sched.c 259 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <linux/smp_lock.h>
  35. #include <asm/mmu_context.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/capability.h>
  38. #include <linux/completion.h>
  39. #include <linux/kernel_stat.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/perf_counter.h>
  42. #include <linux/security.h>
  43. #include <linux/notifier.h>
  44. #include <linux/profile.h>
  45. #include <linux/freezer.h>
  46. #include <linux/vmalloc.h>
  47. #include <linux/blkdev.h>
  48. #include <linux/delay.h>
  49. #include <linux/pid_namespace.h>
  50. #include <linux/smp.h>
  51. #include <linux/threads.h>
  52. #include <linux/timer.h>
  53. #include <linux/rcupdate.h>
  54. #include <linux/cpu.h>
  55. #include <linux/cpuset.h>
  56. #include <linux/percpu.h>
  57. #include <linux/kthread.h>
  58. #include <linux/proc_fs.h>
  59. #include <linux/seq_file.h>
  60. #include <linux/sysctl.h>
  61. #include <linux/syscalls.h>
  62. #include <linux/times.h>
  63. #include <linux/tsacct_kern.h>
  64. #include <linux/kprobes.h>
  65. #include <linux/delayacct.h>
  66. #include <linux/reciprocal_div.h>
  67. #include <linux/unistd.h>
  68. #include <linux/pagemap.h>
  69. #include <linux/hrtimer.h>
  70. #include <linux/tick.h>
  71. #include <linux/debugfs.h>
  72. #include <linux/ctype.h>
  73. #include <linux/ftrace.h>
  74. #include <asm/tlb.h>
  75. #include <asm/irq_regs.h>
  76. #include "sched_cpupri.h"
  77. #define CREATE_TRACE_POINTS
  78. #include <trace/events/sched.h>
  79. /*
  80. * Convert user-nice values [ -20 ... 0 ... 19 ]
  81. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  82. * and back.
  83. */
  84. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  85. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  86. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  87. /*
  88. * 'User priority' is the nice value converted to something we
  89. * can work with better when scaling various scheduler parameters,
  90. * it's a [ 0 ... 39 ] range.
  91. */
  92. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  93. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  94. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  95. /*
  96. * Helpers for converting nanosecond timing to jiffy resolution
  97. */
  98. #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  99. #define NICE_0_LOAD SCHED_LOAD_SCALE
  100. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  101. /*
  102. * These are the 'tuning knobs' of the scheduler:
  103. *
  104. * default timeslice is 100 msecs (used only for SCHED_RR tasks).
  105. * Timeslices get refilled after they expire.
  106. */
  107. #define DEF_TIMESLICE (100 * HZ / 1000)
  108. /*
  109. * single value that denotes runtime == period, ie unlimited time.
  110. */
  111. #define RUNTIME_INF ((u64)~0ULL)
  112. #ifdef CONFIG_SMP
  113. static void double_rq_lock(struct rq *rq1, struct rq *rq2);
  114. /*
  115. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  116. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  117. */
  118. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  119. {
  120. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  121. }
  122. /*
  123. * Each time a sched group cpu_power is changed,
  124. * we must compute its reciprocal value
  125. */
  126. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  127. {
  128. sg->__cpu_power += val;
  129. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  130. }
  131. #endif
  132. static inline int rt_policy(int policy)
  133. {
  134. if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
  135. return 1;
  136. return 0;
  137. }
  138. static inline int task_has_rt_policy(struct task_struct *p)
  139. {
  140. return rt_policy(p->policy);
  141. }
  142. /*
  143. * This is the priority-queue data structure of the RT scheduling class:
  144. */
  145. struct rt_prio_array {
  146. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  147. struct list_head queue[MAX_RT_PRIO];
  148. };
  149. struct rt_bandwidth {
  150. /* nests inside the rq lock: */
  151. spinlock_t rt_runtime_lock;
  152. ktime_t rt_period;
  153. u64 rt_runtime;
  154. struct hrtimer rt_period_timer;
  155. };
  156. static struct rt_bandwidth def_rt_bandwidth;
  157. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
  158. static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
  159. {
  160. struct rt_bandwidth *rt_b =
  161. container_of(timer, struct rt_bandwidth, rt_period_timer);
  162. ktime_t now;
  163. int overrun;
  164. int idle = 0;
  165. for (;;) {
  166. now = hrtimer_cb_get_time(timer);
  167. overrun = hrtimer_forward(timer, now, rt_b->rt_period);
  168. if (!overrun)
  169. break;
  170. idle = do_sched_rt_period_timer(rt_b, overrun);
  171. }
  172. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  173. }
  174. static
  175. void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
  176. {
  177. rt_b->rt_period = ns_to_ktime(period);
  178. rt_b->rt_runtime = runtime;
  179. spin_lock_init(&rt_b->rt_runtime_lock);
  180. hrtimer_init(&rt_b->rt_period_timer,
  181. CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  182. rt_b->rt_period_timer.function = sched_rt_period_timer;
  183. }
  184. static inline int rt_bandwidth_enabled(void)
  185. {
  186. return sysctl_sched_rt_runtime >= 0;
  187. }
  188. static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
  189. {
  190. ktime_t now;
  191. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  192. return;
  193. if (hrtimer_active(&rt_b->rt_period_timer))
  194. return;
  195. spin_lock(&rt_b->rt_runtime_lock);
  196. for (;;) {
  197. unsigned long delta;
  198. ktime_t soft, hard;
  199. if (hrtimer_active(&rt_b->rt_period_timer))
  200. break;
  201. now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
  202. hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
  203. soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
  204. hard = hrtimer_get_expires(&rt_b->rt_period_timer);
  205. delta = ktime_to_ns(ktime_sub(hard, soft));
  206. __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
  207. HRTIMER_MODE_ABS, 0);
  208. }
  209. spin_unlock(&rt_b->rt_runtime_lock);
  210. }
  211. #ifdef CONFIG_RT_GROUP_SCHED
  212. static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
  213. {
  214. hrtimer_cancel(&rt_b->rt_period_timer);
  215. }
  216. #endif
  217. /*
  218. * sched_domains_mutex serializes calls to arch_init_sched_domains,
  219. * detach_destroy_domains and partition_sched_domains.
