intel_dp.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. #define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
  41. #define IS_PCH_eDP(dp_priv) ((dp_priv)->is_pch_edp)
  42. struct intel_dp_priv {
  43. uint32_t output_reg;
  44. uint32_t DP;
  45. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  46. bool has_audio;
  47. int dpms_mode;
  48. uint8_t link_bw;
  49. uint8_t lane_count;
  50. uint8_t dpcd[4];
  51. struct intel_encoder *intel_encoder;
  52. struct i2c_adapter adapter;
  53. struct i2c_algo_dp_aux_data algo;
  54. bool is_pch_edp;
  55. };
  56. static void
  57. intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
  58. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
  59. static void
  60. intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
  61. void
  62. intel_edp_link_config (struct intel_encoder *intel_encoder,
  63. int *lane_num, int *link_bw)
  64. {
  65. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  66. *lane_num = dp_priv->lane_count;
  67. if (dp_priv->link_bw == DP_LINK_BW_1_62)
  68. *link_bw = 162000;
  69. else if (dp_priv->link_bw == DP_LINK_BW_2_7)
  70. *link_bw = 270000;
  71. }
  72. static int
  73. intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
  74. {
  75. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  76. int max_lane_count = 4;
  77. if (dp_priv->dpcd[0] >= 0x11) {
  78. max_lane_count = dp_priv->dpcd[2] & 0x1f;
  79. switch (max_lane_count) {
  80. case 1: case 2: case 4:
  81. break;
  82. default:
  83. max_lane_count = 4;
  84. }
  85. }
  86. return max_lane_count;
  87. }
  88. static int
  89. intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
  90. {
  91. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  92. int max_link_bw = dp_priv->dpcd[1];
  93. switch (max_link_bw) {
  94. case DP_LINK_BW_1_62:
  95. case DP_LINK_BW_2_7:
  96. break;
  97. default:
  98. max_link_bw = DP_LINK_BW_1_62;
  99. break;
  100. }
  101. return max_link_bw;
  102. }
  103. static int
  104. intel_dp_link_clock(uint8_t link_bw)
  105. {
  106. if (link_bw == DP_LINK_BW_2_7)
  107. return 270000;
  108. else
  109. return 162000;
  110. }
  111. /* I think this is a fiction */
  112. static int
  113. intel_dp_link_required(struct drm_device *dev,
  114. struct intel_encoder *intel_encoder, int pixel_clock)
  115. {
  116. struct drm_i915_private *dev_priv = dev->dev_private;
  117. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  118. if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv))
  119. return (pixel_clock * dev_priv->edp_bpp) / 8;
  120. else
  121. return pixel_clock * 3;
  122. }
  123. static int
  124. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  125. {
  126. return (max_link_clock * max_lanes * 8) / 10;
  127. }
  128. static int
  129. intel_dp_mode_valid(struct drm_connector *connector,
  130. struct drm_display_mode *mode)
  131. {
  132. struct drm_encoder *encoder = intel_attached_encoder(connector);
  133. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  134. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
  135. int max_lanes = intel_dp_max_lane_count(intel_encoder);
  136. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  137. which are outside spec tolerances but somehow work by magic */
  138. if (!IS_eDP(intel_encoder) &&
  139. (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
  140. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  141. return MODE_CLOCK_HIGH;
  142. if (mode->clock < 10000)
  143. return MODE_CLOCK_LOW;
  144. return MODE_OK;
  145. }
  146. static uint32_t
  147. pack_aux(uint8_t *src, int src_bytes)
  148. {
  149. int i;
  150. uint32_t v = 0;
  151. if (src_bytes > 4)
  152. src_bytes = 4;
  153. for (i = 0; i < src_bytes; i++)
  154. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  155. return v;
  156. }
  157. static void
  158. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  159. {
  160. int i;
  161. if (dst_bytes > 4)
  162. dst_bytes = 4;
  163. for (i = 0; i < dst_bytes; i++)
  164. dst[i] = src >> ((3-i) * 8);
  165. }
  166. /* hrawclock is 1/4 the FSB frequency */
  167. static int
  168. intel_hrawclk(struct drm_device *dev)
  169. {
  170. struct drm_i915_private *dev_priv = dev->dev_private;
  171. uint32_t clkcfg;
  172. clkcfg = I915_READ(CLKCFG);
  173. switch (clkcfg & CLKCFG_FSB_MASK) {
  174. case CLKCFG_FSB_400:
  175. return 100;
  176. case CLKCFG_FSB_533:
  177. return 133;
  178. case CLKCFG_FSB_667:
  179. return 166;
  180. case CLKCFG_FSB_800:
  181. return 200;
  182. case CLKCFG_FSB_1067:
  183. return 266;
  184. case CLKCFG_FSB_1333:
  185. return 333;
  186. /* these two are just a guess; one of them might be right */
  187. case CLKCFG_FSB_1600:
  188. case CLKCFG_FSB_1600_ALT:
  189. return 400;
  190. default:
  191. return 133;
  192. }
  193. }
  194. static int
  195. intel_dp_aux_ch(struct intel_encoder *intel_encoder,
  196. uint8_t *send, int send_bytes,
  197. uint8_t *recv, int recv_size)
  198. {
  199. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  200. uint32_t output_reg = dp_priv->output_reg;
  201. struct drm_device *dev = intel_encoder->enc.dev;
  202. struct drm_i915_private *dev_priv = dev->dev_private;
  203. uint32_t ch_ctl = output_reg + 0x10;
  204. uint32_t ch_data = ch_ctl + 4;
  205. int i;
  206. int recv_bytes;
  207. uint32_t ctl;
  208. uint32_t status;
  209. uint32_t aux_clock_divider;
  210. int try, precharge;
  211. /* The clock divider is based off the hrawclk,
  212. * and would like to run at 2MHz. So, take the
  213. * hrawclk value and divide by 2 and use that
  214. */
  215. if (IS_eDP(intel_encoder)) {
  216. if (IS_GEN6(dev))
  217. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  218. else
  219. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  220. } else if (HAS_PCH_SPLIT(dev))
  221. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  222. else
  223. aux_clock_divider = intel_hrawclk(dev) / 2;
  224. if (IS_GEN6(dev))
  225. precharge = 3;
  226. else
  227. precharge = 5;
  228. /* Must try at least 3 times according to DP spec */
  229. for (try = 0; try < 5; try++) {
  230. /* Load the send data into the aux channel data registers */
  231. for (i = 0; i < send_bytes; i += 4) {
  232. uint32_t d = pack_aux(send + i, send_bytes - i);
  233. I915_WRITE(ch_data + i, d);
  234. }
  235. ctl = (DP_AUX_CH_CTL_SEND_BUSY |
  236. DP_AUX_CH_CTL_TIME_OUT_400us |
  237. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  238. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  239. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  240. DP_AUX_CH_CTL_DONE |
  241. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  242. DP_AUX_CH_CTL_RECEIVE_ERROR);
  243. /* Send the command and wait for it to complete */
  244. I915_WRITE(ch_ctl, ctl);
  245. (void) I915_READ(ch_ctl);
  246. for (;;) {
  247. udelay(100);
  248. status = I915_READ(ch_ctl);
  249. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  250. break;
  251. }
  252. /* Clear done status and any errors */
  253. I915_WRITE(ch_ctl, (status |
  254. DP_AUX_CH_CTL_DONE |
  255. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  256. DP_AUX_CH_CTL_RECEIVE_ERROR));
  257. (void) I915_READ(ch_ctl);
  258. if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
  259. break;
  260. }
  261. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  262. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  263. return -EBUSY;
  264. }
  265. /* Check for timeout or receive error.
