x86.c 150 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <trace/events/kvm.h>
  45. #define CREATE_TRACE_POINTS
  46. #include "trace.h"
  47. #include <asm/debugreg.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <asm/mtrr.h>
  51. #include <asm/mce.h>
  52. #include <asm/i387.h>
  53. #include <asm/xcr.h>
  54. #include <asm/pvclock.h>
  55. #include <asm/div64.h>
  56. #define MAX_IO_MSRS 256
  57. #define CR0_RESERVED_BITS \
  58. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  59. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  60. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  61. #define CR4_RESERVED_BITS \
  62. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  63. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  64. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  65. | X86_CR4_OSXSAVE \
  66. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  67. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  68. #define KVM_MAX_MCE_BANKS 32
  69. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  70. /* EFER defaults:
  71. * - enable syscall per default because its emulated by KVM
  72. * - enable LME and LMA per default on 64 bit KVM
  73. */
  74. #ifdef CONFIG_X86_64
  75. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  76. #else
  77. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  78. #endif
  79. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  80. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  81. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  82. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  83. struct kvm_cpuid_entry2 __user *entries);
  84. struct kvm_x86_ops *kvm_x86_ops;
  85. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  86. int ignore_msrs = 0;
  87. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  88. #define KVM_NR_SHARED_MSRS 16
  89. struct kvm_shared_msrs_global {
  90. int nr;
  91. u32 msrs[KVM_NR_SHARED_MSRS];
  92. };
  93. struct kvm_shared_msrs {
  94. struct user_return_notifier urn;
  95. bool registered;
  96. struct kvm_shared_msr_values {
  97. u64 host;
  98. u64 curr;
  99. } values[KVM_NR_SHARED_MSRS];
  100. };
  101. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  102. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  103. struct kvm_stats_debugfs_item debugfs_entries[] = {
  104. { "pf_fixed", VCPU_STAT(pf_fixed) },
  105. { "pf_guest", VCPU_STAT(pf_guest) },
  106. { "tlb_flush", VCPU_STAT(tlb_flush) },
  107. { "invlpg", VCPU_STAT(invlpg) },
  108. { "exits", VCPU_STAT(exits) },
  109. { "io_exits", VCPU_STAT(io_exits) },
  110. { "mmio_exits", VCPU_STAT(mmio_exits) },
  111. { "signal_exits", VCPU_STAT(signal_exits) },
  112. { "irq_window", VCPU_STAT(irq_window_exits) },
  113. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  114. { "halt_exits", VCPU_STAT(halt_exits) },
  115. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  116. { "hypercalls", VCPU_STAT(hypercalls) },
  117. { "request_irq", VCPU_STAT(request_irq_exits) },
  118. { "irq_exits", VCPU_STAT(irq_exits) },
  119. { "host_state_reload", VCPU_STAT(host_state_reload) },
  120. { "efer_reload", VCPU_STAT(efer_reload) },
  121. { "fpu_reload", VCPU_STAT(fpu_reload) },
  122. { "insn_emulation", VCPU_STAT(insn_emulation) },
  123. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  124. { "irq_injections", VCPU_STAT(irq_injections) },
  125. { "nmi_injections", VCPU_STAT(nmi_injections) },
  126. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  127. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  128. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  129. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  130. { "mmu_flooded", VM_STAT(mmu_flooded) },
  131. { "mmu_recycled", VM_STAT(mmu_recycled) },
  132. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  133. { "mmu_unsync", VM_STAT(mmu_unsync) },
  134. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  135. { "largepages", VM_STAT(lpages) },
  136. { NULL }
  137. };
  138. u64 __read_mostly host_xcr0;
  139. static inline u32 bit(int bitno)
  140. {
  141. return 1 << (bitno & 31);
  142. }
  143. static void kvm_on_user_return(struct user_return_notifier *urn)
  144. {
  145. unsigned slot;
  146. struct kvm_shared_msrs *locals
  147. = container_of(urn, struct kvm_shared_msrs, urn);
  148. struct kvm_shared_msr_values *values;
  149. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  150. values = &locals->values[slot];
  151. if (values->host != values->curr) {
  152. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  153. values->curr = values->host;
  154. }
  155. }
  156. locals->registered = false;
  157. user_return_notifier_unregister(urn);
  158. }
  159. static void shared_msr_update(unsigned slot, u32 msr)
  160. {
  161. struct kvm_shared_msrs *smsr;
  162. u64 value;
  163. smsr = &__get_cpu_var(shared_msrs);
  164. /* only read, and nobody should modify it at this time,
  165. * so don't need lock */
  166. if (slot >= shared_msrs_global.nr) {
  167. printk(KERN_ERR "kvm: invalid MSR slot!");
  168. return;
  169. }
  170. rdmsrl_safe(msr, &value);
  171. smsr->values[slot].host = value;
  172. smsr->values[slot].curr = value;
  173. }
  174. void kvm_define_shared_msr(unsigned slot, u32 msr)
  175. {
  176. if (slot >= shared_msrs_global.nr)
  177. shared_msrs_global.nr = slot + 1;
  178. shared_msrs_global.msrs[slot] = msr;
  179. /* we need ensured the shared_msr_global have been updated */
  180. smp_wmb();
  181. }
  182. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  183. static void kvm_shared_msr_cpu_online(void)
  184. {
  185. unsigned i;
  186. for (i = 0; i < shared_msrs_global.nr; ++i)
  187. shared_msr_update(i, shared_msrs_global.msrs[i]);
  188. }
  189. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  190. {
  191. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  192. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  193. return;
  194. smsr->values[slot].curr = value;
  195. wrmsrl(shared_msrs_global.msrs[slot], value);
  196. if (!smsr->registered) {
  197. smsr->urn.on_user_return = kvm_on_user_return;
  198. user_return_notifier_register(&smsr->urn);
  199. smsr->registered = true;
  200. }
  201. }
  202. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  203. static void drop_user_return_notifiers(void *ignore)
  204. {
  205. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  206. if (smsr->registered)
  207. kvm_on_user_return(&smsr->urn);
  208. }
  209. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  210. {
  211. if (irqchip_in_kernel(vcpu->kvm))
  212. return vcpu->arch.apic_base;
  213. else
  214. return vcpu->arch.apic_base;
  215. }
  216. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  217. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  218. {
  219. /* TODO: reserve bits check */
  220. if (irqchip_in_kernel(vcpu->kvm))
  221. kvm_lapic_set_base(vcpu, data);
  222. else
  223. vcpu->arch.apic_base = data;
  224. }
  225. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  226. #define EXCPT_BENIGN 0
  227. #define EXCPT_CONTRIBUTORY 1
  228. #define EXCPT_PF 2
  229. static int exception_class(int vector)
  230. {
  231. switch (vector) {
  232. case PF_VECTOR:
  233. return EXCPT_PF;
  234. case DE_VECTOR:
  235. case TS_VECTOR:
  236. case NP_VECTOR:
  237. case SS_VECTOR:
  238. case GP_VECTOR:
  239. return EXCPT_CONTRIBUTORY;
  240. default:
  241. break;
  242. }
  243. return EXCPT_BENIGN;
  244. }
  245. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  246. unsigned nr, bool has_error, u32 error_code,
  247. bool reinject)
  248. {
  249. u32 prev_nr;
  250. int class1, class2;
  251. kvm_make_request(KVM_REQ_EVENT, vcpu);
  252. if (!vcpu->arch.exception.pending) {
  253. queue:
  254. vcpu->arch.exception.pending = true;
  255. vcpu->arch.exception.has_error_code = has_error;
  256. vcpu->arch.exception.nr = nr;
  257. vcpu->arch.exception.error_code = error_code;
  258. vcpu->arch.exception.reinject = reinject;
  259. return;
  260. }
  261. /* to check exception */
  262. prev_nr = vcpu->arch.exception.nr;
  263. if (prev_nr == DF_VECTOR) {
  264. /* triple fault -> shutdown */
  265. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  266. return;
  267. }
  268. class1 = exception_class(prev_nr);
  269. class2 = exception_class(nr);
  270. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  271. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  272. /* generate double fault per SDM Table 5-5 */
  273. vcpu->arch.exception.pending = true;
  274. vcpu->arch.exception.has_error_code = true;
  275. vcpu->arch.exception.nr = DF_VECTOR;
  276. vcpu->arch.exception.error_code = 0;
  277. } else
  278. /* replace previous exception with a new one in a hope
  279. that instruction re-execution will regenerate lost
  280. exception */
  281. goto queue;
  282. }
  283. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  284. {
  285. kvm_multiple_exception(vcpu, nr, false, 0, false);
  286. }
  287. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  288. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  289. {
  290. kvm_multiple_exception(vcpu, nr, false, 0, true);
  291. }
  292. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  293. void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
  294. {
  295. unsigned error_code = vcpu->arch.fault.error_code;
  296. ++vcpu->stat.pf_guest;
  297. vcpu->arch.cr2 = vcpu->arch.fault.address;
  298. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  299. }
  300. void kvm_propagate_fault(struct kvm_vcpu *vcpu)
  301. {
  302. if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
  303. vcpu->arch.nested_mmu.inject_page_fault(vcpu);
  304. else
  305. vcpu->arch.mmu.inject_page_fault(vcpu);
  306. vcpu->arch.fault.nested = false;
  307. }
  308. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  309. {
  310. kvm_make_request(KVM_REQ_EVENT, vcpu);
  311. vcpu->arch.nmi_pending = 1;
  312. }
  313. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  314. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  315. {
  316. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  317. }
  318. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  319. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  320. {
  321. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  322. }
  323. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  324. /*
  325. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  326. * a #GP and return false.
  327. */
  328. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  329. {
  330. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  331. return true;
  332. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  333. return false;
  334. }
  335. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  336. /*
  337. * This function will be used to read from the physical memory of the currently
  338. * running guest. The difference to kvm_read_guest_page is that this function
  339. * can read from guest physical or from the guest's guest physical memory.
  340. */
  341. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  342. gfn_t ngfn, void *data, int offset, int len,
  343. u32 access)
  344. {
  345. gfn_t real_gfn;
  346. gpa_t ngpa;
  347. ngpa = gfn_to_gpa(ngfn);
  348. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  349. if (real_gfn == UNMAPPED_GVA)
  350. return -EFAULT;
  351. real_gfn = gpa_to_gfn(real_gfn);
  352. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  353. }
  354. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  355. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  356. void *data, int offset, int len, u32 access)
  357. {
  358. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  359. data, offset, len, access);
  360. }
  361. /*
  362. * Load the pae pdptrs. Return true is they are all valid.
  363. */
  364. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  365. {
  366. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  367. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  368. int i;
  369. int ret;
  370. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  371. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  372. offset * sizeof(u64), sizeof(pdpte),
  373. PFERR_USER_MASK|PFERR_WRITE_MASK);
  374. if (ret < 0) {
  375. ret = 0;
  376. goto out;
  377. }
  378. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  379. if (is_present_gpte(pdpte[i]) &&
  380. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  381. ret = 0;
  382. goto out;
  383. }
  384. }
  385. ret = 1;
  386. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  387. __set_bit(VCPU_EXREG_PDPTR,
  388. (unsigned long *)&vcpu->arch.regs_avail);
  389. __set_bit(VCPU_EXREG_PDPTR,
  390. (unsigned long *)&vcpu->arch.regs_dirty);
  391. out:
  392. return ret;
  393. }
  394. EXPORT_SYMBOL_GPL(load_pdptrs);
  395. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  396. {
  397. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  398. bool changed = true;
  399. int offset;
  400. gfn_t gfn;
  401. int r;
  402. if (is_long_mode(vcpu) || !is_pae(vcpu))
  403. return false;
  404. if (!test_bit(VCPU_EXREG_PDPTR,
  405. (unsigned long *)&vcpu->arch.regs_avail))
  406. return true;
  407. gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
  408. offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
  409. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  410. PFERR_USER_MASK | PFERR_WRITE_MASK);
  411. if (r < 0)
  412. goto out;
  413. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  414. out:
  415. return changed;
  416. }
  417. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  418. {
  419. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  420. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  421. X86_CR0_CD | X86_CR0_NW;
  422. cr0 |= X86_CR0_ET;
  423. #ifdef CONFIG_X86_64
  424. if (cr0 & 0xffffffff00000000UL)
  425. return 1;
  426. #endif
  427. cr0 &= ~CR0_RESERVED_BITS;
  428. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  429. return 1;
  430. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  431. return 1;
  432. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  433. #ifdef CONFIG_X86_64
  434. if ((vcpu->arch.efer & EFER_LME)) {
  435. int cs_db, cs_l;
  436. if (!is_pae(vcpu))
  437. return 1;
  438. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  439. if (cs_l)
  440. return 1;
  441. } else
  442. #endif
  443. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  444. vcpu->arch.cr3))
  445. return 1;
  446. }
  447. kvm_x86_ops->set_cr0(vcpu, cr0);
  448. if ((cr0 ^ old_cr0) & update_bits)
  449. kvm_mmu_reset_context(vcpu);
  450. return 0;
  451. }
  452. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  453. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  454. {
  455. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  456. }
  457. EXPORT_SYMBOL_GPL(kvm_lmsw);
  458. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  459. {
  460. u64 xcr0;
  461. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  462. if (index != XCR_XFEATURE_ENABLED_MASK)
  463. return 1;
  464. xcr0 = xcr;
  465. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  466. return 1;
  467. if (!(xcr0 & XSTATE_FP))
  468. return 1;
  469. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  470. return 1;
  471. if (xcr0 & ~host_xcr0)
  472. return 1;
  473. vcpu->arch.xcr0 = xcr0;
  474. vcpu->guest_xcr0_loaded = 0;
  475. return 0;
  476. }
  477. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  478. {
  479. if (__kvm_set_xcr(vcpu, index, xcr)) {
  480. kvm_inject_gp(vcpu, 0);
  481. return 1;
  482. }
  483. return 0;
  484. }
  485. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  486. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  487. {
  488. struct kvm_cpuid_entry2 *best;
  489. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  490. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  491. }
  492. static void update_cpuid(struct kvm_vcpu *vcpu)
  493. {
  494. struct kvm_cpuid_entry2 *best;
  495. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  496. if (!best)
  497. return;
  498. /* Update OSXSAVE bit */
  499. if (cpu_has_xsave && best->function == 0x1) {
  500. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  501. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  502. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  503. }
  504. }
  505. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  506. {
  507. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  508. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  509. if (cr4 & CR4_RESERVED_BITS)
  510. return 1;
  511. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  512. return 1;
  513. if (is_long_mode(vcpu)) {
  514. if (!(cr4 & X86_CR4_PAE))
  515. return 1;
  516. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  517. && ((cr4 ^ old_cr4) & pdptr_bits)
  518. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
  519. return 1;
  520. if (cr4 & X86_CR4_VMXE)
  521. return 1;
  522. kvm_x86_ops->set_cr4(vcpu, cr4);
  523. if ((cr4 ^ old_cr4) & pdptr_bits)
  524. kvm_mmu_reset_context(vcpu);
  525. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  526. update_cpuid(vcpu);
  527. return 0;
  528. }
  529. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  530. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  531. {
  532. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  533. kvm_mmu_sync_roots(vcpu);
  534. kvm_mmu_flush_tlb(vcpu);
  535. return 0;
  536. }
  537. if (is_long_mode(vcpu)) {
  538. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  539. return 1;
  540. } else {
  541. if (is_pae(vcpu)) {
  542. if (cr3 & CR3_PAE_RESERVED_BITS)
  543. return 1;
  544. if (is_paging(vcpu) &&
  545. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  546. return 1;
  547. }
  548. /*
  549. * We don't check reserved bits in nonpae mode, because
  550. * this isn't enforced, and VMware depends on this.
  551. */
  552. }
  553. /*
  554. * Does the new cr3 value map to physical memory? (Note, we
  555. * catch an invalid cr3 even in real-mode, because it would
  556. * cause trouble later on when we turn on paging anyway.)
  557. *
  558. * A real CPU would silently accept an invalid cr3 and would
  559. * attempt to use it - with largely undefined (and often hard
  560. * to debug) behavior on the guest side.
  561. */
  562. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  563. return 1;
  564. vcpu->arch.cr3 = cr3;
  565. vcpu->arch.mmu.new_cr3(vcpu);
  566. return 0;
  567. }
  568. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  569. int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  570. {
  571. if (cr8 & CR8_RESERVED_BITS)
  572. return 1;
  573. if (irqchip_in_kernel(vcpu->kvm))
  574. kvm_lapic_set_tpr(vcpu, cr8);
  575. else
  576. vcpu->arch.cr8 = cr8;
  577. return 0;
  578. }
  579. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  580. {
  581. if (__kvm_set_cr8(vcpu, cr8))
  582. kvm_inject_gp(vcpu, 0);
  583. }
  584. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  585. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  586. {
  587. if (irqchip_in_kernel(vcpu->kvm))
  588. return kvm_lapic_get_cr8(vcpu);
  589. else
  590. return vcpu->arch.cr8;
  591. }
  592. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  593. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  594. {
  595. switch (dr) {
  596. case 0 ... 3:
  597. vcpu->arch.db[dr] = val;
  598. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  599. vcpu->arch.eff_db[dr] = val;
  600. break;
  601. case 4:
  602. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  603. return 1; /* #UD */
  604. /* fall through */
  605. case 6:
  606. if (val & 0xffffffff00000000ULL)
  607. return -1; /* #GP */
  608. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  609. break;
  610. case 5:
  611. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  612. return 1; /* #UD */
  613. /* fall through */
  614. default: /* 7 */
  615. if (val & 0xffffffff00000000ULL)
  616. return -1; /* #GP */
  617. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  618. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  619. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  620. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  621. }
  622. break;
  623. }
  624. return 0;
  625. }
  626. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  627. {
  628. int res;
  629. res = __kvm_set_dr(vcpu, dr, val);
  630. if (res > 0)
  631. kvm_queue_exception(vcpu, UD_VECTOR);
  632. else if (res < 0)
  633. kvm_inject_gp(vcpu, 0);
  634. return res;
  635. }
  636. EXPORT_SYMBOL_GPL(kvm_set_dr);
  637. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  638. {
  639. switch (dr) {
  640. case 0 ... 3:
  641. *val = vcpu->arch.db[dr];
  642. break;
  643. case 4:
  644. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  645. return 1;
  646. /* fall through */
  647. case 6:
  648. *val = vcpu->arch.dr6;
  649. break;
  650. case 5:
  651. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  652. return 1;
  653. /* fall through */
  654. default: /* 7 */
  655. *val = vcpu->arch.dr7;
  656. break;
  657. }
  658. return 0;
  659. }
  660. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  661. {
  662. if (_kvm_get_dr(vcpu, dr, val)) {
  663. kvm_queue_exception(vcpu, UD_VECTOR);
  664. return 1;
  665. }
  666. return 0;
  667. }
  668. EXPORT_SYMBOL_GPL(kvm_get_dr);
  669. /*
  670. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  671. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  672. *
  673. * This list is modified at module load time to reflect the
  674. * capabilities of the host cpu. This capabilities test skips MSRs that are
  675. * kvm-specific. Those are put in the beginning of the list.
  676. */
  677. #define KVM_SAVE_MSRS_BEGIN 7
  678. static u32 msrs_to_save[] = {
  679. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  680. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  681. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  682. HV_X64_MSR_APIC_ASSIST_PAGE,
  683. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  684. MSR_STAR,
  685. #ifdef CONFIG_X86_64
  686. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  687. #endif
  688. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  689. };
  690. static unsigned num_msrs_to_save;
  691. static u32 emulated_msrs[] = {
  692. MSR_IA32_MISC_ENABLE,
  693. MSR_IA32_MCG_STATUS,
  694. MSR_IA32_MCG_CTL,
  695. };
  696. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  697. {
  698. u64 old_efer = vcpu->arch.efer;
  699. if (efer & efer_reserved_bits)
  700. return 1;
  701. if (is_paging(vcpu)
  702. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  703. return 1;
  704. if (efer & EFER_FFXSR) {
  705. struct kvm_cpuid_entry2 *feat;
  706. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  707. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  708. return 1;
  709. }
  710. if (efer & EFER_SVME) {
  711. struct kvm_cpuid_entry2 *feat;
  712. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  713. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  714. return 1;
  715. }
  716. efer &= ~EFER_LMA;
  717. efer |= vcpu->arch.efer & EFER_LMA;
  718. kvm_x86_ops->set_efer(vcpu, efer);
  719. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  720. kvm_mmu_reset_context(vcpu);
  721. /* Update reserved bits */
  722. if ((efer ^ old_efer) & EFER_NX)
  723. kvm_mmu_reset_context(vcpu);
  724. return 0;
  725. }
  726. void kvm_enable_efer_bits(u64 mask)
  727. {
  728. efer_reserved_bits &= ~mask;
  729. }
  730. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  731. /*
  732. * Writes msr value into into the appropriate "register".
