input.c 53 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/random.h>
  17. #include <linux/major.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/sched.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/poll.h>
  22. #include <linux/device.h>
  23. #include <linux/mutex.h>
  24. #include <linux/rcupdate.h>
  25. #include <linux/smp_lock.h>
  26. #include "input-compat.h"
  27. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  28. MODULE_DESCRIPTION("Input core");
  29. MODULE_LICENSE("GPL");
  30. #define INPUT_DEVICES 256
  31. static LIST_HEAD(input_dev_list);
  32. static LIST_HEAD(input_handler_list);
  33. /*
  34. * input_mutex protects access to both input_dev_list and input_handler_list.
  35. * This also causes input_[un]register_device and input_[un]register_handler
  36. * be mutually exclusive which simplifies locking in drivers implementing
  37. * input handlers.
  38. */
  39. static DEFINE_MUTEX(input_mutex);
  40. static struct input_handler *input_table[8];
  41. static inline int is_event_supported(unsigned int code,
  42. unsigned long *bm, unsigned int max)
  43. {
  44. return code <= max && test_bit(code, bm);
  45. }
  46. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  47. {
  48. if (fuzz) {
  49. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  50. return old_val;
  51. if (value > old_val - fuzz && value < old_val + fuzz)
  52. return (old_val * 3 + value) / 4;
  53. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  54. return (old_val + value) / 2;
  55. }
  56. return value;
  57. }
  58. /*
  59. * Pass event first through all filters and then, if event has not been
  60. * filtered out, through all open handles. This function is called with
  61. * dev->event_lock held and interrupts disabled.
  62. */
  63. static void input_pass_event(struct input_dev *dev,
  64. unsigned int type, unsigned int code, int value)
  65. {
  66. struct input_handler *handler;
  67. struct input_handle *handle;
  68. rcu_read_lock();
  69. handle = rcu_dereference(dev->grab);
  70. if (handle)
  71. handle->handler->event(handle, type, code, value);
  72. else {
  73. bool filtered = false;
  74. list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
  75. if (!handle->open)
  76. continue;
  77. handler = handle->handler;
  78. if (!handler->filter) {
  79. if (filtered)
  80. break;
  81. handler->event(handle, type, code, value);
  82. } else if (handler->filter(handle, type, code, value))
  83. filtered = true;
  84. }
  85. }
  86. rcu_read_unlock();
  87. }
  88. /*
  89. * Generate software autorepeat event. Note that we take
  90. * dev->event_lock here to avoid racing with input_event
  91. * which may cause keys get "stuck".
  92. */
  93. static void input_repeat_key(unsigned long data)
  94. {
  95. struct input_dev *dev = (void *) data;
  96. unsigned long flags;
  97. spin_lock_irqsave(&dev->event_lock, flags);
  98. if (test_bit(dev->repeat_key, dev->key) &&
  99. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  100. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  101. if (dev->sync) {
  102. /*
  103. * Only send SYN_REPORT if we are not in a middle
  104. * of driver parsing a new hardware packet.
  105. * Otherwise assume that the driver will send
  106. * SYN_REPORT once it's done.
  107. */
  108. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  109. }
  110. if (dev->rep[REP_PERIOD])
  111. mod_timer(&dev->timer, jiffies +
  112. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  113. }
  114. spin_unlock_irqrestore(&dev->event_lock, flags);
  115. }
  116. static void input_start_autorepeat(struct input_dev *dev, int code)
  117. {
  118. if (test_bit(EV_REP, dev->evbit) &&
  119. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  120. dev->timer.data) {
  121. dev->repeat_key = code;
  122. mod_timer(&dev->timer,
  123. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  124. }
  125. }
  126. static void input_stop_autorepeat(struct input_dev *dev)
  127. {
  128. del_timer(&dev->timer);
  129. }
  130. #define INPUT_IGNORE_EVENT 0
  131. #define INPUT_PASS_TO_HANDLERS 1
  132. #define INPUT_PASS_TO_DEVICE 2
  133. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  134. static int input_handle_abs_event(struct input_dev *dev,
  135. unsigned int code, int *pval)
  136. {
  137. bool is_mt_event;
  138. int *pold;
  139. if (code == ABS_MT_SLOT) {
  140. /*
  141. * "Stage" the event; we'll flush it later, when we
  142. * get actual touch data.
  143. */
  144. if (*pval >= 0 && *pval < dev->mtsize)
  145. dev->slot = *pval;
  146. return INPUT_IGNORE_EVENT;
  147. }
  148. is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
  149. if (!is_mt_event) {
  150. pold = &dev->absinfo[code].value;
  151. } else if (dev->mt) {
  152. struct input_mt_slot *mtslot = &dev->mt[dev->slot];
  153. pold = &mtslot->abs[code - ABS_MT_FIRST];
  154. } else {
  155. /*
  156. * Bypass filtering for multi-touch events when
  157. * not employing slots.
  158. */
  159. pold = NULL;
  160. }
  161. if (pold) {
  162. *pval = input_defuzz_abs_event(*pval, *pold,
  163. dev->absinfo[code].fuzz);
  164. if (*pold == *pval)
  165. return INPUT_IGNORE_EVENT;
  166. *pold = *pval;
  167. }
  168. /* Flush pending "slot" event */
  169. if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
  170. input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
  171. input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
  172. }
  173. return INPUT_PASS_TO_HANDLERS;
  174. }
  175. static void input_handle_event(struct input_dev *dev,
  176. unsigned int type, unsigned int code, int value)
  177. {
  178. int disposition = INPUT_IGNORE_EVENT;
  179. switch (type) {
  180. case EV_SYN:
  181. switch (code) {
  182. case SYN_CONFIG:
  183. disposition = INPUT_PASS_TO_ALL;
  184. break;
  185. case SYN_REPORT:
  186. if (!dev->sync) {
  187. dev->sync = true;
  188. disposition = INPUT_PASS_TO_HANDLERS;
  189. }
  190. break;
  191. case SYN_MT_REPORT:
  192. dev->sync = false;
  193. disposition = INPUT_PASS_TO_HANDLERS;
  194. break;
  195. }
  196. break;
  197. case EV_KEY:
  198. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  199. !!test_bit(code, dev->key) != value) {
  200. if (value != 2) {
  201. __change_bit(code, dev->key);
  202. if (value)
  203. input_start_autorepeat(dev, code);
  204. else
  205. input_stop_autorepeat(dev);
  206. }
  207. disposition = INPUT_PASS_TO_HANDLERS;
  208. }
  209. break;
  210. case EV_SW:
  211. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  212. !!test_bit(code, dev->sw) != value) {
  213. __change_bit(code, dev->sw);
  214. disposition = INPUT_PASS_TO_HANDLERS;
  215. }
  216. break;
  217. case EV_ABS:
  218. if (is_event_supported(code, dev->absbit, ABS_MAX))
  219. disposition = input_handle_abs_event(dev, code, &value);
  220. break;
  221. case EV_REL:
  222. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  223. disposition = INPUT_PASS_TO_HANDLERS;
  224. break;
  225. case EV_MSC:
  226. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  227. disposition = INPUT_PASS_TO_ALL;
  228. break;
  229. case EV_LED:
  230. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  231. !!test_bit(code, dev->led) != value) {
  232. __change_bit(code, dev->led);
  233. disposition = INPUT_PASS_TO_ALL;
  234. }
  235. break;
  236. case EV_SND:
  237. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  238. if (!!test_bit(code, dev->snd) != !!value)
  239. __change_bit(code, dev->snd);
  240. disposition = INPUT_PASS_TO_ALL;
  241. }
  242. break;
  243. case EV_REP:
  244. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  245. dev->rep[code] = value;
  246. disposition = INPUT_PASS_TO_ALL;
  247. }
  248. break;
  249. case EV_FF:
  250. if (value >= 0)
  251. disposition = INPUT_PASS_TO_ALL;
  252. break;
  253. case EV_PWR:
  254. disposition = INPUT_PASS_TO_ALL;
  255. break;
  256. }
  257. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  258. dev->sync = false;
  259. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  260. dev->event(dev, type, code, value);
  261. if (disposition & INPUT_PASS_TO_HANDLERS)
  262. input_pass_event(dev, type, code, value);
  263. }
  264. /**
  265. * input_event() - report new input event
  266. * @dev: device that generated the event
  267. * @type: type of the event
  268. * @code: event code
  269. * @value: value of the event
  270. *
  271. * This function should be used by drivers implementing various input
  272. * devices to report input events. See also input_inject_event().
