spi_fsl_espi.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748
  1. /*
  2. * Freescale eSPI controller driver.
  3. *
  4. * Copyright 2010 Freescale Semiconductor, Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the
  8. * Free Software Foundation; either version 2 of the License, or (at your
  9. * option) any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/irq.h>
  14. #include <linux/spi/spi.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/fsl_devices.h>
  17. #include <linux/mm.h>
  18. #include <linux/of.h>
  19. #include <linux/of_platform.h>
  20. #include <linux/of_spi.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/err.h>
  23. #include <sysdev/fsl_soc.h>
  24. #include "spi_fsl_lib.h"
  25. /* eSPI Controller registers */
  26. struct fsl_espi_reg {
  27. __be32 mode; /* 0x000 - eSPI mode register */
  28. __be32 event; /* 0x004 - eSPI event register */
  29. __be32 mask; /* 0x008 - eSPI mask register */
  30. __be32 command; /* 0x00c - eSPI command register */
  31. __be32 transmit; /* 0x010 - eSPI transmit FIFO access register*/
  32. __be32 receive; /* 0x014 - eSPI receive FIFO access register*/
  33. u8 res[8]; /* 0x018 - 0x01c reserved */
  34. __be32 csmode[4]; /* 0x020 - 0x02c eSPI cs mode register */
  35. };
  36. struct fsl_espi_transfer {
  37. const void *tx_buf;
  38. void *rx_buf;
  39. unsigned len;
  40. unsigned n_tx;
  41. unsigned n_rx;
  42. unsigned actual_length;
  43. int status;
  44. };
  45. /* eSPI Controller mode register definitions */
  46. #define SPMODE_ENABLE (1 << 31)
  47. #define SPMODE_LOOP (1 << 30)
  48. #define SPMODE_TXTHR(x) ((x) << 8)
  49. #define SPMODE_RXTHR(x) ((x) << 0)
  50. /* eSPI Controller CS mode register definitions */
  51. #define CSMODE_CI_INACTIVEHIGH (1 << 31)
  52. #define CSMODE_CP_BEGIN_EDGECLK (1 << 30)
  53. #define CSMODE_REV (1 << 29)
  54. #define CSMODE_DIV16 (1 << 28)
  55. #define CSMODE_PM(x) ((x) << 24)
  56. #define CSMODE_POL_1 (1 << 20)
  57. #define CSMODE_LEN(x) ((x) << 16)
  58. #define CSMODE_BEF(x) ((x) << 12)
  59. #define CSMODE_AFT(x) ((x) << 8)
  60. #define CSMODE_CG(x) ((x) << 3)
  61. /* Default mode/csmode for eSPI controller */
  62. #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3))
  63. #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
  64. | CSMODE_AFT(0) | CSMODE_CG(1))
  65. /* SPIE register values */
  66. #define SPIE_NE 0x00000200 /* Not empty */
  67. #define SPIE_NF 0x00000100 /* Not full */
  68. /* SPIM register values */
  69. #define SPIM_NE 0x00000200 /* Not empty */
  70. #define SPIM_NF 0x00000100 /* Not full */
  71. #define SPIE_RXCNT(reg) ((reg >> 24) & 0x3F)
  72. #define SPIE_TXCNT(reg) ((reg >> 16) & 0x3F)
  73. /* SPCOM register values */
  74. #define SPCOM_CS(x) ((x) << 30)
  75. #define SPCOM_TRANLEN(x) ((x) << 0)
  76. #define SPCOM_TRANLEN_MAX 0xFFFF /* Max transaction length */
  77. static void fsl_espi_change_mode(struct spi_device *spi)
  78. {
  79. struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
  80. struct spi_mpc8xxx_cs *cs = spi->controller_state;
  81. struct fsl_espi_reg *reg_base = mspi->reg_base;
  82. __be32 __iomem *mode = &reg_base->csmode[spi->chip_select];
  83. __be32 __iomem *espi_mode = &reg_base->mode;
  84. u32 tmp;
  85. unsigned long flags;
  86. /* Turn off IRQs locally to minimize time that SPI is disabled. */
  87. local_irq_save(flags);
  88. /* Turn off SPI unit prior changing mode */
  89. tmp = mpc8xxx_spi_read_reg(espi_mode);
  90. mpc8xxx_spi_write_reg(espi_mode, tmp & ~SPMODE_ENABLE);
