backref.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844
  1. /*
  2. * Copyright (C) 2011 STRATO. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/vmalloc.h>
  19. #include "ctree.h"
  20. #include "disk-io.h"
  21. #include "backref.h"
  22. #include "ulist.h"
  23. #include "transaction.h"
  24. #include "delayed-ref.h"
  25. #include "locking.h"
  26. struct extent_inode_elem {
  27. u64 inum;
  28. u64 offset;
  29. struct extent_inode_elem *next;
  30. };
  31. static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  32. struct btrfs_file_extent_item *fi,
  33. u64 extent_item_pos,
  34. struct extent_inode_elem **eie)
  35. {
  36. u64 offset = 0;
  37. struct extent_inode_elem *e;
  38. if (!btrfs_file_extent_compression(eb, fi) &&
  39. !btrfs_file_extent_encryption(eb, fi) &&
  40. !btrfs_file_extent_other_encoding(eb, fi)) {
  41. u64 data_offset;
  42. u64 data_len;
  43. data_offset = btrfs_file_extent_offset(eb, fi);
  44. data_len = btrfs_file_extent_num_bytes(eb, fi);
  45. if (extent_item_pos < data_offset ||
  46. extent_item_pos >= data_offset + data_len)
  47. return 1;
  48. offset = extent_item_pos - data_offset;
  49. }
  50. e = kmalloc(sizeof(*e), GFP_NOFS);
  51. if (!e)
  52. return -ENOMEM;
  53. e->next = *eie;
  54. e->inum = key->objectid;
  55. e->offset = key->offset + offset;
  56. *eie = e;
  57. return 0;
  58. }
  59. static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  60. u64 extent_item_pos,
  61. struct extent_inode_elem **eie)
  62. {
  63. u64 disk_byte;
  64. struct btrfs_key key;
  65. struct btrfs_file_extent_item *fi;
  66. int slot;
  67. int nritems;
  68. int extent_type;
  69. int ret;
  70. /*
  71. * from the shared data ref, we only have the leaf but we need
  72. * the key. thus, we must look into all items and see that we
  73. * find one (some) with a reference to our extent item.
  74. */
  75. nritems = btrfs_header_nritems(eb);
  76. for (slot = 0; slot < nritems; ++slot) {
  77. btrfs_item_key_to_cpu(eb, &key, slot);
  78. if (key.type != BTRFS_EXTENT_DATA_KEY)
  79. continue;
  80. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  81. extent_type = btrfs_file_extent_type(eb, fi);
  82. if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  83. continue;
  84. /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  85. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  86. if (disk_byte != wanted_disk_byte)
  87. continue;
  88. ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  89. if (ret < 0)
  90. return ret;
  91. }
  92. return 0;
  93. }
  94. /*
  95. * this structure records all encountered refs on the way up to the root
  96. */
  97. struct __prelim_ref {
  98. struct list_head list;
  99. u64 root_id;
  100. struct btrfs_key key_for_search;
  101. int level;
  102. int count;
  103. struct extent_inode_elem *inode_list;
  104. u64 parent;
  105. u64 wanted_disk_byte;
  106. };
  107. static struct kmem_cache *btrfs_prelim_ref_cache;
  108. int __init btrfs_prelim_ref_init(void)
  109. {
  110. btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
  111. sizeof(struct __prelim_ref),
  112. 0,
  113. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  114. NULL);
  115. if (!btrfs_prelim_ref_cache)
  116. return -ENOMEM;
  117. return 0;
  118. }
  119. void btrfs_prelim_ref_exit(void)
  120. {
  121. if (btrfs_prelim_ref_cache)
  122. kmem_cache_destroy(btrfs_prelim_ref_cache);
  123. }
  124. /*
  125. * the rules for all callers of this function are:
  126. * - obtaining the parent is the goal
  127. * - if you add a key, you must know that it is a correct key
  128. * - if you cannot add the parent or a correct key, then we will look into the
  129. * block later to set a correct key
  130. *
  131. * delayed refs
  132. * ============
  133. * backref type | shared | indirect | shared | indirect
  134. * information | tree | tree | data | data
  135. * --------------------+--------+----------+--------+----------
  136. * parent logical | y | - | - | -
  137. * key to resolve | - | y | y | y
  138. * tree block logical | - | - | - | -
  139. * root for resolving | y | y | y | y
  140. *
  141. * - column 1: we've the parent -> done
  142. * - column 2, 3, 4: we use the key to find the parent
  143. *
  144. * on disk refs (inline or keyed)
  145. * ==============================
  146. * backref type | shared | indirect | shared | indirect
  147. * information | tree | tree | data | data
  148. * --------------------+--------+----------+--------+----------
  149. * parent logical | y | - | y | -
  150. * key to resolve | - | - | - | y
  151. * tree block logical | y | y | y | y
  152. * root for resolving | - | y | y | y
  153. *
  154. * - column 1, 3: we've the parent -> done
  155. * - column 2: we take the first key from the block to find the parent
  156. * (see __add_missing_keys)
  157. * - column 4: we use the key to find the parent
  158. *
  159. * additional information that's available but not required to find the parent
  160. * block might help in merging entries to gain some speed.
  161. */
  162. static int __add_prelim_ref(struct list_head *head, u64 root_id,
  163. struct btrfs_key *key, int level,
  164. u64 parent, u64 wanted_disk_byte, int count,
  165. gfp_t gfp_mask)
  166. {
  167. struct __prelim_ref *ref;
  168. ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
  169. if (!ref)
  170. return -ENOMEM;
  171. ref->root_id = root_id;
  172. if (key)
  173. ref->key_for_search = *key;
  174. else
  175. memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
  176. ref->inode_list = NULL;
  177. ref->level = level;
  178. ref->count = count;
  179. ref->parent = parent;
  180. ref->wanted_disk_byte = wanted_disk_byte;
  181. list_add_tail(&ref->list, head);
  182. return 0;
  183. }
  184. static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
  185. struct ulist *parents, int level,
  186. struct btrfs_key *key_for_search, u64 time_seq,
  187. u64 wanted_disk_byte,
  188. const u64 *extent_item_pos)
  189. {
  190. int ret = 0;
  191. int slot;
  192. struct extent_buffer *eb;
  193. struct btrfs_key key;
  194. struct btrfs_file_extent_item *fi;
  195. struct extent_inode_elem *eie = NULL, *old = NULL;
  196. u64 disk_byte;
  197. if (level != 0) {
  198. eb = path->nodes[level];
  199. ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
  200. if (ret < 0)
  201. return ret;
  202. return 0;
  203. }
  204. /*
  205. * We normally enter this function with the path already pointing to
  206. * the first item to check. But sometimes, we may enter it with
  207. * slot==nritems. In that case, go to the next leaf before we continue.