  266. * Timeouts occur when the sink is not connected
  267. */
  268. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  269. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  270. return -EIO;
  271. }
  272. /* Timeouts occur when the device isn't connected, so they're
  273. * "normal" -- don't fill the kernel log with these */
  274. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  275. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  276. return -ETIMEDOUT;
  277. }
  278. /* Unload any bytes sent back from the other side */
  279. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  280. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  281. if (recv_bytes > recv_size)
  282. recv_bytes = recv_size;
  283. for (i = 0; i < recv_bytes; i += 4) {
  284. uint32_t d = I915_READ(ch_data + i);
  285. unpack_aux(d, recv + i, recv_bytes - i);
  286. }
  287. return recv_bytes;
  288. }
  289. /* Write data to the aux channel in native mode */
  290. static int
  291. intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
  292. uint16_t address, uint8_t *send, int send_bytes)
  293. {
  294. int ret;
  295. uint8_t msg[20];
  296. int msg_bytes;
  297. uint8_t ack;
  298. if (send_bytes > 16)
  299. return -1;
  300. msg[0] = AUX_NATIVE_WRITE << 4;
  301. msg[1] = address >> 8;
  302. msg[2] = address & 0xff;
  303. msg[3] = send_bytes - 1;
  304. memcpy(&msg[4], send, send_bytes);
  305. msg_bytes = send_bytes + 4;
  306. for (;;) {
  307. ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
  308. if (ret < 0)
  309. return ret;
  310. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  311. break;
  312. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  313. udelay(100);
  314. else
  315. return -EIO;
  316. }
  317. return send_bytes;
  318. }
  319. /* Write a single byte to the aux channel in native mode */
  320. static int
  321. intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
  322. uint16_t address, uint8_t byte)
  323. {
  324. return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
  325. }
  326. /* read bytes from a native aux channel */
  327. static int
  328. intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
  329. uint16_t address, uint8_t *recv, int recv_bytes)
  330. {
  331. uint8_t msg[4];
  332. int msg_bytes;
  333. uint8_t reply[20];
  334. int reply_bytes;
  335. uint8_t ack;
  336. int ret;
  337. msg[0] = AUX_NATIVE_READ << 4;
  338. msg[1] = address >> 8;
  339. msg[2] = address & 0xff;
  340. msg[3] = recv_bytes - 1;
  341. msg_bytes = 4;
  342. reply_bytes = recv_bytes + 1;
  343. for (;;) {
  344. ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
  345. reply, reply_bytes);
  346. if (ret == 0)
  347. return -EPROTO;
  348. if (ret < 0)
  349. return ret;
  350. ack = reply[0];
  351. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  352. memcpy(recv, reply + 1, ret - 1);
  353. return ret - 1;
  354. }
  355. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  356. udelay(100);
  357. else
  358. return -EIO;
  359. }
  360. }
  361. static int
  362. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  363. uint8_t write_byte, uint8_t *read_byte)
  364. {
  365. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  366. struct intel_dp_priv *dp_priv = container_of(adapter,
  367. struct intel_dp_priv,
  368. adapter);
  369. struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
  370. uint16_t address = algo_data->address;
  371. uint8_t msg[5];
  372. uint8_t reply[2];
  373. int msg_bytes;
  374. int reply_bytes;
  375. int ret;
  376. /* Set up the command byte */
  377. if (mode & MODE_I2C_READ)
  378. msg[0] = AUX_I2C_READ << 4;
  379. else
  380. msg[0] = AUX_I2C_WRITE << 4;
  381. if (!(mode & MODE_I2C_STOP))
  382. msg[0] |= AUX_I2C_MOT << 4;
  383. msg[1] = address >> 8;
  384. msg[2] = address;
  385. switch (mode) {
  386. case MODE_I2C_WRITE:
  387. msg[3] = 0;
  388. msg[4] = write_byte;
  389. msg_bytes = 5;
  390. reply_bytes = 1;
  391. break;
  392. case MODE_I2C_READ:
  393. msg[3] = 0;
  394. msg_bytes = 4;
  395. reply_bytes = 2;
  396. break;
  397. default:
  398. msg_bytes = 3;
  399. reply_bytes = 1;
  400. break;
  401. }
  402. for (;;) {
  403. ret = intel_dp_aux_ch(intel_encoder,
  404. msg, msg_bytes,
  405. reply, reply_bytes);
  406. if (ret < 0) {
  407. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  408. return ret;
  409. }
  410. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  411. case AUX_I2C_REPLY_ACK:
  412. if (mode == MODE_I2C_READ) {
  413. *read_byte = reply[1];
  414. }
  415. return reply_bytes - 1;
  416. case AUX_I2C_REPLY_NACK:
  417. DRM_DEBUG_KMS("aux_ch nack\n");
  418. return -EREMOTEIO;
  419. case AUX_I2C_REPLY_DEFER:
  420. DRM_DEBUG_KMS("aux_ch defer\n");
  421. udelay(100);
  422. break;
  423. default:
  424. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  425. return -EREMOTEIO;
  426. }
  427. }
  428. }
  429. static int
  430. intel_dp_i2c_init(struct intel_encoder *intel_encoder,
