oom_kill.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. *
  8. * The routines in this file are used to kill a process when
  9. * we're seriously out of memory. This gets called from __alloc_pages()
  10. * in mm/page_alloc.c when we really run out of memory.
  11. *
  12. * Since we won't call these routines often (on a well-configured
  13. * machine) this file will double as a 'coding guide' and a signpost
  14. * for newbie kernel hackers. It features several pointers to major
  15. * kernel subsystems and hints as to where to find out what things do.
  16. */
  17. #include <linux/oom.h>
  18. #include <linux/mm.h>
  19. #include <linux/err.h>
  20. #include <linux/sched.h>
  21. #include <linux/swap.h>
  22. #include <linux/timex.h>
  23. #include <linux/jiffies.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/module.h>
  26. #include <linux/notifier.h>
  27. int sysctl_panic_on_oom;
  28. int sysctl_oom_kill_allocating_task;
  29. static DEFINE_SPINLOCK(zone_scan_mutex);
  30. /* #define DEBUG */
  31. /**
  32. * badness - calculate a numeric value for how bad this task has been
  33. * @p: task struct of which task we should calculate
  34. * @uptime: current uptime in seconds
  35. *
  36. * The formula used is relatively simple and documented inline in the
  37. * function. The main rationale is that we want to select a good task
  38. * to kill when we run out of memory.
  39. *
  40. * Good in this context means that:
  41. * 1) we lose the minimum amount of work done
  42. * 2) we recover a large amount of memory
  43. * 3) we don't kill anything innocent of eating tons of memory
  44. * 4) we want to kill the minimum amount of processes (one)
  45. * 5) we try to kill the process the user expects us to kill, this
  46. * algorithm has been meticulously tuned to meet the principle
  47. * of least surprise ... (be careful when you change it)
  48. */
  49. unsigned long badness(struct task_struct *p, unsigned long uptime)
  50. {
  51. unsigned long points, cpu_time, run_time, s;
  52. struct mm_struct *mm;
  53. struct task_struct *child;
  54. task_lock(p);
  55. mm = p->mm;
  56. if (!mm) {
  57. task_unlock(p);
  58. return 0;
  59. }
  60. /*
  61. * The memory size of the process is the basis for the badness.
  62. */
  63. points = mm->total_vm;
  64. /*
  65. * After this unlock we can no longer dereference local variable `mm'
  66. */
  67. task_unlock(p);
  68. /*
  69. * swapoff can easily use up all memory, so kill those first.
  70. */
  71. if (p->flags & PF_SWAPOFF)
  72. return ULONG_MAX;
  73. /*
  74. * Processes which fork a lot of child processes are likely
  75. * a good choice. We add half the vmsize of the children if they
  76. * have an own mm. This prevents forking servers to flood the
  77. * machine with an endless amount of children. In case a single
  78. * child is eating the vast majority of memory, adding only half
  79. * to the parents will make the child our kill candidate of choice.
  80. */
  81. list_for_each_entry(child, &p->children, sibling) {
  82. task_lock(child);
  83. if (child->mm != mm && child->mm)
  84. points += child->mm->total_vm/2 + 1;
  85. task_unlock(child);
  86. }
  87. /*
  88. * CPU time is in tens of seconds and run time is in thousands
  89. * of seconds. There is no particular reason for this other than
  90. * that it turned out to work very well in practice.
  91. */
  92. cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
  93. >> (SHIFT_HZ + 3);
  94. if (uptime >= p->start_time.tv_sec)
  95. run_time = (uptime - p->start_time.tv_sec) >> 10;
  96. else
  97. run_time = 0;
  98. s = int_sqrt(cpu_time);
  99. if (s)
  100. points /= s;
  101. s = int_sqrt(int_sqrt(run_time));
  102. if (s)
  103. points /= s;
  104. /*
  105. * Niced processes are most likely less important, so double
  106. * their badness points.
  107. */
  108. if (task_nice(p) > 0)
  109. points *= 2;
  110. /*
  111. * Superuser processes are usually more important, so we make it
  112. * less likely that we kill those.