  208. */
  209. if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
  210. ret = btrfs_next_old_leaf(root, path, time_seq);
  211. while (!ret) {
  212. eb = path->nodes[0];
  213. slot = path->slots[0];
  214. btrfs_item_key_to_cpu(eb, &key, slot);
  215. if (key.objectid != key_for_search->objectid ||
  216. key.type != BTRFS_EXTENT_DATA_KEY)
  217. break;
  218. fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  219. disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  220. if (disk_byte == wanted_disk_byte) {
  221. eie = NULL;
  222. old = NULL;
  223. if (extent_item_pos) {
  224. ret = check_extent_in_eb(&key, eb, fi,
  225. *extent_item_pos,
  226. &eie);
  227. if (ret < 0)
  228. break;
  229. }
  230. if (ret > 0)
  231. goto next;
  232. ret = ulist_add_merge(parents, eb->start,
  233. (uintptr_t)eie,
  234. (u64 *)&old, GFP_NOFS);
  235. if (ret < 0)
  236. break;
  237. if (!ret && extent_item_pos) {
  238. while (old->next)
  239. old = old->next;
  240. old->next = eie;
  241. }
  242. }
  243. next:
  244. ret = btrfs_next_old_item(root, path, time_seq);
  245. }
  246. if (ret > 0)
  247. ret = 0;
  248. return ret;
  249. }
  250. /*
  251. * resolve an indirect backref in the form (root_id, key, level)
  252. * to a logical address
  253. */
  254. static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
  255. struct btrfs_path *path, u64 time_seq,
  256. struct __prelim_ref *ref,
  257. struct ulist *parents,
  258. const u64 *extent_item_pos)
  259. {
  260. struct btrfs_root *root;
  261. struct btrfs_key root_key;
  262. struct extent_buffer *eb;
  263. int ret = 0;
  264. int root_level;
  265. int level = ref->level;
  266. root_key.objectid = ref->root_id;
  267. root_key.type = BTRFS_ROOT_ITEM_KEY;
  268. root_key.offset = (u64)-1;
  269. root = btrfs_read_fs_root_no_name(fs_info, &root_key);
  270. if (IS_ERR(root)) {
  271. ret = PTR_ERR(root);
  272. goto out;
  273. }
  274. root_level = btrfs_old_root_level(root, time_seq);
  275. if (root_level + 1 == level)
  276. goto out;
  277. path->lowest_level = level;
  278. ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
  279. pr_debug("search slot in root %llu (level %d, ref count %d) returned "
  280. "%d for key (%llu %u %llu)\n",
  281. ref->root_id, level, ref->count, ret,
  282. ref->key_for_search.objectid, ref->key_for_search.type,
  283. ref->key_for_search.offset);
  284. if (ret < 0)
  285. goto out;
  286. eb = path->nodes[level];
  287. while (!eb) {
  288. if (!level) {
  289. WARN_ON(1);
  290. ret = 1;
  291. goto out;
  292. }
  293. level--;
  294. eb = path->nodes[level];
  295. }
  296. ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
  297. time_seq, ref->wanted_disk_byte,
  298. extent_item_pos);
  299. out:
  300. path->lowest_level = 0;
  301. btrfs_release_path(path);
  302. return ret;
  303. }
  304. /*
  305. * resolve all indirect backrefs from the list
  306. */
  307. static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
  308. struct btrfs_path *path, u64 time_seq,
  309. struct list_head *head,
  310. const u64 *extent_item_pos)
  311. {
  312. int err;
  313. int ret = 0;
  314. struct __prelim_ref *ref;
  315. struct __prelim_ref *ref_safe;
  316. struct __prelim_ref *new_ref;
  317. struct ulist *parents;
  318. struct ulist_node *node;
  319. struct ulist_iterator uiter;
  320. parents = ulist_alloc(GFP_NOFS);
  321. if (!parents)
  322. return -ENOMEM;
  323. /*
  324. * _safe allows us to insert directly after the current item without
  325. * iterating over the newly inserted items.
  326. * we're also allowed to re-assign ref during iteration.
  327. */
  328. list_for_each_entry_safe(ref, ref_safe, head, list) {
  329. if (ref->parent) /* already direct */
  330. continue;
  331. if (ref->count == 0)
  332. continue;
  333. err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
  334. parents, extent_item_pos);
  335. if (err == -ENOMEM)
  336. goto out;
  337. if (err)
  338. continue;
  339. /* we put the first parent into the ref at hand */
  340. ULIST_ITER_INIT(&uiter);
  341. node = ulist_next(parents, &uiter);
  342. ref->parent = node ? node->val : 0;
  343. ref->inode_list = node ?
  344. (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
  345. /* additional parents require new refs being added here */
  346. while ((node = ulist_next(parents, &uiter))) {
  347. new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
  348. GFP_NOFS);
  349. if (!new_ref) {
  350. ret = -ENOMEM;
  351. goto out;
  352. }
  353. memcpy(new_ref, ref, sizeof(*ref));
  354. new_ref->parent = node->val;
  355. new_ref->inode_list = (struct extent_inode_elem *)
  356. (uintptr_t)node->aux;
  357. list_add(&new_ref->list, &ref->list);
  358. }
  359. ulist_reinit(parents);
  360. }
  361. out:
  362. ulist_free(parents);
  363. return ret;
  364. }
  365. static inline int ref_for_same_block(struct __prelim_ref *ref1,
  366. struct __prelim_ref *ref2)
  367. {
  368. if (ref1->level != ref2->level)
  369. return 0;
  370. if (ref1->root_id != ref2->root_id)
  371. return 0;
  372. if (ref1->key_for_search.type != ref2->key_for_search.type)
  373. return 0;
  374. if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
  375. return 0;
  376. if (ref1->key_for_search.offset != ref2->key_for_search.offset)
  377. return 0;
  378. if (ref1->parent != ref2->parent)
  379. return 0;
  380. return 1;
  381. }
  382. /*
  383. * read tree blocks and add keys where required.
  384. */
  385. static int __add_missing_keys(struct btrfs_fs_info *fs_info,
  386. struct list_head *head)
  387. {
  388. struct list_head *pos;
  389. struct extent_buffer *eb;
  390. list_for_each(pos, head) {
  391. struct __prelim_ref *ref;
  392. ref = list_entry(pos, struct __prelim_ref, list);
  393. if (ref->parent)
  394. continue;
  395. if (ref->key_for_search.type)
  396. continue;
  397. BUG_ON(!ref->wanted_disk_byte);
  398. eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
  399. fs_info->tree_root->leafsize, 0);
  400. if (!eb || !extent_buffer_uptodate(eb)) {
  401. free_extent_buffer(eb);
  402. return -EIO;
  403. }
  404. btrfs_tree_read_lock(eb);
  405. if (btrfs_header_level(eb) == 0)
  406. btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
  407. else
  408. btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
  409. btrfs_tree_read_unlock(eb);
  410. free_extent_buffer(eb);
  411. }
  412. return 0;
  413. }
  414. /*
  415. * merge two lists of backrefs and adjust counts accordingly
  416. *
  417. * mode = 1: merge identical keys, if key is set
  418. * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
  419. * additionally, we could even add a key range for the blocks we
  420. * looked into to merge even more (-> replace unresolved refs by those
  421. * having a parent).