  431. struct intel_connector *intel_connector, const char *name)
  432. {
  433. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  434. DRM_DEBUG_KMS("i2c_init %s\n", name);
  435. dp_priv->algo.running = false;
  436. dp_priv->algo.address = 0;
  437. dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
  438. memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
  439. dp_priv->adapter.owner = THIS_MODULE;
  440. dp_priv->adapter.class = I2C_CLASS_DDC;
  441. strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
  442. dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
  443. dp_priv->adapter.algo_data = &dp_priv->algo;
  444. dp_priv->adapter.dev.parent = &intel_connector->base.kdev;
  445. return i2c_dp_aux_add_bus(&dp_priv->adapter);
  446. }
  447. static bool
  448. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  449. struct drm_display_mode *adjusted_mode)
  450. {
  451. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  452. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  453. int lane_count, clock;
  454. int max_lane_count = intel_dp_max_lane_count(intel_encoder);
  455. int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
  456. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  457. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  458. for (clock = 0; clock <= max_clock; clock++) {
  459. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  460. if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
  461. <= link_avail) {
  462. dp_priv->link_bw = bws[clock];
  463. dp_priv->lane_count = lane_count;
  464. adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
  465. DRM_DEBUG_KMS("Display port link bw %02x lane "
  466. "count %d clock %d\n",
  467. dp_priv->link_bw, dp_priv->lane_count,
  468. adjusted_mode->clock);
  469. return true;
  470. }
  471. }
  472. }
  473. if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
  474. /* okay we failed just pick the highest */
  475. dp_priv->lane_count = max_lane_count;
  476. dp_priv->link_bw = bws[max_clock];
  477. adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
  478. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  479. "count %d clock %d\n",
  480. dp_priv->link_bw, dp_priv->lane_count,
  481. adjusted_mode->clock);
  482. return true;
  483. }
  484. return false;
  485. }
  486. struct intel_dp_m_n {
  487. uint32_t tu;
  488. uint32_t gmch_m;
  489. uint32_t gmch_n;
  490. uint32_t link_m;
  491. uint32_t link_n;
  492. };
  493. static void
  494. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  495. {
  496. while (*num > 0xffffff || *den > 0xffffff) {
  497. *num >>= 1;
  498. *den >>= 1;
  499. }
  500. }
  501. static void
  502. intel_dp_compute_m_n(int bpp,
  503. int nlanes,
  504. int pixel_clock,
  505. int link_clock,
  506. struct intel_dp_m_n *m_n)
  507. {
  508. m_n->tu = 64;
  509. m_n->gmch_m = (pixel_clock * bpp) >> 3;
  510. m_n->gmch_n = link_clock * nlanes;
  511. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  512. m_n->link_m = pixel_clock;
  513. m_n->link_n = link_clock;
  514. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  515. }
  516. bool intel_pch_has_edp(struct drm_crtc *crtc)
  517. {
  518. struct drm_device *dev = crtc->dev;
  519. struct drm_mode_config *mode_config = &dev->mode_config;
  520. struct drm_encoder *encoder;
  521. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  522. struct intel_encoder *intel_encoder;
  523. struct intel_dp_priv *dp_priv;
  524. if (!encoder || encoder->crtc != crtc)
  525. continue;
  526. intel_encoder = enc_to_intel_encoder(encoder);
  527. dp_priv = intel_encoder->dev_priv;
  528. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT)
  529. return dp_priv->is_pch_edp;
  530. }
  531. return false;
  532. }
  533. void
  534. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  535. struct drm_display_mode *adjusted_mode)
  536. {
  537. struct drm_device *dev = crtc->dev;
  538. struct drm_mode_config *mode_config = &dev->mode_config;
  539. struct drm_encoder *encoder;
  540. struct drm_i915_private *dev_priv = dev->dev_private;
  541. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  542. int lane_count = 4, bpp = 24;
  543. struct intel_dp_m_n m_n;
  544. /*
  545. * Find the lane count in the intel_encoder private
  546. */
  547. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  548. struct intel_encoder *intel_encoder;
  549. struct intel_dp_priv *dp_priv;
  550. if (encoder->crtc != crtc)
  551. continue;
  552. intel_encoder = enc_to_intel_encoder(encoder);
  553. dp_priv = intel_encoder->dev_priv;
  554. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  555. lane_count = dp_priv->lane_count;
  556. if (IS_PCH_eDP(dp_priv))
  557. bpp = dev_priv->edp_bpp;
  558. break;
  559. }
  560. }
  561. /*
  562. * Compute the GMCH and Link ratios. The '3' here is
  563. * the number of bytes_per_pixel post-LUT, which we always
  564. * set up for 8-bits of R/G/B, or 3 bytes total.
