sungem.c 79 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199
  1. /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
  2. * sungem.c: Sun GEM ethernet driver.
  3. *
  4. * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
  5. *
  6. * Support for Apple GMAC and assorted PHYs, WOL, Power Management
  7. * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
  8. * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  9. *
  10. * NAPI and NETPOLL support
  11. * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12. *
  13. * TODO:
  14. * - Now that the driver was significantly simplified, I need to rework
  15. * the locking. I'm sure we don't need _2_ spinlocks, and we probably
  16. * can avoid taking most of them for so long period of time (and schedule
  17. * instead). The main issues at this point are caused by the netdev layer
  18. * though:
  19. *
  20. * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
  21. * help by net/core/dev.c, thus they can't schedule. That means they can't
  22. * call napi_disable() neither, thus force gem_poll() to keep a spinlock
  23. * where it could have been dropped. change_mtu especially would love also to
  24. * be able to msleep instead of horrid locked delays when resetting the HW,
  25. * but that read_lock() makes it impossible, unless I defer it's action to
  26. * the reset task, which means it'll be asynchronous (won't take effect until
  27. * the system schedules a bit).
  28. *
  29. * Also, it would probably be possible to also remove most of the long-life
  30. * locking in open/resume code path (gem_reinit_chip) by beeing more careful
  31. * about when we can start taking interrupts or get xmit() called...
  32. */
  33. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  34. #include <linux/module.h>
  35. #include <linux/kernel.h>
  36. #include <linux/types.h>
  37. #include <linux/fcntl.h>
  38. #include <linux/interrupt.h>
  39. #include <linux/ioport.h>
  40. #include <linux/in.h>
  41. #include <linux/sched.h>
  42. #include <linux/string.h>
  43. #include <linux/delay.h>
  44. #include <linux/init.h>
  45. #include <linux/errno.h>
  46. #include <linux/pci.h>
  47. #include <linux/dma-mapping.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/skbuff.h>
  51. #include <linux/mii.h>
  52. #include <linux/ethtool.h>
  53. #include <linux/crc32.h>
  54. #include <linux/random.h>
  55. #include <linux/workqueue.h>
  56. #include <linux/if_vlan.h>
  57. #include <linux/bitops.h>
  58. #include <linux/mutex.h>
  59. #include <linux/mm.h>
  60. #include <linux/gfp.h>
  61. #include <asm/system.h>
  62. #include <asm/io.h>
  63. #include <asm/byteorder.h>
  64. #include <asm/uaccess.h>
  65. #include <asm/irq.h>
  66. #ifdef CONFIG_SPARC
  67. #include <asm/idprom.h>
  68. #include <asm/prom.h>
  69. #endif
  70. #ifdef CONFIG_PPC_PMAC
  71. #include <asm/pci-bridge.h>
  72. #include <asm/prom.h>
  73. #include <asm/machdep.h>
  74. #include <asm/pmac_feature.h>
  75. #endif
  76. #include "sungem_phy.h"
  77. #include "sungem.h"
  78. /* Stripping FCS is causing problems, disabled for now */
  79. #undef STRIP_FCS
  80. #define DEFAULT_MSG (NETIF_MSG_DRV | \
  81. NETIF_MSG_PROBE | \
  82. NETIF_MSG_LINK)
  83. #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  84. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  85. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  86. SUPPORTED_Pause | SUPPORTED_Autoneg)
  87. #define DRV_NAME "sungem"
  88. #define DRV_VERSION "0.98"
  89. #define DRV_RELDATE "8/24/03"
  90. #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
  91. static char version[] __devinitdata =
  92. DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  93. MODULE_AUTHOR(DRV_AUTHOR);
  94. MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  95. MODULE_LICENSE("GPL");
  96. #define GEM_MODULE_NAME "gem"
  97. static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = {
  98. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  99. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  100. /* These models only differ from the original GEM in
  101. * that their tx/rx fifos are of a different size and
  102. * they only support 10/100 speeds. -DaveM
  103. *
  104. * Apple's GMAC does support gigabit on machines with
  105. * the BCM54xx PHYs. -BenH
  106. */
  107. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  108. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  109. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
  110. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  111. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
  112. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  113. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
  114. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  115. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  117. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
  118. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  119. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
  120. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  121. {0, }
  122. };
  123. MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
  124. static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
  125. {
  126. u32 cmd;
  127. int limit = 10000;
  128. cmd = (1 << 30);
  129. cmd |= (2 << 28);
  130. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  131. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  132. cmd |= (MIF_FRAME_TAMSB);
  133. writel(cmd, gp->regs + MIF_FRAME);
  134. while (--limit) {
  135. cmd = readl(gp->regs + MIF_FRAME);
  136. if (cmd & MIF_FRAME_TALSB)
  137. break;
  138. udelay(10);
  139. }
  140. if (!limit)
  141. cmd = 0xffff;
  142. return cmd & MIF_FRAME_DATA;
  143. }
  144. static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
  145. {
  146. struct gem *gp = netdev_priv(dev);
  147. return __phy_read(gp, mii_id, reg);
  148. }
  149. static inline u16 phy_read(struct gem *gp, int reg)
  150. {
  151. return __phy_read(gp, gp->mii_phy_addr, reg);
  152. }
  153. static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
  154. {
  155. u32 cmd;
  156. int limit = 10000;
  157. cmd = (1 << 30);
  158. cmd |= (1 << 28);
  159. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  160. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  161. cmd |= (MIF_FRAME_TAMSB);
  162. cmd |= (val & MIF_FRAME_DATA);
  163. writel(cmd, gp->regs + MIF_FRAME);
  164. while (limit--) {
  165. cmd = readl(gp->regs + MIF_FRAME);
  166. if (cmd & MIF_FRAME_TALSB)
  167. break;
  168. udelay(10);
  169. }
  170. }
  171. static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
  172. {
  173. struct gem *gp = netdev_priv(dev);
  174. __phy_write(gp, mii_id, reg, val & 0xffff);
  175. }
  176. static inline void phy_write(struct gem *gp, int reg, u16 val)
  177. {
  178. __phy_write(gp, gp->mii_phy_addr, reg, val);
  179. }
  180. static inline void gem_enable_ints(struct gem *gp)
  181. {
  182. /* Enable all interrupts but TXDONE */
  183. writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  184. }
  185. static inline void gem_disable_ints(struct gem *gp)
  186. {
  187. /* Disable all interrupts, including TXDONE */
  188. writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  189. }
  190. static void gem_get_cell(struct gem *gp)
  191. {
  192. BUG_ON(gp->cell_enabled < 0);
  193. gp->cell_enabled++;
  194. #ifdef CONFIG_PPC_PMAC
  195. if (gp->cell_enabled == 1) {
  196. mb();
  197. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
  198. udelay(10);
  199. }
  200. #endif /* CONFIG_PPC_PMAC */
  201. }
  202. /* Turn off the chip's clock */
  203. static void gem_put_cell(struct gem *gp)
  204. {
  205. BUG_ON(gp->cell_enabled <= 0);
  206. gp->cell_enabled--;
  207. #ifdef CONFIG_PPC_PMAC
  208. if (gp->cell_enabled == 0) {
  209. mb();
  210. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
  211. udelay(10);
  212. }
  213. #endif /* CONFIG_PPC_PMAC */
  214. }
  215. static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
  216. {
  217. if (netif_msg_intr(gp))
  218. printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
  219. }
  220. static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  221. {
  222. u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
  223. u32 pcs_miistat;
  224. if (netif_msg_intr(gp))
  225. printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
  226. gp->dev->name, pcs_istat);
  227. if (!(pcs_istat & PCS_ISTAT_LSC)) {
  228. netdev_err(dev, "PCS irq but no link status change???\n");
  229. return 0;
  230. }
  231. /* The link status bit latches on zero, so you must
  232. * read it twice in such a case to see a transition
  233. * to the link being up.
  234. */
  235. pcs_miistat = readl(gp->regs + PCS_MIISTAT);
  236. if (!(pcs_miistat & PCS_MIISTAT_LS))
  237. pcs_miistat |=
  238. (readl(gp->regs + PCS_MIISTAT) &
  239. PCS_MIISTAT_LS);
  240. if (pcs_miistat & PCS_MIISTAT_ANC) {
  241. /* The remote-fault indication is only valid
  242. * when autoneg has completed.
  243. */
  244. if (pcs_miistat & PCS_MIISTAT_RF)
  245. netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n");
  246. else
  247. netdev_info(dev, "PCS AutoNEG complete\n");
  248. }
  249. if (pcs_miistat & PCS_MIISTAT_LS) {
  250. netdev_info(dev, "PCS link is now up\n");
  251. netif_carrier_on(gp->dev);
  252. } else {
  253. netdev_info(dev, "PCS link is now down\n");
  254. netif_carrier_off(gp->dev);
  255. /* If this happens and the link timer is not running,
  256. * reset so we re-negotiate.
  257. */
  258. if (!timer_pending(&gp->link_timer))
  259. return 1;
  260. }
  261. return 0;
  262. }
  263. static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  264. {
  265. u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
  266. if (netif_msg_intr(gp))
  267. printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
  268. gp->dev->name, txmac_stat);
  269. /* Defer timer expiration is quite normal,
  270. * don't even log the event.
  271. */
  272. if ((txmac_stat & MAC_TXSTAT_DTE) &&
  273. !(txmac_stat & ~MAC_TXSTAT_DTE))
  274. return 0;
  275. if (txmac_stat & MAC_TXSTAT_URUN) {
  276. netdev_err(dev, "TX MAC xmit underrun\n");
  277. gp->net_stats.tx_fifo_errors++;
  278. }
  279. if (txmac_stat & MAC_TXSTAT_MPE) {
  280. netdev_err(dev, "TX MAC max packet size error\n");
  281. gp->net_stats.tx_errors++;
  282. }
  283. /* The rest are all cases of one of the 16-bit TX
  284. * counters expiring.
  285. */
  286. if (txmac_stat & MAC_TXSTAT_NCE)
  287. gp->net_stats.collisions += 0x10000;
  288. if (txmac_stat & MAC_TXSTAT_ECE) {
  289. gp->net_stats.tx_aborted_errors += 0x10000;
  290. gp->net_stats.collisions += 0x10000;
  291. }
  292. if (txmac_stat & MAC_TXSTAT_LCE) {
  293. gp->net_stats.tx_aborted_errors += 0x10000;
  294. gp->net_stats.collisions += 0x10000;
  295. }
  296. /* We do not keep track of MAC_TXSTAT_FCE and
  297. * MAC_TXSTAT_PCE events.
  298. */
  299. return 0;
  300. }
  301. /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
  302. * so we do the following.
  303. *
  304. * If any part of the reset goes wrong, we return 1 and that causes the
  305. * whole chip to be reset.
  306. */
  307. static int gem_rxmac_reset(struct gem *gp)
  308. {
  309. struct net_device *dev = gp->dev;
  310. int limit, i;
  311. u64 desc_dma;
  312. u32 val;
  313. /* First, reset & disable MAC RX. */
  314. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  315. for (limit = 0; limit < 5000; limit++) {
  316. if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
  317. break;
  318. udelay(10);
  319. }
  320. if (limit == 5000) {
  321. netdev_err(dev, "RX MAC will not reset, resetting whole chip\n");
  322. return 1;
  323. }
  324. writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
  325. gp->regs + MAC_RXCFG);
  326. for (limit = 0; limit < 5000; limit++) {
  327. if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
  328. break;
  329. udelay(10);
  330. }
  331. if (limit == 5000) {
  332. netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
  333. return 1;
  334. }
  335. /* Second, disable RX DMA. */
  336. writel(0, gp->regs + RXDMA_CFG);
  337. for (limit = 0; limit < 5000; limit++) {
  338. if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
  339. break;
  340. udelay(10);
  341. }
  342. if (limit == 5000) {
  343. netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
  344. return 1;
  345. }
  346. udelay(5000);
  347. /* Execute RX reset command. */
  348. writel(gp->swrst_base | GREG_SWRST_RXRST,
  349. gp->regs + GREG_SWRST);
  350. for (limit = 0; limit < 5000; limit++) {
  351. if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
  352. break;
  353. udelay(10);
  354. }
  355. if (limit == 5000) {
  356. netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
  357. return 1;
  358. }
  359. /* Refresh the RX ring. */
  360. for (i = 0; i < RX_RING_SIZE; i++) {
  361. struct gem_rxd *rxd = &gp->init_block->rxd[i];
  362. if (gp->rx_skbs[i] == NULL) {
  363. netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n");
  364. return 1;
  365. }
  366. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  367. }
  368. gp->rx_new = gp->rx_old = 0;
  369. /* Now we must reprogram the rest of RX unit. */
  370. desc_dma = (u64) gp->gblock_dvma;
  371. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  372. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  373. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  374. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  375. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  376. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  377. writel(val, gp->regs + RXDMA_CFG);
  378. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  379. writel(((5 & RXDMA_BLANK_IPKTS) |
  380. ((8 << 12) & RXDMA_BLANK_ITIME)),
  381. gp->regs + RXDMA_BLANK);
  382. else
  383. writel(((5 & RXDMA_BLANK_IPKTS) |
  384. ((4 << 12) & RXDMA_BLANK_ITIME)),
  385. gp->regs + RXDMA_BLANK);
  386. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  387. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  388. writel(val, gp->regs + RXDMA_PTHRESH);
  389. val = readl(gp->regs + RXDMA_CFG);
  390. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  391. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  392. val = readl(gp->regs + MAC_RXCFG);
  393. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  394. return 0;
  395. }
  396. static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  397. {
  398. u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
  399. int ret = 0;
  400. if (netif_msg_intr(gp))
  401. printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
  402. gp->dev->name, rxmac_stat);
  403. if (rxmac_stat & MAC_RXSTAT_OFLW) {
  404. u32 smac = readl(gp->regs + MAC_SMACHINE);
  405. netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac);
  406. gp->net_stats.rx_over_errors++;
  407. gp->net_stats.rx_fifo_errors++;
  408. ret = gem_rxmac_reset(gp);
  409. }
  410. if (rxmac_stat & MAC_RXSTAT_ACE)
  411. gp->net_stats.rx_frame_errors += 0x10000;
  412. if (rxmac_stat & MAC_RXSTAT_CCE)
  413. gp->net_stats.rx_crc_errors += 0x10000;
  414. if (rxmac_stat & MAC_RXSTAT_LCE)
  415. gp->net_stats.rx_length_errors += 0x10000;
  416. /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
  417. * events.