  733. * Returns 0 on success, non-0 otherwise.
  734. * Assumes vcpu_load() was already called.
  735. */
  736. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  737. {
  738. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  739. }
  740. /*
  741. * Adapt set_msr() to msr_io()'s calling convention
  742. */
  743. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  744. {
  745. return kvm_set_msr(vcpu, index, *data);
  746. }
  747. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  748. {
  749. int version;
  750. int r;
  751. struct pvclock_wall_clock wc;
  752. struct timespec boot;
  753. if (!wall_clock)
  754. return;
  755. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  756. if (r)
  757. return;
  758. if (version & 1)
  759. ++version; /* first time write, random junk */
  760. ++version;
  761. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  762. /*
  763. * The guest calculates current wall clock time by adding
  764. * system time (updated by kvm_guest_time_update below) to the
  765. * wall clock specified here. guest system time equals host
  766. * system time for us, thus we must fill in host boot time here.
  767. */
  768. getboottime(&boot);
  769. wc.sec = boot.tv_sec;
  770. wc.nsec = boot.tv_nsec;
  771. wc.version = version;
  772. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  773. version++;
  774. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  775. }
  776. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  777. {
  778. uint32_t quotient, remainder;
  779. /* Don't try to replace with do_div(), this one calculates
  780. * "(dividend << 32) / divisor" */
  781. __asm__ ( "divl %4"
  782. : "=a" (quotient), "=d" (remainder)
  783. : "0" (0), "1" (dividend), "r" (divisor) );
  784. return quotient;
  785. }
  786. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  787. s8 *pshift, u32 *pmultiplier)
  788. {
  789. uint64_t scaled64;
  790. int32_t shift = 0;
  791. uint64_t tps64;
  792. uint32_t tps32;
  793. tps64 = base_khz * 1000LL;
  794. scaled64 = scaled_khz * 1000LL;
  795. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  796. tps64 >>= 1;
  797. shift--;
  798. }
  799. tps32 = (uint32_t)tps64;
  800. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  801. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  802. scaled64 >>= 1;
  803. else
  804. tps32 <<= 1;
  805. shift++;
  806. }
  807. *pshift = shift;
  808. *pmultiplier = div_frac(scaled64, tps32);
  809. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  810. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  811. }
  812. static inline u64 get_kernel_ns(void)
  813. {
  814. struct timespec ts;
  815. WARN_ON(preemptible());
  816. ktime_get_ts(&ts);
  817. monotonic_to_bootbased(&ts);
  818. return timespec_to_ns(&ts);
  819. }
  820. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  821. unsigned long max_tsc_khz;
  822. static inline int kvm_tsc_changes_freq(void)
  823. {
  824. int cpu = get_cpu();
  825. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  826. cpufreq_quick_get(cpu) != 0;
  827. put_cpu();
  828. return ret;
  829. }
  830. static inline u64 nsec_to_cycles(u64 nsec)
  831. {
  832. u64 ret;
  833. WARN_ON(preemptible());
  834. if (kvm_tsc_changes_freq())
  835. printk_once(KERN_WARNING
  836. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  837. ret = nsec * __get_cpu_var(cpu_tsc_khz);
  838. do_div(ret, USEC_PER_SEC);
  839. return ret;
  840. }
  841. static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
  842. {
  843. /* Compute a scale to convert nanoseconds in TSC cycles */
  844. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  845. &kvm->arch.virtual_tsc_shift,
  846. &kvm->arch.virtual_tsc_mult);
  847. kvm->arch.virtual_tsc_khz = this_tsc_khz;
  848. }
  849. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  850. {
  851. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
  852. vcpu->kvm->arch.virtual_tsc_mult,
  853. vcpu->kvm->arch.virtual_tsc_shift);
  854. tsc += vcpu->arch.last_tsc_write;
  855. return tsc;
  856. }
  857. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  858. {
  859. struct kvm *kvm = vcpu->kvm;
  860. u64 offset, ns, elapsed;
  861. unsigned long flags;
  862. s64 sdiff;
  863. spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  864. offset = data - native_read_tsc();
  865. ns = get_kernel_ns();
  866. elapsed = ns - kvm->arch.last_tsc_nsec;
  867. sdiff = data - kvm->arch.last_tsc_write;
  868. if (sdiff < 0)
  869. sdiff = -sdiff;
  870. /*
  871. * Special case: close write to TSC within 5 seconds of
  872. * another CPU is interpreted as an attempt to synchronize
  873. * The 5 seconds is to accomodate host load / swapping as
  874. * well as any reset of TSC during the boot process.
  875. *
  876. * In that case, for a reliable TSC, we can match TSC offsets,
  877. * or make a best guest using elapsed value.
  878. */
  879. if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
  880. elapsed < 5ULL * NSEC_PER_SEC) {
  881. if (!check_tsc_unstable()) {
  882. offset = kvm->arch.last_tsc_offset;
  883. pr_debug("kvm: matched tsc offset for %llu\n", data);
  884. } else {
  885. u64 delta = nsec_to_cycles(elapsed);
  886. offset += delta;
  887. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  888. }
  889. ns = kvm->arch.last_tsc_nsec;
  890. }
  891. kvm->arch.last_tsc_nsec = ns;
  892. kvm->arch.last_tsc_write = data;
  893. kvm->arch.last_tsc_offset = offset;
  894. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  895. spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  896. /* Reset of TSC must disable overshoot protection below */
  897. vcpu->arch.hv_clock.tsc_timestamp = 0;
  898. vcpu->arch.last_tsc_write = data;
  899. vcpu->arch.last_tsc_nsec = ns;
  900. }
  901. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  902. static int kvm_guest_time_update(struct kvm_vcpu *v)
  903. {
  904. unsigned long flags;
  905. struct kvm_vcpu_arch *vcpu = &v->arch;
  906. void *shared_kaddr;
  907. unsigned long this_tsc_khz;
  908. s64 kernel_ns, max_kernel_ns;
  909. u64 tsc_timestamp;
  910. /* Keep irq disabled to prevent changes to the clock */
  911. local_irq_save(flags);
  912. kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
  913. kernel_ns = get_kernel_ns();
  914. this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  915. if (unlikely(this_tsc_khz == 0)) {
  916. local_irq_restore(flags);
  917. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  918. return 1;
  919. }
  920. /*
  921. * We may have to catch up the TSC to match elapsed wall clock
  922. * time for two reasons, even if kvmclock is used.
  923. * 1) CPU could have been running below the maximum TSC rate
  924. * 2) Broken TSC compensation resets the base at each VCPU
  925. * entry to avoid unknown leaps of TSC even when running
  926. * again on the same CPU. This may cause apparent elapsed
  927. * time to disappear, and the guest to stand still or run
  928. * very slowly.
  929. */
  930. if (vcpu->tsc_catchup) {
  931. u64 tsc = compute_guest_tsc(v, kernel_ns);
  932. if (tsc > tsc_timestamp) {
  933. kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
  934. tsc_timestamp = tsc;
  935. }
  936. }
  937. local_irq_restore(flags);
  938. if (!vcpu->time_page)
  939. return 0;
  940. /*
  941. * Time as measured by the TSC may go backwards when resetting the base
  942. * tsc_timestamp. The reason for this is that the TSC resolution is
  943. * higher than the resolution of the other clock scales. Thus, many
  944. * possible measurments of the TSC correspond to one measurement of any
  945. * other clock, and so a spread of values is possible. This is not a
  946. * problem for the computation of the nanosecond clock; with TSC rates
  947. * around 1GHZ, there can only be a few cycles which correspond to one
  948. * nanosecond value, and any path through this code will inevitably
  949. * take longer than that. However, with the kernel_ns value itself,
  950. * the precision may be much lower, down to HZ granularity. If the
  951. * first sampling of TSC against kernel_ns ends in the low part of the
  952. * range, and the second in the high end of the range, we can get:
  953. *
  954. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  955. *
  956. * As the sampling errors potentially range in the thousands of cycles,
  957. * it is possible such a time value has already been observed by the
  958. * guest. To protect against this, we must compute the system time as
  959. * observed by the guest and ensure the new system time is greater.
  960. */
  961. max_kernel_ns = 0;
  962. if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
  963. max_kernel_ns = vcpu->last_guest_tsc -
  964. vcpu->hv_clock.tsc_timestamp;
  965. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  966. vcpu->hv_clock.tsc_to_system_mul,
  967. vcpu->hv_clock.tsc_shift);
  968. max_kernel_ns += vcpu->last_kernel_ns;
  969. }
  970. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  971. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  972. &vcpu->hv_clock.tsc_shift,
  973. &vcpu->hv_clock.tsc_to_system_mul);
  974. vcpu->hw_tsc_khz = this_tsc_khz;
  975. }
  976. if (max_kernel_ns > kernel_ns)
  977. kernel_ns = max_kernel_ns;
  978. /* With all the info we got, fill in the values */
  979. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  980. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  981. vcpu->last_kernel_ns = kernel_ns;
  982. vcpu->last_guest_tsc = tsc_timestamp;
  983. vcpu->hv_clock.flags = 0;
  984. /*
  985. * The interface expects us to write an even number signaling that the
  986. * update is finished. Since the guest won't see the intermediate
  987. * state, we just increase by 2 at the end.
  988. */
  989. vcpu->hv_clock.version += 2;
  990. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  991. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  992. sizeof(vcpu->hv_clock));
  993. kunmap_atomic(shared_kaddr, KM_USER0);
  994. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  995. return 0;
  996. }
  997. static bool msr_mtrr_valid(unsigned msr)
  998. {
  999. switch (msr) {
  1000. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1001. case MSR_MTRRfix64K_00000:
  1002. case MSR_MTRRfix16K_80000:
  1003. case MSR_MTRRfix16K_A0000:
  1004. case MSR_MTRRfix4K_C0000:
  1005. case MSR_MTRRfix4K_C8000:
  1006. case MSR_MTRRfix4K_D0000:
  1007. case MSR_MTRRfix4K_D8000:
  1008. case MSR_MTRRfix4K_E0000:
  1009. case MSR_MTRRfix4K_E8000:
  1010. case MSR_MTRRfix4K_F0000:
  1011. case MSR_MTRRfix4K_F8000:
  1012. case MSR_MTRRdefType:
  1013. case MSR_IA32_CR_PAT:
  1014. return true;
  1015. case 0x2f8:
  1016. return true;
  1017. }
  1018. return false;
  1019. }
  1020. static bool valid_pat_type(unsigned t)
  1021. {
  1022. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1023. }
  1024. static bool valid_mtrr_type(unsigned t)
  1025. {
  1026. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1027. }
  1028. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1029. {
  1030. int i;
  1031. if (!msr_mtrr_valid(msr))
  1032. return false;
  1033. if (msr == MSR_IA32_CR_PAT) {
  1034. for (i = 0; i < 8; i++)
  1035. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1036. return false;
  1037. return true;
  1038. } else if (msr == MSR_MTRRdefType) {
  1039. if (data & ~0xcff)
  1040. return false;
  1041. return valid_mtrr_type(data & 0xff);
  1042. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1043. for (i = 0; i < 8 ; i++)
  1044. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1045. return false;
  1046. return true;
  1047. }
  1048. /* variable MTRRs */
  1049. return valid_mtrr_type(data & 0xff);
  1050. }
  1051. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1052. {
  1053. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1054. if (!mtrr_valid(vcpu, msr, data))
  1055. return 1;
  1056. if (msr == MSR_MTRRdefType) {
  1057. vcpu->arch.mtrr_state.def_type = data;
  1058. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1059. } else if (msr == MSR_MTRRfix64K_00000)
  1060. p[0] = data;
  1061. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1062. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1063. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1064. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1065. else if (msr == MSR_IA32_CR_PAT)
  1066. vcpu->arch.pat = data;
  1067. else { /* Variable MTRRs */
  1068. int idx, is_mtrr_mask;
  1069. u64 *pt;
  1070. idx = (msr - 0x200) / 2;
  1071. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1072. if (!is_mtrr_mask)
  1073. pt =
  1074. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1075. else
  1076. pt =
  1077. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1078. *pt = data;
  1079. }
  1080. kvm_mmu_reset_context(vcpu);
  1081. return 0;
  1082. }
  1083. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1084. {
  1085. u64 mcg_cap = vcpu->arch.mcg_cap;
  1086. unsigned bank_num = mcg_cap & 0xff;
  1087. switch (msr) {
  1088. case MSR_IA32_MCG_STATUS:
  1089. vcpu->arch.mcg_status = data;
  1090. break;
  1091. case MSR_IA32_MCG_CTL:
  1092. if (!(mcg_cap & MCG_CTL_P))
  1093. return 1;
  1094. if (data != 0 && data != ~(u64)0)
  1095. return -1;
  1096. vcpu->arch.mcg_ctl = data;
  1097. break;
  1098. default:
  1099. if (msr >= MSR_IA32_MC0_CTL &&
  1100. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1101. u32 offset = msr - MSR_IA32_MC0_CTL;
  1102. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1103. * some Linux kernels though clear bit 10 in bank 4 to
  1104. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1105. * this to avoid an uncatched #GP in the guest
  1106. */
  1107. if ((offset & 0x3) == 0 &&
  1108. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1109. return -1;
  1110. vcpu->arch.mce_banks[offset] = data;
  1111. break;
  1112. }
  1113. return 1;
  1114. }
  1115. return 0;
  1116. }
  1117. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1118. {
  1119. struct kvm *kvm = vcpu->kvm;
  1120. int lm = is_long_mode(vcpu);
  1121. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1122. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1123. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1124. : kvm->arch.xen_hvm_config.blob_size_32;
  1125. u32 page_num = data & ~PAGE_MASK;
  1126. u64 page_addr = data & PAGE_MASK;
  1127. u8 *page;
  1128. int r;
  1129. r = -E2BIG;
  1130. if (page_num >= blob_size)
  1131. goto out;
  1132. r = -ENOMEM;
  1133. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1134. if (!page)
  1135. goto out;
  1136. r = -EFAULT;
  1137. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1138. goto out_free;
  1139. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1140. goto out_free;
  1141. r = 0;
  1142. out_free:
  1143. kfree(page);
  1144. out:
  1145. return r;
  1146. }
  1147. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1148. {
  1149. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1150. }
  1151. static bool kvm_hv_msr_partition_wide(u32 msr)
  1152. {
  1153. bool r = false;
  1154. switch (msr) {
  1155. case HV_X64_MSR_GUEST_OS_ID:
  1156. case HV_X64_MSR_HYPERCALL:
  1157. r = true;
  1158. break;
  1159. }
  1160. return r;
  1161. }
  1162. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1163. {
  1164. struct kvm *kvm = vcpu->kvm;
  1165. switch (msr) {
  1166. case HV_X64_MSR_GUEST_OS_ID:
  1167. kvm->arch.hv_guest_os_id = data;
  1168. /* setting guest os id to zero disables hypercall page */
  1169. if (!kvm->arch.hv_guest_os_id)
  1170. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1171. break;
  1172. case HV_X64_MSR_HYPERCALL: {
  1173. u64 gfn;
  1174. unsigned long addr;
  1175. u8 instructions[4];
  1176. /* if guest os id is not set hypercall should remain disabled */
  1177. if (!kvm->arch.hv_guest_os_id)
  1178. break;
  1179. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1180. kvm->arch.hv_hypercall = data;
  1181. break;
  1182. }
  1183. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1184. addr = gfn_to_hva(kvm, gfn);
  1185. if (kvm_is_error_hva(addr))
  1186. return 1;
  1187. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1188. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1189. if (copy_to_user((void __user *)addr, instructions, 4))
  1190. return 1;
  1191. kvm->arch.hv_hypercall = data;
  1192. break;
  1193. }
  1194. default:
  1195. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1196. "data 0x%llx\n", msr, data);
  1197. return 1;
  1198. }
  1199. return 0;
  1200. }
  1201. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1202. {
  1203. switch (msr) {
  1204. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1205. unsigned long addr;
  1206. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1207. vcpu->arch.hv_vapic = data;
  1208. break;
  1209. }
  1210. addr = gfn_to_hva(vcpu->kvm, data >>
  1211. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1212. if (kvm_is_error_hva(addr))
  1213. return 1;
  1214. if (clear_user((void __user *)addr, PAGE_SIZE))
  1215. return 1;
  1216. vcpu->arch.hv_vapic = data;
  1217. break;
  1218. }
  1219. case HV_X64_MSR_EOI:
  1220. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1221. case HV_X64_MSR_ICR:
  1222. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1223. case HV_X64_MSR_TPR:
  1224. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1225. default:
  1226. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1227. "data 0x%llx\n", msr, data);
  1228. return 1;
  1229. }
  1230. return 0;
  1231. }
  1232. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1233. {
  1234. switch (msr) {
  1235. case MSR_EFER:
  1236. return set_efer(vcpu, data);
  1237. case MSR_K7_HWCR:
  1238. data &= ~(u64)0x40; /* ignore flush filter disable */
  1239. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1240. if (data != 0) {
  1241. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1242. data);
  1243. return 1;
  1244. }
  1245. break;
  1246. case MSR_FAM10H_MMIO_CONF_BASE:
  1247. if (data != 0) {
  1248. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1249. "0x%llx\n", data);
  1250. return 1;
  1251. }
  1252. break;
  1253. case MSR_AMD64_NB_CFG:
  1254. break;
  1255. case MSR_IA32_DEBUGCTLMSR:
  1256. if (!data) {
  1257. /* We support the non-activated case already */
  1258. break;
  1259. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1260. /* Values other than LBR and BTF are vendor-specific,
  1261. thus reserved and should throw a #GP */
  1262. return 1;
  1263. }
  1264. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1265. __func__, data);
  1266. break;
  1267. case MSR_IA32_UCODE_REV:
  1268. case MSR_IA32_UCODE_WRITE:
  1269. case MSR_VM_HSAVE_PA:
  1270. case MSR_AMD64_PATCH_LOADER:
  1271. break;
  1272. case 0x200 ... 0x2ff:
  1273. return set_msr_mtrr(vcpu, msr, data);
  1274. case MSR_IA32_APICBASE:
  1275. kvm_set_apic_base(vcpu, data);
  1276. break;
  1277. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1278. return kvm_x2apic_msr_write(vcpu, msr, data);
  1279. case MSR_IA32_MISC_ENABLE:
  1280. vcpu->arch.ia32_misc_enable_msr = data;
  1281. break;
  1282. case MSR_KVM_WALL_CLOCK_NEW:
  1283. case MSR_KVM_WALL_CLOCK:
  1284. vcpu->kvm->arch.wall_clock = data;
  1285. kvm_write_wall_clock(vcpu->kvm, data);
  1286. break;
  1287. case MSR_KVM_SYSTEM_TIME_NEW:
  1288. case MSR_KVM_SYSTEM_TIME: {
  1289. if (vcpu->arch.time_page) {
  1290. kvm_release_page_dirty(vcpu->arch.time_page);
  1291. vcpu->arch.time_page = NULL;
  1292. }
  1293. vcpu->arch.time = data;
  1294. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1295. /* we verify if the enable bit is set... */
  1296. if (!(data & 1))
  1297. break;
  1298. /* ...but clean it before doing the actual write */
  1299. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1300. vcpu->arch.time_page =
  1301. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1302. if (is_error_page(vcpu->arch.time_page)) {
  1303. kvm_release_page_clean(vcpu->arch.time_page);
  1304. vcpu->arch.time_page = NULL;
  1305. }
  1306. break;
  1307. }
  1308. case MSR_IA32_MCG_CTL:
  1309. case MSR_IA32_MCG_STATUS:
  1310. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1311. return set_msr_mce(vcpu, msr, data);
  1312. /* Performance counters are not protected by a CPUID bit,
  1313. * so we should check all of them in the generic path for the sake of
  1314. * cross vendor migration.
  1315. * Writing a zero into the event select MSRs disables them,
  1316. * which we perfectly emulate ;-). Any other value should be at least
  1317. * reported, some guests depend on them.
  1318. */
  1319. case MSR_P6_EVNTSEL0:
  1320. case MSR_P6_EVNTSEL1:
  1321. case MSR_K7_EVNTSEL0:
  1322. case MSR_K7_EVNTSEL1:
  1323. case MSR_K7_EVNTSEL2:
  1324. case MSR_K7_EVNTSEL3:
  1325. if (data != 0)
  1326. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1327. "0x%x data 0x%llx\n", msr, data);
  1328. break;
  1329. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1330. * so we ignore writes to make it happy.