  565. */
  566. intel_dp_compute_m_n(bpp, lane_count,
  567. mode->clock, adjusted_mode->clock, &m_n);
  568. if (HAS_PCH_SPLIT(dev)) {
  569. if (intel_crtc->pipe == 0) {
  570. I915_WRITE(TRANSA_DATA_M1,
  571. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  572. m_n.gmch_m);
  573. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  574. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  575. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  576. } else {
  577. I915_WRITE(TRANSB_DATA_M1,
  578. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  579. m_n.gmch_m);
  580. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  581. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  582. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  583. }
  584. } else {
  585. if (intel_crtc->pipe == 0) {
  586. I915_WRITE(PIPEA_GMCH_DATA_M,
  587. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  588. m_n.gmch_m);
  589. I915_WRITE(PIPEA_GMCH_DATA_N,
  590. m_n.gmch_n);
  591. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  592. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  593. } else {
  594. I915_WRITE(PIPEB_GMCH_DATA_M,
  595. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  596. m_n.gmch_m);
  597. I915_WRITE(PIPEB_GMCH_DATA_N,
  598. m_n.gmch_n);
  599. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  600. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  601. }
  602. }
  603. }
  604. static void
  605. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  606. struct drm_display_mode *adjusted_mode)
  607. {
  608. struct drm_device *dev = encoder->dev;
  609. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  610. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  611. struct drm_crtc *crtc = intel_encoder->enc.crtc;
  612. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  613. dp_priv->DP = (DP_VOLTAGE_0_4 |
  614. DP_PRE_EMPHASIS_0);
  615. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  616. dp_priv->DP |= DP_SYNC_HS_HIGH;
  617. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  618. dp_priv->DP |= DP_SYNC_VS_HIGH;
  619. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  620. dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
  621. else
  622. dp_priv->DP |= DP_LINK_TRAIN_OFF;
  623. switch (dp_priv->lane_count) {
  624. case 1:
  625. dp_priv->DP |= DP_PORT_WIDTH_1;
  626. break;
  627. case 2:
  628. dp_priv->DP |= DP_PORT_WIDTH_2;
  629. break;
  630. case 4:
  631. dp_priv->DP |= DP_PORT_WIDTH_4;
  632. break;
  633. }
  634. if (dp_priv->has_audio)
  635. dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
  636. memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  637. dp_priv->link_configuration[0] = dp_priv->link_bw;
  638. dp_priv->link_configuration[1] = dp_priv->lane_count;
  639. /*
  640. * Check for DPCD version > 1.1 and enhanced framing support
  641. */
  642. if (dp_priv->dpcd[0] >= 0x11 && (dp_priv->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  643. dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  644. dp_priv->DP |= DP_ENHANCED_FRAMING;
  645. }
  646. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  647. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  648. dp_priv->DP |= DP_PIPEB_SELECT;
  649. if (IS_eDP(intel_encoder)) {
  650. /* don't miss out required setting for eDP */
  651. dp_priv->DP |= DP_PLL_ENABLE;
  652. if (adjusted_mode->clock < 200000)
  653. dp_priv->DP |= DP_PLL_FREQ_160MHZ;
  654. else
  655. dp_priv->DP |= DP_PLL_FREQ_270MHZ;
  656. }
  657. }
  658. static void ironlake_edp_panel_on (struct drm_device *dev)
  659. {
  660. struct drm_i915_private *dev_priv = dev->dev_private;
  661. unsigned long timeout = jiffies + msecs_to_jiffies(5000);
  662. u32 pp, pp_status;
  663. pp_status = I915_READ(PCH_PP_STATUS);
  664. if (pp_status & PP_ON)
  665. return;
  666. pp = I915_READ(PCH_PP_CONTROL);
  667. pp |= PANEL_UNLOCK_REGS | POWER_TARGET_ON;
  668. I915_WRITE(PCH_PP_CONTROL, pp);
  669. do {
  670. pp_status = I915_READ(PCH_PP_STATUS);
  671. } while (((pp_status & PP_ON) == 0) && !time_after(jiffies, timeout));
  672. if (time_after(jiffies, timeout))
  673. DRM_DEBUG_KMS("panel on wait timed out: 0x%08x\n", pp_status);
  674. pp &= ~(PANEL_UNLOCK_REGS | EDP_FORCE_VDD);
  675. I915_WRITE(PCH_PP_CONTROL, pp);
  676. }
  677. static void ironlake_edp_panel_off (struct drm_device *dev)
  678. {
  679. struct drm_i915_private *dev_priv = dev->dev_private;
  680. unsigned long timeout = jiffies + msecs_to_jiffies(5000);
  681. u32 pp, pp_status;
  682. pp = I915_READ(PCH_PP_CONTROL);
  683. pp &= ~POWER_TARGET_ON;
  684. I915_WRITE(PCH_PP_CONTROL, pp);
  685. do {
  686. pp_status = I915_READ(PCH_PP_STATUS);
  687. } while ((pp_status & PP_ON) && !time_after(jiffies, timeout));
  688. if (time_after(jiffies, timeout))
  689. DRM_DEBUG_KMS("panel off wait timed out\n");
  690. /* Make sure VDD is enabled so DP AUX will work */
  691. pp |= EDP_FORCE_VDD;
  692. I915_WRITE(PCH_PP_CONTROL, pp);
  693. }
  694. static void ironlake_edp_backlight_on (struct drm_device *dev)
  695. {
  696. struct drm_i915_private *dev_priv = dev->dev_private;
  697. u32 pp;
  698. DRM_DEBUG_KMS("\n");
  699. pp = I915_READ(PCH_PP_CONTROL);
  700. pp |= EDP_BLC_ENABLE;
  701. I915_WRITE(PCH_PP_CONTROL, pp);
  702. }
  703. static void ironlake_edp_backlight_off (struct drm_device *dev)
  704. {
  705. struct drm_i915_private *dev_priv = dev->dev_private;
  706. u32 pp;
  707. DRM_DEBUG_KMS("\n");
  708. pp = I915_READ(PCH_PP_CONTROL);
  709. pp &= ~EDP_BLC_ENABLE;
  710. I915_WRITE(PCH_PP_CONTROL, pp);
  711. }
  712. static void
  713. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  714. {
  715. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  716. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  717. struct drm_device *dev = encoder->dev;
  718. struct drm_i915_private *dev_priv = dev->dev_private;
  719. uint32_t dp_reg = I915_READ(dp_priv->output_reg);
  720. if (mode != DRM_MODE_DPMS_ON) {
  721. if (dp_reg & DP_PORT_EN) {
  722. intel_dp_link_down(intel_encoder, dp_priv->DP);
  723. if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
  724. ironlake_edp_backlight_off(dev);
  725. ironlake_edp_panel_off(dev);
  726. }
  727. }
  728. } else {
  729. if (!(dp_reg & DP_PORT_EN)) {
  730. intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
  731. if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
  732. ironlake_edp_panel_on(dev);
  733. ironlake_edp_backlight_on(dev);
  734. }
  735. }
  736. }
  737. dp_priv->dpms_mode = mode;
  738. }
  739. /*
  740. * Fetch AUX CH registers 0x202 - 0x207 which contain
  741. * link status information
  742. */
  743. static bool
  744. intel_dp_get_link_status(struct intel_encoder *intel_encoder,
  745. uint8_t link_status[DP_LINK_STATUS_SIZE])
  746. {
  747. int ret;
  748. ret = intel_dp_aux_native_read(intel_encoder,
  749. DP_LANE0_1_STATUS,
  750. link_status, DP_LINK_STATUS_SIZE);
  751. if (ret != DP_LINK_STATUS_SIZE)
  752. return false;
  753. return true;
  754. }
  755. static uint8_t
  756. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  757. int r)
  758. {
  759. return link_status[r - DP_LANE0_1_STATUS];
  760. }
  761. static uint8_t
  762. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  763. int lane)
  764. {
  765. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  766. int s = ((lane & 1) ?
