eeprom.c 48 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804
  1. /*
  2. * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
  3. * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
  4. * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
  5. *
  6. * Permission to use, copy, modify, and distribute this software for any
  7. * purpose with or without fee is hereby granted, provided that the above
  8. * copyright notice and this permission notice appear in all copies.
  9. *
  10. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17. *
  18. */
  19. /*************************************\
  20. * EEPROM access functions and helpers *
  21. \*************************************/
  22. #include <linux/slab.h>
  23. #include "ath5k.h"
  24. #include "reg.h"
  25. #include "debug.h"
  26. #include "base.h"
  27. /******************\
  28. * Helper functions *
  29. \******************/
  30. /*
  31. * Translate binary channel representation in EEPROM to frequency
  32. */
  33. static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
  34. unsigned int mode)
  35. {
  36. u16 val;
  37. if (bin == AR5K_EEPROM_CHANNEL_DIS)
  38. return bin;
  39. if (mode == AR5K_EEPROM_MODE_11A) {
  40. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  41. val = (5 * bin) + 4800;
  42. else
  43. val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
  44. (bin * 10) + 5100;
  45. } else {
  46. if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
  47. val = bin + 2300;
  48. else
  49. val = bin + 2400;
  50. }
  51. return val;
  52. }
  53. /*********\
  54. * Parsers *
  55. \*********/
  56. /*
  57. * Initialize eeprom & capabilities structs
  58. */
  59. static int
  60. ath5k_eeprom_init_header(struct ath5k_hw *ah)
  61. {
  62. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  63. int ret;
  64. u16 val;
  65. u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
  66. /*
  67. * Read values from EEPROM and store them in the capability structure
  68. */
  69. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
  70. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
  71. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
  72. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
  73. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
  74. /* Return if we have an old EEPROM */
  75. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
  76. return 0;
  77. /*
  78. * Validate the checksum of the EEPROM date. There are some
  79. * devices with invalid EEPROMs.
  80. */
  81. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
  82. if (val) {
  83. eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
  84. AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
  85. AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
  86. eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
  87. /*
  88. * Fail safe check to prevent stupid loops due
  89. * to busted EEPROMs. XXX: This value is likely too
  90. * big still, waiting on a better value.
  91. */
  92. if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
  93. ATH5K_ERR(ah->ah_sc, "Invalid max custom EEPROM size: "
  94. "%d (0x%04x) max expected: %d (0x%04x)\n",
  95. eep_max, eep_max,
  96. 3 * AR5K_EEPROM_INFO_MAX,
  97. 3 * AR5K_EEPROM_INFO_MAX);
  98. return -EIO;
  99. }
  100. }
  101. for (cksum = 0, offset = 0; offset < eep_max; offset++) {
  102. AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
  103. cksum ^= val;
  104. }
  105. if (cksum != AR5K_EEPROM_INFO_CKSUM) {
  106. ATH5K_ERR(ah->ah_sc, "Invalid EEPROM "
  107. "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
  108. cksum, eep_max,
  109. eep_max == AR5K_EEPROM_INFO_MAX ?
  110. "default size" : "custom size");
  111. return -EIO;
  112. }
  113. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
  114. ee_ant_gain);
  115. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
  116. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
  117. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
  118. /* XXX: Don't know which versions include these two */
  119. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
  120. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
  121. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
  122. if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
  123. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
  124. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
  125. AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
  126. }
  127. }
  128. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
  129. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
  130. ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
  131. ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
  132. AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
  133. ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
  134. ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
  135. }
  136. AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
  137. if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
  138. ee->ee_is_hb63 = true;
  139. else
  140. ee->ee_is_hb63 = false;
  141. AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
  142. ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
  143. ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
  144. /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
  145. * and enable serdes programming if needed.
  146. *
  147. * XXX: Serdes values seem to be fixed so
  148. * no need to read them here, we write them
  149. * during ath5k_hw_init */
  150. AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
  151. ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
  152. true : false;
  153. return 0;
  154. }
  155. /*
  156. * Read antenna infos from eeprom
  157. */
  158. static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
  159. unsigned int mode)
  160. {
  161. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  162. u32 o = *offset;
  163. u16 val;
  164. int ret, i = 0;
  165. AR5K_EEPROM_READ(o++, val);
  166. ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
  167. ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
  168. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  169. AR5K_EEPROM_READ(o++, val);
  170. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  171. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  172. ee->ee_ant_control[mode][i++] = val & 0x3f;
  173. AR5K_EEPROM_READ(o++, val);
  174. ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
  175. ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
  176. ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
  177. AR5K_EEPROM_READ(o++, val);
  178. ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
  179. ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
  180. ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
  181. ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
  182. AR5K_EEPROM_READ(o++, val);
  183. ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
  184. ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
  185. ee->ee_ant_control[mode][i++] = val & 0x3f;
  186. /* Get antenna switch tables */
  187. ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
  188. (ee->ee_ant_control[mode][0] << 4);
  189. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
  190. ee->ee_ant_control[mode][1] |
  191. (ee->ee_ant_control[mode][2] << 6) |
  192. (ee->ee_ant_control[mode][3] << 12) |