  1331. */
  1332. case MSR_P6_PERFCTR0:
  1333. case MSR_P6_PERFCTR1:
  1334. case MSR_K7_PERFCTR0:
  1335. case MSR_K7_PERFCTR1:
  1336. case MSR_K7_PERFCTR2:
  1337. case MSR_K7_PERFCTR3:
  1338. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1339. "0x%x data 0x%llx\n", msr, data);
  1340. break;
  1341. case MSR_K7_CLK_CTL:
  1342. /*
  1343. * Ignore all writes to this no longer documented MSR.
  1344. * Writes are only relevant for old K7 processors,
  1345. * all pre-dating SVM, but a recommended workaround from
  1346. * AMD for these chips. It is possible to speicify the
  1347. * affected processor models on the command line, hence
  1348. * the need to ignore the workaround.
  1349. */
  1350. break;
  1351. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1352. if (kvm_hv_msr_partition_wide(msr)) {
  1353. int r;
  1354. mutex_lock(&vcpu->kvm->lock);
  1355. r = set_msr_hyperv_pw(vcpu, msr, data);
  1356. mutex_unlock(&vcpu->kvm->lock);
  1357. return r;
  1358. } else
  1359. return set_msr_hyperv(vcpu, msr, data);
  1360. break;
  1361. default:
  1362. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1363. return xen_hvm_config(vcpu, data);
  1364. if (!ignore_msrs) {
  1365. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1366. msr, data);
  1367. return 1;
  1368. } else {
  1369. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1370. msr, data);
  1371. break;
  1372. }
  1373. }
  1374. return 0;
  1375. }
  1376. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1377. /*
  1378. * Reads an msr value (of 'msr_index') into 'pdata'.
  1379. * Returns 0 on success, non-0 otherwise.
  1380. * Assumes vcpu_load() was already called.
  1381. */
  1382. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1383. {
  1384. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1385. }
  1386. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1387. {
  1388. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1389. if (!msr_mtrr_valid(msr))
  1390. return 1;
  1391. if (msr == MSR_MTRRdefType)
  1392. *pdata = vcpu->arch.mtrr_state.def_type +
  1393. (vcpu->arch.mtrr_state.enabled << 10);
  1394. else if (msr == MSR_MTRRfix64K_00000)
  1395. *pdata = p[0];
  1396. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1397. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1398. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1399. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1400. else if (msr == MSR_IA32_CR_PAT)
  1401. *pdata = vcpu->arch.pat;
  1402. else { /* Variable MTRRs */
  1403. int idx, is_mtrr_mask;
  1404. u64 *pt;
  1405. idx = (msr - 0x200) / 2;
  1406. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1407. if (!is_mtrr_mask)
  1408. pt =
  1409. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1410. else
  1411. pt =
  1412. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1413. *pdata = *pt;
  1414. }
  1415. return 0;
  1416. }
  1417. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1418. {
  1419. u64 data;
  1420. u64 mcg_cap = vcpu->arch.mcg_cap;
  1421. unsigned bank_num = mcg_cap & 0xff;
  1422. switch (msr) {
  1423. case MSR_IA32_P5_MC_ADDR:
  1424. case MSR_IA32_P5_MC_TYPE:
  1425. data = 0;
  1426. break;
  1427. case MSR_IA32_MCG_CAP:
  1428. data = vcpu->arch.mcg_cap;
  1429. break;
  1430. case MSR_IA32_MCG_CTL:
  1431. if (!(mcg_cap & MCG_CTL_P))
  1432. return 1;
  1433. data = vcpu->arch.mcg_ctl;
  1434. break;
  1435. case MSR_IA32_MCG_STATUS:
  1436. data = vcpu->arch.mcg_status;
  1437. break;
  1438. default:
  1439. if (msr >= MSR_IA32_MC0_CTL &&
  1440. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1441. u32 offset = msr - MSR_IA32_MC0_CTL;
  1442. data = vcpu->arch.mce_banks[offset];
  1443. break;
  1444. }
  1445. return 1;
  1446. }
  1447. *pdata = data;
  1448. return 0;
  1449. }
  1450. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1451. {
  1452. u64 data = 0;
  1453. struct kvm *kvm = vcpu->kvm;
  1454. switch (msr) {
  1455. case HV_X64_MSR_GUEST_OS_ID:
  1456. data = kvm->arch.hv_guest_os_id;
  1457. break;
  1458. case HV_X64_MSR_HYPERCALL:
  1459. data = kvm->arch.hv_hypercall;
  1460. break;
  1461. default:
  1462. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1463. return 1;
  1464. }
  1465. *pdata = data;
  1466. return 0;
  1467. }
  1468. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1469. {
  1470. u64 data = 0;
  1471. switch (msr) {
  1472. case HV_X64_MSR_VP_INDEX: {
  1473. int r;
  1474. struct kvm_vcpu *v;
  1475. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1476. if (v == vcpu)
  1477. data = r;
  1478. break;
  1479. }
  1480. case HV_X64_MSR_EOI:
  1481. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1482. case HV_X64_MSR_ICR:
  1483. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1484. case HV_X64_MSR_TPR:
  1485. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1486. default:
  1487. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1488. return 1;
  1489. }
  1490. *pdata = data;
  1491. return 0;
  1492. }
  1493. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1494. {
  1495. u64 data;
  1496. switch (msr) {
  1497. case MSR_IA32_PLATFORM_ID:
  1498. case MSR_IA32_UCODE_REV:
  1499. case MSR_IA32_EBL_CR_POWERON:
  1500. case MSR_IA32_DEBUGCTLMSR:
  1501. case MSR_IA32_LASTBRANCHFROMIP:
  1502. case MSR_IA32_LASTBRANCHTOIP:
  1503. case MSR_IA32_LASTINTFROMIP:
  1504. case MSR_IA32_LASTINTTOIP:
  1505. case MSR_K8_SYSCFG:
  1506. case MSR_K7_HWCR:
  1507. case MSR_VM_HSAVE_PA:
  1508. case MSR_P6_PERFCTR0:
  1509. case MSR_P6_PERFCTR1:
  1510. case MSR_P6_EVNTSEL0:
  1511. case MSR_P6_EVNTSEL1:
  1512. case MSR_K7_EVNTSEL0:
  1513. case MSR_K7_PERFCTR0:
  1514. case MSR_K8_INT_PENDING_MSG:
  1515. case MSR_AMD64_NB_CFG:
  1516. case MSR_FAM10H_MMIO_CONF_BASE:
  1517. data = 0;
  1518. break;
  1519. case MSR_MTRRcap:
  1520. data = 0x500 | KVM_NR_VAR_MTRR;
  1521. break;
  1522. case 0x200 ... 0x2ff:
  1523. return get_msr_mtrr(vcpu, msr, pdata);
  1524. case 0xcd: /* fsb frequency */
  1525. data = 3;
  1526. break;
  1527. /*
  1528. * MSR_EBC_FREQUENCY_ID
  1529. * Conservative value valid for even the basic CPU models.
  1530. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1531. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1532. * and 266MHz for model 3, or 4. Set Core Clock
  1533. * Frequency to System Bus Frequency Ratio to 1 (bits
  1534. * 31:24) even though these are only valid for CPU
  1535. * models > 2, however guests may end up dividing or
  1536. * multiplying by zero otherwise.
  1537. */
  1538. case MSR_EBC_FREQUENCY_ID:
  1539. data = 1 << 24;
  1540. break;
  1541. case MSR_IA32_APICBASE:
  1542. data = kvm_get_apic_base(vcpu);
  1543. break;
  1544. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1545. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1546. break;
  1547. case MSR_IA32_MISC_ENABLE:
  1548. data = vcpu->arch.ia32_misc_enable_msr;
  1549. break;
  1550. case MSR_IA32_PERF_STATUS:
  1551. /* TSC increment by tick */
  1552. data = 1000ULL;
  1553. /* CPU multiplier */
  1554. data |= (((uint64_t)4ULL) << 40);
  1555. break;
  1556. case MSR_EFER:
  1557. data = vcpu->arch.efer;
  1558. break;
  1559. case MSR_KVM_WALL_CLOCK:
  1560. case MSR_KVM_WALL_CLOCK_NEW:
  1561. data = vcpu->kvm->arch.wall_clock;
  1562. break;
  1563. case MSR_KVM_SYSTEM_TIME:
  1564. case MSR_KVM_SYSTEM_TIME_NEW:
  1565. data = vcpu->arch.time;
  1566. break;
  1567. case MSR_IA32_P5_MC_ADDR:
  1568. case MSR_IA32_P5_MC_TYPE:
  1569. case MSR_IA32_MCG_CAP:
  1570. case MSR_IA32_MCG_CTL:
  1571. case MSR_IA32_MCG_STATUS:
  1572. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1573. return get_msr_mce(vcpu, msr, pdata);
  1574. case MSR_K7_CLK_CTL:
  1575. /*
  1576. * Provide expected ramp-up count for K7. All other
  1577. * are set to zero, indicating minimum divisors for
  1578. * every field.
  1579. *
  1580. * This prevents guest kernels on AMD host with CPU
  1581. * type 6, model 8 and higher from exploding due to
  1582. * the rdmsr failing.
  1583. */
  1584. data = 0x20000000;
  1585. break;
  1586. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1587. if (kvm_hv_msr_partition_wide(msr)) {
  1588. int r;
  1589. mutex_lock(&vcpu->kvm->lock);
  1590. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1591. mutex_unlock(&vcpu->kvm->lock);
  1592. return r;
  1593. } else
  1594. return get_msr_hyperv(vcpu, msr, pdata);
  1595. break;
  1596. default:
  1597. if (!ignore_msrs) {
  1598. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1599. return 1;
  1600. } else {
  1601. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1602. data = 0;
  1603. }
  1604. break;
  1605. }
  1606. *pdata = data;
  1607. return 0;
  1608. }
  1609. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1610. /*
  1611. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1612. *
  1613. * @return number of msrs set successfully.
  1614. */
  1615. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1616. struct kvm_msr_entry *entries,
  1617. int (*do_msr)(struct kvm_vcpu *vcpu,
  1618. unsigned index, u64 *data))
  1619. {
  1620. int i, idx;
  1621. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1622. for (i = 0; i < msrs->nmsrs; ++i)
  1623. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1624. break;
  1625. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1626. return i;
  1627. }
  1628. /*
  1629. * Read or write a bunch of msrs. Parameters are user addresses.
  1630. *
  1631. * @return number of msrs set successfully.
  1632. */
  1633. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1634. int (*do_msr)(struct kvm_vcpu *vcpu,
  1635. unsigned index, u64 *data),
  1636. int writeback)
  1637. {
  1638. struct kvm_msrs msrs;
  1639. struct kvm_msr_entry *entries;
  1640. int r, n;
  1641. unsigned size;
  1642. r = -EFAULT;
  1643. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1644. goto out;
  1645. r = -E2BIG;
  1646. if (msrs.nmsrs >= MAX_IO_MSRS)
  1647. goto out;
  1648. r = -ENOMEM;
  1649. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1650. entries = kmalloc(size, GFP_KERNEL);
  1651. if (!entries)
  1652. goto out;
  1653. r = -EFAULT;
  1654. if (copy_from_user(entries, user_msrs->entries, size))
  1655. goto out_free;
  1656. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1657. if (r < 0)
  1658. goto out_free;
  1659. r = -EFAULT;
  1660. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1661. goto out_free;
  1662. r = n;
  1663. out_free:
  1664. kfree(entries);
  1665. out:
  1666. return r;
  1667. }
  1668. int kvm_dev_ioctl_check_extension(long ext)
  1669. {
  1670. int r;
  1671. switch (ext) {
  1672. case KVM_CAP_IRQCHIP:
  1673. case KVM_CAP_HLT:
  1674. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1675. case KVM_CAP_SET_TSS_ADDR:
  1676. case KVM_CAP_EXT_CPUID:
  1677. case KVM_CAP_CLOCKSOURCE:
  1678. case KVM_CAP_PIT:
  1679. case KVM_CAP_NOP_IO_DELAY:
  1680. case KVM_CAP_MP_STATE:
  1681. case KVM_CAP_SYNC_MMU:
  1682. case KVM_CAP_REINJECT_CONTROL:
  1683. case KVM_CAP_IRQ_INJECT_STATUS:
  1684. case KVM_CAP_ASSIGN_DEV_IRQ:
  1685. case KVM_CAP_IRQFD:
  1686. case KVM_CAP_IOEVENTFD:
  1687. case KVM_CAP_PIT2:
  1688. case KVM_CAP_PIT_STATE2:
  1689. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1690. case KVM_CAP_XEN_HVM:
  1691. case KVM_CAP_ADJUST_CLOCK:
  1692. case KVM_CAP_VCPU_EVENTS:
  1693. case KVM_CAP_HYPERV:
  1694. case KVM_CAP_HYPERV_VAPIC:
  1695. case KVM_CAP_HYPERV_SPIN:
  1696. case KVM_CAP_PCI_SEGMENT:
  1697. case KVM_CAP_DEBUGREGS:
  1698. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1699. case KVM_CAP_XSAVE:
  1700. r = 1;
  1701. break;
  1702. case KVM_CAP_COALESCED_MMIO:
  1703. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1704. break;
  1705. case KVM_CAP_VAPIC:
  1706. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1707. break;
  1708. case KVM_CAP_NR_VCPUS:
  1709. r = KVM_MAX_VCPUS;
  1710. break;
  1711. case KVM_CAP_NR_MEMSLOTS:
  1712. r = KVM_MEMORY_SLOTS;
  1713. break;
  1714. case KVM_CAP_PV_MMU: /* obsolete */
  1715. r = 0;
  1716. break;
  1717. case KVM_CAP_IOMMU:
  1718. r = iommu_found();
  1719. break;
  1720. case KVM_CAP_MCE:
  1721. r = KVM_MAX_MCE_BANKS;
  1722. break;
  1723. case KVM_CAP_XCRS:
  1724. r = cpu_has_xsave;
  1725. break;
  1726. default:
  1727. r = 0;
  1728. break;
  1729. }
  1730. return r;
  1731. }
  1732. long kvm_arch_dev_ioctl(struct file *filp,
  1733. unsigned int ioctl, unsigned long arg)
  1734. {
  1735. void __user *argp = (void __user *)arg;
  1736. long r;
  1737. switch (ioctl) {
  1738. case KVM_GET_MSR_INDEX_LIST: {
  1739. struct kvm_msr_list __user *user_msr_list = argp;
  1740. struct kvm_msr_list msr_list;
  1741. unsigned n;
  1742. r = -EFAULT;
  1743. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1744. goto out;
  1745. n = msr_list.nmsrs;
  1746. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1747. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1748. goto out;
  1749. r = -E2BIG;
  1750. if (n < msr_list.nmsrs)
  1751. goto out;
  1752. r = -EFAULT;
  1753. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1754. num_msrs_to_save * sizeof(u32)))
  1755. goto out;
  1756. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1757. &emulated_msrs,
  1758. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1759. goto out;
  1760. r = 0;
  1761. break;
  1762. }
  1763. case KVM_GET_SUPPORTED_CPUID: {
  1764. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1765. struct kvm_cpuid2 cpuid;
  1766. r = -EFAULT;
  1767. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1768. goto out;
  1769. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1770. cpuid_arg->entries);
  1771. if (r)
  1772. goto out;
  1773. r = -EFAULT;
  1774. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1775. goto out;
  1776. r = 0;
  1777. break;
  1778. }
  1779. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1780. u64 mce_cap;
  1781. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1782. r = -EFAULT;
  1783. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1784. goto out;
  1785. r = 0;
  1786. break;
  1787. }
  1788. default:
  1789. r = -EINVAL;
  1790. }
  1791. out:
  1792. return r;
  1793. }
  1794. static void wbinvd_ipi(void *garbage)
  1795. {
  1796. wbinvd();
  1797. }
  1798. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1799. {
  1800. return vcpu->kvm->arch.iommu_domain &&
  1801. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1802. }
  1803. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1804. {
  1805. /* Address WBINVD may be executed by guest */
  1806. if (need_emulate_wbinvd(vcpu)) {
  1807. if (kvm_x86_ops->has_wbinvd_exit())
  1808. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1809. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1810. smp_call_function_single(vcpu->cpu,
  1811. wbinvd_ipi, NULL, 1);
  1812. }
  1813. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1814. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1815. /* Make sure TSC doesn't go backwards */
  1816. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  1817. native_read_tsc() - vcpu->arch.last_host_tsc;
  1818. if (tsc_delta < 0)
  1819. mark_tsc_unstable("KVM discovered backwards TSC");
  1820. if (check_tsc_unstable()) {
  1821. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1822. vcpu->arch.tsc_catchup = 1;
  1823. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1824. }
  1825. if (vcpu->cpu != cpu)
  1826. kvm_migrate_timers(vcpu);
  1827. vcpu->cpu = cpu;
  1828. }
  1829. }
  1830. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1831. {
  1832. kvm_x86_ops->vcpu_put(vcpu);
  1833. kvm_put_guest_fpu(vcpu);
  1834. vcpu->arch.last_host_tsc = native_read_tsc();
  1835. }
  1836. static int is_efer_nx(void)
  1837. {
  1838. unsigned long long efer = 0;
  1839. rdmsrl_safe(MSR_EFER, &efer);
  1840. return efer & EFER_NX;
  1841. }
  1842. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1843. {
  1844. int i;
  1845. struct kvm_cpuid_entry2 *e, *entry;
  1846. entry = NULL;
  1847. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1848. e = &vcpu->arch.cpuid_entries[i];
  1849. if (e->function == 0x80000001) {
  1850. entry = e;
  1851. break;
  1852. }
  1853. }
  1854. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1855. entry->edx &= ~(1 << 20);
  1856. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1857. }
  1858. }
  1859. /* when an old userspace process fills a new kernel module */
  1860. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1861. struct kvm_cpuid *cpuid,
  1862. struct kvm_cpuid_entry __user *entries)
  1863. {
  1864. int r, i;
  1865. struct kvm_cpuid_entry *cpuid_entries;
  1866. r = -E2BIG;
  1867. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1868. goto out;
  1869. r = -ENOMEM;
  1870. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1871. if (!cpuid_entries)
  1872. goto out;
  1873. r = -EFAULT;
  1874. if (copy_from_user(cpuid_entries, entries,
  1875. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1876. goto out_free;
  1877. for (i = 0; i < cpuid->nent; i++) {
  1878. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1879. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1880. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1881. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1882. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1883. vcpu->arch.cpuid_entries[i].index = 0;
  1884. vcpu->arch.cpuid_entries[i].flags = 0;
  1885. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1886. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1887. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1888. }
  1889. vcpu->arch.cpuid_nent = cpuid->nent;
  1890. cpuid_fix_nx_cap(vcpu);
  1891. r = 0;
  1892. kvm_apic_set_version(vcpu);
  1893. kvm_x86_ops->cpuid_update(vcpu);
  1894. update_cpuid(vcpu);
  1895. out_free:
  1896. vfree(cpuid_entries);
  1897. out:
  1898. return r;
  1899. }
  1900. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1901. struct kvm_cpuid2 *cpuid,
  1902. struct kvm_cpuid_entry2 __user *entries)
  1903. {
  1904. int r;
  1905. r = -E2BIG;
  1906. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1907. goto out;
  1908. r = -EFAULT;
  1909. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1910. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1911. goto out;
  1912. vcpu->arch.cpuid_nent = cpuid->nent;
  1913. kvm_apic_set_version(vcpu);
  1914. kvm_x86_ops->cpuid_update(vcpu);
  1915. update_cpuid(vcpu);
  1916. return 0;
  1917. out:
  1918. return r;
  1919. }
  1920. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1921. struct kvm_cpuid2 *cpuid,
  1922. struct kvm_cpuid_entry2 __user *entries)
  1923. {
  1924. int r;
  1925. r = -E2BIG;
  1926. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1927. goto out;
  1928. r = -EFAULT;
  1929. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1930. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1931. goto out;
  1932. return 0;
  1933. out:
  1934. cpuid->nent = vcpu->arch.cpuid_nent;
  1935. return r;
  1936. }
  1937. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1938. u32 index)
  1939. {
  1940. entry->function = function;
  1941. entry->index = index;
  1942. cpuid_count(entry->function, entry->index,
  1943. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1944. entry->flags = 0;
  1945. }
  1946. #define F(x) bit(X86_FEATURE_##x)
  1947. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1948. u32 index, int *nent, int maxnent)
  1949. {
  1950. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1951. #ifdef CONFIG_X86_64
  1952. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1953. ? F(GBPAGES) : 0;
  1954. unsigned f_lm = F(LM);
  1955. #else
  1956. unsigned f_gbpages = 0;
  1957. unsigned f_lm = 0;
  1958. #endif
  1959. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1960. /* cpuid 1.edx */
  1961. const u32 kvm_supported_word0_x86_features =
  1962. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1963. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1964. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1965. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1966. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1967. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1968. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1969. 0 /* HTT, TM, Reserved, PBE */;
  1970. /* cpuid 0x80000001.edx */
  1971. const u32 kvm_supported_word1_x86_features =
  1972. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1973. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1974. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1975. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1976. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1977. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1978. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  1979. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1980. /* cpuid 1.ecx */
  1981. const u32 kvm_supported_word4_x86_features =
  1982. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  1983. 0 /* DS-CPL, VMX, SMX, EST */ |
  1984. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1985. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1986. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1987. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1988. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  1989. F(F16C);
  1990. /* cpuid 0x80000001.ecx */
  1991. const u32 kvm_supported_word6_x86_features =
  1992. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  1993. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1994. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
  1995. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  1996. /* all calls to cpuid_count() should be made on the same cpu */
  1997. get_cpu();
  1998. do_cpuid_1_ent(entry, function, index);
  1999. ++*nent;
  2000. switch (function) {
  2001. case 0:
  2002. entry->eax = min(entry->eax, (u32)0xd);
  2003. break;
  2004. case 1:
  2005. entry->edx &= kvm_supported_word0_x86_features;
  2006. entry->ecx &= kvm_supported_word4_x86_features;
  2007. /* we support x2apic emulation even if host does not support
  2008. * it since we emulate x2apic in software */
  2009. entry->ecx |= F(X2APIC);
  2010. break;
  2011. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  2012. * may return different values. This forces us to get_cpu() before
  2013. * issuing the first command, and also to emulate this annoying behavior
  2014. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  2015. case 2: {
  2016. int t, times = entry->eax & 0xff;
  2017. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2018. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2019. for (t = 1; t < times && *nent < maxnent; ++t) {
  2020. do_cpuid_1_ent(&entry[t], function, 0);
  2021. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2022. ++*nent;
  2023. }
  2024. break;
  2025. }
  2026. /* function 4 and 0xb have additional index. */
  2027. case 4: {
  2028. int i, cache_type;
  2029. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2030. /* read more entries until cache_type is zero */
  2031. for (i = 1; *nent < maxnent; ++i) {
  2032. cache_type = entry[i - 1].eax & 0x1f;
  2033. if (!cache_type)
  2034. break;
  2035. do_cpuid_1_ent(&entry[i], function, i);
  2036. entry[i].flags |=
  2037. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2038. ++*nent;
  2039. }
  2040. break;
  2041. }
  2042. case 0xb: {
  2043. int i, level_type;