  220. */
  221. static DEFINE_MUTEX(sched_domains_mutex);
  222. #ifdef CONFIG_GROUP_SCHED
  223. #include <linux/cgroup.h>
  224. struct cfs_rq;
  225. static LIST_HEAD(task_groups);
  226. /* task group related information */
  227. struct task_group {
  228. #ifdef CONFIG_CGROUP_SCHED
  229. struct cgroup_subsys_state css;
  230. #endif
  231. #ifdef CONFIG_USER_SCHED
  232. uid_t uid;
  233. #endif
  234. #ifdef CONFIG_FAIR_GROUP_SCHED
  235. /* schedulable entities of this group on each cpu */
  236. struct sched_entity **se;
  237. /* runqueue "owned" by this group on each cpu */
  238. struct cfs_rq **cfs_rq;
  239. unsigned long shares;
  240. #endif
  241. #ifdef CONFIG_RT_GROUP_SCHED
  242. struct sched_rt_entity **rt_se;
  243. struct rt_rq **rt_rq;
  244. struct rt_bandwidth rt_bandwidth;
  245. #endif
  246. struct rcu_head rcu;
  247. struct list_head list;
  248. struct task_group *parent;
  249. struct list_head siblings;
  250. struct list_head children;
  251. };
  252. #ifdef CONFIG_USER_SCHED
  253. /* Helper function to pass uid information to create_sched_user() */
  254. void set_tg_uid(struct user_struct *user)
  255. {
  256. user->tg->uid = user->uid;
  257. }
  258. /*
  259. * Root task group.
  260. * Every UID task group (including init_task_group aka UID-0) will
  261. * be a child to this group.
  262. */
  263. struct task_group root_task_group;
  264. #ifdef CONFIG_FAIR_GROUP_SCHED
  265. /* Default task group's sched entity on each cpu */
  266. static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
  267. /* Default task group's cfs_rq on each cpu */
  268. static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
  269. #endif /* CONFIG_FAIR_GROUP_SCHED */
  270. #ifdef CONFIG_RT_GROUP_SCHED
  271. static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
  272. static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
  273. #endif /* CONFIG_RT_GROUP_SCHED */
  274. #else /* !CONFIG_USER_SCHED */
  275. #define root_task_group init_task_group
  276. #endif /* CONFIG_USER_SCHED */
  277. /* task_group_lock serializes add/remove of task groups and also changes to
  278. * a task group's cpu shares.
  279. */
  280. static DEFINE_SPINLOCK(task_group_lock);
  281. #ifdef CONFIG_SMP
  282. static int root_task_group_empty(void)
  283. {
  284. return list_empty(&root_task_group.children);
  285. }
  286. #endif
  287. #ifdef CONFIG_FAIR_GROUP_SCHED
  288. #ifdef CONFIG_USER_SCHED
  289. # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
  290. #else /* !CONFIG_USER_SCHED */
  291. # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
  292. #endif /* CONFIG_USER_SCHED */
  293. /*
  294. * A weight of 0 or 1 can cause arithmetics problems.
  295. * A weight of a cfs_rq is the sum of weights of which entities
  296. * are queued on this cfs_rq, so a weight of a entity should not be
  297. * too large, so as the shares value of a task group.
  298. * (The default weight is 1024 - so there's no practical
  299. * limitation from this.)
  300. */
  301. #define MIN_SHARES 2
  302. #define MAX_SHARES (1UL << 18)
  303. static int init_task_group_load = INIT_TASK_GROUP_LOAD;
  304. #endif
  305. /* Default task group.
  306. * Every task in system belong to this group at bootup.
  307. */
  308. struct task_group init_task_group;
  309. /* return group to which a task belongs */
  310. static inline struct task_group *task_group(struct task_struct *p)
  311. {
  312. struct task_group *tg;
  313. #ifdef CONFIG_USER_SCHED
  314. rcu_read_lock();
  315. tg = __task_cred(p)->user->tg;
  316. rcu_read_unlock();
  317. #elif defined(CONFIG_CGROUP_SCHED)
  318. tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
  319. struct task_group, css);
  320. #else
  321. tg = &init_task_group;
  322. #endif
  323. return tg;
  324. }
  325. /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
  326. static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
  327. {
  328. #ifdef CONFIG_FAIR_GROUP_SCHED
  329. p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
  330. p->se.parent = task_group(p)->se[cpu];
  331. #endif
  332. #ifdef CONFIG_RT_GROUP_SCHED
  333. p->rt.rt_rq = task_group(p)->rt_rq[cpu];
  334. p->rt.parent = task_group(p)->rt_se[cpu];
  335. #endif
  336. }
  337. #else
  338. #ifdef CONFIG_SMP
  339. static int root_task_group_empty(void)
  340. {
  341. return 1;
  342. }
  343. #endif
  344. static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
  345. static inline struct task_group *task_group(struct task_struct *p)
  346. {
  347. return NULL;
  348. }
  349. #endif /* CONFIG_GROUP_SCHED */
  350. /* CFS-related fields in a runqueue */
  351. struct cfs_rq {
  352. struct load_weight load;
  353. unsigned long nr_running;
  354. u64 exec_clock;
  355. u64 min_vruntime;
  356. struct rb_root tasks_timeline;
  357. struct rb_node *rb_leftmost;
  358. struct list_head tasks;
  359. struct list_head *balance_iterator;
  360. /*
  361. * 'curr' points to currently running entity on this cfs_rq.
  362. * It is set to NULL otherwise (i.e when none are currently running).
  363. */
  364. struct sched_entity *curr, *next, *last;
  365. unsigned int nr_spread_over;
  366. #ifdef CONFIG_FAIR_GROUP_SCHED
  367. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  368. /*
  369. * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  370. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  371. * (like users, containers etc.)
  372. *
  373. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  374. * list is used during load balance.
  375. */
  376. struct list_head leaf_cfs_rq_list;
  377. struct task_group *tg; /* group that "owns" this runqueue */
  378. #ifdef CONFIG_SMP
  379. /*
  380. * the part of load.weight contributed by tasks
  381. */
  382. unsigned long task_weight;
  383. /*
  384. * h_load = weight * f(tg)
  385. *
  386. * Where f(tg) is the recursive weight fraction assigned to
  387. * this group.