  767. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  768. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  769. uint8_t l = intel_dp_link_status(link_status, i);
  770. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  771. }
  772. static uint8_t
  773. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  774. int lane)
  775. {
  776. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  777. int s = ((lane & 1) ?
  778. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  779. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  780. uint8_t l = intel_dp_link_status(link_status, i);
  781. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  782. }
  783. #if 0
  784. static char *voltage_names[] = {
  785. "0.4V", "0.6V", "0.8V", "1.2V"
  786. };
  787. static char *pre_emph_names[] = {
  788. "0dB", "3.5dB", "6dB", "9.5dB"
  789. };
  790. static char *link_train_names[] = {
  791. "pattern 1", "pattern 2", "idle", "off"
  792. };
  793. #endif
  794. /*
  795. * These are source-specific values; current Intel hardware supports
  796. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  797. */
  798. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  799. static uint8_t
  800. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  801. {
  802. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  803. case DP_TRAIN_VOLTAGE_SWING_400:
  804. return DP_TRAIN_PRE_EMPHASIS_6;
  805. case DP_TRAIN_VOLTAGE_SWING_600:
  806. return DP_TRAIN_PRE_EMPHASIS_6;
  807. case DP_TRAIN_VOLTAGE_SWING_800:
  808. return DP_TRAIN_PRE_EMPHASIS_3_5;
  809. case DP_TRAIN_VOLTAGE_SWING_1200:
  810. default:
  811. return DP_TRAIN_PRE_EMPHASIS_0;
  812. }
  813. }
  814. static void
  815. intel_get_adjust_train(struct intel_encoder *intel_encoder,
  816. uint8_t link_status[DP_LINK_STATUS_SIZE],
  817. int lane_count,
  818. uint8_t train_set[4])
  819. {
  820. uint8_t v = 0;
  821. uint8_t p = 0;
  822. int lane;
  823. for (lane = 0; lane < lane_count; lane++) {
  824. uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
  825. uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
  826. if (this_v > v)
  827. v = this_v;
  828. if (this_p > p)
  829. p = this_p;
  830. }
  831. if (v >= I830_DP_VOLTAGE_MAX)
  832. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  833. if (p >= intel_dp_pre_emphasis_max(v))
  834. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  835. for (lane = 0; lane < 4; lane++)
  836. train_set[lane] = v | p;
  837. }
  838. static uint32_t
  839. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  840. {
  841. uint32_t signal_levels = 0;
  842. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  843. case DP_TRAIN_VOLTAGE_SWING_400:
  844. default:
  845. signal_levels |= DP_VOLTAGE_0_4;
  846. break;
  847. case DP_TRAIN_VOLTAGE_SWING_600:
  848. signal_levels |= DP_VOLTAGE_0_6;
  849. break;
  850. case DP_TRAIN_VOLTAGE_SWING_800:
  851. signal_levels |= DP_VOLTAGE_0_8;
  852. break;
  853. case DP_TRAIN_VOLTAGE_SWING_1200:
  854. signal_levels |= DP_VOLTAGE_1_2;
  855. break;
  856. }
  857. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  858. case DP_TRAIN_PRE_EMPHASIS_0:
  859. default:
  860. signal_levels |= DP_PRE_EMPHASIS_0;
  861. break;
  862. case DP_TRAIN_PRE_EMPHASIS_3_5:
  863. signal_levels |= DP_PRE_EMPHASIS_3_5;
  864. break;
  865. case DP_TRAIN_PRE_EMPHASIS_6:
  866. signal_levels |= DP_PRE_EMPHASIS_6;
  867. break;
  868. case DP_TRAIN_PRE_EMPHASIS_9_5:
  869. signal_levels |= DP_PRE_EMPHASIS_9_5;
  870. break;
  871. }
  872. return signal_levels;
  873. }
  874. /* Gen6's DP voltage swing and pre-emphasis control */
  875. static uint32_t
  876. intel_gen6_edp_signal_levels(uint8_t train_set)
  877. {
  878. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  879. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  880. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  881. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  882. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  883. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  884. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  885. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  886. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  887. default:
  888. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  889. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  890. }
  891. }
  892. static uint8_t
  893. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  894. int lane)
  895. {
  896. int i = DP_LANE0_1_STATUS + (lane >> 1);
  897. int s = (lane & 1) * 4;
  898. uint8_t l = intel_dp_link_status(link_status, i);
  899. return (l >> s) & 0xf;
  900. }
  901. /* Check for clock recovery is done on all channels */
  902. static bool
  903. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  904. {
  905. int lane;
  906. uint8_t lane_status;
  907. for (lane = 0; lane < lane_count; lane++) {
  908. lane_status = intel_get_lane_status(link_status, lane);
  909. if ((lane_status & DP_LANE_CR_DONE) == 0)
  910. return false;
  911. }
  912. return true;
  913. }
  914. /* Check to see if channel eq is done on all channels */
  915. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  916. DP_LANE_CHANNEL_EQ_DONE|\
  917. DP_LANE_SYMBOL_LOCKED)
  918. static bool
  919. intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  920. {
  921. uint8_t lane_align;
  922. uint8_t lane_status;
  923. int lane;
  924. lane_align = intel_dp_link_status(link_status,
  925. DP_LANE_ALIGN_STATUS_UPDATED);
  926. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  927. return false;
  928. for (lane = 0; lane < lane_count; lane++) {
  929. lane_status = intel_get_lane_status(link_status, lane);
  930. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  931. return false;
  932. }
  933. return true;
  934. }
  935. static bool