  2044. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2045. /* read more entries until level_type is zero */
  2046. for (i = 1; *nent < maxnent; ++i) {
  2047. level_type = entry[i - 1].ecx & 0xff00;
  2048. if (!level_type)
  2049. break;
  2050. do_cpuid_1_ent(&entry[i], function, i);
  2051. entry[i].flags |=
  2052. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2053. ++*nent;
  2054. }
  2055. break;
  2056. }
  2057. case 0xd: {
  2058. int i;
  2059. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2060. for (i = 1; *nent < maxnent; ++i) {
  2061. if (entry[i - 1].eax == 0 && i != 2)
  2062. break;
  2063. do_cpuid_1_ent(&entry[i], function, i);
  2064. entry[i].flags |=
  2065. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2066. ++*nent;
  2067. }
  2068. break;
  2069. }
  2070. case KVM_CPUID_SIGNATURE: {
  2071. char signature[12] = "KVMKVMKVM\0\0";
  2072. u32 *sigptr = (u32 *)signature;
  2073. entry->eax = 0;
  2074. entry->ebx = sigptr[0];
  2075. entry->ecx = sigptr[1];
  2076. entry->edx = sigptr[2];
  2077. break;
  2078. }
  2079. case KVM_CPUID_FEATURES:
  2080. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  2081. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  2082. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  2083. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  2084. entry->ebx = 0;
  2085. entry->ecx = 0;
  2086. entry->edx = 0;
  2087. break;
  2088. case 0x80000000:
  2089. entry->eax = min(entry->eax, 0x8000001a);
  2090. break;
  2091. case 0x80000001:
  2092. entry->edx &= kvm_supported_word1_x86_features;
  2093. entry->ecx &= kvm_supported_word6_x86_features;
  2094. break;
  2095. }
  2096. kvm_x86_ops->set_supported_cpuid(function, entry);
  2097. put_cpu();
  2098. }
  2099. #undef F
  2100. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  2101. struct kvm_cpuid_entry2 __user *entries)
  2102. {
  2103. struct kvm_cpuid_entry2 *cpuid_entries;
  2104. int limit, nent = 0, r = -E2BIG;
  2105. u32 func;
  2106. if (cpuid->nent < 1)
  2107. goto out;
  2108. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2109. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  2110. r = -ENOMEM;
  2111. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  2112. if (!cpuid_entries)
  2113. goto out;
  2114. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  2115. limit = cpuid_entries[0].eax;
  2116. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  2117. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2118. &nent, cpuid->nent);
  2119. r = -E2BIG;
  2120. if (nent >= cpuid->nent)
  2121. goto out_free;
  2122. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  2123. limit = cpuid_entries[nent - 1].eax;
  2124. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  2125. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2126. &nent, cpuid->nent);
  2127. r = -E2BIG;
  2128. if (nent >= cpuid->nent)
  2129. goto out_free;
  2130. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  2131. cpuid->nent);
  2132. r = -E2BIG;
  2133. if (nent >= cpuid->nent)
  2134. goto out_free;
  2135. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  2136. cpuid->nent);
  2137. r = -E2BIG;
  2138. if (nent >= cpuid->nent)
  2139. goto out_free;
  2140. r = -EFAULT;
  2141. if (copy_to_user(entries, cpuid_entries,
  2142. nent * sizeof(struct kvm_cpuid_entry2)))
  2143. goto out_free;
  2144. cpuid->nent = nent;
  2145. r = 0;
  2146. out_free:
  2147. vfree(cpuid_entries);
  2148. out:
  2149. return r;
  2150. }
  2151. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2152. struct kvm_lapic_state *s)
  2153. {
  2154. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2155. return 0;
  2156. }
  2157. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2158. struct kvm_lapic_state *s)
  2159. {
  2160. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2161. kvm_apic_post_state_restore(vcpu);
  2162. update_cr8_intercept(vcpu);
  2163. return 0;
  2164. }
  2165. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2166. struct kvm_interrupt *irq)
  2167. {
  2168. if (irq->irq < 0 || irq->irq >= 256)
  2169. return -EINVAL;
  2170. if (irqchip_in_kernel(vcpu->kvm))
  2171. return -ENXIO;
  2172. kvm_queue_interrupt(vcpu, irq->irq, false);
  2173. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2174. return 0;
  2175. }
  2176. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2177. {
  2178. kvm_inject_nmi(vcpu);
  2179. return 0;
  2180. }
  2181. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2182. struct kvm_tpr_access_ctl *tac)
  2183. {
  2184. if (tac->flags)
  2185. return -EINVAL;
  2186. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2187. return 0;
  2188. }
  2189. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2190. u64 mcg_cap)
  2191. {
  2192. int r;
  2193. unsigned bank_num = mcg_cap & 0xff, bank;
  2194. r = -EINVAL;
  2195. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2196. goto out;
  2197. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2198. goto out;
  2199. r = 0;
  2200. vcpu->arch.mcg_cap = mcg_cap;
  2201. /* Init IA32_MCG_CTL to all 1s */
  2202. if (mcg_cap & MCG_CTL_P)
  2203. vcpu->arch.mcg_ctl = ~(u64)0;
  2204. /* Init IA32_MCi_CTL to all 1s */
  2205. for (bank = 0; bank < bank_num; bank++)
  2206. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2207. out:
  2208. return r;
  2209. }
  2210. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2211. struct kvm_x86_mce *mce)
  2212. {
  2213. u64 mcg_cap = vcpu->arch.mcg_cap;
  2214. unsigned bank_num = mcg_cap & 0xff;
  2215. u64 *banks = vcpu->arch.mce_banks;
  2216. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2217. return -EINVAL;
  2218. /*
  2219. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2220. * reporting is disabled
  2221. */
  2222. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2223. vcpu->arch.mcg_ctl != ~(u64)0)
  2224. return 0;
  2225. banks += 4 * mce->bank;
  2226. /*
  2227. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2228. * reporting is disabled for the bank
  2229. */
  2230. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2231. return 0;
  2232. if (mce->status & MCI_STATUS_UC) {
  2233. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2234. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2235. printk(KERN_DEBUG "kvm: set_mce: "
  2236. "injects mce exception while "
  2237. "previous one is in progress!\n");
  2238. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2239. return 0;
  2240. }
  2241. if (banks[1] & MCI_STATUS_VAL)
  2242. mce->status |= MCI_STATUS_OVER;
  2243. banks[2] = mce->addr;
  2244. banks[3] = mce->misc;
  2245. vcpu->arch.mcg_status = mce->mcg_status;
  2246. banks[1] = mce->status;
  2247. kvm_queue_exception(vcpu, MC_VECTOR);
  2248. } else if (!(banks[1] & MCI_STATUS_VAL)
  2249. || !(banks[1] & MCI_STATUS_UC)) {
  2250. if (banks[1] & MCI_STATUS_VAL)
  2251. mce->status |= MCI_STATUS_OVER;
  2252. banks[2] = mce->addr;
  2253. banks[3] = mce->misc;
  2254. banks[1] = mce->status;
  2255. } else
  2256. banks[1] |= MCI_STATUS_OVER;
  2257. return 0;
  2258. }
  2259. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2260. struct kvm_vcpu_events *events)
  2261. {
  2262. events->exception.injected =
  2263. vcpu->arch.exception.pending &&
  2264. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2265. events->exception.nr = vcpu->arch.exception.nr;
  2266. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2267. events->exception.error_code = vcpu->arch.exception.error_code;
  2268. events->interrupt.injected =
  2269. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2270. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2271. events->interrupt.soft = 0;
  2272. events->interrupt.shadow =
  2273. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2274. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2275. events->nmi.injected = vcpu->arch.nmi_injected;
  2276. events->nmi.pending = vcpu->arch.nmi_pending;
  2277. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2278. events->sipi_vector = vcpu->arch.sipi_vector;
  2279. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2280. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2281. | KVM_VCPUEVENT_VALID_SHADOW);
  2282. }
  2283. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2284. struct kvm_vcpu_events *events)
  2285. {
  2286. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2287. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2288. | KVM_VCPUEVENT_VALID_SHADOW))
  2289. return -EINVAL;
  2290. vcpu->arch.exception.pending = events->exception.injected;
  2291. vcpu->arch.exception.nr = events->exception.nr;
  2292. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2293. vcpu->arch.exception.error_code = events->exception.error_code;
  2294. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2295. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2296. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2297. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  2298. kvm_pic_clear_isr_ack(vcpu->kvm);
  2299. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2300. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2301. events->interrupt.shadow);
  2302. vcpu->arch.nmi_injected = events->nmi.injected;
  2303. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2304. vcpu->arch.nmi_pending = events->nmi.pending;
  2305. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2306. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2307. vcpu->arch.sipi_vector = events->sipi_vector;
  2308. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2309. return 0;
  2310. }
  2311. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2312. struct kvm_debugregs *dbgregs)
  2313. {
  2314. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2315. dbgregs->dr6 = vcpu->arch.dr6;
  2316. dbgregs->dr7 = vcpu->arch.dr7;
  2317. dbgregs->flags = 0;
  2318. }
  2319. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2320. struct kvm_debugregs *dbgregs)
  2321. {
  2322. if (dbgregs->flags)
  2323. return -EINVAL;
  2324. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2325. vcpu->arch.dr6 = dbgregs->dr6;
  2326. vcpu->arch.dr7 = dbgregs->dr7;
  2327. return 0;
  2328. }
  2329. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2330. struct kvm_xsave *guest_xsave)
  2331. {
  2332. if (cpu_has_xsave)
  2333. memcpy(guest_xsave->region,
  2334. &vcpu->arch.guest_fpu.state->xsave,
  2335. xstate_size);
  2336. else {
  2337. memcpy(guest_xsave->region,
  2338. &vcpu->arch.guest_fpu.state->fxsave,
  2339. sizeof(struct i387_fxsave_struct));
  2340. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2341. XSTATE_FPSSE;
  2342. }
  2343. }
  2344. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2345. struct kvm_xsave *guest_xsave)
  2346. {
  2347. u64 xstate_bv =
  2348. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2349. if (cpu_has_xsave)
  2350. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2351. guest_xsave->region, xstate_size);
  2352. else {
  2353. if (xstate_bv & ~XSTATE_FPSSE)
  2354. return -EINVAL;
  2355. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2356. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2357. }
  2358. return 0;
  2359. }
  2360. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2361. struct kvm_xcrs *guest_xcrs)
  2362. {
  2363. if (!cpu_has_xsave) {
  2364. guest_xcrs->nr_xcrs = 0;
  2365. return;
  2366. }
  2367. guest_xcrs->nr_xcrs = 1;
  2368. guest_xcrs->flags = 0;
  2369. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2370. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2371. }
  2372. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2373. struct kvm_xcrs *guest_xcrs)
  2374. {
  2375. int i, r = 0;
  2376. if (!cpu_has_xsave)
  2377. return -EINVAL;
  2378. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2379. return -EINVAL;
  2380. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2381. /* Only support XCR0 currently */
  2382. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2383. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2384. guest_xcrs->xcrs[0].value);
  2385. break;
  2386. }
  2387. if (r)
  2388. r = -EINVAL;
  2389. return r;
  2390. }
  2391. long kvm_arch_vcpu_ioctl(struct file *filp,
  2392. unsigned int ioctl, unsigned long arg)
  2393. {
  2394. struct kvm_vcpu *vcpu = filp->private_data;
  2395. void __user *argp = (void __user *)arg;
  2396. int r;
  2397. union {
  2398. struct kvm_lapic_state *lapic;
  2399. struct kvm_xsave *xsave;
  2400. struct kvm_xcrs *xcrs;
  2401. void *buffer;
  2402. } u;
  2403. u.buffer = NULL;
  2404. switch (ioctl) {
  2405. case KVM_GET_LAPIC: {
  2406. r = -EINVAL;
  2407. if (!vcpu->arch.apic)
  2408. goto out;
  2409. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2410. r = -ENOMEM;
  2411. if (!u.lapic)
  2412. goto out;
  2413. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2414. if (r)
  2415. goto out;
  2416. r = -EFAULT;
  2417. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2418. goto out;
  2419. r = 0;
  2420. break;
  2421. }
  2422. case KVM_SET_LAPIC: {
  2423. r = -EINVAL;
  2424. if (!vcpu->arch.apic)
  2425. goto out;
  2426. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2427. r = -ENOMEM;
  2428. if (!u.lapic)
  2429. goto out;
  2430. r = -EFAULT;
  2431. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2432. goto out;
  2433. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2434. if (r)
  2435. goto out;
  2436. r = 0;
  2437. break;
  2438. }
  2439. case KVM_INTERRUPT: {
  2440. struct kvm_interrupt irq;
  2441. r = -EFAULT;
  2442. if (copy_from_user(&irq, argp, sizeof irq))
  2443. goto out;
  2444. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2445. if (r)
  2446. goto out;
  2447. r = 0;
  2448. break;
  2449. }
  2450. case KVM_NMI: {
  2451. r = kvm_vcpu_ioctl_nmi(vcpu);
  2452. if (r)
  2453. goto out;
  2454. r = 0;
  2455. break;
  2456. }
  2457. case KVM_SET_CPUID: {
  2458. struct kvm_cpuid __user *cpuid_arg = argp;
  2459. struct kvm_cpuid cpuid;
  2460. r = -EFAULT;
  2461. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2462. goto out;
  2463. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2464. if (r)
  2465. goto out;
  2466. break;
  2467. }
  2468. case KVM_SET_CPUID2: {
  2469. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2470. struct kvm_cpuid2 cpuid;
  2471. r = -EFAULT;
  2472. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2473. goto out;
  2474. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2475. cpuid_arg->entries);
  2476. if (r)
  2477. goto out;
  2478. break;
  2479. }
  2480. case KVM_GET_CPUID2: {
  2481. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2482. struct kvm_cpuid2 cpuid;
  2483. r = -EFAULT;
  2484. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2485. goto out;
  2486. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2487. cpuid_arg->entries);
  2488. if (r)
  2489. goto out;
  2490. r = -EFAULT;
  2491. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2492. goto out;
  2493. r = 0;
  2494. break;
  2495. }
  2496. case KVM_GET_MSRS:
  2497. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2498. break;
  2499. case KVM_SET_MSRS:
  2500. r = msr_io(vcpu, argp, do_set_msr, 0);
  2501. break;
  2502. case KVM_TPR_ACCESS_REPORTING: {
  2503. struct kvm_tpr_access_ctl tac;
  2504. r = -EFAULT;
  2505. if (copy_from_user(&tac, argp, sizeof tac))
  2506. goto out;
  2507. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2508. if (r)
  2509. goto out;
  2510. r = -EFAULT;
  2511. if (copy_to_user(argp, &tac, sizeof tac))
  2512. goto out;
  2513. r = 0;
  2514. break;
  2515. };
  2516. case KVM_SET_VAPIC_ADDR: {
  2517. struct kvm_vapic_addr va;
  2518. r = -EINVAL;
  2519. if (!irqchip_in_kernel(vcpu->kvm))
  2520. goto out;
  2521. r = -EFAULT;
  2522. if (copy_from_user(&va, argp, sizeof va))
  2523. goto out;
  2524. r = 0;
  2525. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2526. break;
  2527. }
  2528. case KVM_X86_SETUP_MCE: {
  2529. u64 mcg_cap;
  2530. r = -EFAULT;
  2531. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2532. goto out;
  2533. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2534. break;
  2535. }
  2536. case KVM_X86_SET_MCE: {
  2537. struct kvm_x86_mce mce;
  2538. r = -EFAULT;
  2539. if (copy_from_user(&mce, argp, sizeof mce))
  2540. goto out;
  2541. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2542. break;
  2543. }
  2544. case KVM_GET_VCPU_EVENTS: {
  2545. struct kvm_vcpu_events events;
  2546. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2547. r = -EFAULT;
  2548. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2549. break;
  2550. r = 0;
  2551. break;
  2552. }
  2553. case KVM_SET_VCPU_EVENTS: {
  2554. struct kvm_vcpu_events events;
  2555. r = -EFAULT;
  2556. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2557. break;
  2558. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2559. break;
  2560. }
  2561. case KVM_GET_DEBUGREGS: {
  2562. struct kvm_debugregs dbgregs;
  2563. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2564. r = -EFAULT;
  2565. if (copy_to_user(argp, &dbgregs,
  2566. sizeof(struct kvm_debugregs)))
  2567. break;
  2568. r = 0;
  2569. break;
  2570. }
  2571. case KVM_SET_DEBUGREGS: {
  2572. struct kvm_debugregs dbgregs;
  2573. r = -EFAULT;
  2574. if (copy_from_user(&dbgregs, argp,
  2575. sizeof(struct kvm_debugregs)))
  2576. break;
  2577. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2578. break;
  2579. }
  2580. case KVM_GET_XSAVE: {
  2581. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2582. r = -ENOMEM;
  2583. if (!u.xsave)
  2584. break;
  2585. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2586. r = -EFAULT;
  2587. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2588. break;
  2589. r = 0;
  2590. break;
  2591. }
  2592. case KVM_SET_XSAVE: {
  2593. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2594. r = -ENOMEM;
  2595. if (!u.xsave)
  2596. break;
  2597. r = -EFAULT;
  2598. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2599. break;
  2600. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2601. break;
  2602. }
  2603. case KVM_GET_XCRS: {
  2604. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2605. r = -ENOMEM;
  2606. if (!u.xcrs)
  2607. break;
  2608. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2609. r = -EFAULT;
  2610. if (copy_to_user(argp, u.xcrs,
  2611. sizeof(struct kvm_xcrs)))
  2612. break;
  2613. r = 0;
  2614. break;
  2615. }
  2616. case KVM_SET_XCRS: {
  2617. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2618. r = -ENOMEM;
  2619. if (!u.xcrs)
  2620. break;
  2621. r = -EFAULT;
  2622. if (copy_from_user(u.xcrs, argp,
  2623. sizeof(struct kvm_xcrs)))
  2624. break;
  2625. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2626. break;
  2627. }
  2628. default:
  2629. r = -EINVAL;
  2630. }
  2631. out:
  2632. kfree(u.buffer);
  2633. return r;
  2634. }
  2635. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2636. {
  2637. int ret;
  2638. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2639. return -1;
  2640. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2641. return ret;
  2642. }
  2643. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2644. u64 ident_addr)
  2645. {
  2646. kvm->arch.ept_identity_map_addr = ident_addr;
  2647. return 0;
  2648. }
  2649. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2650. u32 kvm_nr_mmu_pages)
  2651. {
  2652. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2653. return -EINVAL;
  2654. mutex_lock(&kvm->slots_lock);
  2655. spin_lock(&kvm->mmu_lock);
  2656. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2657. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2658. spin_unlock(&kvm->mmu_lock);
  2659. mutex_unlock(&kvm->slots_lock);
  2660. return 0;
  2661. }
  2662. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2663. {
  2664. return kvm->arch.n_max_mmu_pages;
  2665. }
  2666. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2667. {
  2668. int r;
  2669. r = 0;
  2670. switch (chip->chip_id) {
  2671. case KVM_IRQCHIP_PIC_MASTER:
  2672. memcpy(&chip->chip.pic,
  2673. &pic_irqchip(kvm)->pics[0],
  2674. sizeof(struct kvm_pic_state));
  2675. break;
  2676. case KVM_IRQCHIP_PIC_SLAVE:
  2677. memcpy(&chip->chip.pic,
  2678. &pic_irqchip(kvm)->pics[1],
  2679. sizeof(struct kvm_pic_state));
  2680. break;
  2681. case KVM_IRQCHIP_IOAPIC:
  2682. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2683. break;
  2684. default:
  2685. r = -EINVAL;
  2686. break;
  2687. }
  2688. return r;
  2689. }
  2690. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2691. {
  2692. int r;
  2693. r = 0;
  2694. switch (chip->chip_id) {
  2695. case KVM_IRQCHIP_PIC_MASTER:
  2696. spin_lock(&pic_irqchip(kvm)->lock);
  2697. memcpy(&pic_irqchip(kvm)->pics[0],
  2698. &chip->chip.pic,
  2699. sizeof(struct kvm_pic_state));
  2700. spin_unlock(&pic_irqchip(kvm)->lock);
  2701. break;
  2702. case KVM_IRQCHIP_PIC_SLAVE:
  2703. spin_lock(&pic_irqchip(kvm)->lock);
  2704. memcpy(&pic_irqchip(kvm)->pics[1],
  2705. &chip->chip.pic,
  2706. sizeof(struct kvm_pic_state));
  2707. spin_unlock(&pic_irqchip(kvm)->lock);
  2708. break;
  2709. case KVM_IRQCHIP_IOAPIC:
  2710. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2711. break;
  2712. default:
  2713. r = -EINVAL;
  2714. break;
  2715. }
  2716. kvm_pic_update_irq(pic_irqchip(kvm));
  2717. return r;
  2718. }
  2719. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2720. {
  2721. int r = 0;
  2722. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2723. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2724. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2725. return r;
  2726. }
  2727. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2728. {
  2729. int r = 0;
  2730. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2731. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2732. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2733. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2734. return r;
  2735. }
  2736. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2737. {
  2738. int r = 0;
  2739. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2740. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2741. sizeof(ps->channels));
  2742. ps->flags = kvm->arch.vpit->pit_state.flags;
  2743. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2744. return r;
  2745. }
  2746. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2747. {
  2748. int r = 0, start = 0;
  2749. u32 prev_legacy, cur_legacy;
  2750. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2751. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2752. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2753. if (!prev_legacy && cur_legacy)
  2754. start = 1;
  2755. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2756. sizeof(kvm->arch.vpit->pit_state.channels));
  2757. kvm->arch.vpit->pit_state.flags = ps->flags;
  2758. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2759. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2760. return r;
  2761. }
  2762. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2763. struct kvm_reinject_control *control)
  2764. {
  2765. if (!kvm->arch.vpit)
  2766. return -ENXIO;
  2767. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2768. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2769. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2770. return 0;
  2771. }
  2772. /*
  2773. * Get (and clear) the dirty memory log for a memory slot.