  388. */
  389. unsigned long h_load;
  390. /*
  391. * this cpu's part of tg->shares
  392. */
  393. unsigned long shares;
  394. /*
  395. * load.weight at the time we set shares
  396. */
  397. unsigned long rq_weight;
  398. #endif
  399. #endif
  400. };
  401. /* Real-Time classes' related field in a runqueue: */
  402. struct rt_rq {
  403. struct rt_prio_array active;
  404. unsigned long rt_nr_running;
  405. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  406. struct {
  407. int curr; /* highest queued rt task prio */
  408. #ifdef CONFIG_SMP
  409. int next; /* next highest */
  410. #endif
  411. } highest_prio;
  412. #endif
  413. #ifdef CONFIG_SMP
  414. unsigned long rt_nr_migratory;
  415. int overloaded;
  416. struct plist_head pushable_tasks;
  417. #endif
  418. int rt_throttled;
  419. u64 rt_time;
  420. u64 rt_runtime;
  421. /* Nests inside the rq lock: */
  422. spinlock_t rt_runtime_lock;
  423. #ifdef CONFIG_RT_GROUP_SCHED
  424. unsigned long rt_nr_boosted;
  425. struct rq *rq;
  426. struct list_head leaf_rt_rq_list;
  427. struct task_group *tg;
  428. struct sched_rt_entity *rt_se;
  429. #endif
  430. };
  431. #ifdef CONFIG_SMP
  432. /*
  433. * We add the notion of a root-domain which will be used to define per-domain
  434. * variables. Each exclusive cpuset essentially defines an island domain by
  435. * fully partitioning the member cpus from any other cpuset. Whenever a new
  436. * exclusive cpuset is created, we also create and attach a new root-domain
  437. * object.
  438. *
  439. */
  440. struct root_domain {
  441. atomic_t refcount;
  442. cpumask_var_t span;
  443. cpumask_var_t online;
  444. /*
  445. * The "RT overload" flag: it gets set if a CPU has more than
  446. * one runnable RT task.
  447. */
  448. cpumask_var_t rto_mask;
  449. atomic_t rto_count;
  450. #ifdef CONFIG_SMP
  451. struct cpupri cpupri;
  452. #endif
  453. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  454. /*
  455. * Preferred wake up cpu nominated by sched_mc balance that will be
  456. * used when most cpus are idle in the system indicating overall very
  457. * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
  458. */
  459. unsigned int sched_mc_preferred_wakeup_cpu;
  460. #endif
  461. };
  462. /*
  463. * By default the system creates a single root-domain with all cpus as
  464. * members (mimicking the global state we have today).
  465. */
  466. static struct root_domain def_root_domain;
  467. #endif
  468. /*
  469. * This is the main, per-CPU runqueue data structure.
  470. *
  471. * Locking rule: those places that want to lock multiple runqueues
  472. * (such as the load balancing or the thread migration code), lock
  473. * acquire operations must be ordered by ascending &runqueue.
  474. */
  475. struct rq {
  476. /* runqueue lock: */
  477. spinlock_t lock;
  478. /*
  479. * nr_running and cpu_load should be in the same cacheline because
  480. * remote CPUs use both these fields when doing load calculation.
  481. */
  482. unsigned long nr_running;
  483. #define CPU_LOAD_IDX_MAX 5
  484. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  485. #ifdef CONFIG_NO_HZ
  486. unsigned long last_tick_seen;
  487. unsigned char in_nohz_recently;
  488. #endif
  489. /* capture load from *all* tasks on this cpu: */
  490. struct load_weight load;
  491. unsigned long nr_load_updates;
  492. u64 nr_switches;
  493. u64 nr_migrations_in;
  494. struct cfs_rq cfs;
  495. struct rt_rq rt;
  496. #ifdef CONFIG_FAIR_GROUP_SCHED
  497. /* list of leaf cfs_rq on this cpu: */
  498. struct list_head leaf_cfs_rq_list;
  499. #endif
  500. #ifdef CONFIG_RT_GROUP_SCHED
  501. struct list_head leaf_rt_rq_list;
  502. #endif
  503. /*
  504. * This is part of a global counter where only the total sum
  505. * over all CPUs matters. A task can increase this counter on
  506. * one CPU and if it got migrated afterwards it may decrease
  507. * it on another CPU. Always updated under the runqueue lock:
  508. */
  509. unsigned long nr_uninterruptible;
  510. struct task_struct *curr, *idle;
  511. unsigned long next_balance;
  512. struct mm_struct *prev_mm;
  513. u64 clock;
  514. atomic_t nr_iowait;
  515. #ifdef CONFIG_SMP
  516. struct root_domain *rd;
  517. struct sched_domain *sd;
  518. unsigned char idle_at_tick;
  519. /* For active balancing */
  520. int active_balance;
  521. int push_cpu;
  522. /* cpu of this runqueue: */
  523. int cpu;
  524. int online;
  525. unsigned long avg_load_per_task;
  526. struct task_struct *migration_thread;
  527. struct list_head migration_queue;
  528. #endif
  529. /* calc_load related fields */
  530. unsigned long calc_load_update;
  531. long calc_load_active;
  532. #ifdef CONFIG_SCHED_HRTICK
  533. #ifdef CONFIG_SMP
  534. int hrtick_csd_pending;
  535. struct call_single_data hrtick_csd;
  536. #endif
  537. struct hrtimer hrtick_timer;
  538. #endif
  539. #ifdef CONFIG_SCHEDSTATS
  540. /* latency stats */
  541. struct sched_info rq_sched_info;
  542. unsigned long long rq_cpu_time;
  543. /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
  544. /* sys_sched_yield() stats */
  545. unsigned int yld_count;
  546. /* schedule() stats */
  547. unsigned int sched_switch;
  548. unsigned int sched_count;
  549. unsigned int sched_goidle;
  550. /* try_to_wake_up() stats */
  551. unsigned int ttwu_count;
  552. unsigned int ttwu_local;
  553. /* BKL stats */
  554. unsigned int bkl_count;
  555. #endif
  556. };
  557. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  558. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
  559. {
  560. rq->curr->sched_class->check_preempt_curr(rq, p, sync);
  561. }
  562. static inline int cpu_of(struct rq *rq)
  563. {
  564. #ifdef CONFIG_SMP
  565. return rq->cpu;
  566. #else
  567. return 0;
  568. #endif
  569. }
  570. /*
  571. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  572. * See detach_destroy_domains: synchronize_sched for details.
  573. *
  574. * The domain tree of any CPU may only be accessed from within
  575. * preempt-disabled sections.
  576. */
  577. #define for_each_domain(cpu, __sd) \
  578. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  579. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  580. #define this_rq() (&__get_cpu_var(runqueues))
  581. #define task_rq(p) cpu_rq(task_cpu(p))
  582. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  583. inline void update_rq_clock(struct rq *rq)
  584. {
  585. rq->clock = sched_clock_cpu(cpu_of(rq));
  586. }
  587. /*
  588. * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
  589. */
  590. #ifdef CONFIG_SCHED_DEBUG
  591. # define const_debug __read_mostly
  592. #else
  593. # define const_debug static const
  594. #endif
  595. /**
  596. * runqueue_is_locked
  597. *
  598. * Returns true if the current cpu runqueue is locked.