  193. (ee->ee_ant_control[mode][4] << 18) |
  194. (ee->ee_ant_control[mode][5] << 24);
  195. ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
  196. ee->ee_ant_control[mode][6] |
  197. (ee->ee_ant_control[mode][7] << 6) |
  198. (ee->ee_ant_control[mode][8] << 12) |
  199. (ee->ee_ant_control[mode][9] << 18) |
  200. (ee->ee_ant_control[mode][10] << 24);
  201. /* return new offset */
  202. *offset = o;
  203. return 0;
  204. }
  205. /*
  206. * Read supported modes and some mode-specific calibration data
  207. * from eeprom
  208. */
  209. static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
  210. unsigned int mode)
  211. {
  212. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  213. u32 o = *offset;
  214. u16 val;
  215. int ret;
  216. ee->ee_n_piers[mode] = 0;
  217. AR5K_EEPROM_READ(o++, val);
  218. ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
  219. switch(mode) {
  220. case AR5K_EEPROM_MODE_11A:
  221. ee->ee_ob[mode][3] = (val >> 5) & 0x7;
  222. ee->ee_db[mode][3] = (val >> 2) & 0x7;
  223. ee->ee_ob[mode][2] = (val << 1) & 0x7;
  224. AR5K_EEPROM_READ(o++, val);
  225. ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
  226. ee->ee_db[mode][2] = (val >> 12) & 0x7;
  227. ee->ee_ob[mode][1] = (val >> 9) & 0x7;
  228. ee->ee_db[mode][1] = (val >> 6) & 0x7;
  229. ee->ee_ob[mode][0] = (val >> 3) & 0x7;
  230. ee->ee_db[mode][0] = val & 0x7;
  231. break;
  232. case AR5K_EEPROM_MODE_11G:
  233. case AR5K_EEPROM_MODE_11B:
  234. ee->ee_ob[mode][1] = (val >> 4) & 0x7;
  235. ee->ee_db[mode][1] = val & 0x7;
  236. break;
  237. }
  238. AR5K_EEPROM_READ(o++, val);
  239. ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
  240. ee->ee_thr_62[mode] = val & 0xff;
  241. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  242. ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
  243. AR5K_EEPROM_READ(o++, val);
  244. ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
  245. ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
  246. AR5K_EEPROM_READ(o++, val);
  247. ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
  248. if ((val & 0xff) & 0x80)
  249. ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
  250. else
  251. ee->ee_noise_floor_thr[mode] = val & 0xff;
  252. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
  253. ee->ee_noise_floor_thr[mode] =
  254. mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
  255. AR5K_EEPROM_READ(o++, val);
  256. ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
  257. ee->ee_x_gain[mode] = (val >> 1) & 0xf;
  258. ee->ee_xpd[mode] = val & 0x1;
  259. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  260. mode != AR5K_EEPROM_MODE_11B)
  261. ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
  262. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
  263. AR5K_EEPROM_READ(o++, val);
  264. ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
  265. if (mode == AR5K_EEPROM_MODE_11A)
  266. ee->ee_xr_power[mode] = val & 0x3f;
  267. else {
  268. /* b_DB_11[bg] and b_OB_11[bg] */
  269. ee->ee_ob[mode][0] = val & 0x7;
  270. ee->ee_db[mode][0] = (val >> 3) & 0x7;
  271. }
  272. }
  273. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
  274. ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
  275. ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
  276. } else {
  277. ee->ee_i_gain[mode] = (val >> 13) & 0x7;
  278. AR5K_EEPROM_READ(o++, val);
  279. ee->ee_i_gain[mode] |= (val << 3) & 0x38;
  280. if (mode == AR5K_EEPROM_MODE_11G) {
  281. ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
  282. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
  283. ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
  284. }
  285. }
  286. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
  287. mode == AR5K_EEPROM_MODE_11A) {
  288. ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
  289. ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
  290. }
  291. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
  292. goto done;
  293. /* Note: >= v5 have bg freq piers on another location
  294. * so these freq piers are ignored for >= v5 (should be 0xff
  295. * anyway) */
  296. switch(mode) {
  297. case AR5K_EEPROM_MODE_11A:
  298. if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
  299. break;
  300. AR5K_EEPROM_READ(o++, val);
  301. ee->ee_margin_tx_rx[mode] = val & 0x3f;
  302. break;
  303. case AR5K_EEPROM_MODE_11B:
  304. AR5K_EEPROM_READ(o++, val);
  305. ee->ee_pwr_cal_b[0].freq =
  306. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  307. if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  308. ee->ee_n_piers[mode]++;
  309. ee->ee_pwr_cal_b[1].freq =
  310. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  311. if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  312. ee->ee_n_piers[mode]++;
  313. AR5K_EEPROM_READ(o++, val);
  314. ee->ee_pwr_cal_b[2].freq =
  315. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  316. if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  317. ee->ee_n_piers[mode]++;
  318. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  319. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  320. break;
  321. case AR5K_EEPROM_MODE_11G:
  322. AR5K_EEPROM_READ(o++, val);
  323. ee->ee_pwr_cal_g[0].freq =
  324. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  325. if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
  326. ee->ee_n_piers[mode]++;
  327. ee->ee_pwr_cal_g[1].freq =
  328. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  329. if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
  330. ee->ee_n_piers[mode]++;
  331. AR5K_EEPROM_READ(o++, val);
  332. ee->ee_turbo_max_power[mode] = val & 0x7f;
  333. ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
  334. AR5K_EEPROM_READ(o++, val);
  335. ee->ee_pwr_cal_g[2].freq =
  336. ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
  337. if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
  338. ee->ee_n_piers[mode]++;
  339. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
  340. ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
  341. AR5K_EEPROM_READ(o++, val);
  342. ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
  343. ee->ee_q_cal[mode] = val & 0x1f;
  344. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
  345. AR5K_EEPROM_READ(o++, val);
  346. ee->ee_cck_ofdm_gain_delta = val & 0xff;
  347. }
  348. break;
  349. }
  350. /*
  351. * Read turbo mode information on newer EEPROM versions
  352. */
  353. if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
  354. goto done;
  355. switch (mode){
  356. case AR5K_EEPROM_MODE_11A:
  357. ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
  358. ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
  359. AR5K_EEPROM_READ(o++, val);
  360. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
  361. ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
  362. ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
  363. AR5K_EEPROM_READ(o++, val);
  364. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
  365. ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
  366. if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
  367. ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
  368. break;
  369. case AR5K_EEPROM_MODE_11G:
  370. ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
  371. ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
  372. AR5K_EEPROM_READ(o++, val);