  91. mpc8xxx_spi_write_reg(mode, cs->hw_mode);
  92. mpc8xxx_spi_write_reg(espi_mode, tmp);
  93. local_irq_restore(flags);
  94. }
  95. static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi)
  96. {
  97. u32 data;
  98. u16 data_h;
  99. u16 data_l;
  100. const u32 *tx = mpc8xxx_spi->tx;
  101. if (!tx)
  102. return 0;
  103. data = *tx++ << mpc8xxx_spi->tx_shift;
  104. data_l = data & 0xffff;
  105. data_h = (data >> 16) & 0xffff;
  106. swab16s(&data_l);
  107. swab16s(&data_h);
  108. data = data_h | data_l;
  109. mpc8xxx_spi->tx = tx;
  110. return data;
  111. }
  112. static int fsl_espi_setup_transfer(struct spi_device *spi,
  113. struct spi_transfer *t)
  114. {
  115. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
  116. int bits_per_word = 0;
  117. u8 pm;
  118. u32 hz = 0;
  119. struct spi_mpc8xxx_cs *cs = spi->controller_state;
  120. if (t) {
  121. bits_per_word = t->bits_per_word;
  122. hz = t->speed_hz;
  123. }
  124. /* spi_transfer level calls that work per-word */
  125. if (!bits_per_word)
  126. bits_per_word = spi->bits_per_word;
  127. /* Make sure its a bit width we support [4..16] */
  128. if ((bits_per_word < 4) || (bits_per_word > 16))
  129. return -EINVAL;
  130. if (!hz)
  131. hz = spi->max_speed_hz;
  132. cs->rx_shift = 0;
  133. cs->tx_shift = 0;
  134. cs->get_rx = mpc8xxx_spi_rx_buf_u32;
  135. cs->get_tx = mpc8xxx_spi_tx_buf_u32;
  136. if (bits_per_word <= 8) {
  137. cs->rx_shift = 8 - bits_per_word;
  138. } else if (bits_per_word <= 16) {
  139. cs->rx_shift = 16 - bits_per_word;
  140. if (spi->mode & SPI_LSB_FIRST)
  141. cs->get_tx = fsl_espi_tx_buf_lsb;
  142. } else {
  143. return -EINVAL;
  144. }
  145. mpc8xxx_spi->rx_shift = cs->rx_shift;
  146. mpc8xxx_spi->tx_shift = cs->tx_shift;
  147. mpc8xxx_spi->get_rx = cs->get_rx;
  148. mpc8xxx_spi->get_tx = cs->get_tx;
  149. bits_per_word = bits_per_word - 1;
  150. /* mask out bits we are going to set */
  151. cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
  152. cs->hw_mode |= CSMODE_LEN(bits_per_word);
  153. if ((mpc8xxx_spi->spibrg / hz) > 64) {
  154. cs->hw_mode |= CSMODE_DIV16;
  155. pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1;
  156. WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. "
  157. "Will use %d Hz instead.\n", dev_name(&spi->dev),
  158. hz, mpc8xxx_spi->spibrg / 1024);
  159. if (pm > 16)
  160. pm = 16;
  161. } else {
  162. pm = (mpc8xxx_spi->spibrg - 1) / (hz * 4) + 1;
  163. }
  164. if (pm)
  165. pm--;
  166. cs->hw_mode |= CSMODE_PM(pm);
  167. fsl_espi_change_mode(spi);
  168. return 0;
  169. }
  170. static int fsl_espi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t,
  171. unsigned int len)
  172. {
  173. u32 word;
  174. struct fsl_espi_reg *reg_base = mspi->reg_base;
  175. mspi->count = len;
  176. /* enable rx ints */
  177. mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);
  178. /* transmit word */
  179. word = mspi->get_tx(mspi);
  180. mpc8xxx_spi_write_reg(&reg_base->transmit, word);
  181. return 0;
  182. }
  183. static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
  184. {
  185. struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
  186. struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
  187. unsigned int len = t->len;
  188. u8 bits_per_word;
  189. int ret;
  190. bits_per_word = spi->bits_per_word;
  191. if (t->bits_per_word)
  192. bits_per_word = t->bits_per_word;
  193. mpc8xxx_spi->len = t->len;
  194. len = roundup(len, 4) / 4;