  273. *
  274. * NOTE: input_event() may be safely used right after input device was
  275. * allocated with input_allocate_device(), even before it is registered
  276. * with input_register_device(), but the event will not reach any of the
  277. * input handlers. Such early invocation of input_event() may be used
  278. * to 'seed' initial state of a switch or initial position of absolute
  279. * axis, etc.
  280. */
  281. void input_event(struct input_dev *dev,
  282. unsigned int type, unsigned int code, int value)
  283. {
  284. unsigned long flags;
  285. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  286. spin_lock_irqsave(&dev->event_lock, flags);
  287. add_input_randomness(type, code, value);
  288. input_handle_event(dev, type, code, value);
  289. spin_unlock_irqrestore(&dev->event_lock, flags);
  290. }
  291. }
  292. EXPORT_SYMBOL(input_event);
  293. /**
  294. * input_inject_event() - send input event from input handler
  295. * @handle: input handle to send event through
  296. * @type: type of the event
  297. * @code: event code
  298. * @value: value of the event
  299. *
  300. * Similar to input_event() but will ignore event if device is
  301. * "grabbed" and handle injecting event is not the one that owns
  302. * the device.
  303. */
  304. void input_inject_event(struct input_handle *handle,
  305. unsigned int type, unsigned int code, int value)
  306. {
  307. struct input_dev *dev = handle->dev;
  308. struct input_handle *grab;
  309. unsigned long flags;
  310. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  311. spin_lock_irqsave(&dev->event_lock, flags);
  312. rcu_read_lock();
  313. grab = rcu_dereference(dev->grab);
  314. if (!grab || grab == handle)
  315. input_handle_event(dev, type, code, value);
  316. rcu_read_unlock();
  317. spin_unlock_irqrestore(&dev->event_lock, flags);
  318. }
  319. }
  320. EXPORT_SYMBOL(input_inject_event);
  321. /**
  322. * input_alloc_absinfo - allocates array of input_absinfo structs
  323. * @dev: the input device emitting absolute events
  324. *
  325. * If the absinfo struct the caller asked for is already allocated, this
  326. * functions will not do anything.
  327. */
  328. void input_alloc_absinfo(struct input_dev *dev)
  329. {
  330. if (!dev->absinfo)
  331. dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
  332. GFP_KERNEL);
  333. WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
  334. }
  335. EXPORT_SYMBOL(input_alloc_absinfo);
  336. void input_set_abs_params(struct input_dev *dev, unsigned int axis,
  337. int min, int max, int fuzz, int flat)
  338. {
  339. struct input_absinfo *absinfo;
  340. input_alloc_absinfo(dev);
  341. if (!dev->absinfo)
  342. return;
  343. absinfo = &dev->absinfo[axis];
  344. absinfo->minimum = min;
  345. absinfo->maximum = max;
  346. absinfo->fuzz = fuzz;
  347. absinfo->flat = flat;
  348. dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
  349. }
  350. EXPORT_SYMBOL(input_set_abs_params);
  351. /**
  352. * input_grab_device - grabs device for exclusive use
  353. * @handle: input handle that wants to own the device
  354. *
  355. * When a device is grabbed by an input handle all events generated by
  356. * the device are delivered only to this handle. Also events injected
  357. * by other input handles are ignored while device is grabbed.
  358. */
  359. int input_grab_device(struct input_handle *handle)
  360. {
  361. struct input_dev *dev = handle->dev;
  362. int retval;
  363. retval = mutex_lock_interruptible(&dev->mutex);
  364. if (retval)
  365. return retval;
  366. if (dev->grab) {
  367. retval = -EBUSY;
  368. goto out;
  369. }
  370. rcu_assign_pointer(dev->grab, handle);
  371. synchronize_rcu();
  372. out:
  373. mutex_unlock(&dev->mutex);
  374. return retval;
  375. }
  376. EXPORT_SYMBOL(input_grab_device);
  377. static void __input_release_device(struct input_handle *handle)
  378. {
  379. struct input_dev *dev = handle->dev;
  380. if (dev->grab == handle) {
  381. rcu_assign_pointer(dev->grab, NULL);
  382. /* Make sure input_pass_event() notices that grab is gone */
  383. synchronize_rcu();
  384. list_for_each_entry(handle, &dev->h_list, d_node)
  385. if (handle->open && handle->handler->start)
  386. handle->handler->start(handle);
  387. }
  388. }
  389. /**
  390. * input_release_device - release previously grabbed device
  391. * @handle: input handle that owns the device
  392. *
  393. * Releases previously grabbed device so that other input handles can
  394. * start receiving input events. Upon release all handlers attached
  395. * to the device have their start() method called so they have a change
  396. * to synchronize device state with the rest of the system.
  397. */
  398. void input_release_device(struct input_handle *handle)
  399. {
  400. struct input_dev *dev = handle->dev;
  401. mutex_lock(&dev->mutex);
  402. __input_release_device(handle);
  403. mutex_unlock(&dev->mutex);
  404. }
  405. EXPORT_SYMBOL(input_release_device);
  406. /**
  407. * input_open_device - open input device
  408. * @handle: handle through which device is being accessed
  409. *
  410. * This function should be called by input handlers when they
  411. * want to start receive events from given input device.
  412. */
  413. int input_open_device(struct input_handle *handle)
  414. {
  415. struct input_dev *dev = handle->dev;
  416. int retval;
  417. retval = mutex_lock_interruptible(&dev->mutex);
  418. if (retval)
  419. return retval;
  420. if (dev->going_away) {
  421. retval = -ENODEV;
  422. goto out;
  423. }
  424. handle->open++;
  425. if (!dev->users++ && dev->open)
  426. retval = dev->open(dev);
  427. if (retval) {
  428. dev->users--;
  429. if (!--handle->open) {
  430. /*
  431. * Make sure we are not delivering any more events
  432. * through this handle
  433. */
  434. synchronize_rcu();
  435. }
  436. }
  437. out:
  438. mutex_unlock(&dev->mutex);
  439. return retval;
  440. }
  441. EXPORT_SYMBOL(input_open_device);
  442. int input_flush_device(struct input_handle *handle, struct file *file)
  443. {
  444. struct input_dev *dev = handle->dev;
  445. int retval;
  446. retval = mutex_lock_interruptible(&dev->mutex);
  447. if (retval)
  448. return retval;
  449. if (dev->flush)
  450. retval = dev->flush(dev, file);
  451. mutex_unlock(&dev->mutex);
  452. return retval;
  453. }
  454. EXPORT_SYMBOL(input_flush_device);
  455. /**
  456. * input_close_device - close input device
  457. * @handle: handle through which device is being accessed
  458. *
  459. * This function should be called by input handlers when they
  460. * want to stop receive events from given input device.
  461. */
  462. void input_close_device(struct input_handle *handle)
  463. {
  464. struct input_dev *dev = handle->dev;
  465. mutex_lock(&dev->mutex);
  466. __input_release_device(handle);
  467. if (!--dev->users && dev->close)
  468. dev->close(dev);
  469. if (!--handle->open) {
  470. /*
  471. * synchronize_rcu() makes sure that input_pass_event()
  472. * completed and that no more input events are delivered
  473. * through this handle
  474. */
  475. synchronize_rcu();
  476. }
  477. mutex_unlock(&dev->mutex);
  478. }
  479. EXPORT_SYMBOL(input_close_device);
  480. /*
  481. * Simulate keyup events for all keys that are marked as pressed.
  482. * The function must be called with dev->event_lock held.
