock_init(&sp->rx_lock);
  6871. /*
  6872. * SXE-002: Configure link and activity LED to init state
  6873. * on driver load.
  6874. */
  6875. subid = sp->pdev->subsystem_device;
  6876. if ((subid & 0xFF) >= 0x07) {
  6877. val64 = readq(&bar0->gpio_control);
  6878. val64 |= 0x0000800000000000ULL;
  6879. writeq(val64, &bar0->gpio_control);
  6880. val64 = 0x0411040400000000ULL;
  6881. writeq(val64, (void __iomem *) bar0 + 0x2700);
  6882. val64 = readq(&bar0->gpio_control);
  6883. }
  6884. sp->rx_csum = 1; /* Rx chksum verify enabled by default */
  6885. if (register_netdev(dev)) {
  6886. DBG_PRINT(ERR_DBG, "Device registration failed\n");
  6887. ret = -ENODEV;
  6888. goto register_failed;
  6889. }
  6890. s2io_vpd_read(sp);
  6891. DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
  6892. DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
  6893. sp->product_name, pdev->revision);
  6894. DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
  6895. s2io_driver_version);
  6896. DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
  6897. dev->name, print_mac(mac, dev->dev_addr));
  6898. DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
  6899. if (sp->device_type & XFRAME_II_DEVICE) {
  6900. mode = s2io_print_pci_mode(sp);
  6901. if (mode < 0) {
  6902. DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
  6903. ret = -EBADSLT;
  6904. unregister_netdev(dev);
  6905. goto set_swap_failed;
  6906. }
  6907. }
  6908. switch(sp->rxd_mode) {
  6909. case RXD_MODE_1:
  6910. DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
  6911. dev->name);
  6912. break;
  6913. case RXD_MODE_3B:
  6914. DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
  6915. dev->name);
  6916. break;
  6917. }
  6918. if (napi)
  6919. DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
  6920. switch(sp->config.intr_type) {
  6921. case INTA:
  6922. DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
  6923. break;
  6924. case MSI_X:
  6925. DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
  6926. break;
  6927. }
  6928. if (sp->lro)
  6929. DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
  6930. dev->name);
  6931. if (ufo)
  6932. DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
  6933. " enabled\n", dev->name);
  6934. /* Initialize device name */
  6935. sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
  6936. /* Initialize bimodal Interrupts */
  6937. sp->config.bimodal = bimodal;
  6938. if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
  6939. sp->config.bimodal = 0;
  6940. DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
  6941. dev->name);
  6942. }
  6943. /*
  6944. * Make Link state as off at this point, when the Link change
  6945. * interrupt comes the state will be automatically changed to
  6946. * the right state.
  6947. */
  6948. netif_carrier_off(dev);
  6949. return 0;
  6950. register_failed:
  6951. set_swap_failed:
  6952. iounmap(sp->bar1);
  6953. bar1_remap_failed:
  6954. iounmap(sp->bar0);
  6955. bar0_remap_failed:
  6956. mem_alloc_failed:
  6957. free_shared_mem(sp);
  6958. pci_disable_device(pdev);
  6959. pci_release_regions(pdev);
  6960. pci_set_drvdata(pdev, NULL);
  6961. free_netdev(dev);
  6962. return ret;
  6963. }
  6964. /**
  6965. * s2io_rem_nic - Free the PCI device
  6966. * @pdev: structure containing the PCI related information of the device.
  6967. * Description: This function is called by the Pci subsystem to release a
  6968. * PCI device and free up all resource held up by the device. This could
  6969. * be in response to a Hot plug event or when the driver is to be removed
  6970. * from memory.
  6971. */
  6972. static void __devexit s2io_rem_nic(struct pci_dev *pdev)
  6973. {
  6974. struct net_device *dev =
  6975. (struct net_device *) pci_get_drvdata(pdev);
  6976. struct s2io_nic *sp;
  6977. if (dev == NULL) {
  6978. DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
  6979. return;
  6980. }
  6981. flush_scheduled_work();
  6982. sp = dev->priv;
  6983. unregister_netdev(dev);
  6984. free_shared_mem(sp);
  6985. iounmap(sp->bar0);
  6986. iounmap(sp->bar1);
  6987. pci_release_regions(pdev);
  6988. pci_set_drvdata(pdev, NULL);
  6989. free_netdev(dev);
  6990. pci_disable_device(pdev);
  6991. }
  6992. /**
  6993. * s2io_starter - Entry point for the driver
  6994. * Description: This function is the entry point for the driver. It verifies
  6995. * the module loadable parameters and initializes PCI configuration space.