  422. * mode = 2: merge identical parents
  423. */
  424. static void __merge_refs(struct list_head *head, int mode)
  425. {
  426. struct list_head *pos1;
  427. list_for_each(pos1, head) {
  428. struct list_head *n2;
  429. struct list_head *pos2;
  430. struct __prelim_ref *ref1;
  431. ref1 = list_entry(pos1, struct __prelim_ref, list);
  432. for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
  433. pos2 = n2, n2 = pos2->next) {
  434. struct __prelim_ref *ref2;
  435. struct __prelim_ref *xchg;
  436. struct extent_inode_elem *eie;
  437. ref2 = list_entry(pos2, struct __prelim_ref, list);
  438. if (mode == 1) {
  439. if (!ref_for_same_block(ref1, ref2))
  440. continue;
  441. if (!ref1->parent && ref2->parent) {
  442. xchg = ref1;
  443. ref1 = ref2;
  444. ref2 = xchg;
  445. }
  446. } else {
  447. if (ref1->parent != ref2->parent)
  448. continue;
  449. }
  450. eie = ref1->inode_list;
  451. while (eie && eie->next)
  452. eie = eie->next;
  453. if (eie)
  454. eie->next = ref2->inode_list;
  455. else
  456. ref1->inode_list = ref2->inode_list;
  457. ref1->count += ref2->count;
  458. list_del(&ref2->list);
  459. kmem_cache_free(btrfs_prelim_ref_cache, ref2);
  460. }
  461. }
  462. }
  463. /*
  464. * add all currently queued delayed refs from this head whose seq nr is
  465. * smaller or equal that seq to the list
  466. */
  467. static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
  468. struct list_head *prefs)
  469. {
  470. struct btrfs_delayed_extent_op *extent_op = head->extent_op;
  471. struct rb_node *n = &head->node.rb_node;
  472. struct btrfs_key key;
  473. struct btrfs_key op_key = {0};
  474. int sgn;
  475. int ret = 0;
  476. if (extent_op && extent_op->update_key)
  477. btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
  478. while ((n = rb_prev(n))) {
  479. struct btrfs_delayed_ref_node *node;
  480. node = rb_entry(n, struct btrfs_delayed_ref_node,
  481. rb_node);
  482. if (node->bytenr != head->node.bytenr)
  483. break;
  484. WARN_ON(node->is_head);
  485. if (node->seq > seq)
  486. continue;
  487. switch (node->action) {
  488. case BTRFS_ADD_DELAYED_EXTENT:
  489. case BTRFS_UPDATE_DELAYED_HEAD:
  490. WARN_ON(1);
  491. continue;
  492. case BTRFS_ADD_DELAYED_REF:
  493. sgn = 1;
  494. break;
  495. case BTRFS_DROP_DELAYED_REF:
  496. sgn = -1;
  497. break;
  498. default:
  499. BUG_ON(1);
  500. }
  501. switch (node->type) {
  502. case BTRFS_TREE_BLOCK_REF_KEY: {
  503. struct btrfs_delayed_tree_ref *ref;
  504. ref = btrfs_delayed_node_to_tree_ref(node);
  505. ret = __add_prelim_ref(prefs, ref->root, &op_key,
  506. ref->level + 1, 0, node->bytenr,
  507. node->ref_mod * sgn, GFP_ATOMIC);
  508. break;
  509. }
  510. case BTRFS_SHARED_BLOCK_REF_KEY: {
  511. struct btrfs_delayed_tree_ref *ref;
  512. ref = btrfs_delayed_node_to_tree_ref(node);
  513. ret = __add_prelim_ref(prefs, ref->root, NULL,
  514. ref->level + 1, ref->parent,
  515. node->bytenr,
  516. node->ref_mod * sgn, GFP_ATOMIC);
  517. break;
  518. }
  519. case BTRFS_EXTENT_DATA_REF_KEY: {
  520. struct btrfs_delayed_data_ref *ref;
  521. ref = btrfs_delayed_node_to_data_ref(node);
  522. key.objectid = ref->objectid;
  523. key.type = BTRFS_EXTENT_DATA_KEY;
  524. key.offset = ref->offset;
  525. ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
  526. node->bytenr,
  527. node->ref_mod * sgn, GFP_ATOMIC);
  528. break;
  529. }
  530. case BTRFS_SHARED_DATA_REF_KEY: {
  531. struct btrfs_delayed_data_ref *ref;
  532. ref = btrfs_delayed_node_to_data_ref(node);
  533. key.objectid = ref->objectid;
  534. key.type = BTRFS_EXTENT_DATA_KEY;
  535. key.offset = ref->offset;
  536. ret = __add_prelim_ref(prefs, ref->root, &key, 0,
  537. ref->parent, node->bytenr,
  538. node->ref_mod * sgn, GFP_ATOMIC);
  539. break;
  540. }
  541. default:
  542. WARN_ON(1);
  543. }
  544. if (ret)
  545. return ret;
  546. }
  547. return 0;
  548. }
  549. /*
  550. * add all inline backrefs for bytenr to the list
  551. */
  552. static int __add_inline_refs(struct btrfs_fs_info *fs_info,
  553. struct btrfs_path *path, u64 bytenr,
  554. int *info_level, struct list_head *prefs)
  555. {
  556. int ret = 0;
  557. int slot;
  558. struct extent_buffer *leaf;
  559. struct btrfs_key key;
  560. struct btrfs_key found_key;
  561. unsigned long ptr;
  562. unsigned long end;
  563. struct btrfs_extent_item *ei;
  564. u64 flags;
  565. u64 item_size;
  566. /*
  567. * enumerate all inline refs
  568. */
  569. leaf = path->nodes[0];
  570. slot = path->slots[0];
  571. item_size = btrfs_item_size_nr(leaf, slot);
  572. BUG_ON(item_size < sizeof(*ei));
  573. ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
  574. flags = btrfs_extent_flags(leaf, ei);
  575. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  576. ptr = (unsigned long)(ei + 1);
  577. end = (unsigned long)ei + item_size;
  578. if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
  579. flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  580. struct btrfs_tree_block_info *info;
  581. info = (struct btrfs_tree_block_info *)ptr;
  582. *info_level = btrfs_tree_block_level(leaf, info);
  583. ptr += sizeof(struct btrfs_tree_block_info);
  584. BUG_ON(ptr > end);
  585. } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
  586. *info_level = found_key.offset;
  587. } else {
  588. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
  589. }
  590. while (ptr < end) {
  591. struct btrfs_extent_inline_ref *iref;
  592. u64 offset;
  593. int type;
  594. iref = (struct btrfs_extent_inline_ref *)ptr;
  595. type = btrfs_extent_inline_ref_type(leaf, iref);
  596. offset = btrfs_extent_inline_ref_offset(leaf, iref);
  597. switch (type) {
  598. case BTRFS_SHARED_BLOCK_REF_KEY:
  599. ret = __add_prelim_ref(prefs, 0, NULL,
  600. *info_level + 1, offset,
  601. bytenr, 1, GFP_NOFS);
  602. break;
  603. case BTRFS_SHARED_DATA_REF_KEY: {
  604. struct btrfs_shared_data_ref *sdref;
  605. int count;
  606. sdref = (struct btrfs_shared_data_ref *)(iref + 1);
  607. count = btrfs_shared_data_ref_count(leaf, sdref);
  608. ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
  609. bytenr, count, GFP_NOFS);
  610. break;
  611. }
  612. case BTRFS_TREE_BLOCK_REF_KEY:
  613. ret = __add_prelim_ref(prefs, offset, NULL,
  614. *info_level + 1, 0,
  615. bytenr, 1, GFP_NOFS);
  616. break;
  617. case BTRFS_EXTENT_DATA_REF_KEY: {
  618. struct btrfs_extent_data_ref *dref;
  619. int count;
  620. u64 root;
  621. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  622. count = btrfs_extent_data_ref_count(leaf, dref);
  623. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  624. dref);
  625. key.type = BTRFS_EXTENT_DATA_KEY;
  626. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  627. root = btrfs_extent_data_ref_root(leaf, dref);