  936. intel_dp_set_link_train(struct intel_encoder *intel_encoder,
  937. uint32_t dp_reg_value,
  938. uint8_t dp_train_pat,
  939. uint8_t train_set[4],
  940. bool first)
  941. {
  942. struct drm_device *dev = intel_encoder->enc.dev;
  943. struct drm_i915_private *dev_priv = dev->dev_private;
  944. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  945. int ret;
  946. I915_WRITE(dp_priv->output_reg, dp_reg_value);
  947. POSTING_READ(dp_priv->output_reg);
  948. if (first)
  949. intel_wait_for_vblank(dev);
  950. intel_dp_aux_native_write_1(intel_encoder,
  951. DP_TRAINING_PATTERN_SET,
  952. dp_train_pat);
  953. ret = intel_dp_aux_native_write(intel_encoder,
  954. DP_TRAINING_LANE0_SET, train_set, 4);
  955. if (ret != 4)
  956. return false;
  957. return true;
  958. }
  959. static void
  960. intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
  961. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
  962. {
  963. struct drm_device *dev = intel_encoder->enc.dev;
  964. struct drm_i915_private *dev_priv = dev->dev_private;
  965. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  966. uint8_t train_set[4];
  967. uint8_t link_status[DP_LINK_STATUS_SIZE];
  968. int i;
  969. uint8_t voltage;
  970. bool clock_recovery = false;
  971. bool channel_eq = false;
  972. bool first = true;
  973. int tries;
  974. u32 reg;
  975. /* Write the link configuration data */
  976. intel_dp_aux_native_write(intel_encoder, DP_LINK_BW_SET,
  977. link_configuration, DP_LINK_CONFIGURATION_SIZE);
  978. DP |= DP_PORT_EN;
  979. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  980. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  981. else
  982. DP &= ~DP_LINK_TRAIN_MASK;
  983. memset(train_set, 0, 4);
  984. voltage = 0xff;
  985. tries = 0;
  986. clock_recovery = false;
  987. for (;;) {
  988. /* Use train_set[0] to set the voltage and pre emphasis values */
  989. uint32_t signal_levels;
  990. if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
  991. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  992. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  993. } else {
  994. signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
  995. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  996. }
  997. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  998. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  999. else
  1000. reg = DP | DP_LINK_TRAIN_PAT_1;
  1001. if (!intel_dp_set_link_train(intel_encoder, reg,
  1002. DP_TRAINING_PATTERN_1, train_set, first))
  1003. break;
  1004. first = false;
  1005. /* Set training pattern 1 */
  1006. udelay(100);
  1007. if (!intel_dp_get_link_status(intel_encoder, link_status))
  1008. break;
  1009. if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
  1010. clock_recovery = true;
  1011. break;
  1012. }
  1013. /* Check to see if we've tried the max voltage */
  1014. for (i = 0; i < dp_priv->lane_count; i++)
  1015. if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  1016. break;
  1017. if (i == dp_priv->lane_count)
  1018. break;
  1019. /* Check to see if we've tried the same voltage 5 times */
  1020. if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  1021. ++tries;
  1022. if (tries == 5)
  1023. break;
  1024. } else
  1025. tries = 0;
  1026. voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  1027. /* Compute new train_set as requested by target */
  1028. intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
  1029. }
  1030. /* channel equalization */
  1031. tries = 0;
  1032. channel_eq = false;
  1033. for (;;) {
  1034. /* Use train_set[0] to set the voltage and pre emphasis values */
  1035. uint32_t signal_levels;
  1036. if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
  1037. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  1038. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  1039. } else {
  1040. signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
  1041. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  1042. }
  1043. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  1044. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  1045. else
  1046. reg = DP | DP_LINK_TRAIN_PAT_2;
  1047. /* channel eq pattern */
  1048. if (!intel_dp_set_link_train(intel_encoder, reg,
  1049. DP_TRAINING_PATTERN_2, train_set,
  1050. false))
  1051. break;
  1052. udelay(400);
  1053. if (!intel_dp_get_link_status(intel_encoder, link_status))
  1054. break;
  1055. if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
  1056. channel_eq = true;
  1057. break;
  1058. }
  1059. /* Try 5 times */
  1060. if (tries > 5)
  1061. break;
  1062. /* Compute new train_set as requested by target */
  1063. intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
  1064. ++tries;
  1065. }
  1066. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  1067. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1068. else
  1069. reg = DP | DP_LINK_TRAIN_OFF;
  1070. I915_WRITE(dp_priv->output_reg, reg);
  1071. POSTING_READ(dp_priv->output_reg);
  1072. intel_dp_aux_native_write_1(intel_encoder,
  1073. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1074. }
  1075. static void
  1076. intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
  1077. {
  1078. struct drm_device *dev = intel_encoder->enc.dev;
  1079. struct drm_i915_private *dev_priv = dev->dev_private;
  1080. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1081. DRM_DEBUG_KMS("\n");
  1082. if (IS_eDP(intel_encoder)) {
  1083. DP &= ~DP_PLL_ENABLE;
  1084. I915_WRITE(dp_priv->output_reg, DP);
  1085. POSTING_READ(dp_priv->output_reg);
  1086. udelay(100);
  1087. }
  1088. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
  1089. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1090. I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1091. POSTING_READ(dp_priv->output_reg);
  1092. } else {
  1093. DP &= ~DP_LINK_TRAIN_MASK;