  483. */
  484. static void input_dev_release_keys(struct input_dev *dev)
  485. {
  486. int code;
  487. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  488. for (code = 0; code <= KEY_MAX; code++) {
  489. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  490. __test_and_clear_bit(code, dev->key)) {
  491. input_pass_event(dev, EV_KEY, code, 0);
  492. }
  493. }
  494. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  495. }
  496. }
  497. /*
  498. * Prepare device for unregistering
  499. */
  500. static void input_disconnect_device(struct input_dev *dev)
  501. {
  502. struct input_handle *handle;
  503. /*
  504. * Mark device as going away. Note that we take dev->mutex here
  505. * not to protect access to dev->going_away but rather to ensure
  506. * that there are no threads in the middle of input_open_device()
  507. */
  508. mutex_lock(&dev->mutex);
  509. dev->going_away = true;
  510. mutex_unlock(&dev->mutex);
  511. spin_lock_irq(&dev->event_lock);
  512. /*
  513. * Simulate keyup events for all pressed keys so that handlers
  514. * are not left with "stuck" keys. The driver may continue
  515. * generate events even after we done here but they will not
  516. * reach any handlers.
  517. */
  518. input_dev_release_keys(dev);
  519. list_for_each_entry(handle, &dev->h_list, d_node)
  520. handle->open = 0;
  521. spin_unlock_irq(&dev->event_lock);
  522. }
  523. /**
  524. * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
  525. * @ke: keymap entry containing scancode to be converted.
  526. * @scancode: pointer to the location where converted scancode should
  527. * be stored.
  528. *
  529. * This function is used to convert scancode stored in &struct keymap_entry
  530. * into scalar form understood by legacy keymap handling methods. These
  531. * methods expect scancodes to be represented as 'unsigned int'.
  532. */
  533. int input_scancode_to_scalar(const struct input_keymap_entry *ke,
  534. unsigned int *scancode)
  535. {
  536. switch (ke->len) {
  537. case 1:
  538. *scancode = *((u8 *)ke->scancode);
  539. break;
  540. case 2:
  541. *scancode = *((u16 *)ke->scancode);
  542. break;
  543. case 4:
  544. *scancode = *((u32 *)ke->scancode);
  545. break;
  546. default:
  547. return -EINVAL;
  548. }
  549. return 0;
  550. }
  551. EXPORT_SYMBOL(input_scancode_to_scalar);
  552. /*
  553. * Those routines handle the default case where no [gs]etkeycode() is
  554. * defined. In this case, an array indexed by the scancode is used.
  555. */
  556. static unsigned int input_fetch_keycode(struct input_dev *dev,
  557. unsigned int index)
  558. {
  559. switch (dev->keycodesize) {
  560. case 1:
  561. return ((u8 *)dev->keycode)[index];
  562. case 2:
  563. return ((u16 *)dev->keycode)[index];
  564. default:
  565. return ((u32 *)dev->keycode)[index];
  566. }
  567. }
  568. static int input_default_getkeycode(struct input_dev *dev,
  569. struct input_keymap_entry *ke)
  570. {
  571. unsigned int index;
  572. int error;
  573. if (!dev->keycodesize)
  574. return -EINVAL;
  575. if (ke->flags & INPUT_KEYMAP_BY_INDEX)
  576. index = ke->index;
  577. else {
  578. error = input_scancode_to_scalar(ke, &index);
  579. if (error)
  580. return error;
  581. }
  582. if (index >= dev->keycodemax)
  583. return -EINVAL;
  584. ke->keycode = input_fetch_keycode(dev, index);
  585. ke->index = index;
  586. ke->len = sizeof(index);
  587. memcpy(ke->scancode, &index, sizeof(index));
  588. return 0;
  589. }
  590. static int input_default_setkeycode(struct input_dev *dev,
  591. const struct input_keymap_entry *ke,
  592. unsigned int *old_keycode)
  593. {
  594. unsigned int index;
  595. int error;
  596. int i;
  597. if (!dev->keycodesize)
  598. return -EINVAL;
  599. if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
  600. index = ke->index;
  601. } else {
  602. error = input_scancode_to_scalar(ke, &index);
  603. if (error)
  604. return error;
  605. }
  606. if (index >= dev->keycodemax)
  607. return -EINVAL;
  608. if (dev->keycodesize < sizeof(dev->keycode) &&
  609. (ke->keycode >> (dev->keycodesize * 8)))
  610. return -EINVAL;
  611. switch (dev->keycodesize) {
  612. case 1: {
  613. u8 *k = (u8 *)dev->keycode;
  614. *old_keycode = k[index];
  615. k[index] = ke->keycode;
  616. break;
  617. }
  618. case 2: {
  619. u16 *k = (u16 *)dev->keycode;
  620. *old_keycode = k[index];
  621. k[index] = ke->keycode;
  622. break;
  623. }
  624. default: {
  625. u32 *k = (u32 *)dev->keycode;
  626. *old_keycode = k[index];
  627. k[index] = ke->keycode;
  628. break;
  629. }
  630. }
  631. __clear_bit(*old_keycode, dev->keybit);
  632. __set_bit(ke->keycode, dev->keybit);
  633. for (i = 0; i < dev->keycodemax; i++) {
  634. if (input_fetch_keycode(dev, i) == *old_keycode) {
  635. __set_bit(*old_keycode, dev->keybit);
  636. break; /* Setting the bit twice is useless, so break */
  637. }
  638. }
  639. return 0;
  640. }
  641. /**
  642. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  643. * @dev: input device which keymap is being queried
  644. * @ke: keymap entry
  645. *
  646. * This function should be called by anyone interested in retrieving current
  647. * keymap. Presently evdev handlers use it.
  648. */
  649. int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
  650. {
  651. unsigned long flags;
  652. int retval;
  653. spin_lock_irqsave(&dev->event_lock, flags);
  654. if (dev->getkeycode) {
  655. /*
  656. * Support for legacy drivers, that don't implement the new
  657. * ioctls
  658. */
  659. u32 scancode = ke->index;
  660. memcpy(ke->scancode, &scancode, sizeof(scancode));
  661. ke->len = sizeof(scancode);
  662. retval = dev->getkeycode(dev, scancode, &ke->keycode);
  663. } else {
  664. retval = dev->getkeycode_new(dev, ke);
  665. }
  666. spin_unlock_irqrestore(&dev->event_lock, flags);
  667. return retval;
  668. }
  669. EXPORT_SYMBOL(input_get_keycode);
  670. /**
  671. * input_set_keycode - attribute a keycode to a given scancode
  672. * @dev: input device which keymap is being updated
  673. * @ke: new keymap entry
  674. *
  675. * This function should be called by anyone needing to update current
  676. * keymap. Presently keyboard and evdev handlers use it.