  373. ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
  374. ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
  375. ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
  376. AR5K_EEPROM_READ(o++, val);
  377. ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
  378. ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
  379. break;
  380. }
  381. done:
  382. /* return new offset */
  383. *offset = o;
  384. return 0;
  385. }
  386. /* Read mode-specific data (except power calibration data) */
  387. static int
  388. ath5k_eeprom_init_modes(struct ath5k_hw *ah)
  389. {
  390. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  391. u32 mode_offset[3];
  392. unsigned int mode;
  393. u32 offset;
  394. int ret;
  395. /*
  396. * Get values for all modes
  397. */
  398. mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
  399. mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
  400. mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
  401. ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
  402. AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
  403. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
  404. offset = mode_offset[mode];
  405. ret = ath5k_eeprom_read_ants(ah, &offset, mode);
  406. if (ret)
  407. return ret;
  408. ret = ath5k_eeprom_read_modes(ah, &offset, mode);
  409. if (ret)
  410. return ret;
  411. }
  412. /* override for older eeprom versions for better performance */
  413. if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
  414. ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
  415. ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
  416. ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
  417. }
  418. return 0;
  419. }
  420. /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
  421. * frequency mask) */
  422. static inline int
  423. ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
  424. struct ath5k_chan_pcal_info *pc, unsigned int mode)
  425. {
  426. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  427. int o = *offset;
  428. int i = 0;
  429. u8 freq1, freq2;
  430. int ret;
  431. u16 val;
  432. ee->ee_n_piers[mode] = 0;
  433. while(i < max) {
  434. AR5K_EEPROM_READ(o++, val);
  435. freq1 = val & 0xff;
  436. if (!freq1)
  437. break;
  438. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  439. freq1, mode);
  440. ee->ee_n_piers[mode]++;
  441. freq2 = (val >> 8) & 0xff;
  442. if (!freq2)
  443. break;
  444. pc[i++].freq = ath5k_eeprom_bin2freq(ee,
  445. freq2, mode);
  446. ee->ee_n_piers[mode]++;
  447. }
  448. /* return new offset */
  449. *offset = o;
  450. return 0;
  451. }
  452. /* Read frequency piers for 802.11a */
  453. static int
  454. ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
  455. {
  456. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  457. struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
  458. int i, ret;
  459. u16 val;
  460. u8 mask;
  461. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  462. ath5k_eeprom_read_freq_list(ah, &offset,
  463. AR5K_EEPROM_N_5GHZ_CHAN, pcal,
  464. AR5K_EEPROM_MODE_11A);
  465. } else {
  466. mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
  467. AR5K_EEPROM_READ(offset++, val);
  468. pcal[0].freq = (val >> 9) & mask;
  469. pcal[1].freq = (val >> 2) & mask;
  470. pcal[2].freq = (val << 5) & mask;
  471. AR5K_EEPROM_READ(offset++, val);
  472. pcal[2].freq |= (val >> 11) & 0x1f;
  473. pcal[3].freq = (val >> 4) & mask;
  474. pcal[4].freq = (val << 3) & mask;
  475. AR5K_EEPROM_READ(offset++, val);
  476. pcal[4].freq |= (val >> 13) & 0x7;
  477. pcal[5].freq = (val >> 6) & mask;
  478. pcal[6].freq = (val << 1) & mask;
  479. AR5K_EEPROM_READ(offset++, val);
  480. pcal[6].freq |= (val >> 15) & 0x1;
  481. pcal[7].freq = (val >> 8) & mask;
  482. pcal[8].freq = (val >> 1) & mask;
  483. pcal[9].freq = (val << 6) & mask;
  484. AR5K_EEPROM_READ(offset++, val);
  485. pcal[9].freq |= (val >> 10) & 0x3f;
  486. /* Fixed number of piers */
  487. ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
  488. for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
  489. pcal[i].freq = ath5k_eeprom_bin2freq(ee,
  490. pcal[i].freq, AR5K_EEPROM_MODE_11A);
  491. }
  492. }
  493. return 0;
  494. }
  495. /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
  496. static inline int
  497. ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
  498. {
  499. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  500. struct ath5k_chan_pcal_info *pcal;
  501. switch(mode) {
  502. case AR5K_EEPROM_MODE_11B:
  503. pcal = ee->ee_pwr_cal_b;
  504. break;
  505. case AR5K_EEPROM_MODE_11G:
  506. pcal = ee->ee_pwr_cal_g;
  507. break;
  508. default:
  509. return -EINVAL;
  510. }
  511. ath5k_eeprom_read_freq_list(ah, &offset,
  512. AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
  513. mode);
  514. return 0;
  515. }
  516. /*
  517. * Read power calibration for RF5111 chips
  518. *
  519. * For RF5111 we have an XPD -eXternal Power Detector- curve
  520. * for each calibrated channel. Each curve has 0,5dB Power steps
  521. * on x axis and PCDAC steps (offsets) on y axis and looks like an
  522. * exponential function. To recreate the curve we read 11 points
  523. * here and interpolate later.
  524. */
  525. /* Used to match PCDAC steps with power values on RF5111 chips
  526. * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
  527. * steps that match with the power values we read from eeprom. On
  528. * older eeprom versions (< 3.2) these steps are equaly spaced at
  529. * 10% of the pcdac curve -until the curve reaches its maximum-
  530. * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
  531. * these 11 steps are spaced in a different way. This function returns
  532. * the pcdac steps based on eeprom version and curve min/max so that we
  533. * can have pcdac/pwr points.
  534. */
  535. static inline void
  536. ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
  537. {
  538. static const u16 intercepts3[] =
  539. { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
  540. static const u16 intercepts3_2[] =
  541. { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
  542. const u16 *ip;
  543. int i;
  544. if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
  545. ip = intercepts3_2;
  546. else
  547. ip = intercepts3;
  548. for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
  549. vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
  550. }
  551. /* Convert RF5111 specific data to generic raw data
  552. * used by interpolation code */
  553. static int
  554. ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
  555. struct ath5k_chan_pcal_info *chinfo)
  556. {
  557. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  558. struct ath5k_chan_pcal_info_rf5111 *pcinfo;
  559. struct ath5k_pdgain_info *pd;
  560. u8 pier, point, idx;
  561. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  562. /* Fill raw data for each calibration pier */
  563. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  564. pcinfo = &chinfo[pier].rf5111_info;
  565. /* Allocate pd_curves for this cal pier */
  566. chinfo[pier].pd_curves =
  567. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  568. sizeof(struct ath5k_pdgain_info),
  569. GFP_KERNEL);
  570. if (!chinfo[pier].pd_curves)
  571. return -ENOMEM;
  572. /* Only one curve for RF5111
  573. * find out which one and place
  574. * in pd_curves.