  599. * This interface allows printk to be called with the runqueue lock
  600. * held and know whether or not it is OK to wake up the klogd.
  601. */
  602. int runqueue_is_locked(void)
  603. {
  604. int cpu = get_cpu();
  605. struct rq *rq = cpu_rq(cpu);
  606. int ret;
  607. ret = spin_is_locked(&rq->lock);
  608. put_cpu();
  609. return ret;
  610. }
  611. /*
  612. * Debugging: various feature bits
  613. */
  614. #define SCHED_FEAT(name, enabled) \
  615. __SCHED_FEAT_##name ,
  616. enum {
  617. #include "sched_features.h"
  618. };
  619. #undef SCHED_FEAT
  620. #define SCHED_FEAT(name, enabled) \
  621. (1UL << __SCHED_FEAT_##name) * enabled |
  622. const_debug unsigned int sysctl_sched_features =
  623. #include "sched_features.h"
  624. 0;
  625. #undef SCHED_FEAT
  626. #ifdef CONFIG_SCHED_DEBUG
  627. #define SCHED_FEAT(name, enabled) \
  628. #name ,
  629. static __read_mostly char *sched_feat_names[] = {
  630. #include "sched_features.h"
  631. NULL
  632. };
  633. #undef SCHED_FEAT
  634. static int sched_feat_show(struct seq_file *m, void *v)
  635. {
  636. int i;
  637. for (i = 0; sched_feat_names[i]; i++) {
  638. if (!(sysctl_sched_features & (1UL << i)))
  639. seq_puts(m, "NO_");
  640. seq_printf(m, "%s ", sched_feat_names[i]);
  641. }
  642. seq_puts(m, "\n");
  643. return 0;
  644. }
  645. static ssize_t
  646. sched_feat_write(struct file *filp, const char __user *ubuf,
  647. size_t cnt, loff_t *ppos)
  648. {
  649. char buf[64];
  650. char *cmp = buf;
  651. int neg = 0;
  652. int i;
  653. if (cnt > 63)
  654. cnt = 63;
  655. if (copy_from_user(&buf, ubuf, cnt))
  656. return -EFAULT;
  657. buf[cnt] = 0;
  658. if (strncmp(buf, "NO_", 3) == 0) {
  659. neg = 1;
  660. cmp += 3;
  661. }
  662. for (i = 0; sched_feat_names[i]; i++) {
  663. int len = strlen(sched_feat_names[i]);
  664. if (strncmp(cmp, sched_feat_names[i], len) == 0) {
  665. if (neg)
  666. sysctl_sched_features &= ~(1UL << i);
  667. else
  668. sysctl_sched_features |= (1UL << i);
  669. break;
  670. }
  671. }
  672. if (!sched_feat_names[i])
  673. return -EINVAL;
  674. filp->f_pos += cnt;
  675. return cnt;
  676. }
  677. static int sched_feat_open(struct inode *inode, struct file *filp)
  678. {
  679. return single_open(filp, sched_feat_show, NULL);
  680. }
  681. static struct file_operations sched_feat_fops = {
  682. .open = sched_feat_open,
  683. .write = sched_feat_write,
  684. .read = seq_read,
  685. .llseek = seq_lseek,
  686. .release = single_release,
  687. };
  688. static __init int sched_init_debug(void)
  689. {
  690. debugfs_create_file("sched_features", 0644, NULL, NULL,
  691. &sched_feat_fops);
  692. return 0;
  693. }
  694. late_initcall(sched_init_debug);
  695. #endif
  696. #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
  697. /*
  698. * Number of tasks to iterate in a single balance run.
  699. * Limited because this is done with IRQs disabled.
  700. */
  701. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  702. /*
  703. * ratelimit for updating the group shares.
  704. * default: 0.25ms
  705. */
  706. unsigned int sysctl_sched_shares_ratelimit = 250000;
  707. /*
  708. * Inject some fuzzyness into changing the per-cpu group shares
  709. * this avoids remote rq-locks at the expense of fairness.
  710. * default: 4
  711. */
  712. unsigned int sysctl_sched_shares_thresh = 4;
  713. /*
  714. * period over which we measure -rt task cpu usage in us.
  715. * default: 1s
  716. */
  717. unsigned int sysctl_sched_rt_period = 1000000;
  718. static __read_mostly int scheduler_running;
  719. /*
  720. * part of the period that we allow rt tasks to run in us.
  721. * default: 0.95s
  722. */
  723. int sysctl_sched_rt_runtime = 950000;
  724. static inline u64 global_rt_period(void)
  725. {
  726. return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
  727. }
  728. static inline u64 global_rt_runtime(void)
  729. {
  730. if (sysctl_sched_rt_runtime < 0)
  731. return RUNTIME_INF;
  732. return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
  733. }
  734. #ifndef prepare_arch_switch
  735. # define prepare_arch_switch(next) do { } while (0)
  736. #endif
  737. #ifndef finish_arch_switch
  738. # define finish_arch_switch(prev) do { } while (0)
  739. #endif
  740. static inline int task_current(struct rq *rq, struct task_struct *p)
  741. {
  742. return rq->curr == p;
  743. }
  744. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  745. static inline int task_running(struct rq *rq, struct task_struct *p)
  746. {
  747. return task_current(rq, p);
  748. }
  749. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  750. {
  751. }
  752. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  753. {
  754. #ifdef CONFIG_DEBUG_SPINLOCK
  755. /* this is a valid case when another task releases the spinlock */
  756. rq->lock.owner = current;
  757. #endif
  758. /*
  759. * If we are tracking spinlock dependencies then we have to
  760. * fix up the runqueue lock - which gets 'carried over' from
  761. * prev into current:
  762. */
  763. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  764. spin_unlock_irq(&rq->lock);
  765. }
  766. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  767. static inline int task_running(struct rq *rq, struct task_struct *p)
  768. {
  769. #ifdef CONFIG_SMP
  770. return p->oncpu;
  771. #else
  772. return task_current(rq, p);
  773. #endif
  774. }
  775. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  776. {
  777. #ifdef CONFIG_SMP
  778. /*
  779. * We can optimise this out completely for !SMP, because the
  780. * SMP rebalancing from interrupt is the only thing that cares
  781. * here.
  782. */
  783. next->oncpu = 1;
  784. #endif
  785. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  786. spin_unlock_irq(&rq->lock);
  787. #else
  788. spin_unlock(&rq->lock);
  789. #endif
  790. }
  791. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  792. {
  793. #ifdef CONFIG_SMP
  794. /*
  795. * After ->oncpu is cleared, the task can be moved to a different CPU.
  796. * We must ensure this doesn't happen until the switch is completely
  797. * finished.