  1094. I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1095. POSTING_READ(dp_priv->output_reg);
  1096. }
  1097. udelay(17000);
  1098. if (IS_eDP(intel_encoder))
  1099. DP |= DP_LINK_TRAIN_OFF;
  1100. I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
  1101. POSTING_READ(dp_priv->output_reg);
  1102. }
  1103. /*
  1104. * According to DP spec
  1105. * 5.1.2:
  1106. * 1. Read DPCD
  1107. * 2. Configure link according to Receiver Capabilities
  1108. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1109. * 4. Check link status on receipt of hot-plug interrupt
  1110. */
  1111. static void
  1112. intel_dp_check_link_status(struct intel_encoder *intel_encoder)
  1113. {
  1114. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1115. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1116. if (!intel_encoder->enc.crtc)
  1117. return;
  1118. if (!intel_dp_get_link_status(intel_encoder, link_status)) {
  1119. intel_dp_link_down(intel_encoder, dp_priv->DP);
  1120. return;
  1121. }
  1122. if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
  1123. intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
  1124. }
  1125. static enum drm_connector_status
  1126. ironlake_dp_detect(struct drm_connector *connector)
  1127. {
  1128. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1129. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1130. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1131. enum drm_connector_status status;
  1132. status = connector_status_disconnected;
  1133. if (intel_dp_aux_native_read(intel_encoder,
  1134. 0x000, dp_priv->dpcd,
  1135. sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
  1136. {
  1137. if (dp_priv->dpcd[0] != 0)
  1138. status = connector_status_connected;
  1139. }
  1140. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", dp_priv->dpcd[0],
  1141. dp_priv->dpcd[1], dp_priv->dpcd[2], dp_priv->dpcd[3]);
  1142. return status;
  1143. }
  1144. /**
  1145. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1146. *
  1147. * \return true if DP port is connected.
  1148. * \return false if DP port is disconnected.
  1149. */
  1150. static enum drm_connector_status
  1151. intel_dp_detect(struct drm_connector *connector)
  1152. {
  1153. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1154. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1155. struct drm_device *dev = intel_encoder->enc.dev;
  1156. struct drm_i915_private *dev_priv = dev->dev_private;
  1157. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1158. uint32_t temp, bit;
  1159. enum drm_connector_status status;
  1160. dp_priv->has_audio = false;
  1161. if (HAS_PCH_SPLIT(dev))
  1162. return ironlake_dp_detect(connector);
  1163. switch (dp_priv->output_reg) {
  1164. case DP_B:
  1165. bit = DPB_HOTPLUG_INT_STATUS;
  1166. break;
  1167. case DP_C:
  1168. bit = DPC_HOTPLUG_INT_STATUS;
  1169. break;
  1170. case DP_D:
  1171. bit = DPD_HOTPLUG_INT_STATUS;
  1172. break;
  1173. default:
  1174. return connector_status_unknown;
  1175. }
  1176. temp = I915_READ(PORT_HOTPLUG_STAT);
  1177. if ((temp & bit) == 0)
  1178. return connector_status_disconnected;
  1179. status = connector_status_disconnected;
  1180. if (intel_dp_aux_native_read(intel_encoder,
  1181. 0x000, dp_priv->dpcd,
  1182. sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
  1183. {
  1184. if (dp_priv->dpcd[0] != 0)
  1185. status = connector_status_connected;
  1186. }
  1187. return status;
  1188. }
  1189. static int intel_dp_get_modes(struct drm_connector *connector)
  1190. {
  1191. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1192. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1193. struct drm_device *dev = intel_encoder->enc.dev;
  1194. struct drm_i915_private *dev_priv = dev->dev_private;
  1195. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1196. int ret;
  1197. /* We should parse the EDID data and find out if it has an audio sink
  1198. */
  1199. ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
  1200. if (ret) {
  1201. if ((IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) &&
  1202. !dev_priv->panel_fixed_mode) {
  1203. struct drm_display_mode *newmode;
  1204. list_for_each_entry(newmode, &connector->probed_modes,
  1205. head) {
  1206. if (newmode->type & DRM_MODE_TYPE_PREFERRED) {
  1207. dev_priv->panel_fixed_mode =
  1208. drm_mode_duplicate(dev, newmode);
  1209. break;
  1210. }
  1211. }
  1212. }
  1213. return ret;
  1214. }
  1215. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1216. if (IS_eDP(intel_encoder) || IS_PCH_eDP(dp_priv)) {
  1217. if (dev_priv->panel_fixed_mode != NULL) {
  1218. struct drm_display_mode *mode;
  1219. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1220. drm_mode_probed_add(connector, mode);
  1221. return 1;
  1222. }
  1223. }
  1224. return 0;
  1225. }
  1226. static void
  1227. intel_dp_destroy (struct drm_connector *connector)
  1228. {
  1229. drm_sysfs_connector_remove(connector);
  1230. drm_connector_cleanup(connector);
  1231. kfree(connector);
  1232. }
  1233. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1234. .dpms = intel_dp_dpms,
  1235. .mode_fixup = intel_dp_mode_fixup,
  1236. .prepare = intel_encoder_prepare,
  1237. .mode_set = intel_dp_mode_set,
  1238. .commit = intel_encoder_commit,
  1239. };
  1240. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1241. .dpms = drm_helper_connector_dpms,
  1242. .detect = intel_dp_detect,
  1243. .fill_modes = drm_helper_probe_single_connector_modes,
  1244. .destroy = intel_dp_destroy,
  1245. };
  1246. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1247. .get_modes = intel_dp_get_modes,
  1248. .mode_valid = intel_dp_mode_valid,
  1249. .best_encoder = intel_attached_encoder,
  1250. };
  1251. static void intel_dp_enc_destroy(struct drm_encoder *encoder)
  1252. {
  1253. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1254. if (intel_encoder->i2c_bus)