  418. */
  419. return ret;
  420. }
  421. static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  422. {
  423. u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
  424. if (netif_msg_intr(gp))
  425. printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
  426. gp->dev->name, mac_cstat);
  427. /* This interrupt is just for pause frame and pause
  428. * tracking. It is useful for diagnostics and debug
  429. * but probably by default we will mask these events.
  430. */
  431. if (mac_cstat & MAC_CSTAT_PS)
  432. gp->pause_entered++;
  433. if (mac_cstat & MAC_CSTAT_PRCV)
  434. gp->pause_last_time_recvd = (mac_cstat >> 16);
  435. return 0;
  436. }
  437. static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  438. {
  439. u32 mif_status = readl(gp->regs + MIF_STATUS);
  440. u32 reg_val, changed_bits;
  441. reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
  442. changed_bits = (mif_status & MIF_STATUS_STAT);
  443. gem_handle_mif_event(gp, reg_val, changed_bits);
  444. return 0;
  445. }
  446. static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  447. {
  448. u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
  449. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  450. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  451. netdev_err(dev, "PCI error [%04x]", pci_estat);
  452. if (pci_estat & GREG_PCIESTAT_BADACK)
  453. pr_cont(" <No ACK64# during ABS64 cycle>");
  454. if (pci_estat & GREG_PCIESTAT_DTRTO)
  455. pr_cont(" <Delayed transaction timeout>");
  456. if (pci_estat & GREG_PCIESTAT_OTHER)
  457. pr_cont(" <other>");
  458. pr_cont("\n");
  459. } else {
  460. pci_estat |= GREG_PCIESTAT_OTHER;
  461. netdev_err(dev, "PCI error\n");
  462. }
  463. if (pci_estat & GREG_PCIESTAT_OTHER) {
  464. u16 pci_cfg_stat;
  465. /* Interrogate PCI config space for the
  466. * true cause.
  467. */
  468. pci_read_config_word(gp->pdev, PCI_STATUS,
  469. &pci_cfg_stat);
  470. netdev_err(dev, "Read PCI cfg space status [%04x]\n",
  471. pci_cfg_stat);
  472. if (pci_cfg_stat & PCI_STATUS_PARITY)
  473. netdev_err(dev, "PCI parity error detected\n");
  474. if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
  475. netdev_err(dev, "PCI target abort\n");
  476. if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
  477. netdev_err(dev, "PCI master acks target abort\n");
  478. if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
  479. netdev_err(dev, "PCI master abort\n");
  480. if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
  481. netdev_err(dev, "PCI system error SERR#\n");
  482. if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
  483. netdev_err(dev, "PCI parity error\n");
  484. /* Write the error bits back to clear them. */
  485. pci_cfg_stat &= (PCI_STATUS_PARITY |
  486. PCI_STATUS_SIG_TARGET_ABORT |
  487. PCI_STATUS_REC_TARGET_ABORT |
  488. PCI_STATUS_REC_MASTER_ABORT |
  489. PCI_STATUS_SIG_SYSTEM_ERROR |
  490. PCI_STATUS_DETECTED_PARITY);
  491. pci_write_config_word(gp->pdev,
  492. PCI_STATUS, pci_cfg_stat);
  493. }
  494. /* For all PCI errors, we should reset the chip. */
  495. return 1;
  496. }
  497. /* All non-normal interrupt conditions get serviced here.
  498. * Returns non-zero if we should just exit the interrupt
  499. * handler right now (ie. if we reset the card which invalidates
  500. * all of the other original irq status bits).
  501. */
  502. static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
  503. {
  504. if (gem_status & GREG_STAT_RXNOBUF) {
  505. /* Frame arrived, no free RX buffers available. */
  506. if (netif_msg_rx_err(gp))
  507. printk(KERN_DEBUG "%s: no buffer for rx frame\n",
  508. gp->dev->name);
  509. gp->net_stats.rx_dropped++;
  510. }
  511. if (gem_status & GREG_STAT_RXTAGERR) {
  512. /* corrupt RX tag framing */
  513. if (netif_msg_rx_err(gp))
  514. printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
  515. gp->dev->name);
  516. gp->net_stats.rx_errors++;
  517. goto do_reset;
  518. }
  519. if (gem_status & GREG_STAT_PCS) {
  520. if (gem_pcs_interrupt(dev, gp, gem_status))
  521. goto do_reset;
  522. }
  523. if (gem_status & GREG_STAT_TXMAC) {
  524. if (gem_txmac_interrupt(dev, gp, gem_status))
  525. goto do_reset;
  526. }
  527. if (gem_status & GREG_STAT_RXMAC) {
  528. if (gem_rxmac_interrupt(dev, gp, gem_status))
  529. goto do_reset;
  530. }
  531. if (gem_status & GREG_STAT_MAC) {
  532. if (gem_mac_interrupt(dev, gp, gem_status))
  533. goto do_reset;
  534. }
  535. if (gem_status & GREG_STAT_MIF) {
  536. if (gem_mif_interrupt(dev, gp, gem_status))
  537. goto do_reset;
  538. }
  539. if (gem_status & GREG_STAT_PCIERR) {
  540. if (gem_pci_interrupt(dev, gp, gem_status))
  541. goto do_reset;
  542. }
  543. return 0;
  544. do_reset:
  545. gp->reset_task_pending = 1;
  546. schedule_work(&gp->reset_task);
  547. return 1;
  548. }
  549. static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
  550. {
  551. int entry, limit;
  552. if (netif_msg_intr(gp))
  553. printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
  554. gp->dev->name, gem_status);
  555. entry = gp->tx_old;
  556. limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
  557. while (entry != limit) {
  558. struct sk_buff *skb;
  559. struct gem_txd *txd;
  560. dma_addr_t dma_addr;
  561. u32 dma_len;
  562. int frag;
  563. if (netif_msg_tx_done(gp))
  564. printk(KERN_DEBUG "%s: tx done, slot %d\n",
  565. gp->dev->name, entry);
  566. skb = gp->tx_skbs[entry];
  567. if (skb_shinfo(skb)->nr_frags) {
  568. int last = entry + skb_shinfo(skb)->nr_frags;
  569. int walk = entry;
  570. int incomplete = 0;
  571. last &= (TX_RING_SIZE - 1);
  572. for (;;) {
  573. walk = NEXT_TX(walk);
  574. if (walk == limit)
  575. incomplete = 1;
  576. if (walk == last)
  577. break;
  578. }
  579. if (incomplete)
  580. break;
  581. }
  582. gp->tx_skbs[entry] = NULL;
  583. gp->net_stats.tx_bytes += skb->len;
  584. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  585. txd = &gp->init_block->txd[entry];
  586. dma_addr = le64_to_cpu(txd->buffer);
  587. dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
  588. pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
  589. entry = NEXT_TX(entry);
  590. }
  591. gp->net_stats.tx_packets++;
  592. dev_kfree_skb_irq(skb);
  593. }
  594. gp->tx_old = entry;
  595. if (netif_queue_stopped(dev) &&
  596. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  597. netif_wake_queue(dev);
  598. }
  599. static __inline__ void gem_post_rxds(struct gem *gp, int limit)
  600. {
  601. int cluster_start, curr, count, kick;
  602. cluster_start = curr = (gp->rx_new & ~(4 - 1));
  603. count = 0;
  604. kick = -1;
  605. wmb();
  606. while (curr != limit) {
  607. curr = NEXT_RX(curr);
  608. if (++count == 4) {
  609. struct gem_rxd *rxd =
  610. &gp->init_block->rxd[cluster_start];
  611. for (;;) {
  612. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  613. rxd++;
  614. cluster_start = NEXT_RX(cluster_start);
  615. if (cluster_start == curr)
  616. break;
  617. }
  618. kick = curr;
  619. count = 0;
  620. }
  621. }
  622. if (kick >= 0) {
  623. mb();
  624. writel(kick, gp->regs + RXDMA_KICK);
  625. }
  626. }
  627. static int gem_rx(struct gem *gp, int work_to_do)
  628. {
  629. int entry, drops, work_done = 0;
  630. u32 done;
  631. __sum16 csum;
  632. if (netif_msg_rx_status(gp))
  633. printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
  634. gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
  635. entry = gp->rx_new;
  636. drops = 0;
  637. done = readl(gp->regs + RXDMA_DONE);
  638. for (;;) {
  639. struct gem_rxd *rxd = &gp->init_block->rxd[entry];
  640. struct sk_buff *skb;
  641. u64 status = le64_to_cpu(rxd->status_word);
  642. dma_addr_t dma_addr;
  643. int len;
  644. if ((status & RXDCTRL_OWN) != 0)
  645. break;
  646. if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
  647. break;
  648. /* When writing back RX descriptor, GEM writes status
  649. * then buffer address, possibly in separate transactions.
  650. * If we don't wait for the chip to write both, we could
  651. * post a new buffer to this descriptor then have GEM spam
  652. * on the buffer address. We sync on the RX completion
  653. * register to prevent this from happening.
  654. */
  655. if (entry == done) {
  656. done = readl(gp->regs + RXDMA_DONE);
  657. if (entry == done)
  658. break;
  659. }
  660. /* We can now account for the work we're about to do */
  661. work_done++;
  662. skb = gp->rx_skbs[entry];
  663. len = (status & RXDCTRL_BUFSZ) >> 16;
  664. if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
  665. gp->net_stats.rx_errors++;
  666. if (len < ETH_ZLEN)
  667. gp->net_stats.rx_length_errors++;
  668. if (len & RXDCTRL_BAD)
  669. gp->net_stats.rx_crc_errors++;
  670. /* We'll just return it to GEM. */
  671. drop_it:
  672. gp->net_stats.rx_dropped++;
  673. goto next;
  674. }
  675. dma_addr = le64_to_cpu(rxd->buffer);
  676. if (len > RX_COPY_THRESHOLD) {
  677. struct sk_buff *new_skb;
  678. new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  679. if (new_skb == NULL) {
  680. drops++;
  681. goto drop_it;
  682. }
  683. pci_unmap_page(gp->pdev, dma_addr,
  684. RX_BUF_ALLOC_SIZE(gp),
  685. PCI_DMA_FROMDEVICE);
  686. gp->rx_skbs[entry] = new_skb;
  687. new_skb->dev = gp->dev;
  688. skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
  689. rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
  690. virt_to_page(new_skb->data),
  691. offset_in_page(new_skb->data),
  692. RX_BUF_ALLOC_SIZE(gp),
  693. PCI_DMA_FROMDEVICE));
  694. skb_reserve(new_skb, RX_OFFSET);
  695. /* Trim the original skb for the netif. */
  696. skb_trim(skb, len);
  697. } else {
  698. struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
  699. if (copy_skb == NULL) {
  700. drops++;
  701. goto drop_it;
  702. }
  703. skb_reserve(copy_skb, 2);
  704. skb_put(copy_skb, len);
  705. pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  706. skb_copy_from_linear_data(skb, copy_skb->data, len);
  707. pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  708. /* We'll reuse the original ring buffer. */
  709. skb = copy_skb;
  710. }
  711. csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
  712. skb->csum = csum_unfold(csum);
  713. skb->ip_summed = CHECKSUM_COMPLETE;
  714. skb->protocol = eth_type_trans(skb, gp->dev);
  715. netif_receive_skb(skb);
  716. gp->net_stats.rx_packets++;
  717. gp->net_stats.rx_bytes += len;
  718. next:
  719. entry = NEXT_RX(entry);
  720. }
  721. gem_post_rxds(gp, entry);
  722. gp->rx_new = entry;
  723. if (drops)
  724. netdev_info(gp->dev, "Memory squeeze, deferring packet\n");
  725. return work_done;
  726. }
  727. static int gem_poll(struct napi_struct *napi, int budget)
  728. {
  729. struct gem *gp = container_of(napi, struct gem, napi);
  730. struct net_device *dev = gp->dev;
  731. unsigned long flags;
  732. int work_done;
  733. /*
  734. * NAPI locking nightmare: See comment at head of driver
  735. */
  736. spin_lock_irqsave(&gp->lock, flags);
  737. work_done = 0;
  738. do {
  739. /* Handle anomalies */
  740. if (gp->status & GREG_STAT_ABNORMAL) {
  741. if (gem_abnormal_irq(dev, gp, gp->status))
  742. break;
  743. }
  744. /* Run TX completion thread */
  745. spin_lock(&gp->tx_lock);
  746. gem_tx(dev, gp, gp->status);
  747. spin_unlock(&gp->tx_lock);
  748. spin_unlock_irqrestore(&gp->lock, flags);
  749. /* Run RX thread. We don't use any locking here,
  750. * code willing to do bad things - like cleaning the
  751. * rx ring - must call napi_disable(), which
  752. * schedule_timeout()'s if polling is already disabled.