  113. */
  114. if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
  115. p->uid == 0 || p->euid == 0)
  116. points /= 4;
  117. /*
  118. * We don't want to kill a process with direct hardware access.
  119. * Not only could that mess up the hardware, but usually users
  120. * tend to only have this flag set on applications they think
  121. * of as important.
  122. */
  123. if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
  124. points /= 4;
  125. /*
  126. * If p's nodes don't overlap ours, it may still help to kill p
  127. * because p may have allocated or otherwise mapped memory on
  128. * this node before. However it will be less likely.
  129. */
  130. if (!cpuset_mems_allowed_intersects(current, p))
  131. points /= 8;
  132. /*
  133. * Adjust the score by oomkilladj.
  134. */
  135. if (p->oomkilladj) {
  136. if (p->oomkilladj > 0) {
  137. if (!points)
  138. points = 1;
  139. points <<= p->oomkilladj;
  140. } else
  141. points >>= -(p->oomkilladj);
  142. }
  143. #ifdef DEBUG
  144. printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
  145. p->pid, p->comm, points);
  146. #endif
  147. return points;
  148. }
  149. /*
  150. * Determine the type of allocation constraint.
  151. */
  152. static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
  153. gfp_t gfp_mask)
  154. {
  155. #ifdef CONFIG_NUMA
  156. struct zone **z;
  157. nodemask_t nodes = node_states[N_HIGH_MEMORY];
  158. for (z = zonelist->zones; *z; z++)
  159. if (cpuset_zone_allowed_softwall(*z, gfp_mask))
  160. node_clear(zone_to_nid(*z), nodes);
  161. else
  162. return CONSTRAINT_CPUSET;
  163. if (!nodes_empty(nodes))
  164. return CONSTRAINT_MEMORY_POLICY;
  165. #endif
  166. return CONSTRAINT_NONE;
  167. }
  168. /*
  169. * Simple selection loop. We chose the process with the highest
  170. * number of 'points'. We expect the caller will lock the tasklist.
  171. *
  172. * (not docbooked, we don't want this one cluttering up the manual)
  173. */
  174. static struct task_struct *select_bad_process(unsigned long *ppoints)
  175. {
  176. struct task_struct *g, *p;
  177. struct task_struct *chosen = NULL;
  178. struct timespec uptime;
  179. *ppoints = 0;
  180. do_posix_clock_monotonic_gettime(&uptime);
  181. do_each_thread(g, p) {
  182. unsigned long points;
  183. /*
  184. * skip kernel threads and tasks which have already released
  185. * their mm.
  186. */
  187. if (!p->mm)
  188. continue;
  189. /* skip the init task */
  190. if (is_init(p))
  191. continue;
  192. /*
  193. * This task already has access to memory reserves and is
  194. * being killed. Don't allow any other task access to the
  195. * memory reserve.
  196. *
  197. * Note: this may have a chance of deadlock if it gets
  198. * blocked waiting for another task which itself is waiting
  199. * for memory. Is there a better alternative?
  200. */
  201. if (test_tsk_thread_flag(p, TIF_MEMDIE))
  202. return ERR_PTR(-1UL);
  203. /*
  204. * This is in the process of releasing memory so wait for it
  205. * to finish before killing some other task by mistake.
  206. *
  207. * However, if p is the current task, we allow the 'kill' to
  208. * go ahead if it is exiting: this will simply set TIF_MEMDIE,
  209. * which will allow it to gain access to memory reserves in
  210. * the process of exiting and releasing its resources.
  211. * Otherwise we could get an easy OOM deadlock.
  212. */
  213. if (p->flags & PF_EXITING) {
  214. if (p != current)
  215. return ERR_PTR(-1UL);
  216. chosen = p;
  217. *ppoints = ULONG_MAX;
  218. }
  219. if (p->oomkilladj == OOM_DISABLE)
  220. continue;
  221. points = badness(p, uptime.tv_sec);
  222. if (points > *ppoints || !chosen) {
  223. chosen = p;
  224. *ppoints = points;
  225. }
  226. } while_each_thread(g, p);
  227. return chosen;
  228. }
  229. /**
  230. * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
  231. * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
  232. * set.