  628. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  629. bytenr, count, GFP_NOFS);
  630. break;
  631. }
  632. default:
  633. WARN_ON(1);
  634. }
  635. if (ret)
  636. return ret;
  637. ptr += btrfs_extent_inline_ref_size(type);
  638. }
  639. return 0;
  640. }
  641. /*
  642. * add all non-inline backrefs for bytenr to the list
  643. */
  644. static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
  645. struct btrfs_path *path, u64 bytenr,
  646. int info_level, struct list_head *prefs)
  647. {
  648. struct btrfs_root *extent_root = fs_info->extent_root;
  649. int ret;
  650. int slot;
  651. struct extent_buffer *leaf;
  652. struct btrfs_key key;
  653. while (1) {
  654. ret = btrfs_next_item(extent_root, path);
  655. if (ret < 0)
  656. break;
  657. if (ret) {
  658. ret = 0;
  659. break;
  660. }
  661. slot = path->slots[0];
  662. leaf = path->nodes[0];
  663. btrfs_item_key_to_cpu(leaf, &key, slot);
  664. if (key.objectid != bytenr)
  665. break;
  666. if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
  667. continue;
  668. if (key.type > BTRFS_SHARED_DATA_REF_KEY)
  669. break;
  670. switch (key.type) {
  671. case BTRFS_SHARED_BLOCK_REF_KEY:
  672. ret = __add_prelim_ref(prefs, 0, NULL,
  673. info_level + 1, key.offset,
  674. bytenr, 1, GFP_NOFS);
  675. break;
  676. case BTRFS_SHARED_DATA_REF_KEY: {
  677. struct btrfs_shared_data_ref *sdref;
  678. int count;
  679. sdref = btrfs_item_ptr(leaf, slot,
  680. struct btrfs_shared_data_ref);
  681. count = btrfs_shared_data_ref_count(leaf, sdref);
  682. ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
  683. bytenr, count, GFP_NOFS);
  684. break;
  685. }
  686. case BTRFS_TREE_BLOCK_REF_KEY:
  687. ret = __add_prelim_ref(prefs, key.offset, NULL,
  688. info_level + 1, 0,
  689. bytenr, 1, GFP_NOFS);
  690. break;
  691. case BTRFS_EXTENT_DATA_REF_KEY: {
  692. struct btrfs_extent_data_ref *dref;
  693. int count;
  694. u64 root;
  695. dref = btrfs_item_ptr(leaf, slot,
  696. struct btrfs_extent_data_ref);
  697. count = btrfs_extent_data_ref_count(leaf, dref);
  698. key.objectid = btrfs_extent_data_ref_objectid(leaf,
  699. dref);
  700. key.type = BTRFS_EXTENT_DATA_KEY;
  701. key.offset = btrfs_extent_data_ref_offset(leaf, dref);
  702. root = btrfs_extent_data_ref_root(leaf, dref);
  703. ret = __add_prelim_ref(prefs, root, &key, 0, 0,
  704. bytenr, count, GFP_NOFS);
  705. break;
  706. }
  707. default:
  708. WARN_ON(1);
  709. }
  710. if (ret)
  711. return ret;
  712. }
  713. return ret;
  714. }
  715. /*
  716. * this adds all existing backrefs (inline backrefs, backrefs and delayed
  717. * refs) for the given bytenr to the refs list, merges duplicates and resolves
  718. * indirect refs to their parent bytenr.
  719. * When roots are found, they're added to the roots list
  720. *
  721. * FIXME some caching might speed things up
  722. */
  723. static int find_parent_nodes(struct btrfs_trans_handle *trans,
  724. struct btrfs_fs_info *fs_info, u64 bytenr,
  725. u64 time_seq, struct ulist *refs,
  726. struct ulist *roots, const u64 *extent_item_pos)
  727. {
  728. struct btrfs_key key;
  729. struct btrfs_path *path;
  730. struct btrfs_delayed_ref_root *delayed_refs = NULL;
  731. struct btrfs_delayed_ref_head *head;
  732. int info_level = 0;
  733. int ret;
  734. struct list_head prefs_delayed;
  735. struct list_head prefs;
  736. struct __prelim_ref *ref;
  737. INIT_LIST_HEAD(&prefs);
  738. INIT_LIST_HEAD(&prefs_delayed);
  739. key.objectid = bytenr;
  740. key.offset = (u64)-1;
  741. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  742. key.type = BTRFS_METADATA_ITEM_KEY;
  743. else
  744. key.type = BTRFS_EXTENT_ITEM_KEY;
  745. path = btrfs_alloc_path();
  746. if (!path)
  747. return -ENOMEM;
  748. if (!trans)
  749. path->search_commit_root = 1;
  750. /*
  751. * grab both a lock on the path and a lock on the delayed ref head.
  752. * We need both to get a consistent picture of how the refs look
  753. * at a specified point in time
  754. */
  755. again:
  756. head = NULL;
  757. ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
  758. if (ret < 0)
  759. goto out;
  760. BUG_ON(ret == 0);
  761. if (trans) {
  762. /*
  763. * look if there are updates for this ref queued and lock the
  764. * head
  765. */
  766. delayed_refs = &trans->transaction->delayed_refs;
  767. spin_lock(&delayed_refs->lock);
  768. head = btrfs_find_delayed_ref_head(trans, bytenr);
  769. if (head) {
  770. if (!mutex_trylock(&head->mutex)) {
  771. atomic_inc(&head->node.refs);
  772. spin_unlock(&delayed_refs->lock);
  773. btrfs_release_path(path);
  774. /*
  775. * Mutex was contended, block until it's
  776. * released and try again
  777. */
  778. mutex_lock(&head->mutex);
  779. mutex_unlock(&head->mutex);
  780. btrfs_put_delayed_ref(&head->node);
  781. goto again;
  782. }
  783. ret = __add_delayed_refs(head, time_seq,
  784. &prefs_delayed);
  785. mutex_unlock(&head->mutex);
  786. if (ret) {
  787. spin_unlock(&delayed_refs->lock);
  788. goto out;
  789. }
  790. }
  791. spin_unlock(&delayed_refs->lock);
  792. }
  793. if (path->slots[0]) {
  794. struct extent_buffer *leaf;
  795. int slot;
  796. path->slots[0]--;
  797. leaf = path->nodes[0];
  798. slot = path->slots[0];
  799. btrfs_item_key_to_cpu(leaf, &key, slot);
  800. if (key.objectid == bytenr &&
  801. (key.type == BTRFS_EXTENT_ITEM_KEY ||
  802. key.type == BTRFS_METADATA_ITEM_KEY)) {
  803. ret = __add_inline_refs(fs_info, path, bytenr,
  804. &info_level, &prefs);
  805. if (ret)
  806. goto out;
  807. ret = __add_keyed_refs(fs_info, path, bytenr,
  808. info_level, &prefs);
  809. if (ret)
  810. goto out;
  811. }
  812. }
  813. btrfs_release_path(path);
  814. list_splice_init(&prefs_delayed, &prefs);
  815. ret = __add_missing_keys(fs_info, &prefs);
  816. if (ret)
  817. goto out;
  818. __merge_refs(&prefs, 1);
  819. ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
  820. extent_item_pos);
  821. if (ret)
  822. goto out;
  823. __merge_refs(&prefs, 2);
  824. while (!list_empty(&prefs)) {
  825. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  826. WARN_ON(ref->count < 0);
  827. if (ref->count && ref->root_id && ref->parent == 0) {
  828. /* no parent == root of tree */
  829. ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
  830. if (ret < 0)
  831. goto out;
  832. }
  833. if (ref->count && ref->parent) {
  834. struct extent_inode_elem *eie = NULL;
  835. if (extent_item_pos && !ref->inode_list) {
  836. u32 bsz;
  837. struct extent_buffer *eb;
  838. bsz = btrfs_level_size(fs_info->extent_root,
  839. info_level);
  840. eb = read_tree_block(fs_info->extent_root,
  841. ref->parent, bsz, 0);
  842. if (!eb || !extent_buffer_uptodate(eb)) {
  843. free_extent_buffer(eb);
  844. ret = -EIO;
  845. goto out;
  846. }
  847. ret = find_extent_in_eb(eb, bytenr,
  848. *extent_item_pos, &eie);