  753. */
  754. work_done += gem_rx(gp, budget - work_done);
  755. if (work_done >= budget)
  756. return work_done;
  757. spin_lock_irqsave(&gp->lock, flags);
  758. gp->status = readl(gp->regs + GREG_STAT);
  759. } while (gp->status & GREG_STAT_NAPI);
  760. __napi_complete(napi);
  761. gem_enable_ints(gp);
  762. spin_unlock_irqrestore(&gp->lock, flags);
  763. return work_done;
  764. }
  765. static irqreturn_t gem_interrupt(int irq, void *dev_id)
  766. {
  767. struct net_device *dev = dev_id;
  768. struct gem *gp = netdev_priv(dev);
  769. unsigned long flags;
  770. /* Swallow interrupts when shutting the chip down, though
  771. * that shouldn't happen, we should have done free_irq() at
  772. * this point...
  773. */
  774. if (!gp->running)
  775. return IRQ_HANDLED;
  776. spin_lock_irqsave(&gp->lock, flags);
  777. if (napi_schedule_prep(&gp->napi)) {
  778. u32 gem_status = readl(gp->regs + GREG_STAT);
  779. if (gem_status == 0) {
  780. napi_enable(&gp->napi);
  781. spin_unlock_irqrestore(&gp->lock, flags);
  782. return IRQ_NONE;
  783. }
  784. gp->status = gem_status;
  785. gem_disable_ints(gp);
  786. __napi_schedule(&gp->napi);
  787. }
  788. spin_unlock_irqrestore(&gp->lock, flags);
  789. /* If polling was disabled at the time we received that
  790. * interrupt, we may return IRQ_HANDLED here while we
  791. * should return IRQ_NONE. No big deal...
  792. */
  793. return IRQ_HANDLED;
  794. }
  795. #ifdef CONFIG_NET_POLL_CONTROLLER
  796. static void gem_poll_controller(struct net_device *dev)
  797. {
  798. /* gem_interrupt is safe to reentrance so no need
  799. * to disable_irq here.
  800. */
  801. gem_interrupt(dev->irq, dev);
  802. }
  803. #endif
  804. static void gem_tx_timeout(struct net_device *dev)
  805. {
  806. struct gem *gp = netdev_priv(dev);
  807. netdev_err(dev, "transmit timed out, resetting\n");
  808. if (!gp->running) {
  809. netdev_err(dev, "hrm.. hw not running !\n");
  810. return;
  811. }
  812. netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n",
  813. readl(gp->regs + TXDMA_CFG),
  814. readl(gp->regs + MAC_TXSTAT),
  815. readl(gp->regs + MAC_TXCFG));
  816. netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
  817. readl(gp->regs + RXDMA_CFG),
  818. readl(gp->regs + MAC_RXSTAT),
  819. readl(gp->regs + MAC_RXCFG));
  820. spin_lock_irq(&gp->lock);
  821. spin_lock(&gp->tx_lock);
  822. gp->reset_task_pending = 1;
  823. schedule_work(&gp->reset_task);
  824. spin_unlock(&gp->tx_lock);
  825. spin_unlock_irq(&gp->lock);
  826. }
  827. static __inline__ int gem_intme(int entry)
  828. {
  829. /* Algorithm: IRQ every 1/2 of descriptors. */
  830. if (!(entry & ((TX_RING_SIZE>>1)-1)))
  831. return 1;
  832. return 0;
  833. }
  834. static netdev_tx_t gem_start_xmit(struct sk_buff *skb,
  835. struct net_device *dev)
  836. {
  837. struct gem *gp = netdev_priv(dev);
  838. int entry;
  839. u64 ctrl;
  840. unsigned long flags;
  841. ctrl = 0;
  842. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  843. const u64 csum_start_off = skb_transport_offset(skb);
  844. const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
  845. ctrl = (TXDCTRL_CENAB |
  846. (csum_start_off << 15) |
  847. (csum_stuff_off << 21));
  848. }
  849. if (!spin_trylock_irqsave(&gp->tx_lock, flags)) {
  850. /* Tell upper layer to requeue */
  851. return NETDEV_TX_LOCKED;
  852. }
  853. /* We raced with gem_do_stop() */
  854. if (!gp->running) {
  855. spin_unlock_irqrestore(&gp->tx_lock, flags);
  856. return NETDEV_TX_BUSY;
  857. }
  858. /* This is a hard error, log it. */
  859. if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  860. netif_stop_queue(dev);
  861. spin_unlock_irqrestore(&gp->tx_lock, flags);
  862. netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
  863. return NETDEV_TX_BUSY;
  864. }
  865. entry = gp->tx_new;
  866. gp->tx_skbs[entry] = skb;
  867. if (skb_shinfo(skb)->nr_frags == 0) {
  868. struct gem_txd *txd = &gp->init_block->txd[entry];
  869. dma_addr_t mapping;
  870. u32 len;
  871. len = skb->len;
  872. mapping = pci_map_page(gp->pdev,
  873. virt_to_page(skb->data),
  874. offset_in_page(skb->data),
  875. len, PCI_DMA_TODEVICE);
  876. ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
  877. if (gem_intme(entry))
  878. ctrl |= TXDCTRL_INTME;
  879. txd->buffer = cpu_to_le64(mapping);
  880. wmb();
  881. txd->control_word = cpu_to_le64(ctrl);
  882. entry = NEXT_TX(entry);
  883. } else {
  884. struct gem_txd *txd;
  885. u32 first_len;
  886. u64 intme;
  887. dma_addr_t first_mapping;
  888. int frag, first_entry = entry;
  889. intme = 0;
  890. if (gem_intme(entry))
  891. intme |= TXDCTRL_INTME;
  892. /* We must give this initial chunk to the device last.
  893. * Otherwise we could race with the device.
  894. */
  895. first_len = skb_headlen(skb);
  896. first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
  897. offset_in_page(skb->data),
  898. first_len, PCI_DMA_TODEVICE);
  899. entry = NEXT_TX(entry);
  900. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  901. skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  902. u32 len;
  903. dma_addr_t mapping;
  904. u64 this_ctrl;
  905. len = this_frag->size;
  906. mapping = pci_map_page(gp->pdev,
  907. this_frag->page,
  908. this_frag->page_offset,
  909. len, PCI_DMA_TODEVICE);
  910. this_ctrl = ctrl;
  911. if (frag == skb_shinfo(skb)->nr_frags - 1)
  912. this_ctrl |= TXDCTRL_EOF;
  913. txd = &gp->init_block->txd[entry];
  914. txd->buffer = cpu_to_le64(mapping);
  915. wmb();
  916. txd->control_word = cpu_to_le64(this_ctrl | len);
  917. if (gem_intme(entry))
  918. intme |= TXDCTRL_INTME;
  919. entry = NEXT_TX(entry);
  920. }
  921. txd = &gp->init_block->txd[first_entry];
  922. txd->buffer = cpu_to_le64(first_mapping);
  923. wmb();
  924. txd->control_word =
  925. cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
  926. }
  927. gp->tx_new = entry;
  928. if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
  929. netif_stop_queue(dev);
  930. if (netif_msg_tx_queued(gp))
  931. printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
  932. dev->name, entry, skb->len);
  933. mb();
  934. writel(gp->tx_new, gp->regs + TXDMA_KICK);
  935. spin_unlock_irqrestore(&gp->tx_lock, flags);
  936. dev->trans_start = jiffies; /* NETIF_F_LLTX driver :( */
  937. return NETDEV_TX_OK;
  938. }
  939. static void gem_pcs_reset(struct gem *gp)
  940. {
  941. int limit;
  942. u32 val;
  943. /* Reset PCS unit. */
  944. val = readl(gp->regs + PCS_MIICTRL);
  945. val |= PCS_MIICTRL_RST;
  946. writel(val, gp->regs + PCS_MIICTRL);
  947. limit = 32;
  948. while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
  949. udelay(100);
  950. if (limit-- <= 0)
  951. break;
  952. }
  953. if (limit < 0)
  954. netdev_warn(gp->dev, "PCS reset bit would not clear\n");
  955. }
  956. static void gem_pcs_reinit_adv(struct gem *gp)
  957. {
  958. u32 val;
  959. /* Make sure PCS is disabled while changing advertisement
  960. * configuration.
  961. */
  962. val = readl(gp->regs + PCS_CFG);
  963. val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
  964. writel(val, gp->regs + PCS_CFG);
  965. /* Advertise all capabilities except assymetric
  966. * pause.
  967. */
  968. val = readl(gp->regs + PCS_MIIADV);
  969. val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
  970. PCS_MIIADV_SP | PCS_MIIADV_AP);
  971. writel(val, gp->regs + PCS_MIIADV);
  972. /* Enable and restart auto-negotiation, disable wrapback/loopback,
  973. * and re-enable PCS.
  974. */
  975. val = readl(gp->regs + PCS_MIICTRL);
  976. val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
  977. val &= ~PCS_MIICTRL_WB;
  978. writel(val, gp->regs + PCS_MIICTRL);
  979. val = readl(gp->regs + PCS_CFG);
  980. val |= PCS_CFG_ENABLE;
  981. writel(val, gp->regs + PCS_CFG);
  982. /* Make sure serialink loopback is off. The meaning
  983. * of this bit is logically inverted based upon whether
  984. * you are in Serialink or SERDES mode.
  985. */
  986. val = readl(gp->regs + PCS_SCTRL);
  987. if (gp->phy_type == phy_serialink)
  988. val &= ~PCS_SCTRL_LOOP;
  989. else
  990. val |= PCS_SCTRL_LOOP;
  991. writel(val, gp->regs + PCS_SCTRL);
  992. }
  993. #define STOP_TRIES 32
  994. /* Must be invoked under gp->lock and gp->tx_lock. */
  995. static void gem_reset(struct gem *gp)
  996. {
  997. int limit;
  998. u32 val;
  999. /* Make sure we won't get any more interrupts */
  1000. writel(0xffffffff, gp->regs + GREG_IMASK);
  1001. /* Reset the chip */
  1002. writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
  1003. gp->regs + GREG_SWRST);
  1004. limit = STOP_TRIES;
  1005. do {
  1006. udelay(20);
  1007. val = readl(gp->regs + GREG_SWRST);
  1008. if (limit-- <= 0)
  1009. break;
  1010. } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
  1011. if (limit < 0)
  1012. netdev_err(gp->dev, "SW reset is ghetto\n");
  1013. if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes)
  1014. gem_pcs_reinit_adv(gp);
  1015. }
  1016. /* Must be invoked under gp->lock and gp->tx_lock. */
  1017. static void gem_start_dma(struct gem *gp)
  1018. {
  1019. u32 val;
  1020. /* We are ready to rock, turn everything on. */
  1021. val = readl(gp->regs + TXDMA_CFG);
  1022. writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1023. val = readl(gp->regs + RXDMA_CFG);
  1024. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1025. val = readl(gp->regs + MAC_TXCFG);
  1026. writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1027. val = readl(gp->regs + MAC_RXCFG);
  1028. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1029. (void) readl(gp->regs + MAC_RXCFG);
  1030. udelay(100);
  1031. gem_enable_ints(gp);
  1032. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1033. }
  1034. /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
  1035. * actually stopped before about 4ms tho ...