  195. mpc8xxx_spi->tx = t->tx_buf;
  196. mpc8xxx_spi->rx = t->rx_buf;
  197. INIT_COMPLETION(mpc8xxx_spi->done);
  198. /* Set SPCOM[CS] and SPCOM[TRANLEN] field */
  199. if ((t->len - 1) > SPCOM_TRANLEN_MAX) {
  200. dev_err(mpc8xxx_spi->dev, "Transaction length (%d)"
  201. " beyond the SPCOM[TRANLEN] field\n", t->len);
  202. return -EINVAL;
  203. }
  204. mpc8xxx_spi_write_reg(&reg_base->command,
  205. (SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1)));
  206. ret = fsl_espi_cpu_bufs(mpc8xxx_spi, t, len);
  207. if (ret)
  208. return ret;
  209. wait_for_completion(&mpc8xxx_spi->done);
  210. /* disable rx ints */
  211. mpc8xxx_spi_write_reg(&reg_base->mask, 0);
  212. return mpc8xxx_spi->count;
  213. }
  214. static void fsl_espi_addr2cmd(unsigned int addr, u8 *cmd)
  215. {
  216. if (cmd[1] && cmd[2] && cmd[3]) {
  217. cmd[1] = (u8)(addr >> 16);
  218. cmd[2] = (u8)(addr >> 8);
  219. cmd[3] = (u8)(addr >> 0);
  220. }
  221. }
  222. static unsigned int fsl_espi_cmd2addr(u8 *cmd)
  223. {
  224. if (cmd[1] && cmd[2] && cmd[3])
  225. return cmd[1] << 16 | cmd[2] << 8 | cmd[3] << 0;
  226. return 0;
  227. }
  228. static void fsl_espi_do_trans(struct spi_message *m,
  229. struct fsl_espi_transfer *tr)
  230. {
  231. struct spi_device *spi = m->spi;
  232. struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
  233. struct fsl_espi_transfer *espi_trans = tr;
  234. struct spi_message message;
  235. struct spi_transfer *t, *first, trans;
  236. int status = 0;
  237. spi_message_init(&message);
  238. memset(&trans, 0, sizeof(trans));
  239. first = list_first_entry(&m->transfers, struct spi_transfer,
  240. transfer_list);
  241. list_for_each_entry(t, &m->transfers, transfer_list) {
  242. if ((first->bits_per_word != t->bits_per_word) ||
  243. (first->speed_hz != t->speed_hz)) {
  244. espi_trans->status = -EINVAL;
  245. dev_err(mspi->dev, "bits_per_word/speed_hz should be"
  246. " same for the same SPI transfer\n");
  247. return;
  248. }
  249. trans.speed_hz = t->speed_hz;
  250. trans.bits_per_word = t->bits_per_word;
  251. trans.delay_usecs = max(first->delay_usecs, t->delay_usecs);
  252. }
  253. trans.len = espi_trans->len;
  254. trans.tx_buf = espi_trans->tx_buf;
  255. trans.rx_buf = espi_trans->rx_buf;
  256. spi_message_add_tail(&trans, &message);
  257. list_for_each_entry(t, &message.transfers, transfer_list) {
  258. if (t->bits_per_word || t->speed_hz) {
  259. status = -EINVAL;
  260. status = fsl_espi_setup_transfer(spi, t);
  261. if (status < 0)
  262. break;
  263. }
  264. if (t->len)
  265. status = fsl_espi_bufs(spi, t);
  266. if (status) {
  267. status = -EMSGSIZE;
  268. break;
  269. }
  270. if (t->delay_usecs)
  271. udelay(t->delay_usecs);
  272. }
  273. espi_trans->status = status;
  274. fsl_espi_setup_transfer(spi, NULL);
  275. }
  276. static void fsl_espi_cmd_trans(struct spi_message *m,
  277. struct fsl_espi_transfer *trans, u8 *rx_buff)
  278. {
  279. struct spi_transfer *t;
  280. u8 *local_buf;
  281. int i = 0;
  282. struct fsl_espi_transfer *espi_trans = trans;
  283. local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
  284. if (!local_buf) {
  285. espi_trans->status = -ENOMEM;
  286. return;
  287. }
  288. list_for_each_entry(t, &m->transfers, transfer_list) {
  289. if (t->tx_buf) {
  290. memcpy(local_buf + i, t->tx_buf, t->len);
  291. i += t->len;
  292. }
  293. }
  294. espi_trans->tx_buf = local_buf;
  295. espi_trans->rx_buf = local_buf + espi_trans->n_tx;