  677. */
  678. int input_set_keycode(struct input_dev *dev,
  679. const struct input_keymap_entry *ke)
  680. {
  681. unsigned long flags;
  682. unsigned int old_keycode;
  683. int retval;
  684. if (ke->keycode > KEY_MAX)
  685. return -EINVAL;
  686. spin_lock_irqsave(&dev->event_lock, flags);
  687. if (dev->setkeycode) {
  688. /*
  689. * Support for legacy drivers, that don't implement the new
  690. * ioctls
  691. */
  692. unsigned int scancode;
  693. retval = input_scancode_to_scalar(ke, &scancode);
  694. if (retval)
  695. goto out;
  696. /*
  697. * We need to know the old scancode, in order to generate a
  698. * keyup effect, if the set operation happens successfully
  699. */
  700. if (!dev->getkeycode) {
  701. retval = -EINVAL;
  702. goto out;
  703. }
  704. retval = dev->getkeycode(dev, scancode, &old_keycode);
  705. if (retval)
  706. goto out;
  707. retval = dev->setkeycode(dev, scancode, ke->keycode);
  708. } else {
  709. retval = dev->setkeycode_new(dev, ke, &old_keycode);
  710. }
  711. if (retval)
  712. goto out;
  713. /* Make sure KEY_RESERVED did not get enabled. */
  714. __clear_bit(KEY_RESERVED, dev->keybit);
  715. /*
  716. * Simulate keyup event if keycode is not present
  717. * in the keymap anymore
  718. */
  719. if (test_bit(EV_KEY, dev->evbit) &&
  720. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  721. __test_and_clear_bit(old_keycode, dev->key)) {
  722. input_pass_event(dev, EV_KEY, old_keycode, 0);
  723. if (dev->sync)
  724. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  725. }
  726. out:
  727. spin_unlock_irqrestore(&dev->event_lock, flags);
  728. return retval;
  729. }
  730. EXPORT_SYMBOL(input_set_keycode);
  731. #define MATCH_BIT(bit, max) \
  732. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  733. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  734. break; \
  735. if (i != BITS_TO_LONGS(max)) \
  736. continue;
  737. static const struct input_device_id *input_match_device(struct input_handler *handler,
  738. struct input_dev *dev)
  739. {
  740. const struct input_device_id *id;
  741. int i;
  742. for (id = handler->id_table; id->flags || id->driver_info; id++) {
  743. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  744. if (id->bustype != dev->id.bustype)
  745. continue;
  746. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  747. if (id->vendor != dev->id.vendor)
  748. continue;
  749. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  750. if (id->product != dev->id.product)
  751. continue;
  752. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  753. if (id->version != dev->id.version)
  754. continue;
  755. MATCH_BIT(evbit, EV_MAX);
  756. MATCH_BIT(keybit, KEY_MAX);
  757. MATCH_BIT(relbit, REL_MAX);
  758. MATCH_BIT(absbit, ABS_MAX);
  759. MATCH_BIT(mscbit, MSC_MAX);
  760. MATCH_BIT(ledbit, LED_MAX);
  761. MATCH_BIT(sndbit, SND_MAX);
  762. MATCH_BIT(ffbit, FF_MAX);
  763. MATCH_BIT(swbit, SW_MAX);
  764. if (!handler->match || handler->match(handler, dev))
  765. return id;
  766. }
  767. return NULL;
  768. }
  769. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  770. {
  771. const struct input_device_id *id;
  772. int error;
  773. id = input_match_device(handler, dev);
  774. if (!id)
  775. return -ENODEV;
  776. error = handler->connect(handler, dev, id);
  777. if (error && error != -ENODEV)
  778. printk(KERN_ERR
  779. "input: failed to attach handler %s to device %s, "
  780. "error: %d\n",
  781. handler->name, kobject_name(&dev->dev.kobj), error);
  782. return error;
  783. }
  784. #ifdef CONFIG_COMPAT
  785. static int input_bits_to_string(char *buf, int buf_size,
  786. unsigned long bits, bool skip_empty)
  787. {
  788. int len = 0;
  789. if (INPUT_COMPAT_TEST) {
  790. u32 dword = bits >> 32;
  791. if (dword || !skip_empty)
  792. len += snprintf(buf, buf_size, "%x ", dword);
  793. dword = bits & 0xffffffffUL;
  794. if (dword || !skip_empty || len)
  795. len += snprintf(buf + len, max(buf_size - len, 0),
  796. "%x", dword);
  797. } else {
  798. if (bits || !skip_empty)
  799. len += snprintf(buf, buf_size, "%lx", bits);
  800. }
  801. return len;
  802. }
  803. #else /* !CONFIG_COMPAT */
  804. static int input_bits_to_string(char *buf, int buf_size,
  805. unsigned long bits, bool skip_empty)
  806. {
  807. return bits || !skip_empty ?
  808. snprintf(buf, buf_size, "%lx", bits) : 0;
  809. }
  810. #endif
  811. #ifdef CONFIG_PROC_FS
  812. static struct proc_dir_entry *proc_bus_input_dir;
  813. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  814. static int input_devices_state;
  815. static inline void input_wakeup_procfs_readers(void)
  816. {
  817. input_devices_state++;
  818. wake_up(&input_devices_poll_wait);
  819. }
  820. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  821. {
  822. poll_wait(file, &input_devices_poll_wait, wait);
  823. if (file->f_version != input_devices_state) {
  824. file->f_version = input_devices_state;
  825. return POLLIN | POLLRDNORM;
  826. }
  827. return 0;
  828. }
  829. union input_seq_state {
  830. struct {
  831. unsigned short pos;
  832. bool mutex_acquired;
  833. };
  834. void *p;
  835. };
  836. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  837. {
  838. union input_seq_state *state = (union input_seq_state *)&seq->private;
  839. int error;
  840. /* We need to fit into seq->private pointer */
  841. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  842. error = mutex_lock_interruptible(&input_mutex);
  843. if (error) {
  844. state->mutex_acquired = false;
  845. return ERR_PTR(error);
  846. }
  847. state->mutex_acquired = true;
  848. return seq_list_start(&input_dev_list, *pos);
  849. }
  850. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  851. {
  852. return seq_list_next(v, &input_dev_list, pos);
  853. }
  854. static void input_seq_stop(struct seq_file *seq, void *v)
  855. {
  856. union input_seq_state *state = (union input_seq_state *)&seq->private;
  857. if (state->mutex_acquired)
  858. mutex_unlock(&input_mutex);
  859. }
  860. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  861. unsigned long *bitmap, int max)
  862. {
  863. int i;
  864. bool skip_empty = true;
  865. char buf[18];
  866. seq_printf(seq, "B: %s=", name);
  867. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  868. if (input_bits_to_string(buf, sizeof(buf),
  869. bitmap[i], skip_empty)) {
  870. skip_empty = false;
  871. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  872. }
  873. }
  874. /*
  875. * If no output was produced print a single 0.
  876. */
  877. if (skip_empty)
  878. seq_puts(seq, "0");
  879. seq_putc(seq, '\n');
  880. }
  881. static int input_devices_seq_show(struct seq_file *seq, void *v)
  882. {
  883. struct input_dev *dev = container_of(v, struct input_dev, node);
  884. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  885. struct input_handle *handle;
  886. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  887. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  888. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  889. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  890. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  891. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  892. seq_printf(seq, "H: Handlers=");
  893. list_for_each_entry(handle, &dev->h_list, d_node)
  894. seq_printf(seq, "%s ", handle->name);
  895. seq_putc(seq, '\n');
  896. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  897. if (test_bit(EV_KEY, dev->evbit))
  898. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  899. if (test_bit(EV_REL, dev->evbit))
  900. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  901. if (test_bit(EV_ABS, dev->evbit))
  902. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  903. if (test_bit(EV_MSC, dev->evbit))
  904. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  905. if (test_bit(EV_LED, dev->evbit))
  906. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  907. if (test_bit(EV_SND, dev->evbit))
  908. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  909. if (test_bit(EV_FF, dev->evbit))