  2774. */
  2775. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2776. struct kvm_dirty_log *log)
  2777. {
  2778. int r, i;
  2779. struct kvm_memory_slot *memslot;
  2780. unsigned long n;
  2781. unsigned long is_dirty = 0;
  2782. mutex_lock(&kvm->slots_lock);
  2783. r = -EINVAL;
  2784. if (log->slot >= KVM_MEMORY_SLOTS)
  2785. goto out;
  2786. memslot = &kvm->memslots->memslots[log->slot];
  2787. r = -ENOENT;
  2788. if (!memslot->dirty_bitmap)
  2789. goto out;
  2790. n = kvm_dirty_bitmap_bytes(memslot);
  2791. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2792. is_dirty = memslot->dirty_bitmap[i];
  2793. /* If nothing is dirty, don't bother messing with page tables. */
  2794. if (is_dirty) {
  2795. struct kvm_memslots *slots, *old_slots;
  2796. unsigned long *dirty_bitmap;
  2797. spin_lock(&kvm->mmu_lock);
  2798. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2799. spin_unlock(&kvm->mmu_lock);
  2800. r = -ENOMEM;
  2801. dirty_bitmap = vmalloc(n);
  2802. if (!dirty_bitmap)
  2803. goto out;
  2804. memset(dirty_bitmap, 0, n);
  2805. r = -ENOMEM;
  2806. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2807. if (!slots) {
  2808. vfree(dirty_bitmap);
  2809. goto out;
  2810. }
  2811. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2812. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2813. old_slots = kvm->memslots;
  2814. rcu_assign_pointer(kvm->memslots, slots);
  2815. synchronize_srcu_expedited(&kvm->srcu);
  2816. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2817. kfree(old_slots);
  2818. r = -EFAULT;
  2819. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
  2820. vfree(dirty_bitmap);
  2821. goto out;
  2822. }
  2823. vfree(dirty_bitmap);
  2824. } else {
  2825. r = -EFAULT;
  2826. if (clear_user(log->dirty_bitmap, n))
  2827. goto out;
  2828. }
  2829. r = 0;
  2830. out:
  2831. mutex_unlock(&kvm->slots_lock);
  2832. return r;
  2833. }
  2834. long kvm_arch_vm_ioctl(struct file *filp,
  2835. unsigned int ioctl, unsigned long arg)
  2836. {
  2837. struct kvm *kvm = filp->private_data;
  2838. void __user *argp = (void __user *)arg;
  2839. int r = -ENOTTY;
  2840. /*
  2841. * This union makes it completely explicit to gcc-3.x
  2842. * that these two variables' stack usage should be
  2843. * combined, not added together.
  2844. */
  2845. union {
  2846. struct kvm_pit_state ps;
  2847. struct kvm_pit_state2 ps2;
  2848. struct kvm_pit_config pit_config;
  2849. } u;
  2850. switch (ioctl) {
  2851. case KVM_SET_TSS_ADDR:
  2852. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2853. if (r < 0)
  2854. goto out;
  2855. break;
  2856. case KVM_SET_IDENTITY_MAP_ADDR: {
  2857. u64 ident_addr;
  2858. r = -EFAULT;
  2859. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2860. goto out;
  2861. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2862. if (r < 0)
  2863. goto out;
  2864. break;
  2865. }
  2866. case KVM_SET_NR_MMU_PAGES:
  2867. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2868. if (r)
  2869. goto out;
  2870. break;
  2871. case KVM_GET_NR_MMU_PAGES:
  2872. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2873. break;
  2874. case KVM_CREATE_IRQCHIP: {
  2875. struct kvm_pic *vpic;
  2876. mutex_lock(&kvm->lock);
  2877. r = -EEXIST;
  2878. if (kvm->arch.vpic)
  2879. goto create_irqchip_unlock;
  2880. r = -ENOMEM;
  2881. vpic = kvm_create_pic(kvm);
  2882. if (vpic) {
  2883. r = kvm_ioapic_init(kvm);
  2884. if (r) {
  2885. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2886. &vpic->dev);
  2887. kfree(vpic);
  2888. goto create_irqchip_unlock;
  2889. }
  2890. } else
  2891. goto create_irqchip_unlock;
  2892. smp_wmb();
  2893. kvm->arch.vpic = vpic;
  2894. smp_wmb();
  2895. r = kvm_setup_default_irq_routing(kvm);
  2896. if (r) {
  2897. mutex_lock(&kvm->irq_lock);
  2898. kvm_ioapic_destroy(kvm);
  2899. kvm_destroy_pic(kvm);
  2900. mutex_unlock(&kvm->irq_lock);
  2901. }
  2902. create_irqchip_unlock:
  2903. mutex_unlock(&kvm->lock);
  2904. break;
  2905. }
  2906. case KVM_CREATE_PIT:
  2907. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2908. goto create_pit;
  2909. case KVM_CREATE_PIT2:
  2910. r = -EFAULT;
  2911. if (copy_from_user(&u.pit_config, argp,
  2912. sizeof(struct kvm_pit_config)))
  2913. goto out;
  2914. create_pit:
  2915. mutex_lock(&kvm->slots_lock);
  2916. r = -EEXIST;
  2917. if (kvm->arch.vpit)
  2918. goto create_pit_unlock;
  2919. r = -ENOMEM;
  2920. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2921. if (kvm->arch.vpit)
  2922. r = 0;
  2923. create_pit_unlock:
  2924. mutex_unlock(&kvm->slots_lock);
  2925. break;
  2926. case KVM_IRQ_LINE_STATUS:
  2927. case KVM_IRQ_LINE: {
  2928. struct kvm_irq_level irq_event;
  2929. r = -EFAULT;
  2930. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2931. goto out;
  2932. r = -ENXIO;
  2933. if (irqchip_in_kernel(kvm)) {
  2934. __s32 status;
  2935. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2936. irq_event.irq, irq_event.level);
  2937. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2938. r = -EFAULT;
  2939. irq_event.status = status;
  2940. if (copy_to_user(argp, &irq_event,
  2941. sizeof irq_event))
  2942. goto out;
  2943. }
  2944. r = 0;
  2945. }
  2946. break;
  2947. }
  2948. case KVM_GET_IRQCHIP: {
  2949. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2950. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2951. r = -ENOMEM;
  2952. if (!chip)
  2953. goto out;
  2954. r = -EFAULT;
  2955. if (copy_from_user(chip, argp, sizeof *chip))
  2956. goto get_irqchip_out;
  2957. r = -ENXIO;
  2958. if (!irqchip_in_kernel(kvm))
  2959. goto get_irqchip_out;
  2960. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2961. if (r)
  2962. goto get_irqchip_out;
  2963. r = -EFAULT;
  2964. if (copy_to_user(argp, chip, sizeof *chip))
  2965. goto get_irqchip_out;
  2966. r = 0;
  2967. get_irqchip_out:
  2968. kfree(chip);
  2969. if (r)
  2970. goto out;
  2971. break;
  2972. }
  2973. case KVM_SET_IRQCHIP: {
  2974. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2975. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2976. r = -ENOMEM;
  2977. if (!chip)
  2978. goto out;
  2979. r = -EFAULT;
  2980. if (copy_from_user(chip, argp, sizeof *chip))
  2981. goto set_irqchip_out;
  2982. r = -ENXIO;
  2983. if (!irqchip_in_kernel(kvm))
  2984. goto set_irqchip_out;
  2985. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2986. if (r)
  2987. goto set_irqchip_out;
  2988. r = 0;
  2989. set_irqchip_out:
  2990. kfree(chip);
  2991. if (r)
  2992. goto out;
  2993. break;
  2994. }
  2995. case KVM_GET_PIT: {
  2996. r = -EFAULT;
  2997. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2998. goto out;
  2999. r = -ENXIO;
  3000. if (!kvm->arch.vpit)
  3001. goto out;
  3002. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3003. if (r)
  3004. goto out;
  3005. r = -EFAULT;
  3006. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3007. goto out;
  3008. r = 0;
  3009. break;
  3010. }
  3011. case KVM_SET_PIT: {
  3012. r = -EFAULT;
  3013. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3014. goto out;
  3015. r = -ENXIO;
  3016. if (!kvm->arch.vpit)
  3017. goto out;
  3018. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3019. if (r)
  3020. goto out;
  3021. r = 0;
  3022. break;
  3023. }
  3024. case KVM_GET_PIT2: {
  3025. r = -ENXIO;
  3026. if (!kvm->arch.vpit)
  3027. goto out;
  3028. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3029. if (r)
  3030. goto out;
  3031. r = -EFAULT;
  3032. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3033. goto out;
  3034. r = 0;
  3035. break;
  3036. }
  3037. case KVM_SET_PIT2: {
  3038. r = -EFAULT;
  3039. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3040. goto out;
  3041. r = -ENXIO;
  3042. if (!kvm->arch.vpit)
  3043. goto out;
  3044. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3045. if (r)
  3046. goto out;
  3047. r = 0;
  3048. break;
  3049. }
  3050. case KVM_REINJECT_CONTROL: {
  3051. struct kvm_reinject_control control;
  3052. r = -EFAULT;
  3053. if (copy_from_user(&control, argp, sizeof(control)))
  3054. goto out;
  3055. r = kvm_vm_ioctl_reinject(kvm, &control);
  3056. if (r)
  3057. goto out;
  3058. r = 0;
  3059. break;
  3060. }
  3061. case KVM_XEN_HVM_CONFIG: {
  3062. r = -EFAULT;
  3063. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3064. sizeof(struct kvm_xen_hvm_config)))
  3065. goto out;
  3066. r = -EINVAL;
  3067. if (kvm->arch.xen_hvm_config.flags)
  3068. goto out;
  3069. r = 0;
  3070. break;
  3071. }
  3072. case KVM_SET_CLOCK: {
  3073. struct kvm_clock_data user_ns;
  3074. u64 now_ns;
  3075. s64 delta;
  3076. r = -EFAULT;
  3077. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3078. goto out;
  3079. r = -EINVAL;
  3080. if (user_ns.flags)
  3081. goto out;
  3082. r = 0;
  3083. local_irq_disable();
  3084. now_ns = get_kernel_ns();
  3085. delta = user_ns.clock - now_ns;
  3086. local_irq_enable();
  3087. kvm->arch.kvmclock_offset = delta;
  3088. break;
  3089. }
  3090. case KVM_GET_CLOCK: {
  3091. struct kvm_clock_data user_ns;
  3092. u64 now_ns;
  3093. local_irq_disable();
  3094. now_ns = get_kernel_ns();
  3095. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3096. local_irq_enable();
  3097. user_ns.flags = 0;
  3098. r = -EFAULT;
  3099. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3100. goto out;
  3101. r = 0;
  3102. break;
  3103. }
  3104. default:
  3105. ;
  3106. }
  3107. out:
  3108. return r;
  3109. }
  3110. static void kvm_init_msr_list(void)
  3111. {
  3112. u32 dummy[2];
  3113. unsigned i, j;
  3114. /* skip the first msrs in the list. KVM-specific */
  3115. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3116. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3117. continue;
  3118. if (j < i)
  3119. msrs_to_save[j] = msrs_to_save[i];
  3120. j++;
  3121. }
  3122. num_msrs_to_save = j;
  3123. }
  3124. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3125. const void *v)
  3126. {
  3127. if (vcpu->arch.apic &&
  3128. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  3129. return 0;
  3130. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3131. }
  3132. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3133. {
  3134. if (vcpu->arch.apic &&
  3135. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  3136. return 0;
  3137. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3138. }
  3139. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3140. struct kvm_segment *var, int seg)
  3141. {
  3142. kvm_x86_ops->set_segment(vcpu, var, seg);
  3143. }
  3144. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3145. struct kvm_segment *var, int seg)
  3146. {
  3147. kvm_x86_ops->get_segment(vcpu, var, seg);
  3148. }
  3149. static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3150. {
  3151. return gpa;
  3152. }
  3153. static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3154. {
  3155. gpa_t t_gpa;
  3156. u32 error;
  3157. BUG_ON(!mmu_is_nested(vcpu));
  3158. /* NPT walks are always user-walks */
  3159. access |= PFERR_USER_MASK;
  3160. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
  3161. if (t_gpa == UNMAPPED_GVA)
  3162. vcpu->arch.fault.nested = true;
  3163. return t_gpa;
  3164. }
  3165. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3166. {
  3167. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3168. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3169. }
  3170. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3171. {
  3172. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3173. access |= PFERR_FETCH_MASK;
  3174. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3175. }
  3176. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3177. {
  3178. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3179. access |= PFERR_WRITE_MASK;
  3180. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3181. }
  3182. /* uses this to access any guest's mapped memory without checking CPL */
  3183. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3184. {
  3185. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
  3186. }
  3187. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3188. struct kvm_vcpu *vcpu, u32 access,
  3189. u32 *error)
  3190. {
  3191. void *data = val;
  3192. int r = X86EMUL_CONTINUE;
  3193. while (bytes) {
  3194. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3195. error);
  3196. unsigned offset = addr & (PAGE_SIZE-1);
  3197. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3198. int ret;
  3199. if (gpa == UNMAPPED_GVA) {
  3200. r = X86EMUL_PROPAGATE_FAULT;
  3201. goto out;
  3202. }
  3203. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3204. if (ret < 0) {
  3205. r = X86EMUL_IO_NEEDED;
  3206. goto out;
  3207. }
  3208. bytes -= toread;
  3209. data += toread;
  3210. addr += toread;
  3211. }
  3212. out:
  3213. return r;
  3214. }
  3215. /* used for instruction fetching */
  3216. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3217. struct kvm_vcpu *vcpu, u32 *error)
  3218. {
  3219. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3220. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3221. access | PFERR_FETCH_MASK, error);
  3222. }
  3223. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3224. struct kvm_vcpu *vcpu, u32 *error)
  3225. {
  3226. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3227. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3228. error);
  3229. }
  3230. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  3231. struct kvm_vcpu *vcpu, u32 *error)
  3232. {
  3233. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  3234. }
  3235. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  3236. unsigned int bytes,
  3237. struct kvm_vcpu *vcpu,
  3238. u32 *error)
  3239. {
  3240. void *data = val;
  3241. int r = X86EMUL_CONTINUE;
  3242. while (bytes) {
  3243. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3244. PFERR_WRITE_MASK,
  3245. error);
  3246. unsigned offset = addr & (PAGE_SIZE-1);
  3247. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3248. int ret;
  3249. if (gpa == UNMAPPED_GVA) {
  3250. r = X86EMUL_PROPAGATE_FAULT;
  3251. goto out;
  3252. }
  3253. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3254. if (ret < 0) {
  3255. r = X86EMUL_IO_NEEDED;
  3256. goto out;
  3257. }
  3258. bytes -= towrite;
  3259. data += towrite;
  3260. addr += towrite;
  3261. }
  3262. out:
  3263. return r;
  3264. }
  3265. static int emulator_read_emulated(unsigned long addr,
  3266. void *val,
  3267. unsigned int bytes,
  3268. unsigned int *error_code,
  3269. struct kvm_vcpu *vcpu)
  3270. {
  3271. gpa_t gpa;
  3272. if (vcpu->mmio_read_completed) {
  3273. memcpy(val, vcpu->mmio_data, bytes);
  3274. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3275. vcpu->mmio_phys_addr, *(u64 *)val);
  3276. vcpu->mmio_read_completed = 0;
  3277. return X86EMUL_CONTINUE;
  3278. }
  3279. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
  3280. if (gpa == UNMAPPED_GVA)
  3281. return X86EMUL_PROPAGATE_FAULT;
  3282. /* For APIC access vmexit */
  3283. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3284. goto mmio;
  3285. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  3286. == X86EMUL_CONTINUE)
  3287. return X86EMUL_CONTINUE;
  3288. mmio:
  3289. /*
  3290. * Is this MMIO handled locally?
  3291. */
  3292. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3293. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3294. return X86EMUL_CONTINUE;
  3295. }
  3296. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3297. vcpu->mmio_needed = 1;
  3298. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3299. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3300. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3301. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3302. return X86EMUL_IO_NEEDED;
  3303. }
  3304. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3305. const void *val, int bytes)
  3306. {
  3307. int ret;
  3308. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3309. if (ret < 0)
  3310. return 0;
  3311. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3312. return 1;
  3313. }
  3314. static int emulator_write_emulated_onepage(unsigned long addr,
  3315. const void *val,
  3316. unsigned int bytes,
  3317. unsigned int *error_code,
  3318. struct kvm_vcpu *vcpu)
  3319. {
  3320. gpa_t gpa;
  3321. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
  3322. if (gpa == UNMAPPED_GVA)
  3323. return X86EMUL_PROPAGATE_FAULT;
  3324. /* For APIC access vmexit */
  3325. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3326. goto mmio;
  3327. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3328. return X86EMUL_CONTINUE;
  3329. mmio:
  3330. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3331. /*
  3332. * Is this MMIO handled locally?