  6996. */
  6997. int __init s2io_starter(void)
  6998. {
  6999. return pci_register_driver(&s2io_driver);
  7000. }
  7001. /**
  7002. * s2io_closer - Cleanup routine for the driver
  7003. * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
  7004. */
  7005. static __exit void s2io_closer(void)
  7006. {
  7007. pci_unregister_driver(&s2io_driver);
  7008. DBG_PRINT(INIT_DBG, "cleanup done\n");
  7009. }
  7010. module_init(s2io_starter);
  7011. module_exit(s2io_closer);
  7012. static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
  7013. struct tcphdr **tcp, struct RxD_t *rxdp)
  7014. {
  7015. int ip_off;
  7016. u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
  7017. if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
  7018. DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
  7019. __FUNCTION__);
  7020. return -1;
  7021. }
  7022. /* TODO:
  7023. * By default the VLAN field in the MAC is stripped by the card, if this
  7024. * feature is turned off in rx_pa_cfg register, then the ip_off field
  7025. * has to be shifted by a further 2 bytes
  7026. */
  7027. switch (l2_type) {
  7028. case 0: /* DIX type */
  7029. case 4: /* DIX type with VLAN */
  7030. ip_off = HEADER_ETHERNET_II_802_3_SIZE;
  7031. break;
  7032. /* LLC, SNAP etc are considered non-mergeable */
  7033. default:
  7034. return -1;
  7035. }
  7036. *ip = (struct iphdr *)((u8 *)buffer + ip_off);
  7037. ip_len = (u8)((*ip)->ihl);
  7038. ip_len <<= 2;
  7039. *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
  7040. return 0;
  7041. }
  7042. static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
  7043. struct tcphdr *tcp)
  7044. {
  7045. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7046. if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
  7047. (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
  7048. return -1;
  7049. return 0;
  7050. }
  7051. static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
  7052. {
  7053. return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
  7054. }
  7055. static void initiate_new_session(struct lro *lro, u8 *l2h,
  7056. struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
  7057. {
  7058. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7059. lro->l2h = l2h;
  7060. lro->iph = ip;
  7061. lro->tcph = tcp;
  7062. lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
  7063. lro->tcp_ack = ntohl(tcp->ack_seq);
  7064. lro->sg_num = 1;
  7065. lro->total_len = ntohs(ip->tot_len);
  7066. lro->frags_len = 0;
  7067. /*
  7068. * check if we saw TCP timestamp. Other consistency checks have
  7069. * already been done.
  7070. */
  7071. if (tcp->doff == 8) {
  7072. u32 *ptr;
  7073. ptr = (u32 *)(tcp+1);
  7074. lro->saw_ts = 1;
  7075. lro->cur_tsval = *(ptr+1);
  7076. lro->cur_tsecr = *(ptr+2);
  7077. }
  7078. lro->in_use = 1;
  7079. }
  7080. static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
  7081. {
  7082. struct iphdr *ip = lro->iph;
  7083. struct tcphdr *tcp = lro->tcph;
  7084. __sum16 nchk;
  7085. struct stat_block *statinfo = sp->mac_control.stats_info;
  7086. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7087. /* Update L3 header */
  7088. ip->tot_len = htons(lro->total_len);
  7089. ip->check = 0;
  7090. nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
  7091. ip->check = nchk;
  7092. /* Update L4 header */
  7093. tcp->ack_seq = lro->tcp_ack;
  7094. tcp->window = lro->window;
  7095. /* Update tsecr field if this session has timestamps enabled */
  7096. if (lro->saw_ts) {
  7097. u32 *ptr = (u32 *)(tcp + 1);
  7098. *(ptr+2) = lro->cur_tsecr;
  7099. }
  7100. /* Update counters required for calculation of
  7101. * average no. of packets aggregated.