  1255. intel_i2c_destroy(intel_encoder->i2c_bus);
  1256. drm_encoder_cleanup(encoder);
  1257. kfree(intel_encoder);
  1258. }
  1259. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1260. .destroy = intel_dp_enc_destroy,
  1261. };
  1262. void
  1263. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1264. {
  1265. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1266. if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
  1267. intel_dp_check_link_status(intel_encoder);
  1268. }
  1269. /* Return which DP Port should be selected for Transcoder DP control */
  1270. int
  1271. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1272. {
  1273. struct drm_device *dev = crtc->dev;
  1274. struct drm_mode_config *mode_config = &dev->mode_config;
  1275. struct drm_encoder *encoder;
  1276. struct intel_encoder *intel_encoder = NULL;
  1277. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1278. if (encoder->crtc != crtc)
  1279. continue;
  1280. intel_encoder = enc_to_intel_encoder(encoder);
  1281. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  1282. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1283. return dp_priv->output_reg;
  1284. }
  1285. }
  1286. return -1;
  1287. }
  1288. /* check the VBT to see whether the eDP is on DP-D port */
  1289. bool intel_dpd_is_edp(struct drm_device *dev)
  1290. {
  1291. struct drm_i915_private *dev_priv = dev->dev_private;
  1292. struct child_device_config *p_child;
  1293. int i;
  1294. if (!dev_priv->child_dev_num)
  1295. return false;
  1296. for (i = 0; i < dev_priv->child_dev_num; i++) {
  1297. p_child = dev_priv->child_dev + i;
  1298. if (p_child->dvo_port == PORT_IDPD &&
  1299. p_child->device_type == DEVICE_TYPE_eDP)
  1300. return true;
  1301. }
  1302. return false;
  1303. }
  1304. void
  1305. intel_dp_init(struct drm_device *dev, int output_reg)
  1306. {
  1307. struct drm_i915_private *dev_priv = dev->dev_private;
  1308. struct drm_connector *connector;
  1309. struct intel_encoder *intel_encoder;
  1310. struct intel_connector *intel_connector;
  1311. struct intel_dp_priv *dp_priv;
  1312. const char *name = NULL;
  1313. int type;
  1314. intel_encoder = kcalloc(sizeof(struct intel_encoder) +
  1315. sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
  1316. if (!intel_encoder)
  1317. return;
  1318. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1319. if (!intel_connector) {
  1320. kfree(intel_encoder);
  1321. return;
  1322. }
  1323. dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
  1324. if (HAS_PCH_SPLIT(dev) && (output_reg == PCH_DP_D))
  1325. if (intel_dpd_is_edp(dev))
  1326. dp_priv->is_pch_edp = true;
  1327. if (output_reg == DP_A || IS_PCH_eDP(dp_priv)) {
  1328. type = DRM_MODE_CONNECTOR_eDP;
  1329. intel_encoder->type = INTEL_OUTPUT_EDP;
  1330. } else {
  1331. type = DRM_MODE_CONNECTOR_DisplayPort;
  1332. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1333. }
  1334. connector = &intel_connector->base;
  1335. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  1336. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1337. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1338. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1339. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1340. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1341. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1342. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1343. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1344. if (IS_eDP(intel_encoder))
  1345. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1346. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1347. connector->interlace_allowed = true;
  1348. connector->doublescan_allowed = 0;
  1349. dp_priv->intel_encoder = intel_encoder;
  1350. dp_priv->output_reg = output_reg;
  1351. dp_priv->has_audio = false;
  1352. dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
  1353. intel_encoder->dev_priv = dp_priv;
  1354. drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
  1355. DRM_MODE_ENCODER_TMDS);
  1356. drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
  1357. drm_mode_connector_attach_encoder(&intel_connector->base,
  1358. &intel_encoder->enc);
  1359. drm_sysfs_connector_add(connector);
  1360. /* Set up the DDC bus. */
  1361. switch (output_reg) {
  1362. case DP_A:
  1363. name = "DPDDC-A";
  1364. break;
  1365. case DP_B:
  1366. case PCH_DP_B:
  1367. dev_priv->hotplug_supported_mask |=
  1368. HDMIB_HOTPLUG_INT_STATUS;
  1369. name = "DPDDC-B";
  1370. break;
  1371. case DP_C:
  1372. case PCH_DP_C:
  1373. dev_priv->hotplug_supported_mask |=
  1374. HDMIC_HOTPLUG_INT_STATUS;
  1375. name = "DPDDC-C";
  1376. break;
  1377. case DP_D:
  1378. case PCH_DP_D:
  1379. dev_priv->hotplug_supported_mask |=
  1380. HDMID_HOTPLUG_INT_STATUS;
  1381. name = "DPDDC-D";
  1382. break;
  1383. }
  1384. intel_dp_i2c_init(intel_encoder, intel_connector, name);
  1385. intel_encoder->ddc_bus = &dp_priv->adapter;
  1386. intel_encoder->hot_plug = intel_dp_hot_plug;
  1387. if (output_reg == DP_A || IS_PCH_eDP(dp_priv)) {
  1388. /* initialize panel mode from VBT if available for eDP */
  1389. if (dev_priv->lfp_lvds_vbt_mode) {
  1390. dev_priv->panel_fixed_mode =
  1391. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1392. if (dev_priv->panel_fixed_mode) {
  1393. dev_priv->panel_fixed_mode->type |=
  1394. DRM_MODE_TYPE_PREFERRED;
  1395. }
  1396. }
  1397. }
  1398. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1399. * 0xd. Failure to do so will result in spurious interrupts being
  1400. * generated on the port when a cable is not attached.
  1401. */
  1402. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1403. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1404. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1405. }
  1406. }