  798. */
  799. smp_wmb();
  800. prev->oncpu = 0;
  801. #endif
  802. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  803. local_irq_enable();
  804. #endif
  805. }
  806. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  807. /*
  808. * __task_rq_lock - lock the runqueue a given task resides on.
  809. * Must be called interrupts disabled.
  810. */
  811. static inline struct rq *__task_rq_lock(struct task_struct *p)
  812. __acquires(rq->lock)
  813. {
  814. for (;;) {
  815. struct rq *rq = task_rq(p);
  816. spin_lock(&rq->lock);
  817. if (likely(rq == task_rq(p)))
  818. return rq;
  819. spin_unlock(&rq->lock);
  820. }
  821. }
  822. /*
  823. * task_rq_lock - lock the runqueue a given task resides on and disable
  824. * interrupts. Note the ordering: we can safely lookup the task_rq without
  825. * explicitly disabling preemption.
  826. */
  827. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  828. __acquires(rq->lock)
  829. {
  830. struct rq *rq;
  831. for (;;) {
  832. local_irq_save(*flags);
  833. rq = task_rq(p);
  834. spin_lock(&rq->lock);
  835. if (likely(rq == task_rq(p)))
  836. return rq;
  837. spin_unlock_irqrestore(&rq->lock, *flags);
  838. }
  839. }
  840. void task_rq_unlock_wait(struct task_struct *p)
  841. {
  842. struct rq *rq = task_rq(p);
  843. smp_mb(); /* spin-unlock-wait is not a full memory barrier */
  844. spin_unlock_wait(&rq->lock);
  845. }
  846. static void __task_rq_unlock(struct rq *rq)
  847. __releases(rq->lock)
  848. {
  849. spin_unlock(&rq->lock);
  850. }
  851. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  852. __releases(rq->lock)
  853. {
  854. spin_unlock_irqrestore(&rq->lock, *flags);
  855. }
  856. /*
  857. * this_rq_lock - lock this runqueue and disable interrupts.
  858. */
  859. static struct rq *this_rq_lock(void)
  860. __acquires(rq->lock)
  861. {
  862. struct rq *rq;
  863. local_irq_disable();
  864. rq = this_rq();
  865. spin_lock(&rq->lock);
  866. return rq;
  867. }
  868. #ifdef CONFIG_SCHED_HRTICK
  869. /*
  870. * Use HR-timers to deliver accurate preemption points.
  871. *
  872. * Its all a bit involved since we cannot program an hrt while holding the
  873. * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
  874. * reschedule event.
  875. *
  876. * When we get rescheduled we reprogram the hrtick_timer outside of the
  877. * rq->lock.
  878. */
  879. /*
  880. * Use hrtick when:
  881. * - enabled by features
  882. * - hrtimer is actually high res
  883. */
  884. static inline int hrtick_enabled(struct rq *rq)
  885. {
  886. if (!sched_feat(HRTICK))
  887. return 0;
  888. if (!cpu_active(cpu_of(rq)))
  889. return 0;
  890. return hrtimer_is_hres_active(&rq->hrtick_timer);
  891. }
  892. static void hrtick_clear(struct rq *rq)
  893. {
  894. if (hrtimer_active(&rq->hrtick_timer))
  895. hrtimer_cancel(&rq->hrtick_timer);
  896. }
  897. /*
  898. * High-resolution timer tick.
  899. * Runs from hardirq context with interrupts disabled.
  900. */
  901. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  902. {
  903. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  904. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  905. spin_lock(&rq->lock);
  906. update_rq_clock(rq);
  907. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  908. spin_unlock(&rq->lock);
  909. return HRTIMER_NORESTART;
  910. }
  911. #ifdef CONFIG_SMP
  912. /*
  913. * called from hardirq (IPI) context
  914. */
  915. static void __hrtick_start(void *arg)
  916. {
  917. struct rq *rq = arg;
  918. spin_lock(&rq->lock);
  919. hrtimer_restart(&rq->hrtick_timer);
  920. rq->hrtick_csd_pending = 0;
  921. spin_unlock(&rq->lock);
  922. }
  923. /*
  924. * Called to set the hrtick timer state.
  925. *
  926. * called with rq->lock held and irqs disabled
  927. */
  928. static void hrtick_start(struct rq *rq, u64 delay)
  929. {
  930. struct hrtimer *timer = &rq->hrtick_timer;
  931. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  932. hrtimer_set_expires(timer, time);
  933. if (rq == this_rq()) {
  934. hrtimer_restart(timer);
  935. } else if (!rq->hrtick_csd_pending) {
  936. __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
  937. rq->hrtick_csd_pending = 1;
  938. }
  939. }
  940. static int
  941. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  942. {
  943. int cpu = (int)(long)hcpu;
  944. switch (action) {
  945. case CPU_UP_CANCELED:
  946. case CPU_UP_CANCELED_FROZEN:
  947. case CPU_DOWN_PREPARE:
  948. case CPU_DOWN_PREPARE_FROZEN:
  949. case CPU_DEAD:
  950. case CPU_DEAD_FROZEN:
  951. hrtick_clear(cpu_rq(cpu));
  952. return NOTIFY_OK;
  953. }
  954. return NOTIFY_DONE;
  955. }
  956. static __init void init_hrtick(void)
  957. {
  958. hotcpu_notifier(hotplug_hrtick, 0);
  959. }
  960. #else
  961. /*
  962. * Called to set the hrtick timer state.
  963. *
  964. * called with rq->lock held and irqs disabled
  965. */
  966. static void hrtick_start(struct rq *rq, u64 delay)
  967. {
  968. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  969. HRTIMER_MODE_REL, 0);
  970. }
  971. static inline void init_hrtick(void)
  972. {
  973. }
  974. #endif /* CONFIG_SMP */
  975. static void init_rq_hrtick(struct rq *rq)
  976. {
  977. #ifdef CONFIG_SMP
  978. rq->hrtick_csd_pending = 0;
  979. rq->hrtick_csd.flags = 0;
  980. rq->hrtick_csd.func = __hrtick_start;
  981. rq->hrtick_csd.info = rq;
  982. #endif
  983. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  984. rq->hrtick_timer.function = hrtick;
  985. }
  986. #else /* CONFIG_SCHED_HRTICK */
  987. static inline void hrtick_clear(struct rq *rq)
  988. {
  989. }
  990. static inline void init_rq_hrtick(struct rq *rq)
  991. {
  992. }
  993. static inline void init_hrtick(void)
  994. {
  995. }
  996. #endif /* CONFIG_SCHED_HRTICK */
  997. /*
  998. * resched_task - mark a task 'to be rescheduled now'.