  1036. */
  1037. static void gem_stop_dma(struct gem *gp)
  1038. {
  1039. u32 val;
  1040. /* We are done rocking, turn everything off. */
  1041. val = readl(gp->regs + TXDMA_CFG);
  1042. writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1043. val = readl(gp->regs + RXDMA_CFG);
  1044. writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1045. val = readl(gp->regs + MAC_TXCFG);
  1046. writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1047. val = readl(gp->regs + MAC_RXCFG);
  1048. writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1049. (void) readl(gp->regs + MAC_RXCFG);
  1050. /* Need to wait a bit ... done by the caller */
  1051. }
  1052. /* Must be invoked under gp->lock and gp->tx_lock. */
  1053. // XXX dbl check what that function should do when called on PCS PHY
  1054. static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
  1055. {
  1056. u32 advertise, features;
  1057. int autoneg;
  1058. int speed;
  1059. int duplex;
  1060. if (gp->phy_type != phy_mii_mdio0 &&
  1061. gp->phy_type != phy_mii_mdio1)
  1062. goto non_mii;
  1063. /* Setup advertise */
  1064. if (found_mii_phy(gp))
  1065. features = gp->phy_mii.def->features;
  1066. else
  1067. features = 0;
  1068. advertise = features & ADVERTISE_MASK;
  1069. if (gp->phy_mii.advertising != 0)
  1070. advertise &= gp->phy_mii.advertising;
  1071. autoneg = gp->want_autoneg;
  1072. speed = gp->phy_mii.speed;
  1073. duplex = gp->phy_mii.duplex;
  1074. /* Setup link parameters */
  1075. if (!ep)
  1076. goto start_aneg;
  1077. if (ep->autoneg == AUTONEG_ENABLE) {
  1078. advertise = ep->advertising;
  1079. autoneg = 1;
  1080. } else {
  1081. autoneg = 0;
  1082. speed = ep->speed;
  1083. duplex = ep->duplex;
  1084. }
  1085. start_aneg:
  1086. /* Sanitize settings based on PHY capabilities */
  1087. if ((features & SUPPORTED_Autoneg) == 0)
  1088. autoneg = 0;
  1089. if (speed == SPEED_1000 &&
  1090. !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
  1091. speed = SPEED_100;
  1092. if (speed == SPEED_100 &&
  1093. !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
  1094. speed = SPEED_10;
  1095. if (duplex == DUPLEX_FULL &&
  1096. !(features & (SUPPORTED_1000baseT_Full |
  1097. SUPPORTED_100baseT_Full |
  1098. SUPPORTED_10baseT_Full)))
  1099. duplex = DUPLEX_HALF;
  1100. if (speed == 0)
  1101. speed = SPEED_10;
  1102. /* If we are asleep, we don't try to actually setup the PHY, we
  1103. * just store the settings
  1104. */
  1105. if (gp->asleep) {
  1106. gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
  1107. gp->phy_mii.speed = speed;
  1108. gp->phy_mii.duplex = duplex;
  1109. return;
  1110. }
  1111. /* Configure PHY & start aneg */
  1112. gp->want_autoneg = autoneg;
  1113. if (autoneg) {
  1114. if (found_mii_phy(gp))
  1115. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
  1116. gp->lstate = link_aneg;
  1117. } else {
  1118. if (found_mii_phy(gp))
  1119. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
  1120. gp->lstate = link_force_ok;
  1121. }
  1122. non_mii:
  1123. gp->timer_ticks = 0;
  1124. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1125. }
  1126. /* A link-up condition has occurred, initialize and enable the
  1127. * rest of the chip.
  1128. *
  1129. * Must be invoked under gp->lock and gp->tx_lock.
  1130. */
  1131. static int gem_set_link_modes(struct gem *gp)
  1132. {
  1133. u32 val;
  1134. int full_duplex, speed, pause;
  1135. full_duplex = 0;
  1136. speed = SPEED_10;
  1137. pause = 0;
  1138. if (found_mii_phy(gp)) {
  1139. if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
  1140. return 1;
  1141. full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
  1142. speed = gp->phy_mii.speed;
  1143. pause = gp->phy_mii.pause;
  1144. } else if (gp->phy_type == phy_serialink ||
  1145. gp->phy_type == phy_serdes) {
  1146. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1147. if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes)
  1148. full_duplex = 1;
  1149. speed = SPEED_1000;
  1150. }
  1151. netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n",
  1152. speed, (full_duplex ? "full" : "half"));
  1153. if (!gp->running)
  1154. return 0;
  1155. val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
  1156. if (full_duplex) {
  1157. val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
  1158. } else {
  1159. /* MAC_TXCFG_NBO must be zero. */
  1160. }
  1161. writel(val, gp->regs + MAC_TXCFG);
  1162. val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
  1163. if (!full_duplex &&
  1164. (gp->phy_type == phy_mii_mdio0 ||
  1165. gp->phy_type == phy_mii_mdio1)) {
  1166. val |= MAC_XIFCFG_DISE;
  1167. } else if (full_duplex) {
  1168. val |= MAC_XIFCFG_FLED;
  1169. }
  1170. if (speed == SPEED_1000)
  1171. val |= (MAC_XIFCFG_GMII);
  1172. writel(val, gp->regs + MAC_XIFCFG);
  1173. /* If gigabit and half-duplex, enable carrier extension
  1174. * mode. Else, disable it.
  1175. */
  1176. if (speed == SPEED_1000 && !full_duplex) {
  1177. val = readl(gp->regs + MAC_TXCFG);
  1178. writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1179. val = readl(gp->regs + MAC_RXCFG);
  1180. writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1181. } else {
  1182. val = readl(gp->regs + MAC_TXCFG);
  1183. writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1184. val = readl(gp->regs + MAC_RXCFG);
  1185. writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1186. }
  1187. if (gp->phy_type == phy_serialink ||
  1188. gp->phy_type == phy_serdes) {
  1189. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1190. if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
  1191. pause = 1;
  1192. }
  1193. if (netif_msg_link(gp)) {
  1194. if (pause) {
  1195. netdev_info(gp->dev,
  1196. "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
  1197. gp->rx_fifo_sz,
  1198. gp->rx_pause_off,
  1199. gp->rx_pause_on);
  1200. } else {
  1201. netdev_info(gp->dev, "Pause is disabled\n");
  1202. }
  1203. }
  1204. if (!full_duplex)
  1205. writel(512, gp->regs + MAC_STIME);
  1206. else
  1207. writel(64, gp->regs + MAC_STIME);
  1208. val = readl(gp->regs + MAC_MCCFG);
  1209. if (pause)
  1210. val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1211. else
  1212. val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1213. writel(val, gp->regs + MAC_MCCFG);
  1214. gem_start_dma(gp);
  1215. return 0;
  1216. }
  1217. /* Must be invoked under gp->lock and gp->tx_lock. */
  1218. static int gem_mdio_link_not_up(struct gem *gp)
  1219. {
  1220. switch (gp->lstate) {
  1221. case link_force_ret:
  1222. netif_info(gp, link, gp->dev,
  1223. "Autoneg failed again, keeping forced mode\n");
  1224. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
  1225. gp->last_forced_speed, DUPLEX_HALF);
  1226. gp->timer_ticks = 5;
  1227. gp->lstate = link_force_ok;
  1228. return 0;
  1229. case link_aneg:
  1230. /* We try forced modes after a failed aneg only on PHYs that don't
  1231. * have "magic_aneg" bit set, which means they internally do the
  1232. * while forced-mode thingy. On these, we just restart aneg
  1233. */
  1234. if (gp->phy_mii.def->magic_aneg)
  1235. return 1;
  1236. netif_info(gp, link, gp->dev, "switching to forced 100bt\n");
  1237. /* Try forced modes. */
  1238. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
  1239. DUPLEX_HALF);
  1240. gp->timer_ticks = 5;
  1241. gp->lstate = link_force_try;
  1242. return 0;
  1243. case link_force_try:
  1244. /* Downgrade from 100 to 10 Mbps if necessary.
  1245. * If already at 10Mbps, warn user about the
  1246. * situation every 10 ticks.
  1247. */
  1248. if (gp->phy_mii.speed == SPEED_100) {
  1249. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
  1250. DUPLEX_HALF);
  1251. gp->timer_ticks = 5;
  1252. netif_info(gp, link, gp->dev,
  1253. "switching to forced 10bt\n");
  1254. return 0;
  1255. } else
  1256. return 1;
  1257. default:
  1258. return 0;
  1259. }
  1260. }
  1261. static void gem_link_timer(unsigned long data)
  1262. {
  1263. struct gem *gp = (struct gem *) data;
  1264. int restart_aneg = 0;
  1265. if (gp->asleep)
  1266. return;
  1267. spin_lock_irq(&gp->lock);
  1268. spin_lock(&gp->tx_lock);
  1269. gem_get_cell(gp);
  1270. /* If the reset task is still pending, we just
  1271. * reschedule the link timer
  1272. */
  1273. if (gp->reset_task_pending)
  1274. goto restart;
  1275. if (gp->phy_type == phy_serialink ||
  1276. gp->phy_type == phy_serdes) {
  1277. u32 val = readl(gp->regs + PCS_MIISTAT);
  1278. if (!(val & PCS_MIISTAT_LS))
  1279. val = readl(gp->regs + PCS_MIISTAT);
  1280. if ((val & PCS_MIISTAT_LS) != 0) {
  1281. if (gp->lstate == link_up)
  1282. goto restart;
  1283. gp->lstate = link_up;
  1284. netif_carrier_on(gp->dev);
  1285. (void)gem_set_link_modes(gp);
  1286. }
  1287. goto restart;
  1288. }
  1289. if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
  1290. /* Ok, here we got a link. If we had it due to a forced
  1291. * fallback, and we were configured for autoneg, we do
  1292. * retry a short autoneg pass. If you know your hub is
  1293. * broken, use ethtool ;)
  1294. */
  1295. if (gp->lstate == link_force_try && gp->want_autoneg) {
  1296. gp->lstate = link_force_ret;
  1297. gp->last_forced_speed = gp->phy_mii.speed;
  1298. gp->timer_ticks = 5;
  1299. if (netif_msg_link(gp))
  1300. netdev_info(gp->dev,
  1301. "Got link after fallback, retrying autoneg once...\n");
  1302. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
  1303. } else if (gp->lstate != link_up) {
  1304. gp->lstate = link_up;
  1305. netif_carrier_on(gp->dev);
  1306. if (gem_set_link_modes(gp))
  1307. restart_aneg = 1;
  1308. }
  1309. } else {
  1310. /* If the link was previously up, we restart the
  1311. * whole process
  1312. */
  1313. if (gp->lstate == link_up) {
  1314. gp->lstate = link_down;
  1315. netif_info(gp, link, gp->dev, "Link down\n");
  1316. netif_carrier_off(gp->dev);
  1317. gp->reset_task_pending = 1;
  1318. schedule_work(&gp->reset_task);
  1319. restart_aneg = 1;
  1320. } else if (++gp->timer_ticks > 10) {
  1321. if (found_mii_phy(gp))
  1322. restart_aneg = gem_mdio_link_not_up(gp);
  1323. else
  1324. restart_aneg = 1;
  1325. }
  1326. }
  1327. if (restart_aneg) {
  1328. gem_begin_auto_negotiation(gp, NULL);
  1329. goto out_unlock;
  1330. }
  1331. restart:
  1332. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1333. out_unlock:
  1334. gem_put_cell(gp);
  1335. spin_unlock(&gp->tx_lock);
  1336. spin_unlock_irq(&gp->lock);
  1337. }
  1338. /* Must be invoked under gp->lock and gp->tx_lock. */
  1339. static void gem_clean_rings(struct gem *gp)
  1340. {
  1341. struct gem_init_block *gb = gp->init_block;
  1342. struct sk_buff *skb;
  1343. int i;
  1344. dma_addr_t dma_addr;
  1345. for (i = 0; i < RX_RING_SIZE; i++) {
  1346. struct gem_rxd *rxd;
  1347. rxd = &gb->rxd[i];
  1348. if (gp->rx_skbs[i] != NULL) {
  1349. skb = gp->rx_skbs[i];
  1350. dma_addr = le64_to_cpu(rxd->buffer);
  1351. pci_unmap_page(gp->pdev, dma_addr,
  1352. RX_BUF_ALLOC_SIZE(gp),
  1353. PCI_DMA_FROMDEVICE);
  1354. dev_kfree_skb_any(skb);
  1355. gp->rx_skbs[i] = NULL;
  1356. }
  1357. rxd->status_word = 0;
  1358. wmb();
  1359. rxd->buffer = 0;
  1360. }
  1361. for (i = 0; i < TX_RING_SIZE; i++) {
  1362. if (gp->tx_skbs[i] != NULL) {
  1363. struct gem_txd *txd;
  1364. int frag;
  1365. skb = gp->tx_skbs[i];
  1366. gp->tx_skbs[i] = NULL;
  1367. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1368. int ent = i & (TX_RING_SIZE - 1);
  1369. txd = &gb->txd[ent];
  1370. dma_addr = le64_to_cpu(txd->buffer);
  1371. pci_unmap_page(gp->pdev, dma_addr,
  1372. le64_to_cpu(txd->control_word) &
  1373. TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
  1374. if (frag != skb_shinfo(skb)->nr_frags)
  1375. i++;
  1376. }
  1377. dev_kfree_skb_any(skb);
  1378. }
  1379. }
  1380. }
  1381. /* Must be invoked under gp->lock and gp->tx_lock. */
  1382. static void gem_init_rings(struct gem *gp)
  1383. {
  1384. struct gem_init_block *gb = gp->init_block;
  1385. struct net_device *dev = gp->dev;
  1386. int i;
  1387. dma_addr_t dma_addr;
  1388. gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