  296. fsl_espi_do_trans(m, espi_trans);
  297. espi_trans->actual_length = espi_trans->len;
  298. kfree(local_buf);
  299. }
  300. static void fsl_espi_rw_trans(struct spi_message *m,
  301. struct fsl_espi_transfer *trans, u8 *rx_buff)
  302. {
  303. struct fsl_espi_transfer *espi_trans = trans;
  304. unsigned int n_tx = espi_trans->n_tx;
  305. unsigned int n_rx = espi_trans->n_rx;
  306. struct spi_transfer *t;
  307. u8 *local_buf;
  308. u8 *rx_buf = rx_buff;
  309. unsigned int trans_len;
  310. unsigned int addr;
  311. int i, pos, loop;
  312. local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
  313. if (!local_buf) {
  314. espi_trans->status = -ENOMEM;
  315. return;
  316. }
  317. for (pos = 0, loop = 0; pos < n_rx; pos += trans_len, loop++) {
  318. trans_len = n_rx - pos;
  319. if (trans_len > SPCOM_TRANLEN_MAX - n_tx)
  320. trans_len = SPCOM_TRANLEN_MAX - n_tx;
  321. i = 0;
  322. list_for_each_entry(t, &m->transfers, transfer_list) {
  323. if (t->tx_buf) {
  324. memcpy(local_buf + i, t->tx_buf, t->len);
  325. i += t->len;
  326. }
  327. }
  328. addr = fsl_espi_cmd2addr(local_buf);
  329. addr += pos;
  330. fsl_espi_addr2cmd(addr, local_buf);
  331. espi_trans->n_tx = n_tx;
  332. espi_trans->n_rx = trans_len;
  333. espi_trans->len = trans_len + n_tx;
  334. espi_trans->tx_buf = local_buf;
  335. espi_trans->rx_buf = local_buf + n_tx;
  336. fsl_espi_do_trans(m, espi_trans);
  337. memcpy(rx_buf + pos, espi_trans->rx_buf + n_tx, trans_len);
  338. if (loop > 0)
  339. espi_trans->actual_length += espi_trans->len - n_tx;
  340. else
  341. espi_trans->actual_length += espi_trans->len;
  342. }
  343. kfree(local_buf);
  344. }
  345. static void fsl_espi_do_one_msg(struct spi_message *m)
  346. {
  347. struct spi_transfer *t;
  348. u8 *rx_buf = NULL;
  349. unsigned int n_tx = 0;
  350. unsigned int n_rx = 0;
  351. struct fsl_espi_transfer espi_trans;
  352. list_for_each_entry(t, &m->transfers, transfer_list) {
  353. if (t->tx_buf)
  354. n_tx += t->len;
  355. if (t->rx_buf) {
  356. n_rx += t->len;
  357. rx_buf = t->rx_buf;
  358. }
  359. }
  360. espi_trans.n_tx = n_tx;
  361. espi_trans.n_rx = n_rx;
  362. espi_trans.len = n_tx + n_rx;
  363. espi_trans.actual_length = 0;
  364. espi_trans.status = 0;
  365. if (!rx_buf)
  366. fsl_espi_cmd_trans(m, &espi_trans, NULL);
  367. else
  368. fsl_espi_rw_trans(m, &espi_trans, rx_buf);
  369. m->actual_length = espi_trans.actual_length;
  370. m->status = espi_trans.status;
  371. m->complete(m->context);
  372. }
  373. static int fsl_espi_setup(struct spi_device *spi)
  374. {
  375. struct mpc8xxx_spi *mpc8xxx_spi;
  376. struct fsl_espi_reg *reg_base;
  377. int retval;
  378. u32 hw_mode;
  379. u32 loop_mode;
  380. struct spi_mpc8xxx_cs *cs = spi->controller_state;
  381. if (!spi->max_speed_hz)
  382. return -EINVAL;
  383. if (!cs) {
  384. cs = kzalloc(sizeof *cs, GFP_KERNEL);
  385. if (!cs)
  386. return -ENOMEM;
  387. spi->controller_state = cs;
  388. }
  389. mpc8xxx_spi = spi_master_get_devdata(spi->master);
  390. reg_base = mpc8xxx_spi->reg_base;
  391. hw_mode = cs->hw_mode; /* Save orginal settings */
  392. cs->hw_mode = mpc8xxx_spi_read_reg(
  393. &reg_base->csmode[spi->chip_select]);
  394. /* mask out bits we are going to set */
  395. cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
  396. | CSMODE_REV);
  397. if (spi->mode & SPI_CPHA)
  398. cs->hw_mode |= CSMODE_CP_BEGIN_EDGECLK;
  399. if (spi->mode & SPI_CPOL)
  400. cs->hw_mode |= CSMODE_CI_INACTIVEHIGH;