  999. *
  1000. * On UP this means the setting of the need_resched flag, on SMP it
  1001. * might also involve a cross-CPU call to trigger the scheduler on
  1002. * the target CPU.
  1003. */
  1004. #ifdef CONFIG_SMP
  1005. #ifndef tsk_is_polling
  1006. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  1007. #endif
  1008. static void resched_task(struct task_struct *p)
  1009. {
  1010. int cpu;
  1011. assert_spin_locked(&task_rq(p)->lock);
  1012. if (test_tsk_need_resched(p))
  1013. return;
  1014. set_tsk_need_resched(p);
  1015. cpu = task_cpu(p);
  1016. if (cpu == smp_processor_id())
  1017. return;
  1018. /* NEED_RESCHED must be visible before we test polling */
  1019. smp_mb();
  1020. if (!tsk_is_polling(p))
  1021. smp_send_reschedule(cpu);
  1022. }
  1023. static void resched_cpu(int cpu)
  1024. {
  1025. struct rq *rq = cpu_rq(cpu);
  1026. unsigned long flags;
  1027. if (!spin_trylock_irqsave(&rq->lock, flags))
  1028. return;
  1029. resched_task(cpu_curr(cpu));
  1030. spin_unlock_irqrestore(&rq->lock, flags);
  1031. }
  1032. #ifdef CONFIG_NO_HZ
  1033. /*
  1034. * When add_timer_on() enqueues a timer into the timer wheel of an
  1035. * idle CPU then this timer might expire before the next timer event
  1036. * which is scheduled to wake up that CPU. In case of a completely
  1037. * idle system the next event might even be infinite time into the
  1038. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  1039. * leaves the inner idle loop so the newly added timer is taken into
  1040. * account when the CPU goes back to idle and evaluates the timer
  1041. * wheel for the next timer event.
  1042. */
  1043. void wake_up_idle_cpu(int cpu)
  1044. {
  1045. struct rq *rq = cpu_rq(cpu);
  1046. if (cpu == smp_processor_id())
  1047. return;
  1048. /*
  1049. * This is safe, as this function is called with the timer
  1050. * wheel base lock of (cpu) held. When the CPU is on the way
  1051. * to idle and has not yet set rq->curr to idle then it will
  1052. * be serialized on the timer wheel base lock and take the new
  1053. * timer into account automatically.
  1054. */
  1055. if (rq->curr != rq->idle)
  1056. return;
  1057. /*
  1058. * We can set TIF_RESCHED on the idle task of the other CPU
  1059. * lockless. The worst case is that the other CPU runs the
  1060. * idle task through an additional NOOP schedule()
  1061. */
  1062. set_tsk_need_resched(rq->idle);
  1063. /* NEED_RESCHED must be visible before we test polling */
  1064. smp_mb();
  1065. if (!tsk_is_polling(rq->idle))
  1066. smp_send_reschedule(cpu);
  1067. }
  1068. #endif /* CONFIG_NO_HZ */
  1069. #else /* !CONFIG_SMP */
  1070. static void resched_task(struct task_struct *p)
  1071. {
  1072. assert_spin_locked(&task_rq(p)->lock);
  1073. set_tsk_need_resched(p);
  1074. }
  1075. #endif /* CONFIG_SMP */
  1076. #if BITS_PER_LONG == 32
  1077. # define WMULT_CONST (~0UL)
  1078. #else
  1079. # define WMULT_CONST (1UL << 32)
  1080. #endif
  1081. #define WMULT_SHIFT 32
  1082. /*
  1083. * Shift right and round:
  1084. */
  1085. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  1086. /*
  1087. * delta *= weight / lw
  1088. */
  1089. static unsigned long
  1090. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  1091. struct load_weight *lw)
  1092. {
  1093. u64 tmp;
  1094. if (!lw->inv_weight) {
  1095. if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
  1096. lw->inv_weight = 1;
  1097. else
  1098. lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
  1099. / (lw->weight+1);
  1100. }
  1101. tmp = (u64)delta_exec * weight;
  1102. /*
  1103. * Check whether we'd overflow the 64-bit multiplication:
  1104. */
  1105. if (unlikely(tmp > WMULT_CONST))
  1106. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  1107. WMULT_SHIFT/2);
  1108. else
  1109. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  1110. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  1111. }
  1112. static inline void update_load_add(struct load_weight *lw, unsigned long inc)
  1113. {
  1114. lw->weight += inc;
  1115. lw->inv_weight = 0;
  1116. }
  1117. static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
  1118. {
  1119. lw->weight -= dec;
  1120. lw->inv_weight = 0;
  1121. }
  1122. /*
  1123. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  1124. * of tasks with abnormal "nice" values across CPUs the contribution that
  1125. * each task makes to its run queue's load is weighted according to its
  1126. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  1127. * scaled version of the new time slice allocation that they receive on time
  1128. * slice expiry etc.
  1129. */
  1130. #define WEIGHT_IDLEPRIO 3
  1131. #define WMULT_IDLEPRIO 1431655765
  1132. /*
  1133. * Nice levels are multiplicative, with a gentle 10% change for every
  1134. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  1135. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  1136. * that remained on nice 0.
  1137. *
  1138. * The "10% effect" is relative and cumulative: from _any_ nice level,
  1139. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  1140. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  1141. * If a task goes up by ~10% and another task goes down by ~10% then
  1142. * the relative distance between them is ~25%.)