  233. */
  234. static void __oom_kill_task(struct task_struct *p, int verbose)
  235. {
  236. if (is_init(p)) {
  237. WARN_ON(1);
  238. printk(KERN_WARNING "tried to kill init!\n");
  239. return;
  240. }
  241. if (!p->mm) {
  242. WARN_ON(1);
  243. printk(KERN_WARNING "tried to kill an mm-less task!\n");
  244. return;
  245. }
  246. if (verbose)
  247. printk(KERN_ERR "Killed process %d (%s)\n", p->pid, p->comm);
  248. /*
  249. * We give our sacrificial lamb high priority and access to
  250. * all the memory it needs. That way it should be able to
  251. * exit() and clear out its resources quickly...
  252. */
  253. p->time_slice = HZ;
  254. set_tsk_thread_flag(p, TIF_MEMDIE);
  255. force_sig(SIGKILL, p);
  256. }
  257. static int oom_kill_task(struct task_struct *p)
  258. {
  259. struct mm_struct *mm;
  260. struct task_struct *g, *q;
  261. mm = p->mm;
  262. /* WARNING: mm may not be dereferenced since we did not obtain its
  263. * value from get_task_mm(p). This is OK since all we need to do is
  264. * compare mm to q->mm below.
  265. *
  266. * Furthermore, even if mm contains a non-NULL value, p->mm may
  267. * change to NULL at any time since we do not hold task_lock(p).
  268. * However, this is of no concern to us.
  269. */
  270. if (mm == NULL)
  271. return 1;
  272. /*
  273. * Don't kill the process if any threads are set to OOM_DISABLE
  274. */
  275. do_each_thread(g, q) {
  276. if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
  277. return 1;
  278. } while_each_thread(g, q);
  279. __oom_kill_task(p, 1);
  280. /*
  281. * kill all processes that share the ->mm (i.e. all threads),
  282. * but are in a different thread group. Don't let them have access
  283. * to memory reserves though, otherwise we might deplete all memory.
  284. */
  285. do_each_thread(g, q) {
  286. if (q->mm == mm && q->tgid != p->tgid)
  287. force_sig(SIGKILL, q);
  288. } while_each_thread(g, q);
  289. return 0;
  290. }
  291. static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
  292. unsigned long points, const char *message)
  293. {
  294. struct task_struct *c;
  295. struct list_head *tsk;
  296. if (printk_ratelimit()) {
  297. printk(KERN_WARNING "%s invoked oom-killer: "
  298. "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
  299. current->comm, gfp_mask, order, current->oomkilladj);
  300. dump_stack();
  301. show_mem();
  302. }
  303. /*
  304. * If the task is already exiting, don't alarm the sysadmin or kill
  305. * its children or threads, just set TIF_MEMDIE so it can die quickly
  306. */
  307. if (p->flags & PF_EXITING) {
  308. __oom_kill_task(p, 0);
  309. return 0;
  310. }
  311. printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
  312. message, p->pid, p->comm, points);
  313. /* Try to kill a child first */
  314. list_for_each(tsk, &p->children) {
  315. c = list_entry(tsk, struct task_struct, sibling);
  316. if (c->mm == p->mm)
  317. continue;
  318. if (!oom_kill_task(c))
  319. return 0;
  320. }
  321. return oom_kill_task(p);
  322. }
  323. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  324. int register_oom_notifier(struct notifier_block *nb)
  325. {
  326. return blocking_notifier_chain_register(&oom_notify_list, nb);
  327. }
  328. EXPORT_SYMBOL_GPL(register_oom_notifier);
  329. int unregister_oom_notifier(struct notifier_block *nb)
  330. {
  331. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  332. }
  333. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  334. /*
  335. * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
  336. * if a parallel OOM killing is already taking place that includes a zone in
  337. * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
  338. */
  339. int try_set_zone_oom(struct zonelist *zonelist)
  340. {
  341. struct zone **z;
  342. int ret = 1;
  343. z = zonelist->zones;
  344. spin_lock(&zone_scan_mutex);
  345. do {
  346. if (zone_is_oom_locked(*z)) {
  347. ret = 0;
  348. goto out;
  349. }
  350. } while (*(++z) != NULL);
  351. /*
  352. * Lock each zone in the zonelist under zone_scan_mutex so a parallel
  353. * invocation of try_set_zone_oom() doesn't succeed when it shouldn't.