  401. if (!(spi->mode & SPI_LSB_FIRST))
  402. cs->hw_mode |= CSMODE_REV;
  403. /* Handle the loop mode */
  404. loop_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
  405. loop_mode &= ~SPMODE_LOOP;
  406. if (spi->mode & SPI_LOOP)
  407. loop_mode |= SPMODE_LOOP;
  408. mpc8xxx_spi_write_reg(&reg_base->mode, loop_mode);
  409. retval = fsl_espi_setup_transfer(spi, NULL);
  410. if (retval < 0) {
  411. cs->hw_mode = hw_mode; /* Restore settings */
  412. return retval;
  413. }
  414. return 0;
  415. }
  416. void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
  417. {
  418. struct fsl_espi_reg *reg_base = mspi->reg_base;
  419. /* We need handle RX first */
  420. if (events & SPIE_NE) {
  421. u32 rx_data;
  422. /* Spin until RX is done */
  423. while (SPIE_RXCNT(events) < min(4, mspi->len)) {
  424. cpu_relax();
  425. events = mpc8xxx_spi_read_reg(&reg_base->event);
  426. }
  427. mspi->len -= 4;
  428. rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
  429. if (mspi->rx)
  430. mspi->get_rx(rx_data, mspi);
  431. }
  432. if (!(events & SPIE_NF)) {
  433. int ret;
  434. /* spin until TX is done */
  435. ret = spin_event_timeout(((events = mpc8xxx_spi_read_reg(
  436. &reg_base->event)) & SPIE_NF) == 0, 1000, 0);
  437. if (!ret) {
  438. dev_err(mspi->dev, "tired waiting for SPIE_NF\n");
  439. return;
  440. }
  441. }
  442. /* Clear the events */
  443. mpc8xxx_spi_write_reg(&reg_base->event, events);
  444. mspi->count -= 1;
  445. if (mspi->count) {
  446. u32 word = mspi->get_tx(mspi);
  447. mpc8xxx_spi_write_reg(&reg_base->transmit, word);
  448. } else {
  449. complete(&mspi->done);
  450. }
  451. }
  452. static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
  453. {
  454. struct mpc8xxx_spi *mspi = context_data;
  455. struct fsl_espi_reg *reg_base = mspi->reg_base;
  456. irqreturn_t ret = IRQ_NONE;
  457. u32 events;
  458. /* Get interrupt events(tx/rx) */
  459. events = mpc8xxx_spi_read_reg(&reg_base->event);
  460. if (events)
  461. ret = IRQ_HANDLED;
  462. dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);
  463. fsl_espi_cpu_irq(mspi, events);
  464. return ret;
  465. }
  466. static void fsl_espi_remove(struct mpc8xxx_spi *mspi)
  467. {
  468. iounmap(mspi->reg_base);
  469. }
  470. static struct spi_master * __devinit fsl_espi_probe(struct device *dev,
  471. struct resource *mem, unsigned int irq)
  472. {
  473. struct fsl_spi_platform_data *pdata = dev->platform_data;
  474. struct spi_master *master;
  475. struct mpc8xxx_spi *mpc8xxx_spi;
  476. struct fsl_espi_reg *reg_base;
  477. u32 regval;
  478. int i, ret = 0;
  479. master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
  480. if (!master) {
  481. ret = -ENOMEM;
  482. goto err;
  483. }
  484. dev_set_drvdata(dev, master);
  485. ret = mpc8xxx_spi_probe(dev, mem, irq);
  486. if (ret)
  487. goto err_probe;
  488. master->setup = fsl_espi_setup;
  489. mpc8xxx_spi = spi_master_get_devdata(master);
  490. mpc8xxx_spi->spi_do_one_msg = fsl_espi_do_one_msg;
  491. mpc8xxx_spi->spi_remove = fsl_espi_remove;
  492. mpc8xxx_spi->reg_base = ioremap(mem->start, resource_size(mem));
  493. if (!mpc8xxx_spi->reg_base) {
  494. ret = -ENOMEM;
  495. goto err_probe;
  496. }
  497. reg_base = mpc8xxx_spi->reg_base;
  498. /* Register for SPI Interrupt */
  499. ret = request_irq(mpc8xxx_spi->irq, fsl_espi_irq,
  500. 0, "fsl_espi", mpc8xxx_spi);
  501. if (ret)
  502. goto free_irq;
  503. if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