  575. * Note: ee_x_gain is reversed here */
  576. for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
  577. if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
  578. pdgain_idx[0] = idx;
  579. break;
  580. }
  581. }
  582. ee->ee_pd_gains[mode] = 1;
  583. pd = &chinfo[pier].pd_curves[idx];
  584. pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
  585. /* Allocate pd points for this curve */
  586. pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  587. sizeof(u8), GFP_KERNEL);
  588. if (!pd->pd_step)
  589. return -ENOMEM;
  590. pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
  591. sizeof(s16), GFP_KERNEL);
  592. if (!pd->pd_pwr)
  593. return -ENOMEM;
  594. /* Fill raw dataset
  595. * (convert power to 0.25dB units
  596. * for RF5112 combatibility) */
  597. for (point = 0; point < pd->pd_points; point++) {
  598. /* Absolute values */
  599. pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
  600. /* Already sorted */
  601. pd->pd_step[point] = pcinfo->pcdac[point];
  602. }
  603. /* Set min/max pwr */
  604. chinfo[pier].min_pwr = pd->pd_pwr[0];
  605. chinfo[pier].max_pwr = pd->pd_pwr[10];
  606. }
  607. return 0;
  608. }
  609. /* Parse EEPROM data */
  610. static int
  611. ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
  612. {
  613. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  614. struct ath5k_chan_pcal_info *pcal;
  615. int offset, ret;
  616. int i;
  617. u16 val;
  618. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  619. switch(mode) {
  620. case AR5K_EEPROM_MODE_11A:
  621. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  622. return 0;
  623. ret = ath5k_eeprom_init_11a_pcal_freq(ah,
  624. offset + AR5K_EEPROM_GROUP1_OFFSET);
  625. if (ret < 0)
  626. return ret;
  627. offset += AR5K_EEPROM_GROUP2_OFFSET;
  628. pcal = ee->ee_pwr_cal_a;
  629. break;
  630. case AR5K_EEPROM_MODE_11B:
  631. if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
  632. !AR5K_EEPROM_HDR_11G(ee->ee_header))
  633. return 0;
  634. pcal = ee->ee_pwr_cal_b;
  635. offset += AR5K_EEPROM_GROUP3_OFFSET;
  636. /* fixed piers */
  637. pcal[0].freq = 2412;
  638. pcal[1].freq = 2447;
  639. pcal[2].freq = 2484;
  640. ee->ee_n_piers[mode] = 3;
  641. break;
  642. case AR5K_EEPROM_MODE_11G:
  643. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  644. return 0;
  645. pcal = ee->ee_pwr_cal_g;
  646. offset += AR5K_EEPROM_GROUP4_OFFSET;
  647. /* fixed piers */
  648. pcal[0].freq = 2312;
  649. pcal[1].freq = 2412;
  650. pcal[2].freq = 2484;
  651. ee->ee_n_piers[mode] = 3;
  652. break;
  653. default:
  654. return -EINVAL;
  655. }
  656. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  657. struct ath5k_chan_pcal_info_rf5111 *cdata =
  658. &pcal[i].rf5111_info;
  659. AR5K_EEPROM_READ(offset++, val);
  660. cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
  661. cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
  662. cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
  663. AR5K_EEPROM_READ(offset++, val);
  664. cdata->pwr[0] |= ((val >> 14) & 0x3);
  665. cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  666. cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  667. cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
  668. AR5K_EEPROM_READ(offset++, val);
  669. cdata->pwr[3] |= ((val >> 12) & 0xf);
  670. cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
  671. cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
  672. AR5K_EEPROM_READ(offset++, val);
  673. cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
  674. cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
  675. cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
  676. AR5K_EEPROM_READ(offset++, val);
  677. cdata->pwr[8] |= ((val >> 14) & 0x3);
  678. cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
  679. cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
  680. ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
  681. cdata->pcdac_max, cdata->pcdac);
  682. }
  683. return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
  684. }
  685. /*
  686. * Read power calibration for RF5112 chips
  687. *
  688. * For RF5112 we have 4 XPD -eXternal Power Detector- curves
  689. * for each calibrated channel on 0, -6, -12 and -18dbm but we only
  690. * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
  691. * power steps on x axis and PCDAC steps on y axis and looks like a
  692. * linear function. To recreate the curve and pass the power values
  693. * on hw, we read 4 points for xpd 0 (lower gain -> max power)
  694. * and 3 points for xpd 3 (higher gain -> lower power) here and
  695. * interpolate later.
  696. *
  697. * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
  698. */
  699. /* Convert RF5112 specific data to generic raw data
  700. * used by interpolation code */
  701. static int
  702. ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
  703. struct ath5k_chan_pcal_info *chinfo)
  704. {
  705. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  706. struct ath5k_chan_pcal_info_rf5112 *pcinfo;
  707. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  708. unsigned int pier, pdg, point;
  709. /* Fill raw data for each calibration pier */
  710. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  711. pcinfo = &chinfo[pier].rf5112_info;
  712. /* Allocate pd_curves for this cal pier */
  713. chinfo[pier].pd_curves =
  714. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  715. sizeof(struct ath5k_pdgain_info),
  716. GFP_KERNEL);
  717. if (!chinfo[pier].pd_curves)
  718. return -ENOMEM;
  719. /* Fill pd_curves */
  720. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  721. u8 idx = pdgain_idx[pdg];
  722. struct ath5k_pdgain_info *pd =
  723. &chinfo[pier].pd_curves[idx];
  724. /* Lowest gain curve (max power) */
  725. if (pdg == 0) {
  726. /* One more point for better accuracy */
  727. pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
  728. /* Allocate pd points for this curve */
  729. pd->pd_step = kcalloc(pd->pd_points,
  730. sizeof(u8), GFP_KERNEL);
  731. if (!pd->pd_step)
  732. return -ENOMEM;
  733. pd->pd_pwr = kcalloc(pd->pd_points,
  734. sizeof(s16), GFP_KERNEL);
  735. if (!pd->pd_pwr)
  736. return -ENOMEM;
  737. /* Fill raw dataset
  738. * (all power levels are in 0.25dB units) */
  739. pd->pd_step[0] = pcinfo->pcdac_x0[0];
  740. pd->pd_pwr[0] = pcinfo->pwr_x0[0];
  741. for (point = 1; point < pd->pd_points;
  742. point++) {
  743. /* Absolute values */
  744. pd->pd_pwr[point] =
  745. pcinfo->pwr_x0[point];
  746. /* Deltas */
  747. pd->pd_step[point] =
  748. pd->pd_step[point - 1] +
  749. pcinfo->pcdac_x0[point];
  750. }
  751. /* Set min power for this frequency */
  752. chinfo[pier].min_pwr = pd->pd_pwr[0];
  753. /* Highest gain curve (min power) */
  754. } else if (pdg == 1) {
  755. pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
  756. /* Allocate pd points for this curve */
  757. pd->pd_step = kcalloc(pd->pd_points,
  758. sizeof(u8), GFP_KERNEL);
  759. if (!pd->pd_step)
  760. return -ENOMEM;
  761. pd->pd_pwr = kcalloc(pd->pd_points,
  762. sizeof(s16), GFP_KERNEL);
  763. if (!pd->pd_pwr)
  764. return -ENOMEM;
  765. /* Fill raw dataset
  766. * (all power levels are in 0.25dB units) */
  767. for (point = 0; point < pd->pd_points;
  768. point++) {
  769. /* Absolute values */
  770. pd->pd_pwr[point] =
  771. pcinfo->pwr_x3[point];
  772. /* Fixed points */
  773. pd->pd_step[point] =
  774. pcinfo->pcdac_x3[point];
  775. }
  776. /* Since we have a higher gain curve
  777. * override min power */
  778. chinfo[pier].min_pwr = pd->pd_pwr[0];
  779. }
  780. }
  781. }
  782. return 0;
  783. }
  784. /* Parse EEPROM data */
  785. static int
  786. ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
  787. {
  788. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  789. struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
  790. struct ath5k_chan_pcal_info *gen_chan_info;
  791. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  792. u32 offset;
  793. u8 i, c;
  794. u16 val;
  795. int ret;
  796. u8 pd_gains = 0;
  797. /* Count how many curves we have and
  798. * identify them (which one of the 4
  799. * available curves we have on each count).