  354. */
  355. z = zonelist->zones;
  356. do {
  357. zone_set_flag(*z, ZONE_OOM_LOCKED);
  358. } while (*(++z) != NULL);
  359. out:
  360. spin_unlock(&zone_scan_mutex);
  361. return ret;
  362. }
  363. /*
  364. * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
  365. * allocation attempts with zonelists containing them may now recall the OOM
  366. * killer, if necessary.
  367. */
  368. void clear_zonelist_oom(struct zonelist *zonelist)
  369. {
  370. struct zone **z;
  371. z = zonelist->zones;
  372. spin_lock(&zone_scan_mutex);
  373. do {
  374. zone_clear_flag(*z, ZONE_OOM_LOCKED);
  375. } while (*(++z) != NULL);
  376. spin_unlock(&zone_scan_mutex);
  377. }
  378. /**
  379. * out_of_memory - kill the "best" process when we run out of memory
  380. *
  381. * If we run out of memory, we have the choice between either
  382. * killing a random task (bad), letting the system crash (worse)
  383. * OR try to be smart about which process to kill. Note that we
  384. * don't have to be perfect here, we just have to be good.
  385. */
  386. void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
  387. {
  388. struct task_struct *p;
  389. unsigned long points = 0;
  390. unsigned long freed = 0;
  391. enum oom_constraint constraint;
  392. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  393. if (freed > 0)
  394. /* Got some memory back in the last second. */
  395. return;
  396. if (sysctl_panic_on_oom == 2)
  397. panic("out of memory. Compulsory panic_on_oom is selected.\n");
  398. /*
  399. * Check if there were limitations on the allocation (only relevant for
  400. * NUMA) that may require different handling.
  401. */
  402. constraint = constrained_alloc(zonelist, gfp_mask);
  403. read_lock(&tasklist_lock);
  404. switch (constraint) {
  405. case CONSTRAINT_MEMORY_POLICY:
  406. oom_kill_process(current, gfp_mask, order, points,
  407. "No available memory (MPOL_BIND)");
  408. break;
  409. case CONSTRAINT_NONE:
  410. if (sysctl_panic_on_oom)
  411. panic("out of memory. panic_on_oom is selected\n");
  412. /* Fall-through */
  413. case CONSTRAINT_CPUSET:
  414. if (sysctl_oom_kill_allocating_task) {
  415. oom_kill_process(current, gfp_mask, order, points,
  416. "Out of memory (oom_kill_allocating_task)");
  417. break;
  418. }
  419. retry:
  420. /*
  421. * Rambo mode: Shoot down a process and hope it solves whatever
  422. * issues we may have.
  423. */
  424. p = select_bad_process(&points);
  425. if (PTR_ERR(p) == -1UL)
  426. goto out;
  427. /* Found nothing?!?! Either we hang forever, or we panic. */
  428. if (!p) {
  429. read_unlock(&tasklist_lock);
  430. panic("Out of memory and no killable processes...\n");
  431. }
  432. if (oom_kill_process(p, points, gfp_mask, order,
  433. "Out of memory"))
  434. goto retry;
  435. break;
  436. }
  437. out:
  438. read_unlock(&tasklist_lock);
  439. /*
  440. * Give "p" a good chance of killing itself before we
  441. * retry to allocate memory unless "p" is current
  442. */
  443. if (!test_thread_flag(TIF_MEMDIE))
  444. schedule_timeout_uninterruptible(1);
  445. }