  7102. */
  7103. statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
  7104. statinfo->sw_stat.num_aggregations++;
  7105. }
  7106. static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
  7107. struct tcphdr *tcp, u32 l4_pyld)
  7108. {
  7109. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7110. lro->total_len += l4_pyld;
  7111. lro->frags_len += l4_pyld;
  7112. lro->tcp_next_seq += l4_pyld;
  7113. lro->sg_num++;
  7114. /* Update ack seq no. and window ad(from this pkt) in LRO object */
  7115. lro->tcp_ack = tcp->ack_seq;
  7116. lro->window = tcp->window;
  7117. if (lro->saw_ts) {
  7118. u32 *ptr;
  7119. /* Update tsecr and tsval from this packet */
  7120. ptr = (u32 *) (tcp + 1);
  7121. lro->cur_tsval = *(ptr + 1);
  7122. lro->cur_tsecr = *(ptr + 2);
  7123. }
  7124. }
  7125. static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
  7126. struct tcphdr *tcp, u32 tcp_pyld_len)
  7127. {
  7128. u8 *ptr;
  7129. DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
  7130. if (!tcp_pyld_len) {
  7131. /* Runt frame or a pure ack */
  7132. return -1;
  7133. }
  7134. if (ip->ihl != 5) /* IP has options */
  7135. return -1;
  7136. /* If we see CE codepoint in IP header, packet is not mergeable */
  7137. if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
  7138. return -1;
  7139. /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
  7140. if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
  7141. tcp->ece || tcp->cwr || !tcp->ack) {
  7142. /*
  7143. * Currently recognize only the ack control word and
  7144. * any other control field being set would result in
  7145. * flushing the LRO session
  7146. */
  7147. return -1;
  7148. }
  7149. /*
  7150. * Allow only one TCP timestamp option. Don't aggregate if
  7151. * any other options are detected.
  7152. */
  7153. if (tcp->doff != 5 && tcp->doff != 8)
  7154. return -1;
  7155. if (tcp->doff == 8) {
  7156. ptr = (u8 *)(tcp + 1);
  7157. while (*ptr == TCPOPT_NOP)
  7158. ptr++;
  7159. if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
  7160. return -1;
  7161. /* Ensure timestamp value increases monotonically */
  7162. if (l_lro)
  7163. if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
  7164. return -1;
  7165. /* timestamp echo reply should be non-zero */
  7166. if (*((u32 *)(ptr+6)) == 0)
  7167. return -1;
  7168. }
  7169. return 0;
  7170. }
  7171. static int
  7172. s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
  7173. struct RxD_t *rxdp, struct s2io_nic *sp)
  7174. {
  7175. struct iphdr *ip;
  7176. struct tcphdr *tcph;
  7177. int ret = 0, i;
  7178. if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
  7179. rxdp))) {
  7180. DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
  7181. ip->saddr, ip->daddr);
  7182. } else {
  7183. return ret;
  7184. }
  7185. tcph = (struct tcphdr *)*tcp;
  7186. *tcp_len = get_l4_pyld_length(ip, tcph);
  7187. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7188. struct lro *l_lro = &sp->lro0_n[i];
  7189. if (l_lro->in_use) {
  7190. if (check_for_socket_match(l_lro, ip, tcph))
  7191. continue;
  7192. /* Sock pair matched */
  7193. *lro = l_lro;
  7194. if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
  7195. DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
  7196. "0x%x, actual 0x%x\n", __FUNCTION__,
  7197. (*lro)->tcp_next_seq,
  7198. ntohl(tcph->seq));
  7199. sp->mac_control.stats_info->
  7200. sw_stat.outof_sequence_pkts++;
  7201. ret = 2;
  7202. break;
  7203. }
  7204. if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
  7205. ret = 1; /* Aggregate */
  7206. else
  7207. ret = 2; /* Flush both */
  7208. break;
  7209. }
  7210. }
  7211. if (ret == 0) {
  7212. /* Before searching for available LRO objects,
  7213. * check if the pkt is L3/L4 aggregatable. If not
  7214. * don't create new LRO session. Just send this
  7215. * packet up.