  1143. */
  1144. static const int prio_to_weight[40] = {
  1145. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  1146. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  1147. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  1148. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  1149. /* 0 */ 1024, 820, 655, 526, 423,
  1150. /* 5 */ 335, 272, 215, 172, 137,
  1151. /* 10 */ 110, 87, 70, 56, 45,
  1152. /* 15 */ 36, 29, 23, 18, 15,
  1153. };
  1154. /*
  1155. * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
  1156. *
  1157. * In cases where the weight does not change often, we can use the
  1158. * precalculated inverse to speed up arithmetics by turning divisions
  1159. * into multiplications:
  1160. */
  1161. static const u32 prio_to_wmult[40] = {
  1162. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  1163. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  1164. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  1165. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  1166. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  1167. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  1168. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  1169. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  1170. };
  1171. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  1172. /*
  1173. * runqueue iterator, to support SMP load-balancing between different
  1174. * scheduling classes, without having to expose their internal data
  1175. * structures to the load-balancing proper:
  1176. */
  1177. struct rq_iterator {
  1178. void *arg;
  1179. struct task_struct *(*start)(void *);
  1180. struct task_struct *(*next)(void *);
  1181. };
  1182. #ifdef CONFIG_SMP
  1183. static unsigned long
  1184. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1185. unsigned long max_load_move, struct sched_domain *sd,
  1186. enum cpu_idle_type idle, int *all_pinned,
  1187. int *this_best_prio, struct rq_iterator *iterator);
  1188. static int
  1189. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1190. struct sched_domain *sd, enum cpu_idle_type idle,
  1191. struct rq_iterator *iterator);
  1192. #endif
  1193. /* Time spent by the tasks of the cpu accounting group executing in ... */
  1194. enum cpuacct_stat_index {
  1195. CPUACCT_STAT_USER, /* ... user mode */
  1196. CPUACCT_STAT_SYSTEM, /* ... kernel mode */
  1197. CPUACCT_STAT_NSTATS,
  1198. };
  1199. #ifdef CONFIG_CGROUP_CPUACCT
  1200. static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
  1201. static void cpuacct_update_stats(struct task_struct *tsk,
  1202. enum cpuacct_stat_index idx, cputime_t val);
  1203. #else
  1204. static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
  1205. static inline void cpuacct_update_stats(struct task_struct *tsk,
  1206. enum cpuacct_stat_index idx, cputime_t val) {}
  1207. #endif
  1208. static inline void inc_cpu_load(struct rq *rq, unsigned long load)
  1209. {
  1210. update_load_add(&rq->load, load);
  1211. }
  1212. static inline void dec_cpu_load(struct rq *rq, unsigned long load)
  1213. {
  1214. update_load_sub(&rq->load, load);
  1215. }
  1216. #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
  1217. typedef int (*tg_visitor)(struct task_group *, void *);
  1218. /*
  1219. * Iterate the full tree, calling @down when first entering a node and @up when
  1220. * leaving it for the final time.
  1221. */
  1222. static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
  1223. {
  1224. struct task_group *parent, *child;
  1225. int ret;
  1226. rcu_read_lock();
  1227. parent = &root_task_group;
  1228. down:
  1229. ret = (*down)(parent, data);
  1230. if (ret)
  1231. goto out_unlock;
  1232. list_for_each_entry_rcu(child, &parent->children, siblings) {
  1233. parent = child;
  1234. goto down;
  1235. up:
  1236. continue;
  1237. }
  1238. ret = (*up)(parent, data);
  1239. if (ret)
  1240. goto out_unlock;
  1241. child = parent;
  1242. parent = parent->parent;
  1243. if (parent)
  1244. goto up;
  1245. out_unlock:
  1246. rcu_read_unlock();
  1247. return ret;
  1248. }
  1249. static int tg_nop(struct task_group *tg, void *data)
  1250. {
  1251. return 0;
  1252. }
  1253. #endif
  1254. #ifdef CONFIG_SMP
  1255. static unsigned long source_load(int cpu, int type);
  1256. static unsigned long target_load(int cpu, int type);
  1257. static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
  1258. static unsigned long cpu_avg_load_per_task(int cpu)
  1259. {
  1260. struct rq *rq = cpu_rq(cpu);
  1261. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1262. if (nr_running)
  1263. rq->avg_load_per_task = rq->load.weight / nr_running;
  1264. else
  1265. rq->avg_load_per_task = 0;
  1266. return rq->avg_load_per_task;
  1267. }
  1268. #ifdef CONFIG_FAIR_GROUP_SCHED
  1269. static void __set_se_shares(struct sched_entity *se, unsigned long shares);
  1270. /*
  1271. * Calculate and set the cpu's group shares.
  1272. */
  1273. static void
  1274. update_group_shares_cpu(struct task_group *tg, int cpu,
  1275. unsigned long sd_shares, unsigned long sd_rq_weight)
  1276. {
  1277. unsigned long shares;
  1278. unsigned long rq_weight;
  1279. if (!tg->se[cpu])
  1280. return;
  1281. rq_weight = tg->cfs_rq[cpu]->rq_weight;
  1282. /*
  1283. * \Sum shares * rq_weight
  1284. * shares = -----------------------
  1285. * \Sum rq_weight
  1286. *
  1287. */
  1288. shares = (sd_shares * rq_weight) / sd_rq_weight;
  1289. shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
  1290. if (abs(shares - tg->se[cpu]->load.weight) >
  1291. sysctl_sched_shares_thresh) {
  1292. struct rq *rq = cpu_rq(cpu);
  1293. unsigned long flags;
  1294. spin_lock_irqsave(&rq->lock, flags);
  1295. tg->cfs_rq[cpu]->shares = shares;
  1296. __set_se_shares(tg->se[cpu], shares);
  1297. spin_unlock_irqrestore(&rq->lock, flags);
  1298. }
  1299. }
  1300. /*
  1301. * Re-compute the task group their per cpu shares over the given domain.
  1302. * This needs to be done in a bottom-up fashion because the rq weight of a
  1303. * parent group depends on the shares of its child groups.
  1304. */
  1305. static int tg_shares_up(struct task_group *tg, void *data)
  1306. {
  1307. unsigned long weight, rq_weight = 0;
  1308. unsigned long shares = 0;
  1309. struct sched_domain *sd = data;
  1310. int i;
  1311. for_each_cpu(i, sched_domain_span(sd)) {
  1312. /*
  1313. * If there are currently no tasks on the cpu pretend there
  1314. * is one of average load so that when a new task gets to
  1315. * run here it will not get delayed by group starvation.
  1316. */
  1317. weight = tg->cfs_rq[i]->load.weight;
  1318. if (!weight)
  1319. weight = NICE_0_LOAD;
  1320. tg->cfs_rq[i]->rq_weight = weight;
  1321. rq_weight += weight;
  1322. shares += tg->cfs_rq[i]->shares;
  1323. }
  1324. if ((!shares && rq_weight) || shares > tg->shares)
  1325. shares = tg->shares;
  1326. if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
  1327. shares = tg->shares;
  1328. for_each_cpu(i, sched_domain_span(sd))
  1329. update_group_shares_cpu(tg, i, shares, rq_weight);
  1330. return 0;
  1331. }
  1332. /*
  1333. * Compute the cpu's hierarchical load factor for each task group.
  1334. * This needs to be done in a top-down fashion because the load of a child
  1335. * group is a fraction of its parents load.