  1389. gem_clean_rings(gp);
  1390. gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
  1391. (unsigned)VLAN_ETH_FRAME_LEN);
  1392. for (i = 0; i < RX_RING_SIZE; i++) {
  1393. struct sk_buff *skb;
  1394. struct gem_rxd *rxd = &gb->rxd[i];
  1395. skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  1396. if (!skb) {
  1397. rxd->buffer = 0;
  1398. rxd->status_word = 0;
  1399. continue;
  1400. }
  1401. gp->rx_skbs[i] = skb;
  1402. skb->dev = dev;
  1403. skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
  1404. dma_addr = pci_map_page(gp->pdev,
  1405. virt_to_page(skb->data),
  1406. offset_in_page(skb->data),
  1407. RX_BUF_ALLOC_SIZE(gp),
  1408. PCI_DMA_FROMDEVICE);
  1409. rxd->buffer = cpu_to_le64(dma_addr);
  1410. wmb();
  1411. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  1412. skb_reserve(skb, RX_OFFSET);
  1413. }
  1414. for (i = 0; i < TX_RING_SIZE; i++) {
  1415. struct gem_txd *txd = &gb->txd[i];
  1416. txd->control_word = 0;
  1417. wmb();
  1418. txd->buffer = 0;
  1419. }
  1420. wmb();
  1421. }
  1422. /* Init PHY interface and start link poll state machine */
  1423. static void gem_init_phy(struct gem *gp)
  1424. {
  1425. u32 mifcfg;
  1426. /* Revert MIF CFG setting done on stop_phy */
  1427. mifcfg = readl(gp->regs + MIF_CFG);
  1428. mifcfg &= ~MIF_CFG_BBMODE;
  1429. writel(mifcfg, gp->regs + MIF_CFG);
  1430. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1431. int i;
  1432. /* Those delay sucks, the HW seem to love them though, I'll
  1433. * serisouly consider breaking some locks here to be able
  1434. * to schedule instead
  1435. */
  1436. for (i = 0; i < 3; i++) {
  1437. #ifdef CONFIG_PPC_PMAC
  1438. pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
  1439. msleep(20);
  1440. #endif
  1441. /* Some PHYs used by apple have problem getting back to us,
  1442. * we do an additional reset here
  1443. */
  1444. phy_write(gp, MII_BMCR, BMCR_RESET);
  1445. msleep(20);
  1446. if (phy_read(gp, MII_BMCR) != 0xffff)
  1447. break;
  1448. if (i == 2)
  1449. netdev_warn(gp->dev, "GMAC PHY not responding !\n");
  1450. }
  1451. }
  1452. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  1453. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1454. u32 val;
  1455. /* Init datapath mode register. */
  1456. if (gp->phy_type == phy_mii_mdio0 ||
  1457. gp->phy_type == phy_mii_mdio1) {
  1458. val = PCS_DMODE_MGM;
  1459. } else if (gp->phy_type == phy_serialink) {
  1460. val = PCS_DMODE_SM | PCS_DMODE_GMOE;
  1461. } else {
  1462. val = PCS_DMODE_ESM;
  1463. }
  1464. writel(val, gp->regs + PCS_DMODE);
  1465. }
  1466. if (gp->phy_type == phy_mii_mdio0 ||
  1467. gp->phy_type == phy_mii_mdio1) {
  1468. // XXX check for errors
  1469. mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
  1470. /* Init PHY */
  1471. if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
  1472. gp->phy_mii.def->ops->init(&gp->phy_mii);
  1473. } else {
  1474. gem_pcs_reset(gp);
  1475. gem_pcs_reinit_adv(gp);
  1476. }
  1477. /* Default aneg parameters */
  1478. gp->timer_ticks = 0;
  1479. gp->lstate = link_down;
  1480. netif_carrier_off(gp->dev);
  1481. /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
  1482. spin_lock_irq(&gp->lock);
  1483. gem_begin_auto_negotiation(gp, NULL);
  1484. spin_unlock_irq(&gp->lock);
  1485. }
  1486. /* Must be invoked under gp->lock and gp->tx_lock. */
  1487. static void gem_init_dma(struct gem *gp)
  1488. {
  1489. u64 desc_dma = (u64) gp->gblock_dvma;
  1490. u32 val;
  1491. val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
  1492. writel(val, gp->regs + TXDMA_CFG);
  1493. writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
  1494. writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
  1495. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  1496. writel(0, gp->regs + TXDMA_KICK);
  1497. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  1498. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  1499. writel(val, gp->regs + RXDMA_CFG);
  1500. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  1501. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  1502. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1503. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  1504. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  1505. writel(val, gp->regs + RXDMA_PTHRESH);
  1506. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  1507. writel(((5 & RXDMA_BLANK_IPKTS) |
  1508. ((8 << 12) & RXDMA_BLANK_ITIME)),
  1509. gp->regs + RXDMA_BLANK);
  1510. else
  1511. writel(((5 & RXDMA_BLANK_IPKTS) |
  1512. ((4 << 12) & RXDMA_BLANK_ITIME)),
  1513. gp->regs + RXDMA_BLANK);
  1514. }
  1515. /* Must be invoked under gp->lock and gp->tx_lock. */
  1516. static u32 gem_setup_multicast(struct gem *gp)
  1517. {
  1518. u32 rxcfg = 0;
  1519. int i;
  1520. if ((gp->dev->flags & IFF_ALLMULTI) ||
  1521. (netdev_mc_count(gp->dev) > 256)) {
  1522. for (i=0; i<16; i++)
  1523. writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
  1524. rxcfg |= MAC_RXCFG_HFE;
  1525. } else if (gp->dev->flags & IFF_PROMISC) {
  1526. rxcfg |= MAC_RXCFG_PROM;
  1527. } else {
  1528. u16 hash_table[16];
  1529. u32 crc;
  1530. struct netdev_hw_addr *ha;
  1531. int i;
  1532. memset(hash_table, 0, sizeof(hash_table));
  1533. netdev_for_each_mc_addr(ha, gp->dev) {
  1534. char *addrs = ha->addr;
  1535. if (!(*addrs & 1))
  1536. continue;
  1537. crc = ether_crc_le(6, addrs);
  1538. crc >>= 24;
  1539. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  1540. }
  1541. for (i=0; i<16; i++)
  1542. writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
  1543. rxcfg |= MAC_RXCFG_HFE;
  1544. }
  1545. return rxcfg;
  1546. }
  1547. /* Must be invoked under gp->lock and gp->tx_lock. */
  1548. static void gem_init_mac(struct gem *gp)
  1549. {
  1550. unsigned char *e = &gp->dev->dev_addr[0];
  1551. writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
  1552. writel(0x00, gp->regs + MAC_IPG0);
  1553. writel(0x08, gp->regs + MAC_IPG1);
  1554. writel(0x04, gp->regs + MAC_IPG2);
  1555. writel(0x40, gp->regs + MAC_STIME);
  1556. writel(0x40, gp->regs + MAC_MINFSZ);
  1557. /* Ethernet payload + header + FCS + optional VLAN tag. */
  1558. writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
  1559. writel(0x07, gp->regs + MAC_PASIZE);
  1560. writel(0x04, gp->regs + MAC_JAMSIZE);
  1561. writel(0x10, gp->regs + MAC_ATTLIM);
  1562. writel(0x8808, gp->regs + MAC_MCTYPE);
  1563. writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
  1564. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  1565. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  1566. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  1567. writel(0, gp->regs + MAC_ADDR3);
  1568. writel(0, gp->regs + MAC_ADDR4);
  1569. writel(0, gp->regs + MAC_ADDR5);
  1570. writel(0x0001, gp->regs + MAC_ADDR6);
  1571. writel(0xc200, gp->regs + MAC_ADDR7);
  1572. writel(0x0180, gp->regs + MAC_ADDR8);
  1573. writel(0, gp->regs + MAC_AFILT0);
  1574. writel(0, gp->regs + MAC_AFILT1);
  1575. writel(0, gp->regs + MAC_AFILT2);
  1576. writel(0, gp->regs + MAC_AF21MSK);
  1577. writel(0, gp->regs + MAC_AF0MSK);
  1578. gp->mac_rx_cfg = gem_setup_multicast(gp);
  1579. #ifdef STRIP_FCS
  1580. gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
  1581. #endif
  1582. writel(0, gp->regs + MAC_NCOLL);
  1583. writel(0, gp->regs + MAC_FASUCC);
  1584. writel(0, gp->regs + MAC_ECOLL);
  1585. writel(0, gp->regs + MAC_LCOLL);
  1586. writel(0, gp->regs + MAC_DTIMER);
  1587. writel(0, gp->regs + MAC_PATMPS);
  1588. writel(0, gp->regs + MAC_RFCTR);
  1589. writel(0, gp->regs + MAC_LERR);
  1590. writel(0, gp->regs + MAC_AERR);
  1591. writel(0, gp->regs + MAC_FCSERR);
  1592. writel(0, gp->regs + MAC_RXCVERR);
  1593. /* Clear RX/TX/MAC/XIF config, we will set these up and enable
  1594. * them once a link is established.
  1595. */
  1596. writel(0, gp->regs + MAC_TXCFG);
  1597. writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
  1598. writel(0, gp->regs + MAC_MCCFG);
  1599. writel(0, gp->regs + MAC_XIFCFG);
  1600. /* Setup MAC interrupts. We want to get all of the interesting
  1601. * counter expiration events, but we do not want to hear about
  1602. * normal rx/tx as the DMA engine tells us that.
  1603. */
  1604. writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
  1605. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  1606. /* Don't enable even the PAUSE interrupts for now, we
  1607. * make no use of those events other than to record them.
  1608. */
  1609. writel(0xffffffff, gp->regs + MAC_MCMASK);
  1610. /* Don't enable GEM's WOL in normal operations
  1611. */
  1612. if (gp->has_wol)
  1613. writel(0, gp->regs + WOL_WAKECSR);
  1614. }
  1615. /* Must be invoked under gp->lock and gp->tx_lock. */
  1616. static void gem_init_pause_thresholds(struct gem *gp)
  1617. {
  1618. u32 cfg;
  1619. /* Calculate pause thresholds. Setting the OFF threshold to the
  1620. * full RX fifo size effectively disables PAUSE generation which
  1621. * is what we do for 10/100 only GEMs which have FIFOs too small
  1622. * to make real gains from PAUSE.
  1623. */
  1624. if (gp->rx_fifo_sz <= (2 * 1024)) {
  1625. gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
  1626. } else {
  1627. int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
  1628. int off = (gp->rx_fifo_sz - (max_frame * 2));
  1629. int on = off - max_frame;
  1630. gp->rx_pause_off = off;
  1631. gp->rx_pause_on = on;
  1632. }
  1633. /* Configure the chip "burst" DMA mode & enable some
  1634. * HW bug fixes on Apple version
  1635. */
  1636. cfg = 0;
  1637. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
  1638. cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
  1639. #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
  1640. cfg |= GREG_CFG_IBURST;
  1641. #endif
  1642. cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
  1643. cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
  1644. writel(cfg, gp->regs + GREG_CFG);
  1645. /* If Infinite Burst didn't stick, then use different
  1646. * thresholds (and Apple bug fixes don't exist)
  1647. */
  1648. if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
  1649. cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
  1650. cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
  1651. writel(cfg, gp->regs + GREG_CFG);
  1652. }
  1653. }
  1654. static int gem_check_invariants(struct gem *gp)
  1655. {
  1656. struct pci_dev *pdev = gp->pdev;
  1657. u32 mif_cfg;
  1658. /* On Apple's sungem, we can't rely on registers as the chip
  1659. * was been powered down by the firmware. The PHY is looked
  1660. * up later on.
  1661. */
  1662. if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1663. gp->phy_type = phy_mii_mdio0;
  1664. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1665. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1666. gp->swrst_base = 0;
  1667. mif_cfg = readl(gp->regs + MIF_CFG);
  1668. mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
  1669. mif_cfg |= MIF_CFG_MDI0;
  1670. writel(mif_cfg, gp->regs + MIF_CFG);
  1671. writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
  1672. writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
  1673. /* We hard-code the PHY address so we can properly bring it out of
  1674. * reset later on, we can't really probe it at this point, though
  1675. * that isn't an issue.
  1676. */
  1677. if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
  1678. gp->mii_phy_addr = 1;
  1679. else
  1680. gp->mii_phy_addr = 0;
  1681. return 0;
  1682. }
  1683. mif_cfg = readl(gp->regs + MIF_CFG);
  1684. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  1685. pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
  1686. /* One of the MII PHYs _must_ be present
  1687. * as this chip has no gigabit PHY.
  1688. */
  1689. if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
  1690. pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n",
  1691. mif_cfg);
  1692. return -1;
  1693. }
  1694. }
  1695. /* Determine initial PHY interface type guess. MDIO1 is the
  1696. * external PHY and thus takes precedence over MDIO0.