  800. * Curves are stored from lower (x0) to
  801. * higher (x3) gain */
  802. for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
  803. /* ee_x_gain[mode] is x gain mask */
  804. if ((ee->ee_x_gain[mode] >> i) & 0x1)
  805. pdgain_idx[pd_gains++] = i;
  806. }
  807. ee->ee_pd_gains[mode] = pd_gains;
  808. if (pd_gains == 0 || pd_gains > 2)
  809. return -EINVAL;
  810. switch (mode) {
  811. case AR5K_EEPROM_MODE_11A:
  812. /*
  813. * Read 5GHz EEPROM channels
  814. */
  815. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  816. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  817. offset += AR5K_EEPROM_GROUP2_OFFSET;
  818. gen_chan_info = ee->ee_pwr_cal_a;
  819. break;
  820. case AR5K_EEPROM_MODE_11B:
  821. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  822. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  823. offset += AR5K_EEPROM_GROUP3_OFFSET;
  824. /* NB: frequency piers parsed during mode init */
  825. gen_chan_info = ee->ee_pwr_cal_b;
  826. break;
  827. case AR5K_EEPROM_MODE_11G:
  828. offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
  829. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  830. offset += AR5K_EEPROM_GROUP4_OFFSET;
  831. else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  832. offset += AR5K_EEPROM_GROUP2_OFFSET;
  833. /* NB: frequency piers parsed during mode init */
  834. gen_chan_info = ee->ee_pwr_cal_g;
  835. break;
  836. default:
  837. return -EINVAL;
  838. }
  839. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  840. chan_pcal_info = &gen_chan_info[i].rf5112_info;
  841. /* Power values in quarter dB
  842. * for the lower xpd gain curve
  843. * (0 dBm -> higher output power) */
  844. for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
  845. AR5K_EEPROM_READ(offset++, val);
  846. chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
  847. chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
  848. }
  849. /* PCDAC steps
  850. * corresponding to the above power
  851. * measurements */
  852. AR5K_EEPROM_READ(offset++, val);
  853. chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
  854. chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
  855. chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
  856. /* Power values in quarter dB
  857. * for the higher xpd gain curve
  858. * (18 dBm -> lower output power) */
  859. AR5K_EEPROM_READ(offset++, val);
  860. chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
  861. chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
  862. AR5K_EEPROM_READ(offset++, val);
  863. chan_pcal_info->pwr_x3[2] = (val & 0xff);
  864. /* PCDAC steps
  865. * corresponding to the above power
  866. * measurements (fixed) */
  867. chan_pcal_info->pcdac_x3[0] = 20;
  868. chan_pcal_info->pcdac_x3[1] = 35;
  869. chan_pcal_info->pcdac_x3[2] = 63;
  870. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
  871. chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
  872. /* Last xpd0 power level is also channel maximum */
  873. gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
  874. } else {
  875. chan_pcal_info->pcdac_x0[0] = 1;
  876. gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
  877. }
  878. }
  879. return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
  880. }
  881. /*
  882. * Read power calibration for RF2413 chips
  883. *
  884. * For RF2413 we have a Power to PDDAC table (Power Detector)
  885. * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
  886. * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
  887. * axis and looks like an exponential function like the RF5111 curve.
  888. *
  889. * To recreate the curves we read here the points and interpolate
  890. * later. Note that in most cases only 2 (higher and lower) curves are
  891. * used (like RF5112) but vendors have the oportunity to include all
  892. * 4 curves on eeprom. The final curve (higher power) has an extra
  893. * point for better accuracy like RF5112.
  894. */
  895. /* For RF2413 power calibration data doesn't start on a fixed location and
  896. * if a mode is not supported, its section is missing -not zeroed-.
  897. * So we need to calculate the starting offset for each section by using
  898. * these two functions */
  899. /* Return the size of each section based on the mode and the number of pd
  900. * gains available (maximum 4). */
  901. static inline unsigned int
  902. ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
  903. {
  904. static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
  905. unsigned int sz;
  906. sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
  907. sz *= ee->ee_n_piers[mode];
  908. return sz;
  909. }
  910. /* Return the starting offset for a section based on the modes supported
  911. * and each section's size. */
  912. static unsigned int
  913. ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
  914. {
  915. u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
  916. switch(mode) {
  917. case AR5K_EEPROM_MODE_11G:
  918. if (AR5K_EEPROM_HDR_11B(ee->ee_header))
  919. offset += ath5k_pdgains_size_2413(ee,
  920. AR5K_EEPROM_MODE_11B) +
  921. AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  922. /* fall through */
  923. case AR5K_EEPROM_MODE_11B:
  924. if (AR5K_EEPROM_HDR_11A(ee->ee_header))
  925. offset += ath5k_pdgains_size_2413(ee,
  926. AR5K_EEPROM_MODE_11A) +
  927. AR5K_EEPROM_N_5GHZ_CHAN / 2;
  928. /* fall through */
  929. case AR5K_EEPROM_MODE_11A:
  930. break;
  931. default:
  932. break;
  933. }
  934. return offset;
  935. }
  936. /* Convert RF2413 specific data to generic raw data
  937. * used by interpolation code */
  938. static int
  939. ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
  940. struct ath5k_chan_pcal_info *chinfo)
  941. {
  942. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  943. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  944. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  945. unsigned int pier, pdg, point;
  946. /* Fill raw data for each calibration pier */
  947. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  948. pcinfo = &chinfo[pier].rf2413_info;
  949. /* Allocate pd_curves for this cal pier */
  950. chinfo[pier].pd_curves =
  951. kcalloc(AR5K_EEPROM_N_PD_CURVES,
  952. sizeof(struct ath5k_pdgain_info),
  953. GFP_KERNEL);
  954. if (!chinfo[pier].pd_curves)
  955. return -ENOMEM;
  956. /* Fill pd_curves */
  957. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  958. u8 idx = pdgain_idx[pdg];
  959. struct ath5k_pdgain_info *pd =
  960. &chinfo[pier].pd_curves[idx];
  961. /* One more point for the highest power
  962. * curve (lowest gain) */
  963. if (pdg == ee->ee_pd_gains[mode] - 1)
  964. pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
  965. else
  966. pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
  967. /* Allocate pd points for this curve */
  968. pd->pd_step = kcalloc(pd->pd_points,
  969. sizeof(u8), GFP_KERNEL);
  970. if (!pd->pd_step)
  971. return -ENOMEM;
  972. pd->pd_pwr = kcalloc(pd->pd_points,
  973. sizeof(s16), GFP_KERNEL);
  974. if (!pd->pd_pwr)
  975. return -ENOMEM;
  976. /* Fill raw dataset
  977. * convert all pwr levels to
  978. * quarter dB for RF5112 combatibility */
  979. pd->pd_step[0] = pcinfo->pddac_i[pdg];
  980. pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
  981. for (point = 1; point < pd->pd_points; point++) {
  982. pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
  983. 2 * pcinfo->pwr[pdg][point - 1];
  984. pd->pd_step[point] = pd->pd_step[point - 1] +
  985. pcinfo->pddac[pdg][point - 1];
  986. }
  987. /* Highest gain curve -> min power */
  988. if (pdg == 0)
  989. chinfo[pier].min_pwr = pd->pd_pwr[0];
  990. /* Lowest gain curve -> max power */
  991. if (pdg == ee->ee_pd_gains[mode] - 1)
  992. chinfo[pier].max_pwr =
  993. pd->pd_pwr[pd->pd_points - 1];
  994. }
  995. }
  996. return 0;
  997. }
  998. /* Parse EEPROM data */
  999. static int
  1000. ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
  1001. {
  1002. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1003. struct ath5k_chan_pcal_info_rf2413 *pcinfo;
  1004. struct ath5k_chan_pcal_info *chinfo;
  1005. u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
  1006. u32 offset;
  1007. int idx, i, ret;
  1008. u16 val;
  1009. u8 pd_gains = 0;
  1010. /* Count how many curves we have and
  1011. * identify them (which one of the 4
  1012. * available curves we have on each count).