  910. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  911. if (test_bit(EV_SW, dev->evbit))
  912. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  913. seq_putc(seq, '\n');
  914. kfree(path);
  915. return 0;
  916. }
  917. static const struct seq_operations input_devices_seq_ops = {
  918. .start = input_devices_seq_start,
  919. .next = input_devices_seq_next,
  920. .stop = input_seq_stop,
  921. .show = input_devices_seq_show,
  922. };
  923. static int input_proc_devices_open(struct inode *inode, struct file *file)
  924. {
  925. return seq_open(file, &input_devices_seq_ops);
  926. }
  927. static const struct file_operations input_devices_fileops = {
  928. .owner = THIS_MODULE,
  929. .open = input_proc_devices_open,
  930. .poll = input_proc_devices_poll,
  931. .read = seq_read,
  932. .llseek = seq_lseek,
  933. .release = seq_release,
  934. };
  935. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  936. {
  937. union input_seq_state *state = (union input_seq_state *)&seq->private;
  938. int error;
  939. /* We need to fit into seq->private pointer */
  940. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  941. error = mutex_lock_interruptible(&input_mutex);
  942. if (error) {
  943. state->mutex_acquired = false;
  944. return ERR_PTR(error);
  945. }
  946. state->mutex_acquired = true;
  947. state->pos = *pos;
  948. return seq_list_start(&input_handler_list, *pos);
  949. }
  950. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  951. {
  952. union input_seq_state *state = (union input_seq_state *)&seq->private;
  953. state->pos = *pos + 1;
  954. return seq_list_next(v, &input_handler_list, pos);
  955. }
  956. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  957. {
  958. struct input_handler *handler = container_of(v, struct input_handler, node);
  959. union input_seq_state *state = (union input_seq_state *)&seq->private;
  960. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  961. if (handler->filter)
  962. seq_puts(seq, " (filter)");
  963. if (handler->fops)
  964. seq_printf(seq, " Minor=%d", handler->minor);
  965. seq_putc(seq, '\n');
  966. return 0;
  967. }
  968. static const struct seq_operations input_handlers_seq_ops = {
  969. .start = input_handlers_seq_start,
  970. .next = input_handlers_seq_next,
  971. .stop = input_seq_stop,
  972. .show = input_handlers_seq_show,
  973. };
  974. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  975. {
  976. return seq_open(file, &input_handlers_seq_ops);
  977. }
  978. static const struct file_operations input_handlers_fileops = {
  979. .owner = THIS_MODULE,
  980. .open = input_proc_handlers_open,
  981. .read = seq_read,
  982. .llseek = seq_lseek,
  983. .release = seq_release,
  984. };
  985. static int __init input_proc_init(void)
  986. {
  987. struct proc_dir_entry *entry;
  988. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  989. if (!proc_bus_input_dir)
  990. return -ENOMEM;
  991. entry = proc_create("devices", 0, proc_bus_input_dir,
  992. &input_devices_fileops);
  993. if (!entry)
  994. goto fail1;
  995. entry = proc_create("handlers", 0, proc_bus_input_dir,
  996. &input_handlers_fileops);
  997. if (!entry)
  998. goto fail2;
  999. return 0;
  1000. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  1001. fail1: remove_proc_entry("bus/input", NULL);
  1002. return -ENOMEM;
  1003. }
  1004. static void input_proc_exit(void)
  1005. {
  1006. remove_proc_entry("devices", proc_bus_input_dir);
  1007. remove_proc_entry("handlers", proc_bus_input_dir);
  1008. remove_proc_entry("bus/input", NULL);
  1009. }
  1010. #else /* !CONFIG_PROC_FS */
  1011. static inline void input_wakeup_procfs_readers(void) { }
  1012. static inline int input_proc_init(void) { return 0; }
  1013. static inline void input_proc_exit(void) { }
  1014. #endif
  1015. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  1016. static ssize_t input_dev_show_##name(struct device *dev, \
  1017. struct device_attribute *attr, \
  1018. char *buf) \
  1019. { \
  1020. struct input_dev *input_dev = to_input_dev(dev); \
  1021. \
  1022. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  1023. input_dev->name ? input_dev->name : ""); \
  1024. } \
  1025. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  1026. INPUT_DEV_STRING_ATTR_SHOW(name);
  1027. INPUT_DEV_STRING_ATTR_SHOW(phys);
  1028. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  1029. static int input_print_modalias_bits(char *buf, int size,
  1030. char name, unsigned long *bm,
  1031. unsigned int min_bit, unsigned int max_bit)
  1032. {
  1033. int len = 0, i;
  1034. len += snprintf(buf, max(size, 0), "%c", name);
  1035. for (i = min_bit; i < max_bit; i++)
  1036. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  1037. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  1038. return len;
  1039. }
  1040. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  1041. int add_cr)
  1042. {
  1043. int len;
  1044. len = snprintf(buf, max(size, 0),
  1045. "input:b%04Xv%04Xp%04Xe%04X-",
  1046. id->id.bustype, id->id.vendor,
  1047. id->id.product, id->id.version);
  1048. len += input_print_modalias_bits(buf + len, size - len,
  1049. 'e', id->evbit, 0, EV_MAX);
  1050. len += input_print_modalias_bits(buf + len, size - len,
  1051. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  1052. len += input_print_modalias_bits(buf + len, size - len,
  1053. 'r', id->relbit, 0, REL_MAX);
  1054. len += input_print_modalias_bits(buf + len, size - len,
  1055. 'a', id->absbit, 0, ABS_MAX);
  1056. len += input_print_modalias_bits(buf + len, size - len,
  1057. 'm', id->mscbit, 0, MSC_MAX);
  1058. len += input_print_modalias_bits(buf + len, size - len,
  1059. 'l', id->ledbit, 0, LED_MAX);
  1060. len += input_print_modalias_bits(buf + len, size - len,
  1061. 's', id->sndbit, 0, SND_MAX);
  1062. len += input_print_modalias_bits(buf + len, size - len,
  1063. 'f', id->ffbit, 0, FF_MAX);
  1064. len += input_print_modalias_bits(buf + len, size - len,
  1065. 'w', id->swbit, 0, SW_MAX);
  1066. if (add_cr)
  1067. len += snprintf(buf + len, max(size - len, 0), "\n");
  1068. return len;
  1069. }
  1070. static ssize_t input_dev_show_modalias(struct device *dev,
  1071. struct device_attribute *attr,
  1072. char *buf)
  1073. {
  1074. struct input_dev *id = to_input_dev(dev);
  1075. ssize_t len;
  1076. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  1077. return min_t(int, len, PAGE_SIZE);
  1078. }
  1079. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  1080. static struct attribute *input_dev_attrs[] = {
  1081. &dev_attr_name.attr,
  1082. &dev_attr_phys.attr,
  1083. &dev_attr_uniq.attr,
  1084. &dev_attr_modalias.attr,
  1085. NULL
  1086. };
  1087. static struct attribute_group input_dev_attr_group = {
  1088. .attrs = input_dev_attrs,
  1089. };
  1090. #define INPUT_DEV_ID_ATTR(name) \
  1091. static ssize_t input_dev_show_id_##name(struct device *dev, \
  1092. struct device_attribute *attr, \
  1093. char *buf) \
  1094. { \
  1095. struct input_dev *input_dev = to_input_dev(dev); \
  1096. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  1097. } \
  1098. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  1099. INPUT_DEV_ID_ATTR(bustype);
  1100. INPUT_DEV_ID_ATTR(vendor);
  1101. INPUT_DEV_ID_ATTR(product);
  1102. INPUT_DEV_ID_ATTR(version);
  1103. static struct attribute *input_dev_id_attrs[] = {
  1104. &dev_attr_bustype.attr,
  1105. &dev_attr_vendor.attr,
  1106. &dev_attr_product.attr,
  1107. &dev_attr_version.attr,
  1108. NULL
  1109. };
  1110. static struct attribute_group input_dev_id_attr_group = {
  1111. .name = "id",
  1112. .attrs = input_dev_id_attrs,
  1113. };
  1114. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  1115. int max, int add_cr)
  1116. {
  1117. int i;
  1118. int len = 0;
  1119. bool skip_empty = true;
  1120. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  1121. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  1122. bitmap[i], skip_empty);
  1123. if (len) {
  1124. skip_empty = false;
  1125. if (i > 0)
  1126. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  1127. }
  1128. }
  1129. /*
  1130. * If no output was produced print a single 0.