  849. free_extent_buffer(eb);
  850. if (ret < 0)
  851. goto out;
  852. ref->inode_list = eie;
  853. }
  854. ret = ulist_add_merge(refs, ref->parent,
  855. (uintptr_t)ref->inode_list,
  856. (u64 *)&eie, GFP_NOFS);
  857. if (ret < 0)
  858. goto out;
  859. if (!ret && extent_item_pos) {
  860. /*
  861. * we've recorded that parent, so we must extend
  862. * its inode list here
  863. */
  864. BUG_ON(!eie);
  865. while (eie->next)
  866. eie = eie->next;
  867. eie->next = ref->inode_list;
  868. }
  869. }
  870. list_del(&ref->list);
  871. kmem_cache_free(btrfs_prelim_ref_cache, ref);
  872. }
  873. out:
  874. btrfs_free_path(path);
  875. while (!list_empty(&prefs)) {
  876. ref = list_first_entry(&prefs, struct __prelim_ref, list);
  877. list_del(&ref->list);
  878. kmem_cache_free(btrfs_prelim_ref_cache, ref);
  879. }
  880. while (!list_empty(&prefs_delayed)) {
  881. ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
  882. list);
  883. list_del(&ref->list);
  884. kmem_cache_free(btrfs_prelim_ref_cache, ref);
  885. }
  886. return ret;
  887. }
  888. static void free_leaf_list(struct ulist *blocks)
  889. {
  890. struct ulist_node *node = NULL;
  891. struct extent_inode_elem *eie;
  892. struct extent_inode_elem *eie_next;
  893. struct ulist_iterator uiter;
  894. ULIST_ITER_INIT(&uiter);
  895. while ((node = ulist_next(blocks, &uiter))) {
  896. if (!node->aux)
  897. continue;
  898. eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
  899. for (; eie; eie = eie_next) {
  900. eie_next = eie->next;
  901. kfree(eie);
  902. }
  903. node->aux = 0;
  904. }
  905. ulist_free(blocks);
  906. }
  907. /*
  908. * Finds all leafs with a reference to the specified combination of bytenr and
  909. * offset. key_list_head will point to a list of corresponding keys (caller must
  910. * free each list element). The leafs will be stored in the leafs ulist, which
  911. * must be freed with ulist_free.
  912. *
  913. * returns 0 on success, <0 on error
  914. */
  915. static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
  916. struct btrfs_fs_info *fs_info, u64 bytenr,
  917. u64 time_seq, struct ulist **leafs,
  918. const u64 *extent_item_pos)
  919. {
  920. struct ulist *tmp;
  921. int ret;
  922. tmp = ulist_alloc(GFP_NOFS);
  923. if (!tmp)
  924. return -ENOMEM;
  925. *leafs = ulist_alloc(GFP_NOFS);
  926. if (!*leafs) {
  927. ulist_free(tmp);
  928. return -ENOMEM;
  929. }
  930. ret = find_parent_nodes(trans, fs_info, bytenr,
  931. time_seq, *leafs, tmp, extent_item_pos);
  932. ulist_free(tmp);
  933. if (ret < 0 && ret != -ENOENT) {
  934. free_leaf_list(*leafs);
  935. return ret;
  936. }
  937. return 0;
  938. }
  939. /*
  940. * walk all backrefs for a given extent to find all roots that reference this
  941. * extent. Walking a backref means finding all extents that reference this
  942. * extent and in turn walk the backrefs of those, too. Naturally this is a
  943. * recursive process, but here it is implemented in an iterative fashion: We
  944. * find all referencing extents for the extent in question and put them on a
  945. * list. In turn, we find all referencing extents for those, further appending
  946. * to the list. The way we iterate the list allows adding more elements after
  947. * the current while iterating. The process stops when we reach the end of the
  948. * list. Found roots are added to the roots list.
  949. *
  950. * returns 0 on success, < 0 on error.
  951. */
  952. int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
  953. struct btrfs_fs_info *fs_info, u64 bytenr,
  954. u64 time_seq, struct ulist **roots)
  955. {
  956. struct ulist *tmp;
  957. struct ulist_node *node = NULL;
  958. struct ulist_iterator uiter;
  959. int ret;
  960. tmp = ulist_alloc(GFP_NOFS);
  961. if (!tmp)
  962. return -ENOMEM;
  963. *roots = ulist_alloc(GFP_NOFS);
  964. if (!*roots) {
  965. ulist_free(tmp);
  966. return -ENOMEM;
  967. }
  968. ULIST_ITER_INIT(&uiter);
  969. while (1) {
  970. ret = find_parent_nodes(trans, fs_info, bytenr,
  971. time_seq, tmp, *roots, NULL);
  972. if (ret < 0 && ret != -ENOENT) {
  973. ulist_free(tmp);
  974. ulist_free(*roots);
  975. return ret;
  976. }
  977. node = ulist_next(tmp, &uiter);
  978. if (!node)
  979. break;
  980. bytenr = node->val;
  981. }
  982. ulist_free(tmp);
  983. return 0;
  984. }
  985. static int __inode_info(u64 inum, u64 ioff, u8 key_type,
  986. struct btrfs_root *fs_root, struct btrfs_path *path,
  987. struct btrfs_key *found_key)
  988. {
  989. int ret;
  990. struct btrfs_key key;
  991. struct extent_buffer *eb;
  992. key.type = key_type;
  993. key.objectid = inum;
  994. key.offset = ioff;
  995. ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
  996. if (ret < 0)
  997. return ret;
  998. eb = path->nodes[0];
  999. if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
  1000. ret = btrfs_next_leaf(fs_root, path);
  1001. if (ret)
  1002. return ret;
  1003. eb = path->nodes[0];
  1004. }
  1005. btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
  1006. if (found_key->type != key.type || found_key->objectid != key.objectid)
  1007. return 1;
  1008. return 0;
  1009. }
  1010. /*
  1011. * this makes the path point to (inum INODE_ITEM ioff)
  1012. */
  1013. int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  1014. struct btrfs_path *path)
  1015. {
  1016. struct btrfs_key key;
  1017. return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
  1018. &key);
  1019. }
  1020. static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
  1021. struct btrfs_path *path,
  1022. struct btrfs_key *found_key)
  1023. {
  1024. return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
  1025. found_key);
  1026. }
  1027. int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
  1028. u64 start_off, struct btrfs_path *path,
  1029. struct btrfs_inode_extref **ret_extref,
  1030. u64 *found_off)
  1031. {
  1032. int ret, slot;
  1033. struct btrfs_key key;
  1034. struct btrfs_key found_key;
  1035. struct btrfs_inode_extref *extref;
  1036. struct extent_buffer *leaf;
  1037. unsigned long ptr;
  1038. key.objectid = inode_objectid;
  1039. btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
  1040. key.offset = start_off;
  1041. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  1042. if (ret < 0)
  1043. return ret;
  1044. while (1) {
  1045. leaf = path->nodes[0];
  1046. slot = path->slots[0];
  1047. if (slot >= btrfs_header_nritems(leaf)) {
  1048. /*
  1049. * If the item at offset is not found,
  1050. * btrfs_search_slot will point us to the slot
  1051. * where it should be inserted. In our case
  1052. * that will be the slot directly before the
  1053. * next INODE_REF_KEY_V2 item. In the case
  1054. * that we're pointing to the last slot in a
  1055. * leaf, we must move one leaf over.