  1013. * Curves are stored from higher to
  1014. * lower gain so we go backwards */
  1015. for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
  1016. /* ee_x_gain[mode] is x gain mask */
  1017. if ((ee->ee_x_gain[mode] >> idx) & 0x1)
  1018. pdgain_idx[pd_gains++] = idx;
  1019. }
  1020. ee->ee_pd_gains[mode] = pd_gains;
  1021. if (pd_gains == 0)
  1022. return -EINVAL;
  1023. offset = ath5k_cal_data_offset_2413(ee, mode);
  1024. switch (mode) {
  1025. case AR5K_EEPROM_MODE_11A:
  1026. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1027. return 0;
  1028. ath5k_eeprom_init_11a_pcal_freq(ah, offset);
  1029. offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
  1030. chinfo = ee->ee_pwr_cal_a;
  1031. break;
  1032. case AR5K_EEPROM_MODE_11B:
  1033. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1034. return 0;
  1035. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1036. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1037. chinfo = ee->ee_pwr_cal_b;
  1038. break;
  1039. case AR5K_EEPROM_MODE_11G:
  1040. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1041. return 0;
  1042. ath5k_eeprom_init_11bg_2413(ah, mode, offset);
  1043. offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
  1044. chinfo = ee->ee_pwr_cal_g;
  1045. break;
  1046. default:
  1047. return -EINVAL;
  1048. }
  1049. for (i = 0; i < ee->ee_n_piers[mode]; i++) {
  1050. pcinfo = &chinfo[i].rf2413_info;
  1051. /*
  1052. * Read pwr_i, pddac_i and the first
  1053. * 2 pd points (pwr, pddac)
  1054. */
  1055. AR5K_EEPROM_READ(offset++, val);
  1056. pcinfo->pwr_i[0] = val & 0x1f;
  1057. pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
  1058. pcinfo->pwr[0][0] = (val >> 12) & 0xf;
  1059. AR5K_EEPROM_READ(offset++, val);
  1060. pcinfo->pddac[0][0] = val & 0x3f;
  1061. pcinfo->pwr[0][1] = (val >> 6) & 0xf;
  1062. pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
  1063. AR5K_EEPROM_READ(offset++, val);
  1064. pcinfo->pwr[0][2] = val & 0xf;
  1065. pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
  1066. pcinfo->pwr[0][3] = 0;
  1067. pcinfo->pddac[0][3] = 0;
  1068. if (pd_gains > 1) {
  1069. /*
  1070. * Pd gain 0 is not the last pd gain
  1071. * so it only has 2 pd points.
  1072. * Continue wih pd gain 1.
  1073. */
  1074. pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
  1075. pcinfo->pddac_i[1] = (val >> 15) & 0x1;
  1076. AR5K_EEPROM_READ(offset++, val);
  1077. pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
  1078. pcinfo->pwr[1][0] = (val >> 6) & 0xf;
  1079. pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
  1080. AR5K_EEPROM_READ(offset++, val);
  1081. pcinfo->pwr[1][1] = val & 0xf;
  1082. pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
  1083. pcinfo->pwr[1][2] = (val >> 10) & 0xf;
  1084. pcinfo->pddac[1][2] = (val >> 14) & 0x3;
  1085. AR5K_EEPROM_READ(offset++, val);
  1086. pcinfo->pddac[1][2] |= (val & 0xF) << 2;
  1087. pcinfo->pwr[1][3] = 0;
  1088. pcinfo->pddac[1][3] = 0;
  1089. } else if (pd_gains == 1) {
  1090. /*
  1091. * Pd gain 0 is the last one so
  1092. * read the extra point.
  1093. */
  1094. pcinfo->pwr[0][3] = (val >> 10) & 0xf;
  1095. pcinfo->pddac[0][3] = (val >> 14) & 0x3;
  1096. AR5K_EEPROM_READ(offset++, val);
  1097. pcinfo->pddac[0][3] |= (val & 0xF) << 2;
  1098. }
  1099. /*
  1100. * Proceed with the other pd_gains
  1101. * as above.