  1131. */
  1132. if (len == 0)
  1133. len = snprintf(buf, buf_size, "%d", 0);
  1134. if (add_cr)
  1135. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  1136. return len;
  1137. }
  1138. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  1139. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  1140. struct device_attribute *attr, \
  1141. char *buf) \
  1142. { \
  1143. struct input_dev *input_dev = to_input_dev(dev); \
  1144. int len = input_print_bitmap(buf, PAGE_SIZE, \
  1145. input_dev->bm##bit, ev##_MAX, \
  1146. true); \
  1147. return min_t(int, len, PAGE_SIZE); \
  1148. } \
  1149. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  1150. INPUT_DEV_CAP_ATTR(EV, ev);
  1151. INPUT_DEV_CAP_ATTR(KEY, key);
  1152. INPUT_DEV_CAP_ATTR(REL, rel);
  1153. INPUT_DEV_CAP_ATTR(ABS, abs);
  1154. INPUT_DEV_CAP_ATTR(MSC, msc);
  1155. INPUT_DEV_CAP_ATTR(LED, led);
  1156. INPUT_DEV_CAP_ATTR(SND, snd);
  1157. INPUT_DEV_CAP_ATTR(FF, ff);
  1158. INPUT_DEV_CAP_ATTR(SW, sw);
  1159. static struct attribute *input_dev_caps_attrs[] = {
  1160. &dev_attr_ev.attr,
  1161. &dev_attr_key.attr,
  1162. &dev_attr_rel.attr,
  1163. &dev_attr_abs.attr,
  1164. &dev_attr_msc.attr,
  1165. &dev_attr_led.attr,
  1166. &dev_attr_snd.attr,
  1167. &dev_attr_ff.attr,
  1168. &dev_attr_sw.attr,
  1169. NULL
  1170. };
  1171. static struct attribute_group input_dev_caps_attr_group = {
  1172. .name = "capabilities",
  1173. .attrs = input_dev_caps_attrs,
  1174. };
  1175. static const struct attribute_group *input_dev_attr_groups[] = {
  1176. &input_dev_attr_group,
  1177. &input_dev_id_attr_group,
  1178. &input_dev_caps_attr_group,
  1179. NULL
  1180. };
  1181. static void input_dev_release(struct device *device)
  1182. {
  1183. struct input_dev *dev = to_input_dev(device);
  1184. input_ff_destroy(dev);
  1185. input_mt_destroy_slots(dev);
  1186. kfree(dev->absinfo);
  1187. kfree(dev);
  1188. module_put(THIS_MODULE);
  1189. }
  1190. /*
  1191. * Input uevent interface - loading event handlers based on
  1192. * device bitfields.
  1193. */
  1194. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1195. const char *name, unsigned long *bitmap, int max)
  1196. {
  1197. int len;
  1198. if (add_uevent_var(env, "%s=", name))
  1199. return -ENOMEM;
  1200. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1201. sizeof(env->buf) - env->buflen,
  1202. bitmap, max, false);
  1203. if (len >= (sizeof(env->buf) - env->buflen))
  1204. return -ENOMEM;
  1205. env->buflen += len;
  1206. return 0;
  1207. }
  1208. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1209. struct input_dev *dev)
  1210. {
  1211. int len;
  1212. if (add_uevent_var(env, "MODALIAS="))
  1213. return -ENOMEM;
  1214. len = input_print_modalias(&env->buf[env->buflen - 1],
  1215. sizeof(env->buf) - env->buflen,
  1216. dev, 0);
  1217. if (len >= (sizeof(env->buf) - env->buflen))
  1218. return -ENOMEM;
  1219. env->buflen += len;
  1220. return 0;
  1221. }
  1222. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1223. do { \
  1224. int err = add_uevent_var(env, fmt, val); \
  1225. if (err) \
  1226. return err; \
  1227. } while (0)
  1228. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1229. do { \
  1230. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1231. if (err) \
  1232. return err; \
  1233. } while (0)
  1234. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1235. do { \
  1236. int err = input_add_uevent_modalias_var(env, dev); \
  1237. if (err) \
  1238. return err; \
  1239. } while (0)
  1240. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1241. {
  1242. struct input_dev *dev = to_input_dev(device);
  1243. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1244. dev->id.bustype, dev->id.vendor,
  1245. dev->id.product, dev->id.version);
  1246. if (dev->name)
  1247. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1248. if (dev->phys)
  1249. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1250. if (dev->uniq)
  1251. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1252. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1253. if (test_bit(EV_KEY, dev->evbit))
  1254. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1255. if (test_bit(EV_REL, dev->evbit))
  1256. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1257. if (test_bit(EV_ABS, dev->evbit))
  1258. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1259. if (test_bit(EV_MSC, dev->evbit))
  1260. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1261. if (test_bit(EV_LED, dev->evbit))
  1262. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1263. if (test_bit(EV_SND, dev->evbit))
  1264. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1265. if (test_bit(EV_FF, dev->evbit))
  1266. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1267. if (test_bit(EV_SW, dev->evbit))
  1268. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1269. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1270. return 0;
  1271. }
  1272. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1273. do { \
  1274. int i; \
  1275. bool active; \
  1276. \
  1277. if (!test_bit(EV_##type, dev->evbit)) \
  1278. break; \
  1279. \
  1280. for (i = 0; i < type##_MAX; i++) { \
  1281. if (!test_bit(i, dev->bits##bit)) \
  1282. continue; \
  1283. \
  1284. active = test_bit(i, dev->bits); \
  1285. if (!active && !on) \
  1286. continue; \
  1287. \
  1288. dev->event(dev, EV_##type, i, on ? active : 0); \
  1289. } \
  1290. } while (0)
  1291. #ifdef CONFIG_PM
  1292. static void input_dev_reset(struct input_dev *dev, bool activate)
  1293. {
  1294. if (!dev->event)
  1295. return;
  1296. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1297. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1298. if (activate && test_bit(EV_REP, dev->evbit)) {
  1299. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1300. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1301. }
  1302. }
  1303. static int input_dev_suspend(struct device *dev)
  1304. {
  1305. struct input_dev *input_dev = to_input_dev(dev);
  1306. mutex_lock(&input_dev->mutex);
  1307. input_dev_reset(input_dev, false);
  1308. mutex_unlock(&input_dev->mutex);
  1309. return 0;
  1310. }
  1311. static int input_dev_resume(struct device *dev)
  1312. {
  1313. struct input_dev *input_dev = to_input_dev(dev);
  1314. mutex_lock(&input_dev->mutex);
  1315. input_dev_reset(input_dev, true);
  1316. /*
  1317. * Keys that have been pressed at suspend time are unlikely
  1318. * to be still pressed when we resume.
  1319. */
  1320. spin_lock_irq(&input_dev->event_lock);
  1321. input_dev_release_keys(input_dev);
  1322. spin_unlock_irq(&input_dev->event_lock);
  1323. mutex_unlock(&input_dev->mutex);
  1324. return 0;
  1325. }
  1326. static const struct dev_pm_ops input_dev_pm_ops = {
  1327. .suspend = input_dev_suspend,
  1328. .resume = input_dev_resume,
  1329. .poweroff = input_dev_suspend,
  1330. .restore = input_dev_resume,
  1331. };
  1332. #endif /* CONFIG_PM */
  1333. static struct device_type input_dev_type = {
  1334. .groups = input_dev_attr_groups,
  1335. .release = input_dev_release,
  1336. .uevent = input_dev_uevent,
  1337. #ifdef CONFIG_PM
  1338. .pm = &input_dev_pm_ops,
  1339. #endif
  1340. };
  1341. static char *input_devnode(struct device *dev, mode_t *mode)
  1342. {
  1343. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1344. }
  1345. struct class input_class = {
  1346. .name = "input",
  1347. .devnode = input_devnode,
  1348. };
  1349. EXPORT_SYMBOL_GPL(input_class);
  1350. /**
  1351. * input_allocate_device - allocate memory for new input device
  1352. *
  1353. * Returns prepared struct input_dev or NULL.
  1354. *
  1355. * NOTE: Use input_free_device() to free devices that have not been
  1356. * registered; input_unregister_device() should be used for already
  1357. * registered devices.
  1358. */
  1359. struct input_dev *input_allocate_device(void)
  1360. {
  1361. struct input_dev *dev;
  1362. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1363. if (dev) {
  1364. dev->dev.type = &input_dev_type;
  1365. dev->dev.class = &input_class;
  1366. device_initialize(&dev->dev);
  1367. mutex_init(&dev->mutex);
  1368. spin_lock_init(&dev->event_lock);
  1369. INIT_LIST_HEAD(&dev->h_list);
  1370. INIT_LIST_HEAD(&dev->node);
  1371. __module_get(THIS_MODULE);
  1372. }
  1373. return dev;
  1374. }
  1375. EXPORT_SYMBOL(input_allocate_device);
  1376. /**
  1377. * input_free_device - free memory occupied by input_dev structure
  1378. * @dev: input device to free
  1379. *
  1380. * This function should only be used if input_register_device()
  1381. * was not called yet or if it failed. Once device was registered
  1382. * use input_unregister_device() and memory will be freed once last
  1383. * reference to the device is dropped.