  1056. */
  1057. ret = btrfs_next_leaf(root, path);
  1058. if (ret) {
  1059. if (ret >= 1)
  1060. ret = -ENOENT;
  1061. break;
  1062. }
  1063. continue;
  1064. }
  1065. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  1066. /*
  1067. * Check that we're still looking at an extended ref key for
  1068. * this particular objectid. If we have different
  1069. * objectid or type then there are no more to be found
  1070. * in the tree and we can exit.
  1071. */
  1072. ret = -ENOENT;
  1073. if (found_key.objectid != inode_objectid)
  1074. break;
  1075. if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
  1076. break;
  1077. ret = 0;
  1078. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1079. extref = (struct btrfs_inode_extref *)ptr;
  1080. *ret_extref = extref;
  1081. if (found_off)
  1082. *found_off = found_key.offset;
  1083. break;
  1084. }
  1085. return ret;
  1086. }
  1087. /*
  1088. * this iterates to turn a name (from iref/extref) into a full filesystem path.
  1089. * Elements of the path are separated by '/' and the path is guaranteed to be
  1090. * 0-terminated. the path is only given within the current file system.
  1091. * Therefore, it never starts with a '/'. the caller is responsible to provide
  1092. * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
  1093. * the start point of the resulting string is returned. this pointer is within
  1094. * dest, normally.
  1095. * in case the path buffer would overflow, the pointer is decremented further
  1096. * as if output was written to the buffer, though no more output is actually
  1097. * generated. that way, the caller can determine how much space would be
  1098. * required for the path to fit into the buffer. in that case, the returned
  1099. * value will be smaller than dest. callers must check this!
  1100. */
  1101. char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
  1102. u32 name_len, unsigned long name_off,
  1103. struct extent_buffer *eb_in, u64 parent,
  1104. char *dest, u32 size)
  1105. {
  1106. int slot;
  1107. u64 next_inum;
  1108. int ret;
  1109. s64 bytes_left = ((s64)size) - 1;
  1110. struct extent_buffer *eb = eb_in;
  1111. struct btrfs_key found_key;
  1112. int leave_spinning = path->leave_spinning;
  1113. struct btrfs_inode_ref *iref;
  1114. if (bytes_left >= 0)
  1115. dest[bytes_left] = '\0';
  1116. path->leave_spinning = 1;
  1117. while (1) {
  1118. bytes_left -= name_len;
  1119. if (bytes_left >= 0)
  1120. read_extent_buffer(eb, dest + bytes_left,
  1121. name_off, name_len);
  1122. if (eb != eb_in) {
  1123. btrfs_tree_read_unlock_blocking(eb);
  1124. free_extent_buffer(eb);
  1125. }
  1126. ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
  1127. if (ret > 0)
  1128. ret = -ENOENT;
  1129. if (ret)
  1130. break;
  1131. next_inum = found_key.offset;
  1132. /* regular exit ahead */
  1133. if (parent == next_inum)
  1134. break;
  1135. slot = path->slots[0];
  1136. eb = path->nodes[0];
  1137. /* make sure we can use eb after releasing the path */
  1138. if (eb != eb_in) {
  1139. atomic_inc(&eb->refs);
  1140. btrfs_tree_read_lock(eb);
  1141. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1142. }
  1143. btrfs_release_path(path);
  1144. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1145. name_len = btrfs_inode_ref_name_len(eb, iref);
  1146. name_off = (unsigned long)(iref + 1);
  1147. parent = next_inum;
  1148. --bytes_left;
  1149. if (bytes_left >= 0)
  1150. dest[bytes_left] = '/';
  1151. }
  1152. btrfs_release_path(path);
  1153. path->leave_spinning = leave_spinning;
  1154. if (ret)
  1155. return ERR_PTR(ret);
  1156. return dest + bytes_left;
  1157. }
  1158. /*
  1159. * this makes the path point to (logical EXTENT_ITEM *)
  1160. * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
  1161. * tree blocks and <0 on error.
  1162. */
  1163. int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
  1164. struct btrfs_path *path, struct btrfs_key *found_key,
  1165. u64 *flags_ret)
  1166. {
  1167. int ret;
  1168. u64 flags;
  1169. u64 size = 0;
  1170. u32 item_size;
  1171. struct extent_buffer *eb;
  1172. struct btrfs_extent_item *ei;
  1173. struct btrfs_key key;
  1174. if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
  1175. key.type = BTRFS_METADATA_ITEM_KEY;
  1176. else
  1177. key.type = BTRFS_EXTENT_ITEM_KEY;
  1178. key.objectid = logical;
  1179. key.offset = (u64)-1;
  1180. ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
  1181. if (ret < 0)
  1182. return ret;
  1183. ret = btrfs_previous_item(fs_info->extent_root, path,
  1184. 0, BTRFS_EXTENT_ITEM_KEY);
  1185. if (ret < 0)
  1186. return ret;
  1187. btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
  1188. if (found_key->type == BTRFS_METADATA_ITEM_KEY)
  1189. size = fs_info->extent_root->leafsize;
  1190. else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
  1191. size = found_key->offset;
  1192. if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
  1193. found_key->type != BTRFS_METADATA_ITEM_KEY) ||
  1194. found_key->objectid > logical ||
  1195. found_key->objectid + size <= logical) {
  1196. pr_debug("logical %llu is not within any extent\n", logical);
  1197. return -ENOENT;
  1198. }
  1199. eb = path->nodes[0];
  1200. item_size = btrfs_item_size_nr(eb, path->slots[0]);
  1201. BUG_ON(item_size < sizeof(*ei));
  1202. ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
  1203. flags = btrfs_extent_flags(eb, ei);
  1204. pr_debug("logical %llu is at position %llu within the extent (%llu "
  1205. "EXTENT_ITEM %llu) flags %#llx size %u\n",
  1206. logical, logical - found_key->objectid, found_key->objectid,
  1207. found_key->offset, flags, item_size);
  1208. WARN_ON(!flags_ret);
  1209. if (flags_ret) {
  1210. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1211. *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
  1212. else if (flags & BTRFS_EXTENT_FLAG_DATA)
  1213. *flags_ret = BTRFS_EXTENT_FLAG_DATA;
  1214. else
  1215. BUG_ON(1);
  1216. return 0;
  1217. }
  1218. return -EIO;
  1219. }
  1220. /*
  1221. * helper function to iterate extent inline refs. ptr must point to a 0 value
  1222. * for the first call and may be modified. it is used to track state.