  3333. */
  3334. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3335. return X86EMUL_CONTINUE;
  3336. vcpu->mmio_needed = 1;
  3337. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3338. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3339. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3340. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3341. memcpy(vcpu->run->mmio.data, val, bytes);
  3342. return X86EMUL_CONTINUE;
  3343. }
  3344. int emulator_write_emulated(unsigned long addr,
  3345. const void *val,
  3346. unsigned int bytes,
  3347. unsigned int *error_code,
  3348. struct kvm_vcpu *vcpu)
  3349. {
  3350. /* Crossing a page boundary? */
  3351. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3352. int rc, now;
  3353. now = -addr & ~PAGE_MASK;
  3354. rc = emulator_write_emulated_onepage(addr, val, now, error_code,
  3355. vcpu);
  3356. if (rc != X86EMUL_CONTINUE)
  3357. return rc;
  3358. addr += now;
  3359. val += now;
  3360. bytes -= now;
  3361. }
  3362. return emulator_write_emulated_onepage(addr, val, bytes, error_code,
  3363. vcpu);
  3364. }
  3365. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3366. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3367. #ifdef CONFIG_X86_64
  3368. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3369. #else
  3370. # define CMPXCHG64(ptr, old, new) \
  3371. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3372. #endif
  3373. static int emulator_cmpxchg_emulated(unsigned long addr,
  3374. const void *old,
  3375. const void *new,
  3376. unsigned int bytes,
  3377. unsigned int *error_code,
  3378. struct kvm_vcpu *vcpu)
  3379. {
  3380. gpa_t gpa;
  3381. struct page *page;
  3382. char *kaddr;
  3383. bool exchanged;
  3384. /* guests cmpxchg8b have to be emulated atomically */
  3385. if (bytes > 8 || (bytes & (bytes - 1)))
  3386. goto emul_write;
  3387. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3388. if (gpa == UNMAPPED_GVA ||
  3389. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3390. goto emul_write;
  3391. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3392. goto emul_write;
  3393. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3394. if (is_error_page(page)) {
  3395. kvm_release_page_clean(page);
  3396. goto emul_write;
  3397. }
  3398. kaddr = kmap_atomic(page, KM_USER0);
  3399. kaddr += offset_in_page(gpa);
  3400. switch (bytes) {
  3401. case 1:
  3402. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3403. break;
  3404. case 2:
  3405. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3406. break;
  3407. case 4:
  3408. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3409. break;
  3410. case 8:
  3411. exchanged = CMPXCHG64(kaddr, old, new);
  3412. break;
  3413. default:
  3414. BUG();
  3415. }
  3416. kunmap_atomic(kaddr, KM_USER0);
  3417. kvm_release_page_dirty(page);
  3418. if (!exchanged)
  3419. return X86EMUL_CMPXCHG_FAILED;
  3420. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3421. return X86EMUL_CONTINUE;
  3422. emul_write:
  3423. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3424. return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
  3425. }
  3426. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3427. {
  3428. /* TODO: String I/O for in kernel device */
  3429. int r;
  3430. if (vcpu->arch.pio.in)
  3431. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3432. vcpu->arch.pio.size, pd);
  3433. else
  3434. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3435. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3436. pd);
  3437. return r;
  3438. }
  3439. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3440. unsigned int count, struct kvm_vcpu *vcpu)
  3441. {
  3442. if (vcpu->arch.pio.count)
  3443. goto data_avail;
  3444. trace_kvm_pio(0, port, size, 1);
  3445. vcpu->arch.pio.port = port;
  3446. vcpu->arch.pio.in = 1;
  3447. vcpu->arch.pio.count = count;
  3448. vcpu->arch.pio.size = size;
  3449. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3450. data_avail:
  3451. memcpy(val, vcpu->arch.pio_data, size * count);
  3452. vcpu->arch.pio.count = 0;
  3453. return 1;
  3454. }
  3455. vcpu->run->exit_reason = KVM_EXIT_IO;
  3456. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3457. vcpu->run->io.size = size;
  3458. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3459. vcpu->run->io.count = count;
  3460. vcpu->run->io.port = port;
  3461. return 0;
  3462. }
  3463. static int emulator_pio_out_emulated(int size, unsigned short port,
  3464. const void *val, unsigned int count,
  3465. struct kvm_vcpu *vcpu)
  3466. {
  3467. trace_kvm_pio(1, port, size, 1);
  3468. vcpu->arch.pio.port = port;
  3469. vcpu->arch.pio.in = 0;
  3470. vcpu->arch.pio.count = count;
  3471. vcpu->arch.pio.size = size;
  3472. memcpy(vcpu->arch.pio_data, val, size * count);
  3473. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3474. vcpu->arch.pio.count = 0;
  3475. return 1;
  3476. }
  3477. vcpu->run->exit_reason = KVM_EXIT_IO;
  3478. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3479. vcpu->run->io.size = size;
  3480. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3481. vcpu->run->io.count = count;
  3482. vcpu->run->io.port = port;
  3483. return 0;
  3484. }
  3485. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3486. {
  3487. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3488. }
  3489. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3490. {
  3491. kvm_mmu_invlpg(vcpu, address);
  3492. return X86EMUL_CONTINUE;
  3493. }
  3494. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3495. {
  3496. if (!need_emulate_wbinvd(vcpu))
  3497. return X86EMUL_CONTINUE;
  3498. if (kvm_x86_ops->has_wbinvd_exit()) {
  3499. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3500. wbinvd_ipi, NULL, 1);
  3501. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3502. }
  3503. wbinvd();
  3504. return X86EMUL_CONTINUE;
  3505. }
  3506. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3507. int emulate_clts(struct kvm_vcpu *vcpu)
  3508. {
  3509. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3510. kvm_x86_ops->fpu_activate(vcpu);
  3511. return X86EMUL_CONTINUE;
  3512. }
  3513. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3514. {
  3515. return _kvm_get_dr(vcpu, dr, dest);
  3516. }
  3517. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3518. {
  3519. return __kvm_set_dr(vcpu, dr, value);
  3520. }
  3521. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3522. {
  3523. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3524. }
  3525. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3526. {
  3527. unsigned long value;
  3528. switch (cr) {
  3529. case 0:
  3530. value = kvm_read_cr0(vcpu);
  3531. break;
  3532. case 2:
  3533. value = vcpu->arch.cr2;
  3534. break;
  3535. case 3:
  3536. value = vcpu->arch.cr3;
  3537. break;
  3538. case 4:
  3539. value = kvm_read_cr4(vcpu);
  3540. break;
  3541. case 8:
  3542. value = kvm_get_cr8(vcpu);
  3543. break;
  3544. default:
  3545. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3546. return 0;
  3547. }
  3548. return value;
  3549. }
  3550. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3551. {
  3552. int res = 0;
  3553. switch (cr) {
  3554. case 0:
  3555. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3556. break;
  3557. case 2:
  3558. vcpu->arch.cr2 = val;
  3559. break;
  3560. case 3:
  3561. res = kvm_set_cr3(vcpu, val);
  3562. break;
  3563. case 4:
  3564. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3565. break;
  3566. case 8:
  3567. res = __kvm_set_cr8(vcpu, val & 0xfUL);
  3568. break;
  3569. default:
  3570. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3571. res = -1;
  3572. }
  3573. return res;
  3574. }
  3575. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3576. {
  3577. return kvm_x86_ops->get_cpl(vcpu);
  3578. }
  3579. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3580. {
  3581. kvm_x86_ops->get_gdt(vcpu, dt);
  3582. }
  3583. static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3584. {
  3585. kvm_x86_ops->get_idt(vcpu, dt);
  3586. }
  3587. static unsigned long emulator_get_cached_segment_base(int seg,
  3588. struct kvm_vcpu *vcpu)
  3589. {
  3590. return get_segment_base(vcpu, seg);
  3591. }
  3592. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3593. struct kvm_vcpu *vcpu)
  3594. {
  3595. struct kvm_segment var;
  3596. kvm_get_segment(vcpu, &var, seg);
  3597. if (var.unusable)
  3598. return false;
  3599. if (var.g)
  3600. var.limit >>= 12;
  3601. set_desc_limit(desc, var.limit);
  3602. set_desc_base(desc, (unsigned long)var.base);
  3603. desc->type = var.type;
  3604. desc->s = var.s;
  3605. desc->dpl = var.dpl;
  3606. desc->p = var.present;
  3607. desc->avl = var.avl;
  3608. desc->l = var.l;
  3609. desc->d = var.db;
  3610. desc->g = var.g;
  3611. return true;
  3612. }
  3613. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3614. struct kvm_vcpu *vcpu)
  3615. {
  3616. struct kvm_segment var;
  3617. /* needed to preserve selector */
  3618. kvm_get_segment(vcpu, &var, seg);
  3619. var.base = get_desc_base(desc);
  3620. var.limit = get_desc_limit(desc);
  3621. if (desc->g)
  3622. var.limit = (var.limit << 12) | 0xfff;
  3623. var.type = desc->type;
  3624. var.present = desc->p;
  3625. var.dpl = desc->dpl;
  3626. var.db = desc->d;
  3627. var.s = desc->s;
  3628. var.l = desc->l;
  3629. var.g = desc->g;
  3630. var.avl = desc->avl;
  3631. var.present = desc->p;
  3632. var.unusable = !var.present;
  3633. var.padding = 0;
  3634. kvm_set_segment(vcpu, &var, seg);
  3635. return;
  3636. }
  3637. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3638. {
  3639. struct kvm_segment kvm_seg;
  3640. kvm_get_segment(vcpu, &kvm_seg, seg);
  3641. return kvm_seg.selector;
  3642. }
  3643. static void emulator_set_segment_selector(u16 sel, int seg,
  3644. struct kvm_vcpu *vcpu)
  3645. {
  3646. struct kvm_segment kvm_seg;
  3647. kvm_get_segment(vcpu, &kvm_seg, seg);
  3648. kvm_seg.selector = sel;
  3649. kvm_set_segment(vcpu, &kvm_seg, seg);
  3650. }
  3651. static struct x86_emulate_ops emulate_ops = {
  3652. .read_std = kvm_read_guest_virt_system,
  3653. .write_std = kvm_write_guest_virt_system,
  3654. .fetch = kvm_fetch_guest_virt,
  3655. .read_emulated = emulator_read_emulated,
  3656. .write_emulated = emulator_write_emulated,
  3657. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3658. .pio_in_emulated = emulator_pio_in_emulated,
  3659. .pio_out_emulated = emulator_pio_out_emulated,
  3660. .get_cached_descriptor = emulator_get_cached_descriptor,
  3661. .set_cached_descriptor = emulator_set_cached_descriptor,
  3662. .get_segment_selector = emulator_get_segment_selector,
  3663. .set_segment_selector = emulator_set_segment_selector,
  3664. .get_cached_segment_base = emulator_get_cached_segment_base,
  3665. .get_gdt = emulator_get_gdt,
  3666. .get_idt = emulator_get_idt,
  3667. .get_cr = emulator_get_cr,
  3668. .set_cr = emulator_set_cr,
  3669. .cpl = emulator_get_cpl,
  3670. .get_dr = emulator_get_dr,
  3671. .set_dr = emulator_set_dr,
  3672. .set_msr = kvm_set_msr,
  3673. .get_msr = kvm_get_msr,
  3674. };
  3675. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3676. {
  3677. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3678. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3679. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3680. vcpu->arch.regs_dirty = ~0;
  3681. }
  3682. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3683. {
  3684. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3685. /*
  3686. * an sti; sti; sequence only disable interrupts for the first
  3687. * instruction. So, if the last instruction, be it emulated or
  3688. * not, left the system with the INT_STI flag enabled, it
  3689. * means that the last instruction is an sti. We should not
  3690. * leave the flag on in this case. The same goes for mov ss
  3691. */
  3692. if (!(int_shadow & mask))
  3693. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3694. }
  3695. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3696. {
  3697. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3698. if (ctxt->exception == PF_VECTOR)
  3699. kvm_propagate_fault(vcpu);
  3700. else if (ctxt->error_code_valid)
  3701. kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
  3702. else
  3703. kvm_queue_exception(vcpu, ctxt->exception);
  3704. }
  3705. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3706. {
  3707. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3708. int cs_db, cs_l;
  3709. cache_all_regs(vcpu);
  3710. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3711. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3712. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3713. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3714. vcpu->arch.emulate_ctxt.mode =
  3715. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3716. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3717. ? X86EMUL_MODE_VM86 : cs_l
  3718. ? X86EMUL_MODE_PROT64 : cs_db
  3719. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3720. memset(c, 0, sizeof(struct decode_cache));
  3721. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3722. }
  3723. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
  3724. {
  3725. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3726. int ret;
  3727. init_emulate_ctxt(vcpu);
  3728. vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
  3729. vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
  3730. vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
  3731. ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
  3732. if (ret != X86EMUL_CONTINUE)
  3733. return EMULATE_FAIL;
  3734. vcpu->arch.emulate_ctxt.eip = c->eip;
  3735. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3736. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3737. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3738. if (irq == NMI_VECTOR)
  3739. vcpu->arch.nmi_pending = false;
  3740. else
  3741. vcpu->arch.interrupt.pending = false;
  3742. return EMULATE_DONE;
  3743. }
  3744. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  3745. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3746. {
  3747. ++vcpu->stat.insn_emulation_fail;
  3748. trace_kvm_emulate_insn_failed(vcpu);
  3749. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3750. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3751. vcpu->run->internal.ndata = 0;
  3752. kvm_queue_exception(vcpu, UD_VECTOR);
  3753. return EMULATE_FAIL;
  3754. }
  3755. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3756. {
  3757. gpa_t gpa;
  3758. if (tdp_enabled)
  3759. return false;
  3760. /*
  3761. * if emulation was due to access to shadowed page table
  3762. * and it failed try to unshadow page and re-entetr the
  3763. * guest to let CPU execute the instruction.
  3764. */
  3765. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3766. return true;
  3767. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3768. if (gpa == UNMAPPED_GVA)
  3769. return true; /* let cpu generate fault */
  3770. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3771. return true;
  3772. return false;
  3773. }
  3774. int emulate_instruction(struct kvm_vcpu *vcpu,
  3775. unsigned long cr2,
  3776. u16 error_code,
  3777. int emulation_type)
  3778. {
  3779. int r;
  3780. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3781. kvm_clear_exception_queue(vcpu);
  3782. vcpu->arch.mmio_fault_cr2 = cr2;
  3783. /*
  3784. * TODO: fix emulate.c to use guest_read/write_register
  3785. * instead of direct ->regs accesses, can save hundred cycles
  3786. * on Intel for instructions that don't read/change RSP, for
  3787. * for example.
  3788. */
  3789. cache_all_regs(vcpu);
  3790. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3791. init_emulate_ctxt(vcpu);
  3792. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3793. vcpu->arch.emulate_ctxt.exception = -1;
  3794. vcpu->arch.emulate_ctxt.perm_ok = false;
  3795. r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
  3796. if (r == X86EMUL_PROPAGATE_FAULT)
  3797. goto done;
  3798. trace_kvm_emulate_insn_start(vcpu);
  3799. /* Only allow emulation of specific instructions on #UD
  3800. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3801. if (emulation_type & EMULTYPE_TRAP_UD) {
  3802. if (!c->twobyte)
  3803. return EMULATE_FAIL;
  3804. switch (c->b) {
  3805. case 0x01: /* VMMCALL */
  3806. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3807. return EMULATE_FAIL;
  3808. break;
  3809. case 0x34: /* sysenter */
  3810. case 0x35: /* sysexit */
  3811. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3812. return EMULATE_FAIL;
  3813. break;
  3814. case 0x05: /* syscall */
  3815. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3816. return EMULATE_FAIL;
  3817. break;
  3818. default:
  3819. return EMULATE_FAIL;
  3820. }
  3821. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3822. return EMULATE_FAIL;
  3823. }
  3824. ++vcpu->stat.insn_emulation;
  3825. if (r) {
  3826. if (reexecute_instruction(vcpu, cr2))
  3827. return EMULATE_DONE;
  3828. if (emulation_type & EMULTYPE_SKIP)
  3829. return EMULATE_FAIL;
  3830. return handle_emulation_failure(vcpu);
  3831. }
  3832. }
  3833. if (emulation_type & EMULTYPE_SKIP) {
  3834. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3835. return EMULATE_DONE;
  3836. }
  3837. /* this is needed for vmware backdor interface to work since it
  3838. changes registers values during IO operation */
  3839. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3840. restart:
  3841. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  3842. if (r == EMULATION_FAILED) {
  3843. if (reexecute_instruction(vcpu, cr2))
  3844. return EMULATE_DONE;
  3845. return handle_emulation_failure(vcpu);
  3846. }
  3847. done:
  3848. if (vcpu->arch.emulate_ctxt.exception >= 0) {
  3849. inject_emulated_exception(vcpu);
  3850. r = EMULATE_DONE;
  3851. } else if (vcpu->arch.pio.count) {
  3852. if (!vcpu->arch.pio.in)
  3853. vcpu->arch.pio.count = 0;
  3854. r = EMULATE_DO_MMIO;
  3855. } else if (vcpu->mmio_needed) {
  3856. if (vcpu->mmio_is_write)
  3857. vcpu->mmio_needed = 0;
  3858. r = EMULATE_DO_MMIO;
  3859. } else if (r == EMULATION_RESTART)
  3860. goto restart;
  3861. else
  3862. r = EMULATE_DONE;
  3863. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3864. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3865. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3866. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3867. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3868. return r;
  3869. }
  3870. EXPORT_SYMBOL_GPL(emulate_instruction);
  3871. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3872. {
  3873. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3874. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3875. /* do not return to emulator after return from userspace */
  3876. vcpu->arch.pio.count = 0;
  3877. return ret;
  3878. }
  3879. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3880. static void tsc_bad(void *info)
  3881. {
  3882. __get_cpu_var(cpu_tsc_khz) = 0;
  3883. }
  3884. static void tsc_khz_changed(void *data)
  3885. {
  3886. struct cpufreq_freqs *freq = data;
  3887. unsigned long khz = 0;
  3888. if (data)
  3889. khz = freq->new;
  3890. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3891. khz = cpufreq_quick_get(raw_smp_processor_id());
  3892. if (!khz)
  3893. khz = tsc_khz;
  3894. __get_cpu_var(cpu_tsc_khz) = khz;
  3895. }
  3896. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3897. void *data)
  3898. {
  3899. struct cpufreq_freqs *freq = data;
  3900. struct kvm *kvm;
  3901. struct kvm_vcpu *vcpu;
  3902. int i, send_ipi = 0;
  3903. /*
  3904. * We allow guests to temporarily run on slowing clocks,
  3905. * provided we notify them after, or to run on accelerating
  3906. * clocks, provided we notify them before. Thus time never
  3907. * goes backwards.
  3908. *
  3909. * However, we have a problem. We can't atomically update
  3910. * the frequency of a given CPU from this function; it is
  3911. * merely a notifier, which can be called from any CPU.
  3912. * Changing the TSC frequency at arbitrary points in time
  3913. * requires a recomputation of local variables related to
  3914. * the TSC for each VCPU. We must flag these local variables
  3915. * to be updated and be sure the update takes place with the
  3916. * new frequency before any guests proceed.
  3917. *
  3918. * Unfortunately, the combination of hotplug CPU and frequency
  3919. * change creates an intractable locking scenario; the order
  3920. * of when these callouts happen is undefined with respect to
  3921. * CPU hotplug, and they can race with each other. As such,
  3922. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  3923. * undefined; you can actually have a CPU frequency change take
  3924. * place in between the computation of X and the setting of the
  3925. * variable. To protect against this problem, all updates of
  3926. * the per_cpu tsc_khz variable are done in an interrupt
  3927. * protected IPI, and all callers wishing to update the value
  3928. * must wait for a synchronous IPI to complete (which is trivial
  3929. * if the caller is on the CPU already). This establishes the
  3930. * necessary total order on variable updates.
  3931. *
  3932. * Note that because a guest time update may take place
  3933. * anytime after the setting of the VCPU's request bit, the
  3934. * correct TSC value must be set before the request. However,
  3935. * to ensure the update actually makes it to any guest which
  3936. * starts running in hardware virtualization between the set
  3937. * and the acquisition of the spinlock, we must also ping the
  3938. * CPU after setting the request bit.
  3939. *
  3940. */
  3941. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3942. return 0;
  3943. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3944. return 0;
  3945. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3946. spin_lock(&kvm_lock);
  3947. list_for_each_entry(kvm, &vm_list, vm_list) {
  3948. kvm_for_each_vcpu(i, vcpu, kvm) {
  3949. if (vcpu->cpu != freq->cpu)
  3950. continue;
  3951. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  3952. if (vcpu->cpu != smp_processor_id())
  3953. send_ipi = 1;
  3954. }
  3955. }
  3956. spin_unlock(&kvm_lock);
  3957. if (freq->old < freq->new && send_ipi) {
  3958. /*
  3959. * We upscale the frequency. Must make the guest
  3960. * doesn't see old kvmclock values while running with
  3961. * the new frequency, otherwise we risk the guest sees
  3962. * time go backwards.