  1384. *
  1385. * Device should be allocated by input_allocate_device().
  1386. *
  1387. * NOTE: If there are references to the input device then memory
  1388. * will not be freed until last reference is dropped.
  1389. */
  1390. void input_free_device(struct input_dev *dev)
  1391. {
  1392. if (dev)
  1393. input_put_device(dev);
  1394. }
  1395. EXPORT_SYMBOL(input_free_device);
  1396. /**
  1397. * input_mt_create_slots() - create MT input slots
  1398. * @dev: input device supporting MT events and finger tracking
  1399. * @num_slots: number of slots used by the device
  1400. *
  1401. * This function allocates all necessary memory for MT slot handling in the
  1402. * input device, and adds ABS_MT_SLOT to the device capabilities. All slots
  1403. * are initially marked as unused by setting ABS_MT_TRACKING_ID to -1.
  1404. */
  1405. int input_mt_create_slots(struct input_dev *dev, unsigned int num_slots)
  1406. {
  1407. int i;
  1408. if (!num_slots)
  1409. return 0;
  1410. dev->mt = kcalloc(num_slots, sizeof(struct input_mt_slot), GFP_KERNEL);
  1411. if (!dev->mt)
  1412. return -ENOMEM;
  1413. dev->mtsize = num_slots;
  1414. input_set_abs_params(dev, ABS_MT_SLOT, 0, num_slots - 1, 0, 0);
  1415. /* Mark slots as 'unused' */
  1416. for (i = 0; i < num_slots; i++)
  1417. dev->mt[i].abs[ABS_MT_TRACKING_ID - ABS_MT_FIRST] = -1;
  1418. return 0;
  1419. }
  1420. EXPORT_SYMBOL(input_mt_create_slots);
  1421. /**
  1422. * input_mt_destroy_slots() - frees the MT slots of the input device
  1423. * @dev: input device with allocated MT slots
  1424. *
  1425. * This function is only needed in error path as the input core will
  1426. * automatically free the MT slots when the device is destroyed.
  1427. */
  1428. void input_mt_destroy_slots(struct input_dev *dev)
  1429. {
  1430. kfree(dev->mt);
  1431. dev->mt = NULL;
  1432. dev->mtsize = 0;
  1433. }
  1434. EXPORT_SYMBOL(input_mt_destroy_slots);
  1435. /**
  1436. * input_set_capability - mark device as capable of a certain event
  1437. * @dev: device that is capable of emitting or accepting event
  1438. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1439. * @code: event code
  1440. *
  1441. * In addition to setting up corresponding bit in appropriate capability
  1442. * bitmap the function also adjusts dev->evbit.
  1443. */
  1444. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1445. {
  1446. switch (type) {
  1447. case EV_KEY:
  1448. __set_bit(code, dev->keybit);
  1449. break;
  1450. case EV_REL:
  1451. __set_bit(code, dev->relbit);
  1452. break;
  1453. case EV_ABS:
  1454. __set_bit(code, dev->absbit);
  1455. break;
  1456. case EV_MSC:
  1457. __set_bit(code, dev->mscbit);
  1458. break;
  1459. case EV_SW:
  1460. __set_bit(code, dev->swbit);
  1461. break;
  1462. case EV_LED:
  1463. __set_bit(code, dev->ledbit);
  1464. break;
  1465. case EV_SND:
  1466. __set_bit(code, dev->sndbit);
  1467. break;
  1468. case EV_FF:
  1469. __set_bit(code, dev->ffbit);
  1470. break;
  1471. case EV_PWR:
  1472. /* do nothing */
  1473. break;
  1474. default:
  1475. printk(KERN_ERR
  1476. "input_set_capability: unknown type %u (code %u)\n",
  1477. type, code);
  1478. dump_stack();
  1479. return;
  1480. }
  1481. __set_bit(type, dev->evbit);
  1482. }
  1483. EXPORT_SYMBOL(input_set_capability);
  1484. #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
  1485. do { \
  1486. if (!test_bit(EV_##type, dev->evbit)) \
  1487. memset(dev->bits##bit, 0, \
  1488. sizeof(dev->bits##bit)); \
  1489. } while (0)
  1490. static void input_cleanse_bitmasks(struct input_dev *dev)
  1491. {
  1492. INPUT_CLEANSE_BITMASK(dev, KEY, key);
  1493. INPUT_CLEANSE_BITMASK(dev, REL, rel);
  1494. INPUT_CLEANSE_BITMASK(dev, ABS, abs);
  1495. INPUT_CLEANSE_BITMASK(dev, MSC, msc);
  1496. INPUT_CLEANSE_BITMASK(dev, LED, led);
  1497. INPUT_CLEANSE_BITMASK(dev, SND, snd);
  1498. INPUT_CLEANSE_BITMASK(dev, FF, ff);
  1499. INPUT_CLEANSE_BITMASK(dev, SW, sw);
  1500. }
  1501. /**
  1502. * input_register_device - register device with input core
  1503. * @dev: device to be registered
  1504. *
  1505. * This function registers device with input core. The device must be
  1506. * allocated with input_allocate_device() and all it's capabilities
  1507. * set up before registering.
  1508. * If function fails the device must be freed with input_free_device().
  1509. * Once device has been successfully registered it can be unregistered
  1510. * with input_unregister_device(); input_free_device() should not be
  1511. * called in this case.
  1512. */
  1513. int input_register_device(struct input_dev *dev)
  1514. {
  1515. static atomic_t input_no = ATOMIC_INIT(0);
  1516. struct input_handler *handler;
  1517. const char *path;
  1518. int error;
  1519. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1520. __set_bit(EV_SYN, dev->evbit);
  1521. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1522. __clear_bit(KEY_RESERVED, dev->keybit);
  1523. /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  1524. input_cleanse_bitmasks(dev);
  1525. /*
  1526. * If delay and period are pre-set by the driver, then autorepeating
  1527. * is handled by the driver itself and we don't do it in input.c.
  1528. */
  1529. init_timer(&dev->timer);
  1530. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1531. dev->timer.data = (long) dev;
  1532. dev->timer.function = input_repeat_key;
  1533. dev->rep[REP_DELAY] = 250;
  1534. dev->rep[REP_PERIOD] = 33;
  1535. }
  1536. if (!dev->getkeycode && !dev->getkeycode_new)
  1537. dev->getkeycode_new = input_default_getkeycode;
  1538. if (!dev->setkeycode && !dev->setkeycode_new)
  1539. dev->setkeycode_new = input_default_setkeycode;
  1540. dev_set_name(&dev->dev, "input%ld",
  1541. (unsigned long) atomic_inc_return(&input_no) - 1);
  1542. error = device_add(&dev->dev);
  1543. if (error)
  1544. return error;
  1545. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1546. printk(KERN_INFO "input: %s as %s\n",
  1547. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1548. kfree(path);
  1549. error = mutex_lock_interruptible(&input_mutex);
  1550. if (error) {
  1551. device_del(&dev->dev);
  1552. return error;
  1553. }
  1554. list_add_tail(&dev->node, &input_dev_list);
  1555. list_for_each_entry(handler, &input_handler_list, node)
  1556. input_attach_handler(dev, handler);
  1557. input_wakeup_procfs_readers();
  1558. mutex_unlock(&input_mutex);
  1559. return 0;
  1560. }
  1561. EXPORT_SYMBOL(input_register_device);
  1562. /**
  1563. * input_unregister_device - unregister previously registered device
  1564. * @dev: device to be unregistered
  1565. *
  1566. * This function unregisters an input device. Once device is unregistered
  1567. * the caller should not try to access it as it may get freed at any moment.