  1223. * if more refs exist, 0 is returned and the next call to
  1224. * __get_extent_inline_ref must pass the modified ptr parameter to get the
  1225. * next ref. after the last ref was processed, 1 is returned.
  1226. * returns <0 on error
  1227. */
  1228. static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
  1229. struct btrfs_extent_item *ei, u32 item_size,
  1230. struct btrfs_extent_inline_ref **out_eiref,
  1231. int *out_type)
  1232. {
  1233. unsigned long end;
  1234. u64 flags;
  1235. struct btrfs_tree_block_info *info;
  1236. if (!*ptr) {
  1237. /* first call */
  1238. flags = btrfs_extent_flags(eb, ei);
  1239. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
  1240. info = (struct btrfs_tree_block_info *)(ei + 1);
  1241. *out_eiref =
  1242. (struct btrfs_extent_inline_ref *)(info + 1);
  1243. } else {
  1244. *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
  1245. }
  1246. *ptr = (unsigned long)*out_eiref;
  1247. if ((void *)*ptr >= (void *)ei + item_size)
  1248. return -ENOENT;
  1249. }
  1250. end = (unsigned long)ei + item_size;
  1251. *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
  1252. *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
  1253. *ptr += btrfs_extent_inline_ref_size(*out_type);
  1254. WARN_ON(*ptr > end);
  1255. if (*ptr == end)
  1256. return 1; /* last */
  1257. return 0;
  1258. }
  1259. /*
  1260. * reads the tree block backref for an extent. tree level and root are returned
  1261. * through out_level and out_root. ptr must point to a 0 value for the first
  1262. * call and may be modified (see __get_extent_inline_ref comment).
  1263. * returns 0 if data was provided, 1 if there was no more data to provide or
  1264. * <0 on error.
  1265. */
  1266. int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
  1267. struct btrfs_extent_item *ei, u32 item_size,
  1268. u64 *out_root, u8 *out_level)
  1269. {
  1270. int ret;
  1271. int type;
  1272. struct btrfs_tree_block_info *info;
  1273. struct btrfs_extent_inline_ref *eiref;
  1274. if (*ptr == (unsigned long)-1)
  1275. return 1;
  1276. while (1) {
  1277. ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
  1278. &eiref, &type);
  1279. if (ret < 0)
  1280. return ret;
  1281. if (type == BTRFS_TREE_BLOCK_REF_KEY ||
  1282. type == BTRFS_SHARED_BLOCK_REF_KEY)
  1283. break;
  1284. if (ret == 1)
  1285. return 1;
  1286. }
  1287. /* we can treat both ref types equally here */
  1288. info = (struct btrfs_tree_block_info *)(ei + 1);
  1289. *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
  1290. *out_level = btrfs_tree_block_level(eb, info);
  1291. if (ret == 1)
  1292. *ptr = (unsigned long)-1;
  1293. return 0;
  1294. }
  1295. static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
  1296. u64 root, u64 extent_item_objectid,
  1297. iterate_extent_inodes_t *iterate, void *ctx)
  1298. {
  1299. struct extent_inode_elem *eie;
  1300. int ret = 0;
  1301. for (eie = inode_list; eie; eie = eie->next) {
  1302. pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
  1303. "root %llu\n", extent_item_objectid,
  1304. eie->inum, eie->offset, root);
  1305. ret = iterate(eie->inum, eie->offset, root, ctx);
  1306. if (ret) {
  1307. pr_debug("stopping iteration for %llu due to ret=%d\n",
  1308. extent_item_objectid, ret);
  1309. break;
  1310. }
  1311. }
  1312. return ret;
  1313. }
  1314. /*
  1315. * calls iterate() for every inode that references the extent identified by
  1316. * the given parameters.
  1317. * when the iterator function returns a non-zero value, iteration stops.
  1318. */
  1319. int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
  1320. u64 extent_item_objectid, u64 extent_item_pos,
  1321. int search_commit_root,
  1322. iterate_extent_inodes_t *iterate, void *ctx)
  1323. {
  1324. int ret;
  1325. struct btrfs_trans_handle *trans = NULL;
  1326. struct ulist *refs = NULL;
  1327. struct ulist *roots = NULL;
  1328. struct ulist_node *ref_node = NULL;
  1329. struct ulist_node *root_node = NULL;
  1330. struct seq_list tree_mod_seq_elem = {};
  1331. struct ulist_iterator ref_uiter;
  1332. struct ulist_iterator root_uiter;
  1333. pr_debug("resolving all inodes for extent %llu\n",
  1334. extent_item_objectid);
  1335. if (!search_commit_root) {
  1336. trans = btrfs_join_transaction(fs_info->extent_root);
  1337. if (IS_ERR(trans))
  1338. return PTR_ERR(trans);
  1339. btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1340. }
  1341. ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
  1342. tree_mod_seq_elem.seq, &refs,
  1343. &extent_item_pos);
  1344. if (ret)
  1345. goto out;
  1346. ULIST_ITER_INIT(&ref_uiter);
  1347. while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
  1348. ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
  1349. tree_mod_seq_elem.seq, &roots);
  1350. if (ret)
  1351. break;
  1352. ULIST_ITER_INIT(&root_uiter);
  1353. while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
  1354. pr_debug("root %llu references leaf %llu, data list "
  1355. "%#llx\n", root_node->val, ref_node->val,
  1356. ref_node->aux);
  1357. ret = iterate_leaf_refs((struct extent_inode_elem *)
  1358. (uintptr_t)ref_node->aux,
  1359. root_node->val,
  1360. extent_item_objectid,
  1361. iterate, ctx);
  1362. }
  1363. ulist_free(roots);
  1364. }
  1365. free_leaf_list(refs);
  1366. out:
  1367. if (!search_commit_root) {
  1368. btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
  1369. btrfs_end_transaction(trans, fs_info->extent_root);
  1370. }
  1371. return ret;
  1372. }
  1373. int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
  1374. struct btrfs_path *path,
  1375. iterate_extent_inodes_t *iterate, void *ctx)
  1376. {
  1377. int ret;
  1378. u64 extent_item_pos;
  1379. u64 flags = 0;
  1380. struct btrfs_key found_key;
  1381. int search_commit_root = path->search_commit_root;
  1382. ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
  1383. btrfs_release_path(path);
  1384. if (ret < 0)
  1385. return ret;
  1386. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
  1387. return -EINVAL;
  1388. extent_item_pos = logical - found_key.objectid;
  1389. ret = iterate_extent_inodes(fs_info, found_key.objectid,
  1390. extent_item_pos, search_commit_root,
  1391. iterate, ctx);
  1392. return ret;
  1393. }
  1394. typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
  1395. struct extent_buffer *eb, void *ctx);
  1396. static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
  1397. struct btrfs_path *path,
  1398. iterate_irefs_t *iterate, void *ctx)
  1399. {
  1400. int ret = 0;
  1401. int slot;
  1402. u32 cur;
  1403. u32 len;
  1404. u32 name_len;
  1405. u64 parent = 0;
  1406. int found = 0;
  1407. struct extent_buffer *eb;
  1408. struct btrfs_item *item;
  1409. struct btrfs_inode_ref *iref;
  1410. struct btrfs_key found_key;
  1411. while (!ret) {
  1412. path->leave_spinning = 1;
  1413. ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
  1414. &found_key);
  1415. if (ret < 0)
  1416. break;
  1417. if (ret) {