  1102. */
  1103. if (pd_gains > 2) {
  1104. pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
  1105. pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
  1106. AR5K_EEPROM_READ(offset++, val);
  1107. pcinfo->pwr[2][0] = (val >> 0) & 0xf;
  1108. pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
  1109. pcinfo->pwr[2][1] = (val >> 10) & 0xf;
  1110. pcinfo->pddac[2][1] = (val >> 14) & 0x3;
  1111. AR5K_EEPROM_READ(offset++, val);
  1112. pcinfo->pddac[2][1] |= (val & 0xF) << 2;
  1113. pcinfo->pwr[2][2] = (val >> 4) & 0xf;
  1114. pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
  1115. pcinfo->pwr[2][3] = 0;
  1116. pcinfo->pddac[2][3] = 0;
  1117. } else if (pd_gains == 2) {
  1118. pcinfo->pwr[1][3] = (val >> 4) & 0xf;
  1119. pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
  1120. }
  1121. if (pd_gains > 3) {
  1122. pcinfo->pwr_i[3] = (val >> 14) & 0x3;
  1123. AR5K_EEPROM_READ(offset++, val);
  1124. pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
  1125. pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
  1126. pcinfo->pwr[3][0] = (val >> 10) & 0xf;
  1127. pcinfo->pddac[3][0] = (val >> 14) & 0x3;
  1128. AR5K_EEPROM_READ(offset++, val);
  1129. pcinfo->pddac[3][0] |= (val & 0xF) << 2;
  1130. pcinfo->pwr[3][1] = (val >> 4) & 0xf;
  1131. pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
  1132. pcinfo->pwr[3][2] = (val >> 14) & 0x3;
  1133. AR5K_EEPROM_READ(offset++, val);
  1134. pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
  1135. pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
  1136. pcinfo->pwr[3][3] = (val >> 8) & 0xf;
  1137. pcinfo->pddac[3][3] = (val >> 12) & 0xF;
  1138. AR5K_EEPROM_READ(offset++, val);
  1139. pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
  1140. } else if (pd_gains == 3) {
  1141. pcinfo->pwr[2][3] = (val >> 14) & 0x3;
  1142. AR5K_EEPROM_READ(offset++, val);
  1143. pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
  1144. pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
  1145. }
  1146. }
  1147. return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
  1148. }
  1149. /*
  1150. * Read per rate target power (this is the maximum tx power
  1151. * supported by the card). This info is used when setting
  1152. * tx power, no matter the channel.
  1153. *
  1154. * This also works for v5 EEPROMs.
  1155. */
  1156. static int
  1157. ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
  1158. {
  1159. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1160. struct ath5k_rate_pcal_info *rate_pcal_info;
  1161. u8 *rate_target_pwr_num;
  1162. u32 offset;
  1163. u16 val;
  1164. int ret, i;
  1165. offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
  1166. rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
  1167. switch (mode) {
  1168. case AR5K_EEPROM_MODE_11A:
  1169. offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
  1170. rate_pcal_info = ee->ee_rate_tpwr_a;
  1171. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
  1172. break;
  1173. case AR5K_EEPROM_MODE_11B:
  1174. offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
  1175. rate_pcal_info = ee->ee_rate_tpwr_b;
  1176. ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
  1177. break;
  1178. case AR5K_EEPROM_MODE_11G:
  1179. offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
  1180. rate_pcal_info = ee->ee_rate_tpwr_g;
  1181. ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
  1182. break;
  1183. default:
  1184. return -EINVAL;
  1185. }
  1186. /* Different freq mask for older eeproms (<= v3.2) */
  1187. if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
  1188. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1189. AR5K_EEPROM_READ(offset++, val);
  1190. rate_pcal_info[i].freq =
  1191. ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
  1192. rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
  1193. rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
  1194. AR5K_EEPROM_READ(offset++, val);
  1195. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1196. val == 0) {
  1197. (*rate_target_pwr_num) = i;
  1198. break;
  1199. }
  1200. rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
  1201. rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
  1202. rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
  1203. }
  1204. } else {
  1205. for (i = 0; i < (*rate_target_pwr_num); i++) {
  1206. AR5K_EEPROM_READ(offset++, val);
  1207. rate_pcal_info[i].freq =
  1208. ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
  1209. rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
  1210. rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
  1211. AR5K_EEPROM_READ(offset++, val);
  1212. if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
  1213. val == 0) {
  1214. (*rate_target_pwr_num) = i;
  1215. break;
  1216. }
  1217. rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
  1218. rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
  1219. rate_pcal_info[i].target_power_54 = (val & 0x3f);
  1220. }
  1221. }
  1222. return 0;
  1223. }
  1224. /*
  1225. * Read per channel calibration info from EEPROM
  1226. *
  1227. * This info is used to calibrate the baseband power table. Imagine
  1228. * that for each channel there is a power curve that's hw specific
  1229. * (depends on amplifier etc) and we try to "correct" this curve using
  1230. * offsets we pass on to phy chip (baseband -> before amplifier) so that
  1231. * it can use accurate power values when setting tx power (takes amplifier's
  1232. * performance on each channel into account).
  1233. *
  1234. * EEPROM provides us with the offsets for some pre-calibrated channels
  1235. * and we have to interpolate to create the full table for these channels and
  1236. * also the table for any channel.
  1237. */
  1238. static int
  1239. ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
  1240. {
  1241. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1242. int (*read_pcal)(struct ath5k_hw *hw, int mode);
  1243. int mode;
  1244. int err;
  1245. if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
  1246. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
  1247. read_pcal = ath5k_eeprom_read_pcal_info_5112;
  1248. else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
  1249. (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
  1250. read_pcal = ath5k_eeprom_read_pcal_info_2413;
  1251. else
  1252. read_pcal = ath5k_eeprom_read_pcal_info_5111;
  1253. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
  1254. mode++) {
  1255. err = read_pcal(ah, mode);
  1256. if (err)
  1257. return err;
  1258. err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
  1259. if (err < 0)
  1260. return err;
  1261. }
  1262. return 0;
  1263. }
  1264. static int
  1265. ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
  1266. {
  1267. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1268. struct ath5k_chan_pcal_info *chinfo;
  1269. u8 pier, pdg;
  1270. switch (mode) {
  1271. case AR5K_EEPROM_MODE_11A:
  1272. if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
  1273. return 0;