  1568. */
  1569. void input_unregister_device(struct input_dev *dev)
  1570. {
  1571. struct input_handle *handle, *next;
  1572. input_disconnect_device(dev);
  1573. mutex_lock(&input_mutex);
  1574. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1575. handle->handler->disconnect(handle);
  1576. WARN_ON(!list_empty(&dev->h_list));
  1577. del_timer_sync(&dev->timer);
  1578. list_del_init(&dev->node);
  1579. input_wakeup_procfs_readers();
  1580. mutex_unlock(&input_mutex);
  1581. device_unregister(&dev->dev);
  1582. }
  1583. EXPORT_SYMBOL(input_unregister_device);
  1584. /**
  1585. * input_register_handler - register a new input handler
  1586. * @handler: handler to be registered
  1587. *
  1588. * This function registers a new input handler (interface) for input
  1589. * devices in the system and attaches it to all input devices that
  1590. * are compatible with the handler.
  1591. */
  1592. int input_register_handler(struct input_handler *handler)
  1593. {
  1594. struct input_dev *dev;
  1595. int retval;
  1596. retval = mutex_lock_interruptible(&input_mutex);
  1597. if (retval)
  1598. return retval;
  1599. INIT_LIST_HEAD(&handler->h_list);
  1600. if (handler->fops != NULL) {
  1601. if (input_table[handler->minor >> 5]) {
  1602. retval = -EBUSY;
  1603. goto out;
  1604. }
  1605. input_table[handler->minor >> 5] = handler;
  1606. }
  1607. list_add_tail(&handler->node, &input_handler_list);
  1608. list_for_each_entry(dev, &input_dev_list, node)
  1609. input_attach_handler(dev, handler);
  1610. input_wakeup_procfs_readers();
  1611. out:
  1612. mutex_unlock(&input_mutex);
  1613. return retval;
  1614. }
  1615. EXPORT_SYMBOL(input_register_handler);
  1616. /**
  1617. * input_unregister_handler - unregisters an input handler
  1618. * @handler: handler to be unregistered
  1619. *
  1620. * This function disconnects a handler from its input devices and
  1621. * removes it from lists of known handlers.
  1622. */
  1623. void input_unregister_handler(struct input_handler *handler)
  1624. {
  1625. struct input_handle *handle, *next;
  1626. mutex_lock(&input_mutex);
  1627. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1628. handler->disconnect(handle);
  1629. WARN_ON(!list_empty(&handler->h_list));
  1630. list_del_init(&handler->node);
  1631. if (handler->fops != NULL)
  1632. input_table[handler->minor >> 5] = NULL;
  1633. input_wakeup_procfs_readers();
  1634. mutex_unlock(&input_mutex);
  1635. }
  1636. EXPORT_SYMBOL(input_unregister_handler);
  1637. /**
  1638. * input_handler_for_each_handle - handle iterator
  1639. * @handler: input handler to iterate
  1640. * @data: data for the callback
  1641. * @fn: function to be called for each handle
  1642. *
  1643. * Iterate over @bus's list of devices, and call @fn for each, passing
  1644. * it @data and stop when @fn returns a non-zero value. The function is
  1645. * using RCU to traverse the list and therefore may be usind in atonic
  1646. * contexts. The @fn callback is invoked from RCU critical section and
  1647. * thus must not sleep.
  1648. */
  1649. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1650. int (*fn)(struct input_handle *, void *))
  1651. {
  1652. struct input_handle *handle;
  1653. int retval = 0;
  1654. rcu_read_lock();
  1655. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1656. retval = fn(handle, data);
  1657. if (retval)
  1658. break;
  1659. }
  1660. rcu_read_unlock();
  1661. return retval;
  1662. }
  1663. EXPORT_SYMBOL(input_handler_for_each_handle);
  1664. /**
  1665. * input_register_handle - register a new input handle
  1666. * @handle: handle to register
  1667. *
  1668. * This function puts a new input handle onto device's
  1669. * and handler's lists so that events can flow through
  1670. * it once it is opened using input_open_device().
  1671. *
  1672. * This function is supposed to be called from handler's
  1673. * connect() method.
  1674. */
  1675. int input_register_handle(struct input_handle *handle)
  1676. {
  1677. struct input_handler *handler = handle->handler;
  1678. struct input_dev *dev = handle->dev;
  1679. int error;
  1680. /*
  1681. * We take dev->mutex here to prevent race with
  1682. * input_release_device().
  1683. */
  1684. error = mutex_lock_interruptible(&dev->mutex);
  1685. if (error)
  1686. return error;
  1687. /*
  1688. * Filters go to the head of the list, normal handlers
  1689. * to the tail.
  1690. */
  1691. if (handler->filter)
  1692. list_add_rcu(&handle->d_node, &dev->h_list);
  1693. else
  1694. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1695. mutex_unlock(&dev->mutex);
  1696. /*
  1697. * Since we are supposed to be called from ->connect()
  1698. * which is mutually exclusive with ->disconnect()
  1699. * we can't be racing with input_unregister_handle()
  1700. * and so separate lock is not needed here.
  1701. */
  1702. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1703. if (handler->start)
  1704. handler->start(handle);
  1705. return 0;
  1706. }
  1707. EXPORT_SYMBOL(input_register_handle);
  1708. /**
  1709. * input_unregister_handle - unregister an input handle
  1710. * @handle: handle to unregister
  1711. *
  1712. * This function removes input handle from device's
  1713. * and handler's lists.
  1714. *
  1715. * This function is supposed to be called from handler's
  1716. * disconnect() method.
  1717. */
  1718. void input_unregister_handle(struct input_handle *handle)
  1719. {
  1720. struct input_dev *dev = handle->dev;
  1721. list_del_rcu(&handle->h_node);
  1722. /*
  1723. * Take dev->mutex to prevent race with input_release_device().
  1724. */
  1725. mutex_lock(&dev->mutex);
  1726. list_del_rcu(&handle->d_node);
  1727. mutex_unlock(&dev->mutex);
  1728. synchronize_rcu();
  1729. }
  1730. EXPORT_SYMBOL(input_unregister_handle);
  1731. static int input_open_file(struct inode *inode, struct file *file)
  1732. {
  1733. struct input_handler *handler;
  1734. const struct file_operations *old_fops, *new_fops = NULL;
  1735. int err;
  1736. err = mutex_lock_interruptible(&input_mutex);
  1737. if (err)
  1738. return err;
  1739. /* No load-on-demand here? */
  1740. handler = input_table[iminor(inode) >> 5];
  1741. if (handler)
  1742. new_fops = fops_get(handler->fops);
  1743. mutex_unlock(&input_mutex);
  1744. /*
  1745. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1746. * not "no device". Oh, well...
  1747. */
  1748. if (!new_fops || !new_fops->open) {
  1749. fops_put(new_fops);
  1750. err = -ENODEV;
  1751. goto out;
  1752. }
  1753. old_fops = file->f_op;
  1754. file->f_op = new_fops;
  1755. err = new_fops->open(inode, file);
  1756. if (err) {
  1757. fops_put(file->f_op);
  1758. file->f_op = fops_get(old_fops);
  1759. }
  1760. fops_put(old_fops);
  1761. out:
  1762. return err;
  1763. }
  1764. static const struct file_operations input_fops = {
  1765. .owner = THIS_MODULE,
  1766. .open = input_open_file,
  1767. .llseek = noop_llseek,
  1768. };
  1769. static int __init input_init(void)
  1770. {
  1771. int err;
  1772. err = class_register(&input_class);
  1773. if (err) {
  1774. printk(KERN_ERR "input: unable to register input_dev class\n");
  1775. return err;
  1776. }
  1777. err = input_proc_init();
  1778. if (err)
  1779. goto fail1;
  1780. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1781. if (err) {
  1782. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1783. goto fail2;
  1784. }
  1785. return 0;
  1786. fail2: input_proc_exit();
  1787. fail1: class_unregister(&input_class);
  1788. return err;
  1789. }
  1790. static void __exit input_exit(void)
  1791. {
  1792. input_proc_exit();
  1793. unregister_chrdev(INPUT_MAJOR, "input");
  1794. class_unregister(&input_class);
  1795. }
  1796. subsys_initcall(input_init);
  1797. module_exit(input_exit);