  1697. */
  1698. if (mif_cfg & MIF_CFG_MDI1) {
  1699. gp->phy_type = phy_mii_mdio1;
  1700. mif_cfg |= MIF_CFG_PSELECT;
  1701. writel(mif_cfg, gp->regs + MIF_CFG);
  1702. } else if (mif_cfg & MIF_CFG_MDI0) {
  1703. gp->phy_type = phy_mii_mdio0;
  1704. mif_cfg &= ~MIF_CFG_PSELECT;
  1705. writel(mif_cfg, gp->regs + MIF_CFG);
  1706. } else {
  1707. #ifdef CONFIG_SPARC
  1708. const char *p;
  1709. p = of_get_property(gp->of_node, "shared-pins", NULL);
  1710. if (p && !strcmp(p, "serdes"))
  1711. gp->phy_type = phy_serdes;
  1712. else
  1713. #endif
  1714. gp->phy_type = phy_serialink;
  1715. }
  1716. if (gp->phy_type == phy_mii_mdio1 ||
  1717. gp->phy_type == phy_mii_mdio0) {
  1718. int i;
  1719. for (i = 0; i < 32; i++) {
  1720. gp->mii_phy_addr = i;
  1721. if (phy_read(gp, MII_BMCR) != 0xffff)
  1722. break;
  1723. }
  1724. if (i == 32) {
  1725. if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
  1726. pr_err("RIO MII phy will not respond\n");
  1727. return -1;
  1728. }
  1729. gp->phy_type = phy_serdes;
  1730. }
  1731. }
  1732. /* Fetch the FIFO configurations now too. */
  1733. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1734. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1735. if (pdev->vendor == PCI_VENDOR_ID_SUN) {
  1736. if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1737. if (gp->tx_fifo_sz != (9 * 1024) ||
  1738. gp->rx_fifo_sz != (20 * 1024)) {
  1739. pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1740. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1741. return -1;
  1742. }
  1743. gp->swrst_base = 0;
  1744. } else {
  1745. if (gp->tx_fifo_sz != (2 * 1024) ||
  1746. gp->rx_fifo_sz != (2 * 1024)) {
  1747. pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1748. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1749. return -1;
  1750. }
  1751. gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
  1752. }
  1753. }
  1754. return 0;
  1755. }
  1756. /* Must be invoked under gp->lock and gp->tx_lock. */
  1757. static void gem_reinit_chip(struct gem *gp)
  1758. {
  1759. /* Reset the chip */
  1760. gem_reset(gp);
  1761. /* Make sure ints are disabled */
  1762. gem_disable_ints(gp);
  1763. /* Allocate & setup ring buffers */
  1764. gem_init_rings(gp);
  1765. /* Configure pause thresholds */
  1766. gem_init_pause_thresholds(gp);
  1767. /* Init DMA & MAC engines */
  1768. gem_init_dma(gp);
  1769. gem_init_mac(gp);
  1770. }
  1771. /* Must be invoked with no lock held. */
  1772. static void gem_stop_phy(struct gem *gp, int wol)
  1773. {
  1774. u32 mifcfg;
  1775. unsigned long flags;
  1776. /* Let the chip settle down a bit, it seems that helps
  1777. * for sleep mode on some models
  1778. */
  1779. msleep(10);
  1780. /* Make sure we aren't polling PHY status change. We
  1781. * don't currently use that feature though
  1782. */
  1783. mifcfg = readl(gp->regs + MIF_CFG);
  1784. mifcfg &= ~MIF_CFG_POLL;
  1785. writel(mifcfg, gp->regs + MIF_CFG);
  1786. if (wol && gp->has_wol) {
  1787. unsigned char *e = &gp->dev->dev_addr[0];
  1788. u32 csr;
  1789. /* Setup wake-on-lan for MAGIC packet */
  1790. writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
  1791. gp->regs + MAC_RXCFG);
  1792. writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
  1793. writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
  1794. writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
  1795. writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
  1796. csr = WOL_WAKECSR_ENABLE;
  1797. if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
  1798. csr |= WOL_WAKECSR_MII;
  1799. writel(csr, gp->regs + WOL_WAKECSR);
  1800. } else {
  1801. writel(0, gp->regs + MAC_RXCFG);
  1802. (void)readl(gp->regs + MAC_RXCFG);
  1803. /* Machine sleep will die in strange ways if we
  1804. * dont wait a bit here, looks like the chip takes
  1805. * some time to really shut down
  1806. */
  1807. msleep(10);
  1808. }
  1809. writel(0, gp->regs + MAC_TXCFG);
  1810. writel(0, gp->regs + MAC_XIFCFG);
  1811. writel(0, gp->regs + TXDMA_CFG);
  1812. writel(0, gp->regs + RXDMA_CFG);
  1813. if (!wol) {
  1814. spin_lock_irqsave(&gp->lock, flags);
  1815. spin_lock(&gp->tx_lock);
  1816. gem_reset(gp);
  1817. writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
  1818. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  1819. spin_unlock(&gp->tx_lock);
  1820. spin_unlock_irqrestore(&gp->lock, flags);
  1821. /* No need to take the lock here */
  1822. if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
  1823. gp->phy_mii.def->ops->suspend(&gp->phy_mii);
  1824. /* According to Apple, we must set the MDIO pins to this begnign
  1825. * state or we may 1) eat more current, 2) damage some PHYs
  1826. */
  1827. writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
  1828. writel(0, gp->regs + MIF_BBCLK);
  1829. writel(0, gp->regs + MIF_BBDATA);
  1830. writel(0, gp->regs + MIF_BBOENAB);
  1831. writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
  1832. (void) readl(gp->regs + MAC_XIFCFG);
  1833. }
  1834. }
  1835. static int gem_do_start(struct net_device *dev)
  1836. {
  1837. struct gem *gp = netdev_priv(dev);
  1838. unsigned long flags;
  1839. spin_lock_irqsave(&gp->lock, flags);
  1840. spin_lock(&gp->tx_lock);
  1841. /* Enable the cell */
  1842. gem_get_cell(gp);
  1843. /* Init & setup chip hardware */
  1844. gem_reinit_chip(gp);
  1845. gp->running = 1;
  1846. napi_enable(&gp->napi);
  1847. if (gp->lstate == link_up) {
  1848. netif_carrier_on(gp->dev);
  1849. gem_set_link_modes(gp);
  1850. }
  1851. netif_wake_queue(gp->dev);
  1852. spin_unlock(&gp->tx_lock);
  1853. spin_unlock_irqrestore(&gp->lock, flags);
  1854. if (request_irq(gp->pdev->irq, gem_interrupt,
  1855. IRQF_SHARED, dev->name, (void *)dev)) {
  1856. netdev_err(dev, "failed to request irq !\n");
  1857. spin_lock_irqsave(&gp->lock, flags);
  1858. spin_lock(&gp->tx_lock);
  1859. napi_disable(&gp->napi);
  1860. gp->running = 0;
  1861. gem_reset(gp);
  1862. gem_clean_rings(gp);
  1863. gem_put_cell(gp);
  1864. spin_unlock(&gp->tx_lock);
  1865. spin_unlock_irqrestore(&gp->lock, flags);
  1866. return -EAGAIN;
  1867. }
  1868. return 0;
  1869. }
  1870. static void gem_do_stop(struct net_device *dev, int wol)
  1871. {
  1872. struct gem *gp = netdev_priv(dev);
  1873. unsigned long flags;
  1874. spin_lock_irqsave(&gp->lock, flags);
  1875. spin_lock(&gp->tx_lock);
  1876. gp->running = 0;
  1877. /* Stop netif queue */
  1878. netif_stop_queue(dev);
  1879. /* Make sure ints are disabled */
  1880. gem_disable_ints(gp);
  1881. /* We can drop the lock now */
  1882. spin_unlock(&gp->tx_lock);
  1883. spin_unlock_irqrestore(&gp->lock, flags);
  1884. /* If we are going to sleep with WOL */
  1885. gem_stop_dma(gp);
  1886. msleep(10);
  1887. if (!wol)
  1888. gem_reset(gp);
  1889. msleep(10);
  1890. /* Get rid of rings */
  1891. gem_clean_rings(gp);
  1892. /* No irq needed anymore */
  1893. free_irq(gp->pdev->irq, (void *) dev);
  1894. /* Cell not needed neither if no WOL */
  1895. if (!wol) {
  1896. spin_lock_irqsave(&gp->lock, flags);
  1897. gem_put_cell(gp);
  1898. spin_unlock_irqrestore(&gp->lock, flags);
  1899. }
  1900. }
  1901. static void gem_reset_task(struct work_struct *work)
  1902. {
  1903. struct gem *gp = container_of(work, struct gem, reset_task);
  1904. mutex_lock(&gp->pm_mutex);
  1905. if (gp->opened)
  1906. napi_disable(&gp->napi);
  1907. spin_lock_irq(&gp->lock);
  1908. spin_lock(&gp->tx_lock);
  1909. if (gp->running) {
  1910. netif_stop_queue(gp->dev);
  1911. /* Reset the chip & rings */
  1912. gem_reinit_chip(gp);
  1913. if (gp->lstate == link_up)
  1914. gem_set_link_modes(gp);
  1915. netif_wake_queue(gp->dev);
  1916. }
  1917. gp->reset_task_pending = 0;
  1918. spin_unlock(&gp->tx_lock);
  1919. spin_unlock_irq(&gp->lock);
  1920. if (gp->opened)
  1921. napi_enable(&gp->napi);
  1922. mutex_unlock(&gp->pm_mutex);
  1923. }
  1924. static int gem_open(struct net_device *dev)
  1925. {
  1926. struct gem *gp = netdev_priv(dev);
  1927. int rc = 0;
  1928. mutex_lock(&gp->pm_mutex);
  1929. /* We need the cell enabled */
  1930. if (!gp->asleep)
  1931. rc = gem_do_start(dev);
  1932. gp->opened = (rc == 0);
  1933. mutex_unlock(&gp->pm_mutex);
  1934. return rc;
  1935. }
  1936. static int gem_close(struct net_device *dev)
  1937. {
  1938. struct gem *gp = netdev_priv(dev);
  1939. mutex_lock(&gp->pm_mutex);
  1940. napi_disable(&gp->napi);
  1941. gp->opened = 0;
  1942. if (!gp->asleep)
  1943. gem_do_stop(dev, 0);
  1944. mutex_unlock(&gp->pm_mutex);
  1945. return 0;
  1946. }
  1947. #ifdef CONFIG_PM
  1948. static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
  1949. {
  1950. struct net_device *dev = pci_get_drvdata(pdev);
  1951. struct gem *gp = netdev_priv(dev);
  1952. unsigned long flags;
  1953. mutex_lock(&gp->pm_mutex);
  1954. netdev_info(dev, "suspending, WakeOnLan %s\n",
  1955. (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
  1956. /* Keep the cell enabled during the entire operation */
  1957. spin_lock_irqsave(&gp->lock, flags);
  1958. spin_lock(&gp->tx_lock);
  1959. gem_get_cell(gp);
  1960. spin_unlock(&gp->tx_lock);
  1961. spin_unlock_irqrestore(&gp->lock, flags);
  1962. /* If the driver is opened, we stop the MAC */
  1963. if (gp->opened) {
  1964. napi_disable(&gp->napi);
  1965. /* Stop traffic, mark us closed */
  1966. netif_device_detach(dev);
  1967. /* Switch off MAC, remember WOL setting */
  1968. gp->asleep_wol = gp->wake_on_lan;
  1969. gem_do_stop(dev, gp->asleep_wol);
  1970. } else
  1971. gp->asleep_wol = 0;
  1972. /* Mark us asleep */
  1973. gp->asleep = 1;
  1974. wmb();
  1975. /* Stop the link timer */
  1976. del_timer_sync(&gp->link_timer);
  1977. /* Now we release the mutex to not block the reset task who
  1978. * can take it too. We are marked asleep, so there will be no
  1979. * conflict here
  1980. */
  1981. mutex_unlock(&gp->pm_mutex);
  1982. /* Wait for a pending reset task to complete */
  1983. while (gp->reset_task_pending)
  1984. yield();
  1985. flush_scheduled_work();
  1986. /* Shut the PHY down eventually and setup WOL */
  1987. gem_stop_phy(gp, gp->asleep_wol);
  1988. /* Make sure bus master is disabled */
  1989. pci_disable_device(gp->pdev);
  1990. /* Release the cell, no need to take a lock at this point since
  1991. * nothing else can happen now
  1992. */
  1993. gem_put_cell(gp);
  1994. return 0;
  1995. }
  1996. static int gem_resume(struct pci_dev *pdev)
  1997. {
  1998. struct net_device *dev = pci_get_drvdata(pdev);
  1999. struct gem *gp = netdev_priv(dev);
  2000. unsigned long flags;
  2001. netdev_info(dev, "resuming\n");
  2002. mutex_lock(&gp->pm_mutex);
  2003. /* Keep the cell enabled during the entire operation, no need to
  2004. * take a lock here tho since nothing else can happen while we are
  2005. * marked asleep
  2006. */
  2007. gem_get_cell(gp);
  2008. /* Make sure PCI access and bus master are enabled */
  2009. if (pci_enable_device(gp->pdev)) {
  2010. netdev_err(dev, "Can't re-enable chip !\n");
  2011. /* Put cell and forget it for now, it will be considered as
  2012. * still asleep, a new sleep cycle may bring it back
  2013. */
  2014. gem_put_cell(gp);
  2015. mutex_unlock(&gp->pm_mutex);
  2016. return 0;
  2017. }
  2018. pci_set_master(gp->pdev);
  2019. /* Reset everything */
  2020. gem_reset(gp);
  2021. /* Mark us woken up */
  2022. gp->asleep = 0;
  2023. wmb();
  2024. /* Bring the PHY back. Again, lock is useless at this point as
  2025. * nothing can be happening until we restart the whole thing
  2026. */
  2027. gem_init_phy(gp);
  2028. /* If we were opened, bring everything back */
  2029. if (gp->opened) {
  2030. /* Restart MAC */
  2031. gem_do_start(dev);
  2032. /* Re-attach net device */
  2033. netif_device_attach(dev);
  2034. }
  2035. spin_lock_irqsave(&gp->lock, flags);
  2036. spin_lock(&gp->tx_lock);
  2037. /* If we had WOL enabled, the cell clock was never turned off during
  2038. * sleep, so we end up beeing unbalanced. Fix that here
  2039. */
  2040. if (gp->asleep_wol)
  2041. gem_put_cell(gp);
  2042. /* This function doesn't need to hold the cell, it will be held if the
  2043. * driver is open by gem_do_start().