  3963. *
  3964. * In case we update the frequency for another cpu
  3965. * (which might be in guest context) send an interrupt
  3966. * to kick the cpu out of guest context. Next time
  3967. * guest context is entered kvmclock will be updated,
  3968. * so the guest will not see stale values.
  3969. */
  3970. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3971. }
  3972. return 0;
  3973. }
  3974. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  3975. .notifier_call = kvmclock_cpufreq_notifier
  3976. };
  3977. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  3978. unsigned long action, void *hcpu)
  3979. {
  3980. unsigned int cpu = (unsigned long)hcpu;
  3981. switch (action) {
  3982. case CPU_ONLINE:
  3983. case CPU_DOWN_FAILED:
  3984. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  3985. break;
  3986. case CPU_DOWN_PREPARE:
  3987. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  3988. break;
  3989. }
  3990. return NOTIFY_OK;
  3991. }
  3992. static struct notifier_block kvmclock_cpu_notifier_block = {
  3993. .notifier_call = kvmclock_cpu_notifier,
  3994. .priority = -INT_MAX
  3995. };
  3996. static void kvm_timer_init(void)
  3997. {
  3998. int cpu;
  3999. max_tsc_khz = tsc_khz;
  4000. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4001. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4002. #ifdef CONFIG_CPU_FREQ
  4003. struct cpufreq_policy policy;
  4004. memset(&policy, 0, sizeof(policy));
  4005. cpufreq_get_policy(&policy, get_cpu());
  4006. if (policy.cpuinfo.max_freq)
  4007. max_tsc_khz = policy.cpuinfo.max_freq;
  4008. #endif
  4009. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4010. CPUFREQ_TRANSITION_NOTIFIER);
  4011. }
  4012. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4013. for_each_online_cpu(cpu)
  4014. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4015. }
  4016. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4017. static int kvm_is_in_guest(void)
  4018. {
  4019. return percpu_read(current_vcpu) != NULL;
  4020. }
  4021. static int kvm_is_user_mode(void)
  4022. {
  4023. int user_mode = 3;
  4024. if (percpu_read(current_vcpu))
  4025. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  4026. return user_mode != 0;
  4027. }
  4028. static unsigned long kvm_get_guest_ip(void)
  4029. {
  4030. unsigned long ip = 0;
  4031. if (percpu_read(current_vcpu))
  4032. ip = kvm_rip_read(percpu_read(current_vcpu));
  4033. return ip;
  4034. }
  4035. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4036. .is_in_guest = kvm_is_in_guest,
  4037. .is_user_mode = kvm_is_user_mode,
  4038. .get_guest_ip = kvm_get_guest_ip,
  4039. };
  4040. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4041. {
  4042. percpu_write(current_vcpu, vcpu);
  4043. }
  4044. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4045. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4046. {
  4047. percpu_write(current_vcpu, NULL);
  4048. }
  4049. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4050. int kvm_arch_init(void *opaque)
  4051. {
  4052. int r;
  4053. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4054. if (kvm_x86_ops) {
  4055. printk(KERN_ERR "kvm: already loaded the other module\n");
  4056. r = -EEXIST;
  4057. goto out;
  4058. }
  4059. if (!ops->cpu_has_kvm_support()) {
  4060. printk(KERN_ERR "kvm: no hardware support\n");
  4061. r = -EOPNOTSUPP;
  4062. goto out;
  4063. }
  4064. if (ops->disabled_by_bios()) {
  4065. printk(KERN_ERR "kvm: disabled by bios\n");
  4066. r = -EOPNOTSUPP;
  4067. goto out;
  4068. }
  4069. r = kvm_mmu_module_init();
  4070. if (r)
  4071. goto out;
  4072. kvm_init_msr_list();
  4073. kvm_x86_ops = ops;
  4074. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  4075. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  4076. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4077. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4078. kvm_timer_init();
  4079. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4080. if (cpu_has_xsave)
  4081. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4082. return 0;
  4083. out:
  4084. return r;
  4085. }
  4086. void kvm_arch_exit(void)
  4087. {
  4088. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4089. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4090. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4091. CPUFREQ_TRANSITION_NOTIFIER);
  4092. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4093. kvm_x86_ops = NULL;
  4094. kvm_mmu_module_exit();
  4095. }
  4096. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4097. {
  4098. ++vcpu->stat.halt_exits;
  4099. if (irqchip_in_kernel(vcpu->kvm)) {
  4100. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4101. return 1;
  4102. } else {
  4103. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4104. return 0;
  4105. }
  4106. }
  4107. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4108. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  4109. unsigned long a1)
  4110. {
  4111. if (is_long_mode(vcpu))
  4112. return a0;
  4113. else
  4114. return a0 | ((gpa_t)a1 << 32);
  4115. }
  4116. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4117. {
  4118. u64 param, ingpa, outgpa, ret;
  4119. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4120. bool fast, longmode;
  4121. int cs_db, cs_l;
  4122. /*
  4123. * hypercall generates UD from non zero cpl and real mode
  4124. * per HYPER-V spec
  4125. */
  4126. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4127. kvm_queue_exception(vcpu, UD_VECTOR);
  4128. return 0;
  4129. }
  4130. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4131. longmode = is_long_mode(vcpu) && cs_l == 1;
  4132. if (!longmode) {
  4133. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4134. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4135. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4136. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4137. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4138. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4139. }
  4140. #ifdef CONFIG_X86_64
  4141. else {
  4142. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4143. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4144. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4145. }
  4146. #endif
  4147. code = param & 0xffff;
  4148. fast = (param >> 16) & 0x1;
  4149. rep_cnt = (param >> 32) & 0xfff;
  4150. rep_idx = (param >> 48) & 0xfff;
  4151. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4152. switch (code) {
  4153. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4154. kvm_vcpu_on_spin(vcpu);
  4155. break;
  4156. default:
  4157. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4158. break;
  4159. }
  4160. ret = res | (((u64)rep_done & 0xfff) << 32);
  4161. if (longmode) {
  4162. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4163. } else {
  4164. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4165. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4166. }
  4167. return 1;
  4168. }
  4169. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4170. {
  4171. unsigned long nr, a0, a1, a2, a3, ret;
  4172. int r = 1;
  4173. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4174. return kvm_hv_hypercall(vcpu);
  4175. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4176. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4177. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4178. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4179. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4180. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4181. if (!is_long_mode(vcpu)) {
  4182. nr &= 0xFFFFFFFF;
  4183. a0 &= 0xFFFFFFFF;
  4184. a1 &= 0xFFFFFFFF;
  4185. a2 &= 0xFFFFFFFF;
  4186. a3 &= 0xFFFFFFFF;
  4187. }
  4188. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4189. ret = -KVM_EPERM;
  4190. goto out;
  4191. }
  4192. switch (nr) {
  4193. case KVM_HC_VAPIC_POLL_IRQ:
  4194. ret = 0;
  4195. break;
  4196. case KVM_HC_MMU_OP:
  4197. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  4198. break;
  4199. default:
  4200. ret = -KVM_ENOSYS;
  4201. break;
  4202. }
  4203. out:
  4204. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4205. ++vcpu->stat.hypercalls;
  4206. return r;
  4207. }
  4208. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4209. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  4210. {
  4211. char instruction[3];
  4212. unsigned long rip = kvm_rip_read(vcpu);
  4213. /*
  4214. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4215. * to ensure that the updated hypercall appears atomically across all
  4216. * VCPUs.
  4217. */
  4218. kvm_mmu_zap_all(vcpu->kvm);
  4219. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4220. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  4221. }
  4222. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4223. {
  4224. struct desc_ptr dt = { limit, base };
  4225. kvm_x86_ops->set_gdt(vcpu, &dt);
  4226. }
  4227. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4228. {
  4229. struct desc_ptr dt = { limit, base };
  4230. kvm_x86_ops->set_idt(vcpu, &dt);
  4231. }
  4232. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4233. {
  4234. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4235. int j, nent = vcpu->arch.cpuid_nent;
  4236. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4237. /* when no next entry is found, the current entry[i] is reselected */
  4238. for (j = i + 1; ; j = (j + 1) % nent) {
  4239. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4240. if (ej->function == e->function) {
  4241. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4242. return j;
  4243. }
  4244. }
  4245. return 0; /* silence gcc, even though control never reaches here */
  4246. }
  4247. /* find an entry with matching function, matching index (if needed), and that
  4248. * should be read next (if it's stateful) */
  4249. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4250. u32 function, u32 index)
  4251. {
  4252. if (e->function != function)
  4253. return 0;
  4254. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4255. return 0;
  4256. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4257. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4258. return 0;
  4259. return 1;
  4260. }
  4261. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4262. u32 function, u32 index)
  4263. {
  4264. int i;
  4265. struct kvm_cpuid_entry2 *best = NULL;
  4266. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4267. struct kvm_cpuid_entry2 *e;
  4268. e = &vcpu->arch.cpuid_entries[i];
  4269. if (is_matching_cpuid_entry(e, function, index)) {
  4270. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4271. move_to_next_stateful_cpuid_entry(vcpu, i);
  4272. best = e;
  4273. break;
  4274. }
  4275. /*
  4276. * Both basic or both extended?
  4277. */
  4278. if (((e->function ^ function) & 0x80000000) == 0)
  4279. if (!best || e->function > best->function)
  4280. best = e;
  4281. }
  4282. return best;
  4283. }
  4284. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4285. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4286. {
  4287. struct kvm_cpuid_entry2 *best;
  4288. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4289. if (!best || best->eax < 0x80000008)
  4290. goto not_found;
  4291. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4292. if (best)
  4293. return best->eax & 0xff;
  4294. not_found:
  4295. return 36;
  4296. }
  4297. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4298. {
  4299. u32 function, index;
  4300. struct kvm_cpuid_entry2 *best;
  4301. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4302. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4303. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4304. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4305. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4306. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4307. best = kvm_find_cpuid_entry(vcpu, function, index);
  4308. if (best) {
  4309. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4310. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4311. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4312. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4313. }
  4314. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4315. trace_kvm_cpuid(function,
  4316. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4317. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4318. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4319. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4320. }
  4321. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4322. /*
  4323. * Check if userspace requested an interrupt window, and that the
  4324. * interrupt window is open.
  4325. *
  4326. * No need to exit to userspace if we already have an interrupt queued.
  4327. */
  4328. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4329. {
  4330. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4331. vcpu->run->request_interrupt_window &&
  4332. kvm_arch_interrupt_allowed(vcpu));
  4333. }
  4334. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4335. {
  4336. struct kvm_run *kvm_run = vcpu->run;
  4337. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4338. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4339. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4340. if (irqchip_in_kernel(vcpu->kvm))
  4341. kvm_run->ready_for_interrupt_injection = 1;
  4342. else
  4343. kvm_run->ready_for_interrupt_injection =
  4344. kvm_arch_interrupt_allowed(vcpu) &&
  4345. !kvm_cpu_has_interrupt(vcpu) &&
  4346. !kvm_event_needs_reinjection(vcpu);
  4347. }
  4348. static void vapic_enter(struct kvm_vcpu *vcpu)
  4349. {
  4350. struct kvm_lapic *apic = vcpu->arch.apic;
  4351. struct page *page;
  4352. if (!apic || !apic->vapic_addr)
  4353. return;
  4354. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4355. vcpu->arch.apic->vapic_page = page;
  4356. }
  4357. static void vapic_exit(struct kvm_vcpu *vcpu)
  4358. {
  4359. struct kvm_lapic *apic = vcpu->arch.apic;
  4360. int idx;
  4361. if (!apic || !apic->vapic_addr)
  4362. return;
  4363. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4364. kvm_release_page_dirty(apic->vapic_page);
  4365. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4366. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4367. }
  4368. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4369. {
  4370. int max_irr, tpr;
  4371. if (!kvm_x86_ops->update_cr8_intercept)
  4372. return;
  4373. if (!vcpu->arch.apic)
  4374. return;
  4375. if (!vcpu->arch.apic->vapic_addr)
  4376. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4377. else
  4378. max_irr = -1;
  4379. if (max_irr != -1)
  4380. max_irr >>= 4;
  4381. tpr = kvm_lapic_get_cr8(vcpu);
  4382. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4383. }
  4384. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4385. {
  4386. /* try to reinject previous events if any */
  4387. if (vcpu->arch.exception.pending) {
  4388. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4389. vcpu->arch.exception.has_error_code,
  4390. vcpu->arch.exception.error_code);
  4391. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4392. vcpu->arch.exception.has_error_code,
  4393. vcpu->arch.exception.error_code,
  4394. vcpu->arch.exception.reinject);
  4395. return;
  4396. }
  4397. if (vcpu->arch.nmi_injected) {
  4398. kvm_x86_ops->set_nmi(vcpu);
  4399. return;
  4400. }
  4401. if (vcpu->arch.interrupt.pending) {
  4402. kvm_x86_ops->set_irq(vcpu);
  4403. return;
  4404. }
  4405. /* try to inject new event if pending */
  4406. if (vcpu->arch.nmi_pending) {
  4407. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4408. vcpu->arch.nmi_pending = false;
  4409. vcpu->arch.nmi_injected = true;
  4410. kvm_x86_ops->set_nmi(vcpu);
  4411. }
  4412. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4413. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4414. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4415. false);
  4416. kvm_x86_ops->set_irq(vcpu);
  4417. }
  4418. }
  4419. }
  4420. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4421. {
  4422. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4423. !vcpu->guest_xcr0_loaded) {
  4424. /* kvm_set_xcr() also depends on this */
  4425. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4426. vcpu->guest_xcr0_loaded = 1;
  4427. }
  4428. }
  4429. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4430. {
  4431. if (vcpu->guest_xcr0_loaded) {
  4432. if (vcpu->arch.xcr0 != host_xcr0)
  4433. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4434. vcpu->guest_xcr0_loaded = 0;
  4435. }
  4436. }
  4437. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4438. {
  4439. int r;
  4440. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4441. vcpu->run->request_interrupt_window;
  4442. if (vcpu->requests) {
  4443. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4444. kvm_mmu_unload(vcpu);
  4445. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4446. __kvm_migrate_timers(vcpu);
  4447. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4448. r = kvm_guest_time_update(vcpu);
  4449. if (unlikely(r))
  4450. goto out;
  4451. }
  4452. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4453. kvm_mmu_sync_roots(vcpu);
  4454. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4455. kvm_x86_ops->tlb_flush(vcpu);
  4456. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4457. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4458. r = 0;
  4459. goto out;
  4460. }
  4461. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4462. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4463. r = 0;
  4464. goto out;
  4465. }
  4466. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4467. vcpu->fpu_active = 0;
  4468. kvm_x86_ops->fpu_deactivate(vcpu);
  4469. }
  4470. }
  4471. r = kvm_mmu_reload(vcpu);
  4472. if (unlikely(r))
  4473. goto out;
  4474. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4475. inject_pending_event(vcpu);
  4476. /* enable NMI/IRQ window open exits if needed */
  4477. if (vcpu->arch.nmi_pending)
  4478. kvm_x86_ops->enable_nmi_window(vcpu);
  4479. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4480. kvm_x86_ops->enable_irq_window(vcpu);
  4481. if (kvm_lapic_enabled(vcpu)) {
  4482. update_cr8_intercept(vcpu);
  4483. kvm_lapic_sync_to_vapic(vcpu);
  4484. }
  4485. }
  4486. preempt_disable();
  4487. kvm_x86_ops->prepare_guest_switch(vcpu);
  4488. if (vcpu->fpu_active)
  4489. kvm_load_guest_fpu(vcpu);
  4490. kvm_load_guest_xcr0(vcpu);
  4491. atomic_set(&vcpu->guest_mode, 1);
  4492. smp_wmb();
  4493. local_irq_disable();
  4494. if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
  4495. || need_resched() || signal_pending(current)) {
  4496. atomic_set(&vcpu->guest_mode, 0);
  4497. smp_wmb();
  4498. local_irq_enable();
  4499. preempt_enable();
  4500. kvm_x86_ops->cancel_injection(vcpu);
  4501. r = 1;
  4502. goto out;
  4503. }
  4504. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4505. kvm_guest_enter();
  4506. if (unlikely(vcpu->arch.switch_db_regs)) {
  4507. set_debugreg(0, 7);
  4508. set_debugreg(vcpu->arch.eff_db[0], 0);
  4509. set_debugreg(vcpu->arch.eff_db[1], 1);
  4510. set_debugreg(vcpu->arch.eff_db[2], 2);
  4511. set_debugreg(vcpu->arch.eff_db[3], 3);
  4512. }
  4513. trace_kvm_entry(vcpu->vcpu_id);
  4514. kvm_x86_ops->run(vcpu);
  4515. /*
  4516. * If the guest has used debug registers, at least dr7
  4517. * will be disabled while returning to the host.
  4518. * If we don't have active breakpoints in the host, we don't
  4519. * care about the messed up debug address registers. But if
  4520. * we have some of them active, restore the old state.
  4521. */
  4522. if (hw_breakpoint_active())
  4523. hw_breakpoint_restore();
  4524. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  4525. atomic_set(&vcpu->guest_mode, 0);
  4526. smp_wmb();
  4527. local_irq_enable();
  4528. ++vcpu->stat.exits;
  4529. /*
  4530. * We must have an instruction between local_irq_enable() and
  4531. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4532. * the interrupt shadow. The stat.exits increment will do nicely.