  504. mpc8xxx_spi->rx_shift = 16;
  505. mpc8xxx_spi->tx_shift = 24;
  506. }
  507. /* SPI controller initializations */
  508. mpc8xxx_spi_write_reg(&reg_base->mode, 0);
  509. mpc8xxx_spi_write_reg(&reg_base->mask, 0);
  510. mpc8xxx_spi_write_reg(&reg_base->command, 0);
  511. mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
  512. /* Init eSPI CS mode register */
  513. for (i = 0; i < pdata->max_chipselect; i++)
  514. mpc8xxx_spi_write_reg(&reg_base->csmode[i], CSMODE_INIT_VAL);
  515. /* Enable SPI interface */
  516. regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
  517. mpc8xxx_spi_write_reg(&reg_base->mode, regval);
  518. ret = spi_register_master(master);
  519. if (ret < 0)
  520. goto unreg_master;
  521. dev_info(dev, "at 0x%p (irq = %d)\n", reg_base, mpc8xxx_spi->irq);
  522. return master;
  523. unreg_master:
  524. free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
  525. free_irq:
  526. iounmap(mpc8xxx_spi->reg_base);
  527. err_probe:
  528. spi_master_put(master);
  529. err:
  530. return ERR_PTR(ret);
  531. }
  532. static int of_fsl_espi_get_chipselects(struct device *dev)
  533. {
  534. struct device_node *np = dev->of_node;
  535. struct fsl_spi_platform_data *pdata = dev->platform_data;
  536. const u32 *prop;
  537. int len;
  538. prop = of_get_property(np, "fsl,espi-num-chipselects", &len);
  539. if (!prop || len < sizeof(*prop)) {
  540. dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
  541. return -EINVAL;
  542. }
  543. pdata->max_chipselect = *prop;
  544. pdata->cs_control = NULL;
  545. return 0;
  546. }
  547. static int __devinit of_fsl_espi_probe(struct platform_device *ofdev,
  548. const struct of_device_id *ofid)
  549. {
  550. struct device *dev = &ofdev->dev;
  551. struct device_node *np = ofdev->dev.of_node;
  552. struct spi_master *master;
  553. struct resource mem;
  554. struct resource irq;
  555. int ret = -ENOMEM;
  556. ret = of_mpc8xxx_spi_probe(ofdev, ofid);
  557. if (ret)
  558. return ret;
  559. ret = of_fsl_espi_get_chipselects(dev);
  560. if (ret)
  561. goto err;
  562. ret = of_address_to_resource(np, 0, &mem);
  563. if (ret)
  564. goto err;
  565. ret = of_irq_to_resource(np, 0, &irq);
  566. if (!ret) {
  567. ret = -EINVAL;
  568. goto err;
  569. }
  570. master = fsl_espi_probe(dev, &mem, irq.start);
  571. if (IS_ERR(master)) {
  572. ret = PTR_ERR(master);
  573. goto err;
  574. }
  575. return 0;
  576. err:
  577. return ret;
  578. }
  579. static int __devexit of_fsl_espi_remove(struct platform_device *dev)
  580. {
  581. return mpc8xxx_spi_remove(&dev->dev);
  582. }
  583. static const struct of_device_id of_fsl_espi_match[] = {
  584. { .compatible = "fsl,mpc8536-espi" },
  585. {}
  586. };
  587. MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
  588. static struct of_platform_driver fsl_espi_driver = {
  589. .driver = {
  590. .name = "fsl_espi",
  591. .owner = THIS_MODULE,
  592. .of_match_table = of_fsl_espi_match,
  593. },
  594. .probe = of_fsl_espi_probe,
  595. .remove = __devexit_p(of_fsl_espi_remove),
  596. };
  597. static int __init fsl_espi_init(void)
  598. {
  599. return of_register_platform_driver(&fsl_espi_driver);
  600. }
  601. module_init(fsl_espi_init);
  602. static void __exit fsl_espi_exit(void)
  603. {
  604. of_unregister_platform_driver(&fsl_espi_driver);
  605. }
  606. module_exit(fsl_espi_exit);
  607. MODULE_AUTHOR("Mingkai Hu");
  608. MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
  609. MODULE_LICENSE("GPL");