  7216. */
  7217. if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
  7218. return 5;
  7219. }
  7220. for (i=0; i<MAX_LRO_SESSIONS; i++) {
  7221. struct lro *l_lro = &sp->lro0_n[i];
  7222. if (!(l_lro->in_use)) {
  7223. *lro = l_lro;
  7224. ret = 3; /* Begin anew */
  7225. break;
  7226. }
  7227. }
  7228. }
  7229. if (ret == 0) { /* sessions exceeded */
  7230. DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
  7231. __FUNCTION__);
  7232. *lro = NULL;
  7233. return ret;
  7234. }
  7235. switch (ret) {
  7236. case 3:
  7237. initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
  7238. break;
  7239. case 2:
  7240. update_L3L4_header(sp, *lro);
  7241. break;
  7242. case 1:
  7243. aggregate_new_rx(*lro, ip, tcph, *tcp_len);
  7244. if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
  7245. update_L3L4_header(sp, *lro);
  7246. ret = 4; /* Flush the LRO */
  7247. }
  7248. break;
  7249. default:
  7250. DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
  7251. __FUNCTION__);
  7252. break;
  7253. }
  7254. return ret;
  7255. }
  7256. static void clear_lro_session(struct lro *lro)
  7257. {
  7258. static u16 lro_struct_size = sizeof(struct lro);
  7259. memset(lro, 0, lro_struct_size);
  7260. }
  7261. static void queue_rx_frame(struct sk_buff *skb)
  7262. {
  7263. struct net_device *dev = skb->dev;
  7264. skb->protocol = eth_type_trans(skb, dev);
  7265. if (napi)
  7266. netif_receive_skb(skb);
  7267. else
  7268. netif_rx(skb);
  7269. }
  7270. static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
  7271. struct sk_buff *skb,
  7272. u32 tcp_len)
  7273. {
  7274. struct sk_buff *first = lro->parent;
  7275. first->len += tcp_len;
  7276. first->data_len = lro->frags_len;
  7277. skb_pull(skb, (skb->len - tcp_len));
  7278. if (skb_shinfo(first)->frag_list)
  7279. lro->last_frag->next = skb;
  7280. else
  7281. skb_shinfo(first)->frag_list = skb;
  7282. first->truesize += skb->truesize;
  7283. lro->last_frag = skb;
  7284. sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
  7285. return;
  7286. }
  7287. /**
  7288. * s2io_io_error_detected - called when PCI error is detected
  7289. * @pdev: Pointer to PCI device
  7290. * @state: The current pci connection state
  7291. *
  7292. * This function is called after a PCI bus error affecting
  7293. * this device has been detected.
  7294. */
  7295. static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
  7296. pci_channel_state_t state)
  7297. {
  7298. struct net_device *netdev = pci_get_drvdata(pdev);
  7299. struct s2io_nic *sp = netdev->priv;
  7300. netif_device_detach(netdev);
  7301. if (netif_running(netdev)) {
  7302. /* Bring down the card, while avoiding PCI I/O */
  7303. do_s2io_card_down(sp, 0);
  7304. }
  7305. pci_disable_device(pdev);
  7306. return PCI_ERS_RESULT_NEED_RESET;
  7307. }
  7308. /**
  7309. * s2io_io_slot_reset - called after the pci bus has been reset.
  7310. * @pdev: Pointer to PCI device
  7311. *
  7312. * Restart the card from scratch, as if from a cold-boot.
  7313. * At this point, the card has exprienced a hard reset,
  7314. * followed by fixups by BIOS, and has its config space
  7315. * set up identically to what it was at cold boot.
  7316. */
  7317. static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
  7318. {
  7319. struct net_device *netdev = pci_get_drvdata(pdev);
  7320. struct s2io_nic *sp = netdev->priv;
  7321. if (pci_enable_device(pdev)) {
  7322. printk(KERN_ERR "s2io: "
  7323. "Cannot re-enable PCI device after reset.\n");
  7324. return PCI_ERS_RESULT_DISCONNECT;
  7325. }
  7326. pci_set_master(pdev);
  7327. s2io_reset(sp);
  7328. return PCI_ERS_RESULT_RECOVERED;
  7329. }
  7330. /**
  7331. * s2io_io_resume - called when traffic can start flowing again.
  7332. * @pdev: Pointer to PCI device
  7333. *
  7334. * This callback is called when the error recovery driver tells
  7335. * us that its OK to resume normal operation.
  7336. */
  7337. static void s2io_io_resume(struct pci_dev *pdev)
  7338. {
  7339. struct net_device *netdev = pci_get_drvdata(pdev);
  7340. struct s2io_nic *sp = netdev->priv;
  7341. if (netif_running(netdev)) {
  7342. if (s2io_card_up(sp)) {
  7343. printk(KERN_ERR "s2io: "
  7344. "Can't bring device back up after reset.\n");
  7345. return;
  7346. }
  7347. if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
  7348. s2io_card_down(sp);
  7349. printk(KERN_ERR "s2io: "
  7350. "Can't resetore mac addr after reset.\n");
  7351. return;
  7352. }
  7353. }
  7354. netif_device_attach(netdev);
  7355. netif_wake_queue(netdev);
  7356. }