  4533. * But we need to prevent reordering, hence this barrier():
  4534. */
  4535. barrier();
  4536. kvm_guest_exit();
  4537. preempt_enable();
  4538. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4539. /*
  4540. * Profile KVM exit RIPs:
  4541. */
  4542. if (unlikely(prof_on == KVM_PROFILING)) {
  4543. unsigned long rip = kvm_rip_read(vcpu);
  4544. profile_hit(KVM_PROFILING, (void *)rip);
  4545. }
  4546. kvm_lapic_sync_from_vapic(vcpu);
  4547. r = kvm_x86_ops->handle_exit(vcpu);
  4548. out:
  4549. return r;
  4550. }
  4551. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4552. {
  4553. int r;
  4554. struct kvm *kvm = vcpu->kvm;
  4555. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4556. pr_debug("vcpu %d received sipi with vector # %x\n",
  4557. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4558. kvm_lapic_reset(vcpu);
  4559. r = kvm_arch_vcpu_reset(vcpu);
  4560. if (r)
  4561. return r;
  4562. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4563. }
  4564. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4565. vapic_enter(vcpu);
  4566. r = 1;
  4567. while (r > 0) {
  4568. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  4569. r = vcpu_enter_guest(vcpu);
  4570. else {
  4571. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4572. kvm_vcpu_block(vcpu);
  4573. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4574. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4575. {
  4576. switch(vcpu->arch.mp_state) {
  4577. case KVM_MP_STATE_HALTED:
  4578. vcpu->arch.mp_state =
  4579. KVM_MP_STATE_RUNNABLE;
  4580. case KVM_MP_STATE_RUNNABLE:
  4581. break;
  4582. case KVM_MP_STATE_SIPI_RECEIVED:
  4583. default:
  4584. r = -EINTR;
  4585. break;
  4586. }
  4587. }
  4588. }
  4589. if (r <= 0)
  4590. break;
  4591. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4592. if (kvm_cpu_has_pending_timer(vcpu))
  4593. kvm_inject_pending_timer_irqs(vcpu);
  4594. if (dm_request_for_irq_injection(vcpu)) {
  4595. r = -EINTR;
  4596. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4597. ++vcpu->stat.request_irq_exits;
  4598. }
  4599. if (signal_pending(current)) {
  4600. r = -EINTR;
  4601. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4602. ++vcpu->stat.signal_exits;
  4603. }
  4604. if (need_resched()) {
  4605. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4606. kvm_resched(vcpu);
  4607. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4608. }
  4609. }
  4610. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4611. vapic_exit(vcpu);
  4612. return r;
  4613. }
  4614. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4615. {
  4616. int r;
  4617. sigset_t sigsaved;
  4618. if (vcpu->sigset_active)
  4619. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4620. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4621. kvm_vcpu_block(vcpu);
  4622. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4623. r = -EAGAIN;
  4624. goto out;
  4625. }
  4626. /* re-sync apic's tpr */
  4627. if (!irqchip_in_kernel(vcpu->kvm))
  4628. kvm_set_cr8(vcpu, kvm_run->cr8);
  4629. if (vcpu->arch.pio.count || vcpu->mmio_needed) {
  4630. if (vcpu->mmio_needed) {
  4631. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4632. vcpu->mmio_read_completed = 1;
  4633. vcpu->mmio_needed = 0;
  4634. }
  4635. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4636. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4637. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4638. if (r != EMULATE_DONE) {
  4639. r = 0;
  4640. goto out;
  4641. }
  4642. }
  4643. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4644. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4645. kvm_run->hypercall.ret);
  4646. r = __vcpu_run(vcpu);
  4647. out:
  4648. post_kvm_run_save(vcpu);
  4649. if (vcpu->sigset_active)
  4650. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4651. return r;
  4652. }
  4653. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4654. {
  4655. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4656. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4657. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4658. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4659. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4660. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4661. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4662. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4663. #ifdef CONFIG_X86_64
  4664. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4665. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4666. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4667. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4668. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4669. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4670. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4671. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4672. #endif
  4673. regs->rip = kvm_rip_read(vcpu);
  4674. regs->rflags = kvm_get_rflags(vcpu);
  4675. return 0;
  4676. }
  4677. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4678. {
  4679. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4680. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4681. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4682. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4683. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4684. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4685. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4686. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4687. #ifdef CONFIG_X86_64
  4688. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4689. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4690. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4691. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4692. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4693. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4694. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4695. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4696. #endif
  4697. kvm_rip_write(vcpu, regs->rip);
  4698. kvm_set_rflags(vcpu, regs->rflags);
  4699. vcpu->arch.exception.pending = false;
  4700. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4701. return 0;
  4702. }
  4703. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4704. {
  4705. struct kvm_segment cs;
  4706. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4707. *db = cs.db;
  4708. *l = cs.l;
  4709. }
  4710. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4711. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4712. struct kvm_sregs *sregs)
  4713. {
  4714. struct desc_ptr dt;
  4715. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4716. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4717. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4718. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4719. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4720. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4721. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4722. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4723. kvm_x86_ops->get_idt(vcpu, &dt);
  4724. sregs->idt.limit = dt.size;
  4725. sregs->idt.base = dt.address;
  4726. kvm_x86_ops->get_gdt(vcpu, &dt);
  4727. sregs->gdt.limit = dt.size;
  4728. sregs->gdt.base = dt.address;
  4729. sregs->cr0 = kvm_read_cr0(vcpu);
  4730. sregs->cr2 = vcpu->arch.cr2;
  4731. sregs->cr3 = vcpu->arch.cr3;
  4732. sregs->cr4 = kvm_read_cr4(vcpu);
  4733. sregs->cr8 = kvm_get_cr8(vcpu);
  4734. sregs->efer = vcpu->arch.efer;
  4735. sregs->apic_base = kvm_get_apic_base(vcpu);
  4736. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4737. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4738. set_bit(vcpu->arch.interrupt.nr,
  4739. (unsigned long *)sregs->interrupt_bitmap);
  4740. return 0;
  4741. }
  4742. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4743. struct kvm_mp_state *mp_state)
  4744. {
  4745. mp_state->mp_state = vcpu->arch.mp_state;
  4746. return 0;
  4747. }
  4748. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4749. struct kvm_mp_state *mp_state)
  4750. {
  4751. vcpu->arch.mp_state = mp_state->mp_state;
  4752. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4753. return 0;
  4754. }
  4755. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4756. bool has_error_code, u32 error_code)
  4757. {
  4758. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4759. int ret;
  4760. init_emulate_ctxt(vcpu);
  4761. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  4762. tss_selector, reason, has_error_code,
  4763. error_code);
  4764. if (ret)
  4765. return EMULATE_FAIL;
  4766. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4767. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4768. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4769. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4770. return EMULATE_DONE;
  4771. }
  4772. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4773. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4774. struct kvm_sregs *sregs)
  4775. {
  4776. int mmu_reset_needed = 0;
  4777. int pending_vec, max_bits;
  4778. struct desc_ptr dt;
  4779. dt.size = sregs->idt.limit;
  4780. dt.address = sregs->idt.base;
  4781. kvm_x86_ops->set_idt(vcpu, &dt);
  4782. dt.size = sregs->gdt.limit;
  4783. dt.address = sregs->gdt.base;
  4784. kvm_x86_ops->set_gdt(vcpu, &dt);
  4785. vcpu->arch.cr2 = sregs->cr2;
  4786. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4787. vcpu->arch.cr3 = sregs->cr3;
  4788. kvm_set_cr8(vcpu, sregs->cr8);
  4789. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4790. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4791. kvm_set_apic_base(vcpu, sregs->apic_base);
  4792. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4793. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4794. vcpu->arch.cr0 = sregs->cr0;
  4795. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4796. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4797. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4798. load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
  4799. mmu_reset_needed = 1;
  4800. }
  4801. if (mmu_reset_needed)
  4802. kvm_mmu_reset_context(vcpu);
  4803. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4804. pending_vec = find_first_bit(
  4805. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4806. if (pending_vec < max_bits) {
  4807. kvm_queue_interrupt(vcpu, pending_vec, false);
  4808. pr_debug("Set back pending irq %d\n", pending_vec);
  4809. if (irqchip_in_kernel(vcpu->kvm))
  4810. kvm_pic_clear_isr_ack(vcpu->kvm);
  4811. }
  4812. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4813. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4814. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4815. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4816. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4817. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4818. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4819. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4820. update_cr8_intercept(vcpu);
  4821. /* Older userspace won't unhalt the vcpu on reset. */
  4822. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4823. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4824. !is_protmode(vcpu))
  4825. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4826. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4827. return 0;
  4828. }
  4829. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4830. struct kvm_guest_debug *dbg)
  4831. {
  4832. unsigned long rflags;
  4833. int i, r;
  4834. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4835. r = -EBUSY;
  4836. if (vcpu->arch.exception.pending)
  4837. goto out;
  4838. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4839. kvm_queue_exception(vcpu, DB_VECTOR);
  4840. else
  4841. kvm_queue_exception(vcpu, BP_VECTOR);
  4842. }
  4843. /*
  4844. * Read rflags as long as potentially injected trace flags are still
  4845. * filtered out.
  4846. */
  4847. rflags = kvm_get_rflags(vcpu);
  4848. vcpu->guest_debug = dbg->control;
  4849. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4850. vcpu->guest_debug = 0;
  4851. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4852. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4853. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4854. vcpu->arch.switch_db_regs =
  4855. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4856. } else {
  4857. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4858. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4859. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4860. }
  4861. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4862. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4863. get_segment_base(vcpu, VCPU_SREG_CS);
  4864. /*
  4865. * Trigger an rflags update that will inject or remove the trace
  4866. * flags.
  4867. */
  4868. kvm_set_rflags(vcpu, rflags);
  4869. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4870. r = 0;
  4871. out:
  4872. return r;
  4873. }
  4874. /*
  4875. * Translate a guest virtual address to a guest physical address.
  4876. */
  4877. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4878. struct kvm_translation *tr)
  4879. {
  4880. unsigned long vaddr = tr->linear_address;
  4881. gpa_t gpa;
  4882. int idx;
  4883. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4884. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4885. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4886. tr->physical_address = gpa;
  4887. tr->valid = gpa != UNMAPPED_GVA;
  4888. tr->writeable = 1;
  4889. tr->usermode = 0;
  4890. return 0;
  4891. }
  4892. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4893. {
  4894. struct i387_fxsave_struct *fxsave =
  4895. &vcpu->arch.guest_fpu.state->fxsave;
  4896. memcpy(fpu->fpr, fxsave->st_space, 128);
  4897. fpu->fcw = fxsave->cwd;
  4898. fpu->fsw = fxsave->swd;
  4899. fpu->ftwx = fxsave->twd;
  4900. fpu->last_opcode = fxsave->fop;
  4901. fpu->last_ip = fxsave->rip;
  4902. fpu->last_dp = fxsave->rdp;
  4903. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4904. return 0;
  4905. }
  4906. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4907. {
  4908. struct i387_fxsave_struct *fxsave =
  4909. &vcpu->arch.guest_fpu.state->fxsave;
  4910. memcpy(fxsave->st_space, fpu->fpr, 128);
  4911. fxsave->cwd = fpu->fcw;
  4912. fxsave->swd = fpu->fsw;
  4913. fxsave->twd = fpu->ftwx;
  4914. fxsave->fop = fpu->last_opcode;
  4915. fxsave->rip = fpu->last_ip;
  4916. fxsave->rdp = fpu->last_dp;
  4917. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4918. return 0;
  4919. }
  4920. int fx_init(struct kvm_vcpu *vcpu)
  4921. {
  4922. int err;
  4923. err = fpu_alloc(&vcpu->arch.guest_fpu);
  4924. if (err)
  4925. return err;
  4926. fpu_finit(&vcpu->arch.guest_fpu);
  4927. /*
  4928. * Ensure guest xcr0 is valid for loading
  4929. */
  4930. vcpu->arch.xcr0 = XSTATE_FP;
  4931. vcpu->arch.cr0 |= X86_CR0_ET;
  4932. return 0;
  4933. }
  4934. EXPORT_SYMBOL_GPL(fx_init);
  4935. static void fx_free(struct kvm_vcpu *vcpu)
  4936. {
  4937. fpu_free(&vcpu->arch.guest_fpu);
  4938. }
  4939. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4940. {
  4941. if (vcpu->guest_fpu_loaded)
  4942. return;
  4943. /*
  4944. * Restore all possible states in the guest,
  4945. * and assume host would use all available bits.
  4946. * Guest xcr0 would be loaded later.
  4947. */
  4948. kvm_put_guest_xcr0(vcpu);
  4949. vcpu->guest_fpu_loaded = 1;
  4950. unlazy_fpu(current);
  4951. fpu_restore_checking(&vcpu->arch.guest_fpu);
  4952. trace_kvm_fpu(1);
  4953. }
  4954. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4955. {
  4956. kvm_put_guest_xcr0(vcpu);
  4957. if (!vcpu->guest_fpu_loaded)
  4958. return;
  4959. vcpu->guest_fpu_loaded = 0;
  4960. fpu_save_init(&vcpu->arch.guest_fpu);
  4961. ++vcpu->stat.fpu_reload;
  4962. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  4963. trace_kvm_fpu(0);
  4964. }
  4965. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4966. {
  4967. if (vcpu->arch.time_page) {
  4968. kvm_release_page_dirty(vcpu->arch.time_page);
  4969. vcpu->arch.time_page = NULL;
  4970. }
  4971. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  4972. fx_free(vcpu);
  4973. kvm_x86_ops->vcpu_free(vcpu);
  4974. }
  4975. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4976. unsigned int id)
  4977. {
  4978. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  4979. printk_once(KERN_WARNING
  4980. "kvm: SMP vm created on host with unstable TSC; "
  4981. "guest TSC will not be reliable\n");
  4982. return kvm_x86_ops->vcpu_create(kvm, id);
  4983. }
  4984. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4985. {
  4986. int r;
  4987. vcpu->arch.mtrr_state.have_fixed = 1;
  4988. vcpu_load(vcpu);
  4989. r = kvm_arch_vcpu_reset(vcpu);
  4990. if (r == 0)
  4991. r = kvm_mmu_setup(vcpu);
  4992. vcpu_put(vcpu);
  4993. if (r < 0)
  4994. goto free_vcpu;
  4995. return 0;
  4996. free_vcpu:
  4997. kvm_x86_ops->vcpu_free(vcpu);
  4998. return r;
  4999. }
  5000. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5001. {
  5002. vcpu_load(vcpu);
  5003. kvm_mmu_unload(vcpu);
  5004. vcpu_put(vcpu);
  5005. fx_free(vcpu);
  5006. kvm_x86_ops->vcpu_free(vcpu);
  5007. }
  5008. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  5009. {
  5010. vcpu->arch.nmi_pending = false;
  5011. vcpu->arch.nmi_injected = false;
  5012. vcpu->arch.switch_db_regs = 0;
  5013. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5014. vcpu->arch.dr6 = DR6_FIXED_1;
  5015. vcpu->arch.dr7 = DR7_FIXED_1;
  5016. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5017. return kvm_x86_ops->vcpu_reset(vcpu);
  5018. }
  5019. int kvm_arch_hardware_enable(void *garbage)
  5020. {
  5021. struct kvm *kvm;
  5022. struct kvm_vcpu *vcpu;
  5023. int i;
  5024. kvm_shared_msr_cpu_online();
  5025. list_for_each_entry(kvm, &vm_list, vm_list)
  5026. kvm_for_each_vcpu(i, vcpu, kvm)
  5027. if (vcpu->cpu == smp_processor_id())
  5028. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5029. return kvm_x86_ops->hardware_enable(garbage);
  5030. }
  5031. void kvm_arch_hardware_disable(void *garbage)
  5032. {
  5033. kvm_x86_ops->hardware_disable(garbage);
  5034. drop_user_return_notifiers(garbage);
  5035. }
  5036. int kvm_arch_hardware_setup(void)
  5037. {
  5038. return kvm_x86_ops->hardware_setup();
  5039. }
  5040. void kvm_arch_hardware_unsetup(void)
  5041. {
  5042. kvm_x86_ops->hardware_unsetup();
  5043. }
  5044. void kvm_arch_check_processor_compat(void *rtn)
  5045. {
  5046. kvm_x86_ops->check_processor_compatibility(rtn);
  5047. }
  5048. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5049. {
  5050. struct page *page;
  5051. struct kvm *kvm;
  5052. int r;
  5053. BUG_ON(vcpu->kvm == NULL);
  5054. kvm = vcpu->kvm;
  5055. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5056. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  5057. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  5058. vcpu->arch.mmu.translate_gpa = translate_gpa;
  5059. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  5060. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5061. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5062. else
  5063. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5064. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5065. if (!page) {
  5066. r = -ENOMEM;
  5067. goto fail;
  5068. }
  5069. vcpu->arch.pio_data = page_address(page);
  5070. if (!kvm->arch.virtual_tsc_khz)
  5071. kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
  5072. r = kvm_mmu_create(vcpu);
  5073. if (r < 0)
  5074. goto fail_free_pio_data;
  5075. if (irqchip_in_kernel(kvm)) {
  5076. r = kvm_create_lapic(vcpu);
  5077. if (r < 0)
  5078. goto fail_mmu_destroy;
  5079. }
  5080. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5081. GFP_KERNEL);
  5082. if (!vcpu->arch.mce_banks) {
  5083. r = -ENOMEM;
  5084. goto fail_free_lapic;
  5085. }
  5086. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5087. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5088. goto fail_free_mce_banks;
  5089. return 0;
  5090. fail_free_mce_banks:
  5091. kfree(vcpu->arch.mce_banks);
  5092. fail_free_lapic:
  5093. kvm_free_lapic(vcpu);
  5094. fail_mmu_destroy:
  5095. kvm_mmu_destroy(vcpu);
  5096. fail_free_pio_data:
  5097. free_page((unsigned long)vcpu->arch.pio_data);
  5098. fail:
  5099. return r;
  5100. }
  5101. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5102. {
  5103. int idx;
  5104. kfree(vcpu->arch.mce_banks);
  5105. kvm_free_lapic(vcpu);
  5106. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5107. kvm_mmu_destroy(vcpu);
  5108. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5109. free_page((unsigned long)vcpu->arch.pio_data);
  5110. }
  5111. struct kvm *kvm_arch_create_vm(void)
  5112. {
  5113. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  5114. if (!kvm)
  5115. return ERR_PTR(-ENOMEM);
  5116. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5117. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5118. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5119. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5120. spin_lock_init(&kvm->arch.tsc_write_lock);
  5121. return kvm;
  5122. }
  5123. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5124. {
  5125. vcpu_load(vcpu);
  5126. kvm_mmu_unload(vcpu);
  5127. vcpu_put(vcpu);
  5128. }
  5129. static void kvm_free_vcpus(struct kvm *kvm)
  5130. {
  5131. unsigned int i;
  5132. struct kvm_vcpu *vcpu;
  5133. /*
  5134. * Unpin any mmu pages first.
  5135. */
  5136. kvm_for_each_vcpu(i, vcpu, kvm)
  5137. kvm_unload_vcpu_mmu(vcpu);
  5138. kvm_for_each_vcpu(i, vcpu, kvm)
  5139. kvm_arch_vcpu_free(vcpu);
  5140. mutex_lock(&kvm->lock);
  5141. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5142. kvm->vcpus[i] = NULL;
  5143. atomic_set(&kvm->online_vcpus, 0);
  5144. mutex_unlock(&kvm->lock);
  5145. }
  5146. void kvm_arch_sync_events(struct kvm *kvm)
  5147. {
  5148. kvm_free_all_assigned_devices(kvm);
  5149. kvm_free_pit(kvm);
  5150. }
  5151. void kvm_arch_destroy_vm(struct kvm *kvm)
  5152. {
  5153. kvm_iommu_unmap_guest(kvm);
  5154. kfree(kvm->arch.vpic);
  5155. kfree(kvm->arch.vioapic);
  5156. kvm_free_vcpus(kvm);
  5157. kvm_free_physmem(kvm);
  5158. if (kvm->arch.apic_access_page)
  5159. put_page(kvm->arch.apic_access_page);
  5160. if (kvm->arch.ept_identity_pagetable)
  5161. put_page(kvm->arch.ept_identity_pagetable);
  5162. cleanup_srcu_struct(&kvm->srcu);
  5163. kfree(kvm);
  5164. }
  5165. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5166. struct kvm_memory_slot *memslot,
  5167. struct kvm_memory_slot old,
  5168. struct kvm_userspace_memory_region *mem,
  5169. int user_alloc)
  5170. {
  5171. int npages = memslot->npages;
  5172. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5173. /* Prevent internal slot pages from being moved by fork()/COW. */
  5174. if (memslot->id >= KVM_MEMORY_SLOTS)
  5175. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5176. /*To keep backward compatibility with older userspace,
  5177. *x86 needs to hanlde !user_alloc case.
  5178. */
  5179. if (!user_alloc) {
  5180. if (npages && !old.rmap) {
  5181. unsigned long userspace_addr;
  5182. down_write(&current->mm->mmap_sem);
  5183. userspace_addr = do_mmap(NULL, 0,
  5184. npages * PAGE_SIZE,
  5185. PROT_READ | PROT_WRITE,
  5186. map_flags,
  5187. 0);
  5188. up_write(&current->mm->mmap_sem);
  5189. if (IS_ERR((void *)userspace_addr))
  5190. return PTR_ERR((void *)userspace_addr);
  5191. memslot->userspace_addr = userspace_addr;
  5192. }
  5193. }
  5194. return 0;
  5195. }
  5196. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5197. struct kvm_userspace_memory_region *mem,
  5198. struct kvm_memory_slot old,
  5199. int user_alloc)
  5200. {
  5201. int npages = mem->memory_size >> PAGE_SHIFT;
  5202. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5203. int ret;
  5204. down_write(&current->mm->mmap_sem);
  5205. ret = do_munmap(current->mm, old.userspace_addr,
  5206. old.npages * PAGE_SIZE);
  5207. up_write(&current->mm->mmap_sem);
  5208. if (ret < 0)
  5209. printk(KERN_WARNING
  5210. "kvm_vm_ioctl_set_memory_region: "
  5211. "failed to munmap memory\n");
  5212. }
  5213. spin_lock(&kvm->mmu_lock);
  5214. if (!kvm->arch.n_requested_mmu_pages) {
  5215. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5216. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5217. }
  5218. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5219. spin_unlock(&kvm->mmu_lock);
  5220. }
  5221. void kvm_arch_flush_shadow(struct kvm *kvm)
  5222. {
  5223. kvm_mmu_zap_all(kvm);
  5224. kvm_reload_remote_mmus(kvm);
  5225. }
  5226. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5227. {
  5228. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  5229. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5230. || vcpu->arch.nmi_pending ||
  5231. (kvm_arch_interrupt_allowed(vcpu) &&
  5232. kvm_cpu_has_interrupt(vcpu));
  5233. }
  5234. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5235. {
  5236. int me;
  5237. int cpu = vcpu->cpu;
  5238. if (waitqueue_active(&vcpu->wq)) {
  5239. wake_up_interruptible(&vcpu->wq);
  5240. ++vcpu->stat.halt_wakeup;
  5241. }
  5242. me = get_cpu();
  5243. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5244. if (atomic_xchg(&vcpu->guest_mode, 0))
  5245. smp_send_reschedule(cpu);
  5246. put_cpu();
  5247. }
  5248. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5249. {
  5250. return kvm_x86_ops->interrupt_allowed(vcpu);
  5251. }
  5252. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5253. {
  5254. unsigned long current_rip = kvm_rip_read(vcpu) +
  5255. get_segment_base(vcpu, VCPU_SREG_CS);
  5256. return current_rip == linear_rip;
  5257. }
  5258. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5259. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5260. {
  5261. unsigned long rflags;
  5262. rflags = kvm_x86_ops->get_rflags(vcpu);
  5263. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5264. rflags &= ~X86_EFLAGS_TF;
  5265. return rflags;
  5266. }
  5267. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5268. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5269. {
  5270. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5271. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5272. rflags |= X86_EFLAGS_TF;
  5273. kvm_x86_ops->set_rflags(vcpu, rflags);
  5274. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5275. }
  5276. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5277. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5278. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5279. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5280. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5281. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5282. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5283. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5284. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5285. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5286. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5287. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5288. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);