  1418. ret = found ? 0 : -ENOENT;
  1419. break;
  1420. }
  1421. ++found;
  1422. parent = found_key.offset;
  1423. slot = path->slots[0];
  1424. eb = path->nodes[0];
  1425. /* make sure we can use eb after releasing the path */
  1426. atomic_inc(&eb->refs);
  1427. btrfs_tree_read_lock(eb);
  1428. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1429. btrfs_release_path(path);
  1430. item = btrfs_item_nr(eb, slot);
  1431. iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
  1432. for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
  1433. name_len = btrfs_inode_ref_name_len(eb, iref);
  1434. /* path must be released before calling iterate()! */
  1435. pr_debug("following ref at offset %u for inode %llu in "
  1436. "tree %llu\n", cur, found_key.objectid,
  1437. fs_root->objectid);
  1438. ret = iterate(parent, name_len,
  1439. (unsigned long)(iref + 1), eb, ctx);
  1440. if (ret)
  1441. break;
  1442. len = sizeof(*iref) + name_len;
  1443. iref = (struct btrfs_inode_ref *)((char *)iref + len);
  1444. }
  1445. btrfs_tree_read_unlock_blocking(eb);
  1446. free_extent_buffer(eb);
  1447. }
  1448. btrfs_release_path(path);
  1449. return ret;
  1450. }
  1451. static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
  1452. struct btrfs_path *path,
  1453. iterate_irefs_t *iterate, void *ctx)
  1454. {
  1455. int ret;
  1456. int slot;
  1457. u64 offset = 0;
  1458. u64 parent;
  1459. int found = 0;
  1460. struct extent_buffer *eb;
  1461. struct btrfs_inode_extref *extref;
  1462. struct extent_buffer *leaf;
  1463. u32 item_size;
  1464. u32 cur_offset;
  1465. unsigned long ptr;
  1466. while (1) {
  1467. ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
  1468. &offset);
  1469. if (ret < 0)
  1470. break;
  1471. if (ret) {
  1472. ret = found ? 0 : -ENOENT;
  1473. break;
  1474. }
  1475. ++found;
  1476. slot = path->slots[0];
  1477. eb = path->nodes[0];
  1478. /* make sure we can use eb after releasing the path */
  1479. atomic_inc(&eb->refs);
  1480. btrfs_tree_read_lock(eb);
  1481. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  1482. btrfs_release_path(path);
  1483. leaf = path->nodes[0];
  1484. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1485. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  1486. cur_offset = 0;
  1487. while (cur_offset < item_size) {
  1488. u32 name_len;
  1489. extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
  1490. parent = btrfs_inode_extref_parent(eb, extref);
  1491. name_len = btrfs_inode_extref_name_len(eb, extref);
  1492. ret = iterate(parent, name_len,
  1493. (unsigned long)&extref->name, eb, ctx);
  1494. if (ret)
  1495. break;
  1496. cur_offset += btrfs_inode_extref_name_len(leaf, extref);
  1497. cur_offset += sizeof(*extref);
  1498. }
  1499. btrfs_tree_read_unlock_blocking(eb);
  1500. free_extent_buffer(eb);
  1501. offset++;
  1502. }
  1503. btrfs_release_path(path);
  1504. return ret;
  1505. }
  1506. static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
  1507. struct btrfs_path *path, iterate_irefs_t *iterate,
  1508. void *ctx)
  1509. {
  1510. int ret;
  1511. int found_refs = 0;
  1512. ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
  1513. if (!ret)
  1514. ++found_refs;
  1515. else if (ret != -ENOENT)
  1516. return ret;
  1517. ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
  1518. if (ret == -ENOENT && found_refs)
  1519. return 0;
  1520. return ret;
  1521. }
  1522. /*
  1523. * returns 0 if the path could be dumped (probably truncated)
  1524. * returns <0 in case of an error
  1525. */
  1526. static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
  1527. struct extent_buffer *eb, void *ctx)
  1528. {
  1529. struct inode_fs_paths *ipath = ctx;
  1530. char *fspath;
  1531. char *fspath_min;
  1532. int i = ipath->fspath->elem_cnt;
  1533. const int s_ptr = sizeof(char *);
  1534. u32 bytes_left;
  1535. bytes_left = ipath->fspath->bytes_left > s_ptr ?
  1536. ipath->fspath->bytes_left - s_ptr : 0;
  1537. fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
  1538. fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
  1539. name_off, eb, inum, fspath_min, bytes_left);
  1540. if (IS_ERR(fspath))
  1541. return PTR_ERR(fspath);
  1542. if (fspath > fspath_min) {
  1543. ipath->fspath->val[i] = (u64)(unsigned long)fspath;
  1544. ++ipath->fspath->elem_cnt;
  1545. ipath->fspath->bytes_left = fspath - fspath_min;
  1546. } else {
  1547. ++ipath->fspath->elem_missed;
  1548. ipath->fspath->bytes_missing += fspath_min - fspath;
  1549. ipath->fspath->bytes_left = 0;
  1550. }
  1551. return 0;
  1552. }
  1553. /*
  1554. * this dumps all file system paths to the inode into the ipath struct, provided
  1555. * is has been created large enough. each path is zero-terminated and accessed
  1556. * from ipath->fspath->val[i].
  1557. * when it returns, there are ipath->fspath->elem_cnt number of paths available
  1558. * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
  1559. * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
  1560. * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
  1561. * have been needed to return all paths.
  1562. */
  1563. int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
  1564. {
  1565. return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
  1566. inode_to_path, ipath);
  1567. }
  1568. struct btrfs_data_container *init_data_container(u32 total_bytes)
  1569. {
  1570. struct btrfs_data_container *data;
  1571. size_t alloc_bytes;
  1572. alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
  1573. data = vmalloc(alloc_bytes);
  1574. if (!data)
  1575. return ERR_PTR(-ENOMEM);
  1576. if (total_bytes >= sizeof(*data)) {
  1577. data->bytes_left = total_bytes - sizeof(*data);
  1578. data->bytes_missing = 0;
  1579. } else {
  1580. data->bytes_missing = sizeof(*data) - total_bytes;
  1581. data->bytes_left = 0;
  1582. }
  1583. data->elem_cnt = 0;
  1584. data->elem_missed = 0;
  1585. return data;
  1586. }
  1587. /*
  1588. * allocates space to return multiple file system paths for an inode.
  1589. * total_bytes to allocate are passed, note that space usable for actual path
  1590. * information will be total_bytes - sizeof(struct inode_fs_paths).
  1591. * the returned pointer must be freed with free_ipath() in the end.
  1592. */
  1593. struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
  1594. struct btrfs_path *path)
  1595. {
  1596. struct inode_fs_paths *ifp;
  1597. struct btrfs_data_container *fspath;
  1598. fspath = init_data_container(total_bytes);
  1599. if (IS_ERR(fspath))
  1600. return (void *)fspath;
  1601. ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
  1602. if (!ifp) {
  1603. kfree(fspath);
  1604. return ERR_PTR(-ENOMEM);
  1605. }
  1606. ifp->btrfs_path = path;
  1607. ifp->fspath = fspath;
  1608. ifp->fs_root = fs_root;
  1609. return ifp;
  1610. }
  1611. void free_ipath(struct inode_fs_paths *ipath)
  1612. {
  1613. if (!ipath)
  1614. return;
  1615. vfree(ipath->fspath);
  1616. kfree(ipath);
  1617. }