  2044. */
  2045. gem_put_cell(gp);
  2046. spin_unlock(&gp->tx_lock);
  2047. spin_unlock_irqrestore(&gp->lock, flags);
  2048. mutex_unlock(&gp->pm_mutex);
  2049. return 0;
  2050. }
  2051. #endif /* CONFIG_PM */
  2052. static struct net_device_stats *gem_get_stats(struct net_device *dev)
  2053. {
  2054. struct gem *gp = netdev_priv(dev);
  2055. struct net_device_stats *stats = &gp->net_stats;
  2056. spin_lock_irq(&gp->lock);
  2057. spin_lock(&gp->tx_lock);
  2058. /* I have seen this being called while the PM was in progress,
  2059. * so we shield against this
  2060. */
  2061. if (gp->running) {
  2062. stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
  2063. writel(0, gp->regs + MAC_FCSERR);
  2064. stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
  2065. writel(0, gp->regs + MAC_AERR);
  2066. stats->rx_length_errors += readl(gp->regs + MAC_LERR);
  2067. writel(0, gp->regs + MAC_LERR);
  2068. stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
  2069. stats->collisions +=
  2070. (readl(gp->regs + MAC_ECOLL) +
  2071. readl(gp->regs + MAC_LCOLL));
  2072. writel(0, gp->regs + MAC_ECOLL);
  2073. writel(0, gp->regs + MAC_LCOLL);
  2074. }
  2075. spin_unlock(&gp->tx_lock);
  2076. spin_unlock_irq(&gp->lock);
  2077. return &gp->net_stats;
  2078. }
  2079. static int gem_set_mac_address(struct net_device *dev, void *addr)
  2080. {
  2081. struct sockaddr *macaddr = (struct sockaddr *) addr;
  2082. struct gem *gp = netdev_priv(dev);
  2083. unsigned char *e = &dev->dev_addr[0];
  2084. if (!is_valid_ether_addr(macaddr->sa_data))
  2085. return -EADDRNOTAVAIL;
  2086. if (!netif_running(dev) || !netif_device_present(dev)) {
  2087. /* We'll just catch it later when the
  2088. * device is up'd or resumed.
  2089. */
  2090. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2091. return 0;
  2092. }
  2093. mutex_lock(&gp->pm_mutex);
  2094. memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
  2095. if (gp->running) {
  2096. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  2097. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  2098. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  2099. }
  2100. mutex_unlock(&gp->pm_mutex);
  2101. return 0;
  2102. }
  2103. static void gem_set_multicast(struct net_device *dev)
  2104. {
  2105. struct gem *gp = netdev_priv(dev);
  2106. u32 rxcfg, rxcfg_new;
  2107. int limit = 10000;
  2108. spin_lock_irq(&gp->lock);
  2109. spin_lock(&gp->tx_lock);
  2110. if (!gp->running)
  2111. goto bail;
  2112. netif_stop_queue(dev);
  2113. rxcfg = readl(gp->regs + MAC_RXCFG);
  2114. rxcfg_new = gem_setup_multicast(gp);
  2115. #ifdef STRIP_FCS
  2116. rxcfg_new |= MAC_RXCFG_SFCS;
  2117. #endif
  2118. gp->mac_rx_cfg = rxcfg_new;
  2119. writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  2120. while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
  2121. if (!limit--)
  2122. break;
  2123. udelay(10);
  2124. }
  2125. rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
  2126. rxcfg |= rxcfg_new;
  2127. writel(rxcfg, gp->regs + MAC_RXCFG);
  2128. netif_wake_queue(dev);
  2129. bail:
  2130. spin_unlock(&gp->tx_lock);
  2131. spin_unlock_irq(&gp->lock);
  2132. }
  2133. /* Jumbo-grams don't seem to work :-( */
  2134. #define GEM_MIN_MTU 68
  2135. #if 1
  2136. #define GEM_MAX_MTU 1500
  2137. #else
  2138. #define GEM_MAX_MTU 9000
  2139. #endif
  2140. static int gem_change_mtu(struct net_device *dev, int new_mtu)
  2141. {
  2142. struct gem *gp = netdev_priv(dev);
  2143. if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
  2144. return -EINVAL;
  2145. if (!netif_running(dev) || !netif_device_present(dev)) {
  2146. /* We'll just catch it later when the
  2147. * device is up'd or resumed.
  2148. */
  2149. dev->mtu = new_mtu;
  2150. return 0;
  2151. }
  2152. mutex_lock(&gp->pm_mutex);
  2153. spin_lock_irq(&gp->lock);
  2154. spin_lock(&gp->tx_lock);
  2155. dev->mtu = new_mtu;
  2156. if (gp->running) {
  2157. gem_reinit_chip(gp);
  2158. if (gp->lstate == link_up)
  2159. gem_set_link_modes(gp);
  2160. }
  2161. spin_unlock(&gp->tx_lock);
  2162. spin_unlock_irq(&gp->lock);
  2163. mutex_unlock(&gp->pm_mutex);
  2164. return 0;
  2165. }
  2166. static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2167. {
  2168. struct gem *gp = netdev_priv(dev);
  2169. strcpy(info->driver, DRV_NAME);
  2170. strcpy(info->version, DRV_VERSION);
  2171. strcpy(info->bus_info, pci_name(gp->pdev));
  2172. }
  2173. static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2174. {
  2175. struct gem *gp = netdev_priv(dev);
  2176. if (gp->phy_type == phy_mii_mdio0 ||
  2177. gp->phy_type == phy_mii_mdio1) {
  2178. if (gp->phy_mii.def)
  2179. cmd->supported = gp->phy_mii.def->features;
  2180. else
  2181. cmd->supported = (SUPPORTED_10baseT_Half |
  2182. SUPPORTED_10baseT_Full);
  2183. /* XXX hardcoded stuff for now */
  2184. cmd->port = PORT_MII;
  2185. cmd->transceiver = XCVR_EXTERNAL;
  2186. cmd->phy_address = 0; /* XXX fixed PHYAD */
  2187. /* Return current PHY settings */
  2188. spin_lock_irq(&gp->lock);
  2189. cmd->autoneg = gp->want_autoneg;
  2190. cmd->speed = gp->phy_mii.speed;
  2191. cmd->duplex = gp->phy_mii.duplex;
  2192. cmd->advertising = gp->phy_mii.advertising;
  2193. /* If we started with a forced mode, we don't have a default
  2194. * advertise set, we need to return something sensible so
  2195. * userland can re-enable autoneg properly.
  2196. */
  2197. if (cmd->advertising == 0)
  2198. cmd->advertising = cmd->supported;
  2199. spin_unlock_irq(&gp->lock);
  2200. } else { // XXX PCS ?
  2201. cmd->supported =
  2202. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2203. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2204. SUPPORTED_Autoneg);
  2205. cmd->advertising = cmd->supported;
  2206. cmd->speed = 0;
  2207. cmd->duplex = cmd->port = cmd->phy_address =
  2208. cmd->transceiver = cmd->autoneg = 0;
  2209. /* serdes means usually a Fibre connector, with most fixed */
  2210. if (gp->phy_type == phy_serdes) {
  2211. cmd->port = PORT_FIBRE;
  2212. cmd->supported = (SUPPORTED_1000baseT_Half |
  2213. SUPPORTED_1000baseT_Full |
  2214. SUPPORTED_FIBRE | SUPPORTED_Autoneg |
  2215. SUPPORTED_Pause | SUPPORTED_Asym_Pause);
  2216. cmd->advertising = cmd->supported;
  2217. cmd->transceiver = XCVR_INTERNAL;
  2218. if (gp->lstate == link_up)
  2219. cmd->speed = SPEED_1000;
  2220. cmd->duplex = DUPLEX_FULL;
  2221. cmd->autoneg = 1;
  2222. }
  2223. }
  2224. cmd->maxtxpkt = cmd->maxrxpkt = 0;
  2225. return 0;
  2226. }
  2227. static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2228. {
  2229. struct gem *gp = netdev_priv(dev);
  2230. /* Verify the settings we care about. */
  2231. if (cmd->autoneg != AUTONEG_ENABLE &&
  2232. cmd->autoneg != AUTONEG_DISABLE)
  2233. return -EINVAL;
  2234. if (cmd->autoneg == AUTONEG_ENABLE &&
  2235. cmd->advertising == 0)
  2236. return -EINVAL;
  2237. if (cmd->autoneg == AUTONEG_DISABLE &&
  2238. ((cmd->speed != SPEED_1000 &&
  2239. cmd->speed != SPEED_100 &&
  2240. cmd->speed != SPEED_10) ||
  2241. (cmd->duplex != DUPLEX_HALF &&
  2242. cmd->duplex != DUPLEX_FULL)))
  2243. return -EINVAL;
  2244. /* Apply settings and restart link process. */
  2245. spin_lock_irq(&gp->lock);
  2246. gem_get_cell(gp);
  2247. gem_begin_auto_negotiation(gp, cmd);
  2248. gem_put_cell(gp);
  2249. spin_unlock_irq(&gp->lock);
  2250. return 0;
  2251. }
  2252. static int gem_nway_reset(struct net_device *dev)
  2253. {
  2254. struct gem *gp = netdev_priv(dev);
  2255. if (!gp->want_autoneg)
  2256. return -EINVAL;
  2257. /* Restart link process. */
  2258. spin_lock_irq(&gp->lock);
  2259. gem_get_cell(gp);
  2260. gem_begin_auto_negotiation(gp, NULL);
  2261. gem_put_cell(gp);
  2262. spin_unlock_irq(&gp->lock);
  2263. return 0;
  2264. }
  2265. static u32 gem_get_msglevel(struct net_device *dev)
  2266. {
  2267. struct gem *gp = netdev_priv(dev);
  2268. return gp->msg_enable;
  2269. }
  2270. static void gem_set_msglevel(struct net_device *dev, u32 value)
  2271. {
  2272. struct gem *gp = netdev_priv(dev);
  2273. gp->msg_enable = value;
  2274. }
  2275. /* Add more when I understand how to program the chip */
  2276. /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
  2277. #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
  2278. static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2279. {
  2280. struct gem *gp = netdev_priv(dev);
  2281. /* Add more when I understand how to program the chip */
  2282. if (gp->has_wol) {
  2283. wol->supported = WOL_SUPPORTED_MASK;
  2284. wol->wolopts = gp->wake_on_lan;
  2285. } else {
  2286. wol->supported = 0;
  2287. wol->wolopts = 0;
  2288. }
  2289. }
  2290. static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2291. {
  2292. struct gem *gp = netdev_priv(dev);
  2293. if (!gp->has_wol)
  2294. return -EOPNOTSUPP;
  2295. gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
  2296. return 0;
  2297. }
  2298. static const struct ethtool_ops gem_ethtool_ops = {
  2299. .get_drvinfo = gem_get_drvinfo,
  2300. .get_link = ethtool_op_get_link,
  2301. .get_settings = gem_get_settings,
  2302. .set_settings = gem_set_settings,
  2303. .nway_reset = gem_nway_reset,
  2304. .get_msglevel = gem_get_msglevel,
  2305. .set_msglevel = gem_set_msglevel,
  2306. .get_wol = gem_get_wol,
  2307. .set_wol = gem_set_wol,
  2308. };
  2309. static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2310. {
  2311. struct gem *gp = netdev_priv(dev);
  2312. struct mii_ioctl_data *data = if_mii(ifr);
  2313. int rc = -EOPNOTSUPP;
  2314. unsigned long flags;
  2315. /* Hold the PM mutex while doing ioctl's or we may collide
  2316. * with power management.