  1274. chinfo = ee->ee_pwr_cal_a;
  1275. break;
  1276. case AR5K_EEPROM_MODE_11B:
  1277. if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
  1278. return 0;
  1279. chinfo = ee->ee_pwr_cal_b;
  1280. break;
  1281. case AR5K_EEPROM_MODE_11G:
  1282. if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
  1283. return 0;
  1284. chinfo = ee->ee_pwr_cal_g;
  1285. break;
  1286. default:
  1287. return -EINVAL;
  1288. }
  1289. for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
  1290. if (!chinfo[pier].pd_curves)
  1291. continue;
  1292. for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
  1293. struct ath5k_pdgain_info *pd =
  1294. &chinfo[pier].pd_curves[pdg];
  1295. if (pd != NULL) {
  1296. kfree(pd->pd_step);
  1297. kfree(pd->pd_pwr);
  1298. }
  1299. }
  1300. kfree(chinfo[pier].pd_curves);
  1301. }
  1302. return 0;
  1303. }
  1304. /* Read conformance test limits used for regulatory control */
  1305. static int
  1306. ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
  1307. {
  1308. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1309. struct ath5k_edge_power *rep;
  1310. unsigned int fmask, pmask;
  1311. unsigned int ctl_mode;
  1312. int ret, i, j;
  1313. u32 offset;
  1314. u16 val;
  1315. pmask = AR5K_EEPROM_POWER_M;
  1316. fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
  1317. offset = AR5K_EEPROM_CTL(ee->ee_version);
  1318. ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
  1319. for (i = 0; i < ee->ee_ctls; i += 2) {
  1320. AR5K_EEPROM_READ(offset++, val);
  1321. ee->ee_ctl[i] = (val >> 8) & 0xff;
  1322. ee->ee_ctl[i + 1] = val & 0xff;
  1323. }
  1324. offset = AR5K_EEPROM_GROUP8_OFFSET;
  1325. if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
  1326. offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
  1327. AR5K_EEPROM_GROUP5_OFFSET;
  1328. else
  1329. offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
  1330. rep = ee->ee_ctl_pwr;
  1331. for(i = 0; i < ee->ee_ctls; i++) {
  1332. switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
  1333. case AR5K_CTL_11A:
  1334. case AR5K_CTL_TURBO:
  1335. ctl_mode = AR5K_EEPROM_MODE_11A;
  1336. break;
  1337. default:
  1338. ctl_mode = AR5K_EEPROM_MODE_11G;
  1339. break;
  1340. }
  1341. if (ee->ee_ctl[i] == 0) {
  1342. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
  1343. offset += 8;
  1344. else
  1345. offset += 7;
  1346. rep += AR5K_EEPROM_N_EDGES;
  1347. continue;
  1348. }
  1349. if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
  1350. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1351. AR5K_EEPROM_READ(offset++, val);
  1352. rep[j].freq = (val >> 8) & fmask;
  1353. rep[j + 1].freq = val & fmask;
  1354. }
  1355. for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
  1356. AR5K_EEPROM_READ(offset++, val);
  1357. rep[j].edge = (val >> 8) & pmask;
  1358. rep[j].flag = (val >> 14) & 1;
  1359. rep[j + 1].edge = val & pmask;
  1360. rep[j + 1].flag = (val >> 6) & 1;
  1361. }
  1362. } else {
  1363. AR5K_EEPROM_READ(offset++, val);
  1364. rep[0].freq = (val >> 9) & fmask;
  1365. rep[1].freq = (val >> 2) & fmask;
  1366. rep[2].freq = (val << 5) & fmask;
  1367. AR5K_EEPROM_READ(offset++, val);
  1368. rep[2].freq |= (val >> 11) & 0x1f;
  1369. rep[3].freq = (val >> 4) & fmask;
  1370. rep[4].freq = (val << 3) & fmask;
  1371. AR5K_EEPROM_READ(offset++, val);
  1372. rep[4].freq |= (val >> 13) & 0x7;
  1373. rep[5].freq = (val >> 6) & fmask;
  1374. rep[6].freq = (val << 1) & fmask;
  1375. AR5K_EEPROM_READ(offset++, val);
  1376. rep[6].freq |= (val >> 15) & 0x1;
  1377. rep[7].freq = (val >> 8) & fmask;
  1378. rep[0].edge = (val >> 2) & pmask;
  1379. rep[1].edge = (val << 4) & pmask;
  1380. AR5K_EEPROM_READ(offset++, val);
  1381. rep[1].edge |= (val >> 12) & 0xf;
  1382. rep[2].edge = (val >> 6) & pmask;
  1383. rep[3].edge = val & pmask;
  1384. AR5K_EEPROM_READ(offset++, val);
  1385. rep[4].edge = (val >> 10) & pmask;
  1386. rep[5].edge = (val >> 4) & pmask;
  1387. rep[6].edge = (val << 2) & pmask;
  1388. AR5K_EEPROM_READ(offset++, val);
  1389. rep[6].edge |= (val >> 14) & 0x3;
  1390. rep[7].edge = (val >> 8) & pmask;
  1391. }
  1392. for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
  1393. rep[j].freq = ath5k_eeprom_bin2freq(ee,
  1394. rep[j].freq, ctl_mode);
  1395. }
  1396. rep += AR5K_EEPROM_N_EDGES;
  1397. }
  1398. return 0;
  1399. }
  1400. static int
  1401. ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
  1402. {
  1403. struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
  1404. u32 offset;
  1405. u16 val;
  1406. int ret = 0, i;
  1407. offset = AR5K_EEPROM_CTL(ee->ee_version) +
  1408. AR5K_EEPROM_N_CTLS(ee->ee_version);
  1409. if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
  1410. /* No spur info for 5GHz */
  1411. ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
  1412. /* 2 channels for 2GHz (2464/2420) */
  1413. ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
  1414. ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
  1415. ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
  1416. } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
  1417. for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
  1418. AR5K_EEPROM_READ(offset, val);
  1419. ee->ee_spur_chans[i][0] = val;
  1420. AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
  1421. val);
  1422. ee->ee_spur_chans[i][1] = val;
  1423. offset++;
  1424. }
  1425. }
  1426. return ret;
  1427. }
  1428. /*
  1429. * Read the MAC address from eeprom
  1430. */
  1431. int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
  1432. {
  1433. u8 mac_d[ETH_ALEN] = {};
  1434. u32 total, offset;
  1435. u16 data;
  1436. int octet, ret;
  1437. ret = ath5k_hw_nvram_read(ah, 0x20, &data);
  1438. if (ret)
  1439. return ret;
  1440. for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
  1441. ret = ath5k_hw_nvram_read(ah, offset, &data);
  1442. if (ret)
  1443. return ret;
  1444. total += data;
  1445. mac_d[octet + 1] = data & 0xff;
  1446. mac_d[octet] = data >> 8;
  1447. octet += 2;
  1448. }
  1449. if (!total || total == 3 * 0xffff)
  1450. return -EINVAL;
  1451. memcpy(mac, mac_d, ETH_ALEN);
  1452. return 0;
  1453. }
  1454. /***********************\
  1455. * Init/Detach functions *
  1456. \***********************/
  1457. /*
  1458. * Initialize eeprom data structure
  1459. */
  1460. int
  1461. ath5k_eeprom_init(struct ath5k_hw *ah)
  1462. {
  1463. int err;
  1464. err = ath5k_eeprom_init_header(ah);
  1465. if (err < 0)
  1466. return err;
  1467. err = ath5k_eeprom_init_modes(ah);
  1468. if (err < 0)
  1469. return err;
  1470. err = ath5k_eeprom_read_pcal_info(ah);
  1471. if (err < 0)
  1472. return err;
  1473. err = ath5k_eeprom_read_ctl_info(ah);
  1474. if (err < 0)
  1475. return err;
  1476. err = ath5k_eeprom_read_spur_chans(ah);
  1477. if (err < 0)
  1478. return err;
  1479. return 0;
  1480. }
  1481. void
  1482. ath5k_eeprom_detach(struct ath5k_hw *ah)
  1483. {
  1484. u8 mode;
  1485. for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
  1486. ath5k_eeprom_free_pcal_info(ah, mode);
  1487. }