  2317. */
  2318. mutex_lock(&gp->pm_mutex);
  2319. spin_lock_irqsave(&gp->lock, flags);
  2320. gem_get_cell(gp);
  2321. spin_unlock_irqrestore(&gp->lock, flags);
  2322. switch (cmd) {
  2323. case SIOCGMIIPHY: /* Get address of MII PHY in use. */
  2324. data->phy_id = gp->mii_phy_addr;
  2325. /* Fallthrough... */
  2326. case SIOCGMIIREG: /* Read MII PHY register. */
  2327. if (!gp->running)
  2328. rc = -EAGAIN;
  2329. else {
  2330. data->val_out = __phy_read(gp, data->phy_id & 0x1f,
  2331. data->reg_num & 0x1f);
  2332. rc = 0;
  2333. }
  2334. break;
  2335. case SIOCSMIIREG: /* Write MII PHY register. */
  2336. if (!gp->running)
  2337. rc = -EAGAIN;
  2338. else {
  2339. __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
  2340. data->val_in);
  2341. rc = 0;
  2342. }
  2343. break;
  2344. };
  2345. spin_lock_irqsave(&gp->lock, flags);
  2346. gem_put_cell(gp);
  2347. spin_unlock_irqrestore(&gp->lock, flags);
  2348. mutex_unlock(&gp->pm_mutex);
  2349. return rc;
  2350. }
  2351. #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
  2352. /* Fetch MAC address from vital product data of PCI ROM. */
  2353. static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
  2354. {
  2355. int this_offset;
  2356. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2357. void __iomem *p = rom_base + this_offset;
  2358. int i;
  2359. if (readb(p + 0) != 0x90 ||
  2360. readb(p + 1) != 0x00 ||
  2361. readb(p + 2) != 0x09 ||
  2362. readb(p + 3) != 0x4e ||
  2363. readb(p + 4) != 0x41 ||
  2364. readb(p + 5) != 0x06)
  2365. continue;
  2366. this_offset += 6;
  2367. p += 6;
  2368. for (i = 0; i < 6; i++)
  2369. dev_addr[i] = readb(p + i);
  2370. return 1;
  2371. }
  2372. return 0;
  2373. }
  2374. static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
  2375. {
  2376. size_t size;
  2377. void __iomem *p = pci_map_rom(pdev, &size);
  2378. if (p) {
  2379. int found;
  2380. found = readb(p) == 0x55 &&
  2381. readb(p + 1) == 0xaa &&
  2382. find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
  2383. pci_unmap_rom(pdev, p);
  2384. if (found)
  2385. return;
  2386. }
  2387. /* Sun MAC prefix then 3 random bytes. */
  2388. dev_addr[0] = 0x08;
  2389. dev_addr[1] = 0x00;
  2390. dev_addr[2] = 0x20;
  2391. get_random_bytes(dev_addr + 3, 3);
  2392. }
  2393. #endif /* not Sparc and not PPC */
  2394. static int __devinit gem_get_device_address(struct gem *gp)
  2395. {
  2396. #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
  2397. struct net_device *dev = gp->dev;
  2398. const unsigned char *addr;
  2399. addr = of_get_property(gp->of_node, "local-mac-address", NULL);
  2400. if (addr == NULL) {
  2401. #ifdef CONFIG_SPARC
  2402. addr = idprom->id_ethaddr;
  2403. #else
  2404. printk("\n");
  2405. pr_err("%s: can't get mac-address\n", dev->name);
  2406. return -1;
  2407. #endif
  2408. }
  2409. memcpy(dev->dev_addr, addr, 6);
  2410. #else
  2411. get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
  2412. #endif
  2413. return 0;
  2414. }
  2415. static void gem_remove_one(struct pci_dev *pdev)
  2416. {
  2417. struct net_device *dev = pci_get_drvdata(pdev);
  2418. if (dev) {
  2419. struct gem *gp = netdev_priv(dev);
  2420. unregister_netdev(dev);
  2421. /* Stop the link timer */
  2422. del_timer_sync(&gp->link_timer);
  2423. /* We shouldn't need any locking here */
  2424. gem_get_cell(gp);
  2425. /* Wait for a pending reset task to complete */
  2426. while (gp->reset_task_pending)
  2427. yield();
  2428. flush_scheduled_work();
  2429. /* Shut the PHY down */
  2430. gem_stop_phy(gp, 0);
  2431. gem_put_cell(gp);
  2432. /* Make sure bus master is disabled */
  2433. pci_disable_device(gp->pdev);
  2434. /* Free resources */
  2435. pci_free_consistent(pdev,
  2436. sizeof(struct gem_init_block),
  2437. gp->init_block,
  2438. gp->gblock_dvma);
  2439. iounmap(gp->regs);
  2440. pci_release_regions(pdev);
  2441. free_netdev(dev);
  2442. pci_set_drvdata(pdev, NULL);
  2443. }
  2444. }
  2445. static const struct net_device_ops gem_netdev_ops = {
  2446. .ndo_open = gem_open,
  2447. .ndo_stop = gem_close,
  2448. .ndo_start_xmit = gem_start_xmit,
  2449. .ndo_get_stats = gem_get_stats,
  2450. .ndo_set_multicast_list = gem_set_multicast,
  2451. .ndo_do_ioctl = gem_ioctl,
  2452. .ndo_tx_timeout = gem_tx_timeout,
  2453. .ndo_change_mtu = gem_change_mtu,
  2454. .ndo_validate_addr = eth_validate_addr,
  2455. .ndo_set_mac_address = gem_set_mac_address,
  2456. #ifdef CONFIG_NET_POLL_CONTROLLER
  2457. .ndo_poll_controller = gem_poll_controller,
  2458. #endif
  2459. };
  2460. static int __devinit gem_init_one(struct pci_dev *pdev,
  2461. const struct pci_device_id *ent)
  2462. {
  2463. unsigned long gemreg_base, gemreg_len;
  2464. struct net_device *dev;
  2465. struct gem *gp;
  2466. int err, pci_using_dac;
  2467. printk_once(KERN_INFO "%s", version);
  2468. /* Apple gmac note: during probe, the chip is powered up by
  2469. * the arch code to allow the code below to work (and to let
  2470. * the chip be probed on the config space. It won't stay powered
  2471. * up until the interface is brought up however, so we can't rely
  2472. * on register configuration done at this point.
  2473. */
  2474. err = pci_enable_device(pdev);
  2475. if (err) {
  2476. pr_err("Cannot enable MMIO operation, aborting\n");
  2477. return err;
  2478. }
  2479. pci_set_master(pdev);
  2480. /* Configure DMA attributes. */
  2481. /* All of the GEM documentation states that 64-bit DMA addressing
  2482. * is fully supported and should work just fine. However the
  2483. * front end for RIO based GEMs is different and only supports
  2484. * 32-bit addressing.
  2485. *
  2486. * For now we assume the various PPC GEMs are 32-bit only as well.
  2487. */
  2488. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  2489. pdev->device == PCI_DEVICE_ID_SUN_GEM &&
  2490. !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  2491. pci_using_dac = 1;
  2492. } else {
  2493. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  2494. if (err) {
  2495. pr_err("No usable DMA configuration, aborting\n");
  2496. goto err_disable_device;
  2497. }
  2498. pci_using_dac = 0;
  2499. }
  2500. gemreg_base = pci_resource_start(pdev, 0);
  2501. gemreg_len = pci_resource_len(pdev, 0);
  2502. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  2503. pr_err("Cannot find proper PCI device base address, aborting\n");
  2504. err = -ENODEV;
  2505. goto err_disable_device;
  2506. }
  2507. dev = alloc_etherdev(sizeof(*gp));
  2508. if (!dev) {
  2509. pr_err("Etherdev alloc failed, aborting\n");
  2510. err = -ENOMEM;
  2511. goto err_disable_device;
  2512. }
  2513. SET_NETDEV_DEV(dev, &pdev->dev);
  2514. gp = netdev_priv(dev);
  2515. err = pci_request_regions(pdev, DRV_NAME);
  2516. if (err) {
  2517. pr_err("Cannot obtain PCI resources, aborting\n");
  2518. goto err_out_free_netdev;
  2519. }
  2520. gp->pdev = pdev;
  2521. dev->base_addr = (long) pdev;
  2522. gp->dev = dev;
  2523. gp->msg_enable = DEFAULT_MSG;
  2524. spin_lock_init(&gp->lock);
  2525. spin_lock_init(&gp->tx_lock);
  2526. mutex_init(&gp->pm_mutex);
  2527. init_timer(&gp->link_timer);
  2528. gp->link_timer.function = gem_link_timer;
  2529. gp->link_timer.data = (unsigned long) gp;
  2530. INIT_WORK(&gp->reset_task, gem_reset_task);
  2531. gp->lstate = link_down;
  2532. gp->timer_ticks = 0;
  2533. netif_carrier_off(dev);
  2534. gp->regs = ioremap(gemreg_base, gemreg_len);
  2535. if (!gp->regs) {
  2536. pr_err("Cannot map device registers, aborting\n");
  2537. err = -EIO;
  2538. goto err_out_free_res;
  2539. }
  2540. /* On Apple, we want a reference to the Open Firmware device-tree
  2541. * node. We use it for clock control.
  2542. */
  2543. #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
  2544. gp->of_node = pci_device_to_OF_node(pdev);
  2545. #endif
  2546. /* Only Apple version supports WOL afaik */
  2547. if (pdev->vendor == PCI_VENDOR_ID_APPLE)
  2548. gp->has_wol = 1;
  2549. /* Make sure cell is enabled */
  2550. gem_get_cell(gp);
  2551. /* Make sure everything is stopped and in init state */
  2552. gem_reset(gp);
  2553. /* Fill up the mii_phy structure (even if we won't use it) */
  2554. gp->phy_mii.dev = dev;
  2555. gp->phy_mii.mdio_read = _phy_read;
  2556. gp->phy_mii.mdio_write = _phy_write;
  2557. #ifdef CONFIG_PPC_PMAC
  2558. gp->phy_mii.platform_data = gp->of_node;
  2559. #endif
  2560. /* By default, we start with autoneg */
  2561. gp->want_autoneg = 1;
  2562. /* Check fifo sizes, PHY type, etc... */
  2563. if (gem_check_invariants(gp)) {
  2564. err = -ENODEV;
  2565. goto err_out_iounmap;
  2566. }
  2567. /* It is guaranteed that the returned buffer will be at least
  2568. * PAGE_SIZE aligned.
  2569. */
  2570. gp->init_block = (struct gem_init_block *)
  2571. pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
  2572. &gp->gblock_dvma);
  2573. if (!gp->init_block) {
  2574. pr_err("Cannot allocate init block, aborting\n");
  2575. err = -ENOMEM;
  2576. goto err_out_iounmap;
  2577. }
  2578. if (gem_get_device_address(gp))
  2579. goto err_out_free_consistent;
  2580. dev->netdev_ops = &gem_netdev_ops;
  2581. netif_napi_add(dev, &gp->napi, gem_poll, 64);
  2582. dev->ethtool_ops = &gem_ethtool_ops;
  2583. dev->watchdog_timeo = 5 * HZ;
  2584. dev->irq = pdev->irq;
  2585. dev->dma = 0;
  2586. /* Set that now, in case PM kicks in now */
  2587. pci_set_drvdata(pdev, dev);
  2588. /* Detect & init PHY, start autoneg, we release the cell now
  2589. * too, it will be managed by whoever needs it
  2590. */
  2591. gem_init_phy(gp);
  2592. spin_lock_irq(&gp->lock);
  2593. gem_put_cell(gp);
  2594. spin_unlock_irq(&gp->lock);
  2595. /* Register with kernel */
  2596. if (register_netdev(dev)) {
  2597. pr_err("Cannot register net device, aborting\n");
  2598. err = -ENOMEM;
  2599. goto err_out_free_consistent;
  2600. }
  2601. netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n",
  2602. dev->dev_addr);
  2603. if (gp->phy_type == phy_mii_mdio0 ||
  2604. gp->phy_type == phy_mii_mdio1)
  2605. netdev_info(dev, "Found %s PHY\n",
  2606. gp->phy_mii.def ? gp->phy_mii.def->name : "no");
  2607. /* GEM can do it all... */
  2608. dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
  2609. if (pci_using_dac)
  2610. dev->features |= NETIF_F_HIGHDMA;
  2611. return 0;
  2612. err_out_free_consistent:
  2613. gem_remove_one(pdev);
  2614. err_out_iounmap:
  2615. gem_put_cell(gp);
  2616. iounmap(gp->regs);
  2617. err_out_free_res:
  2618. pci_release_regions(pdev);
  2619. err_out_free_netdev:
  2620. free_netdev(dev);
  2621. err_disable_device:
  2622. pci_disable_device(pdev);
  2623. return err;
  2624. }
  2625. static struct pci_driver gem_driver = {
  2626. .name = GEM_MODULE_NAME,
  2627. .id_table = gem_pci_tbl,
  2628. .probe = gem_init_one,
  2629. .remove = gem_remove_one,
  2630. #ifdef CONFIG_PM
  2631. .suspend = gem_suspend,
  2632. .resume = gem_resume,
  2633. #endif /* CONFIG_PM */
  2634. };
  2635. static int __init gem_init(void)
  2636. {
  2637. return pci_register_driver(&gem_driver);
  2638. }
  2639. static void __exit gem_cleanup(void)
  2640. {
  2641. pci_unregister_driver(&gem_driver);
  2642. }
  2643. module_init(gem_init);
  2644. module_exit(gem_cleanup);