  1336. */
  1337. static int tg_load_down(struct task_group *tg, void *data)
  1338. {
  1339. unsigned long load;
  1340. long cpu = (long)data;
  1341. if (!tg->parent) {
  1342. load = cpu_rq(cpu)->load.weight;
  1343. } else {
  1344. load = tg->parent->cfs_rq[cpu]->h_load;
  1345. load *= tg->cfs_rq[cpu]->shares;
  1346. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  1347. }
  1348. tg->cfs_rq[cpu]->h_load = load;
  1349. return 0;
  1350. }
  1351. static void update_shares(struct sched_domain *sd)
  1352. {
  1353. u64 now = cpu_clock(raw_smp_processor_id());
  1354. s64 elapsed = now - sd->last_update;
  1355. if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
  1356. sd->last_update = now;
  1357. walk_tg_tree(tg_nop, tg_shares_up, sd);
  1358. }
  1359. }
  1360. static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1361. {
  1362. spin_unlock(&rq->lock);
  1363. update_shares(sd);
  1364. spin_lock(&rq->lock);
  1365. }
  1366. static void update_h_load(long cpu)
  1367. {
  1368. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  1369. }
  1370. #else
  1371. static inline void update_shares(struct sched_domain *sd)
  1372. {
  1373. }
  1374. static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
  1375. {
  1376. }
  1377. #endif
  1378. #ifdef CONFIG_PREEMPT
  1379. /*
  1380. * fair double_lock_balance: Safely acquires both rq->locks in a fair
  1381. * way at the expense of forcing extra atomic operations in all
  1382. * invocations. This assures that the double_lock is acquired using the
  1383. * same underlying policy as the spinlock_t on this architecture, which
  1384. * reduces latency compared to the unfair variant below. However, it
  1385. * also adds more overhead and therefore may reduce throughput.
  1386. */
  1387. static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1388. __releases(this_rq->lock)
  1389. __acquires(busiest->lock)
  1390. __acquires(this_rq->lock)
  1391. {
  1392. spin_unlock(&this_rq->lock);
  1393. double_rq_lock(this_rq, busiest);
  1394. return 1;
  1395. }
  1396. #else
  1397. /*
  1398. * Unfair double_lock_balance: Optimizes throughput at the expense of
  1399. * latency by eliminating extra atomic operations when the locks are
  1400. * already in proper order on entry. This favors lower cpu-ids and will
  1401. * grant the double lock to lower cpus over higher ids under contention,
  1402. * regardless of entry order into the function.
  1403. */
  1404. static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1405. __releases(this_rq->lock)
  1406. __acquires(busiest->lock)
  1407. __acquires(this_rq->lock)
  1408. {
  1409. int ret = 0;
  1410. if (unlikely(!spin_trylock(&busiest->lock))) {
  1411. if (busiest < this_rq) {
  1412. spin_unlock(&this_rq->lock);
  1413. spin_lock(&busiest->lock);
  1414. spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
  1415. ret = 1;
  1416. } else
  1417. spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
  1418. }
  1419. return ret;
  1420. }
  1421. #endif /* CONFIG_PREEMPT */
  1422. /*
  1423. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1424. */
  1425. static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1426. {
  1427. if (unlikely(!irqs_disabled())) {
  1428. /* printk() doesn't work good under rq->lock */
  1429. spin_unlock(&this_rq->lock);
  1430. BUG_ON(1);
  1431. }
  1432. return _double_lock_balance(this_rq, busiest);
  1433. }
  1434. static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
  1435. __releases(busiest->lock)
  1436. {
  1437. spin_unlock(&busiest->lock);
  1438. lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
  1439. }
  1440. #endif
  1441. #ifdef CONFIG_FAIR_GROUP_SCHED
  1442. static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
  1443. {
  1444. #ifdef CONFIG_SMP
  1445. cfs_rq->shares = shares;
  1446. #endif
  1447. }
  1448. #endif
  1449. static void calc_load_account_active(struct rq *this_rq);
  1450. #include "sched_stats.h"
  1451. #include "sched_idletask.c"
  1452. #include "sched_fair.c"
  1453. #include "sched_rt.c"
  1454. #ifdef CONFIG_SCHED_DEBUG
  1455. # include "sched_debug.c"
  1456. #endif
  1457. #define sched_class_highest (&rt_sched_class)
  1458. #define for_each_class(class) \
  1459. for (class = sched_class_highest; class; class = class->next)
  1460. static void inc_nr_running(struct rq *rq)
  1461. {
  1462. rq->nr_running++;
  1463. }
  1464. static void dec_nr_running(struct rq *rq)
  1465. {
  1466. rq->nr_running--;
  1467. }
  1468. static void set_load_weight(struct task_struct *p)
  1469. {
  1470. if (task_has_rt_policy(p)) {
  1471. p->se.load.weight = prio_to_weight[0] * 2;
  1472. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  1473. return;
  1474. }
  1475. /*
  1476. * SCHED_IDLE tasks get minimal weight:
  1477. */
  1478. if (p->policy == SCHED_IDLE) {
  1479. p->se.load.weight = WEIGHT_IDLEPRIO;
  1480. p->se.load.inv_weight = WMULT_IDLEPRIO;
  1481. return;
  1482. }
  1483. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  1484. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  1485. }
  1486. static void update_avg(u64 *avg, u64 sample)
  1487. {
  1488. s64 diff = sample - *avg;
  1489. *avg += diff >> 3;
  1490. }
  1491. static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
  1492. {
  1493. if (wakeup)
  1494. p->se.start_runtime = p->se.sum_exec_runtime;
  1495. sched_info_queued(p);
  1496. p->sched_class->enqueue_task(rq, p, wakeup);
  1497. p->se.on_rq = 1;
  1498. }
  1499. static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
  1500. {
  1501. if (sleep) {
  1502. if (p->se.last_wakeup) {
  1503. update_avg(&p->se.avg_overlap,
  1504. p->se.sum_exec_runtime - p->se.last_wakeup);
  1505. p->se.last_wakeup = 0;
  1506. } else {
  1507. update_avg(&p->se.avg_wakeup,
  1508. sysctl_sched_wakeup_granularity);
  1509. }
  1510. }
  1511. sched_info_dequeued(p);
  1512. p->sched_class->dequeue_task(rq, p, sleep);
  1513. p->se.on_rq = 0;
  1514. }
  1515. /*
  1516. * __normal_prio - return the priority that is based on the static prio
  1517. */
  1518. static inline int __normal_prio(struct task_struct *p)
  1519. {
  1520. return p->static_prio;
  1521. }
  1522. /*
  1523. * Calculate the expected normal priority: i.e. priority
  1524. * without taking RT-inheritance into account. Might be
  1525. * boosted by interactivity modifiers. Changes upon fork,
  1526. * setprio syscalls, and whenever the interactivity
  1527. * estimator recalculates.
  1528. */
  1529. static inline int normal_prio(struct task_struct *p)
  1530. {
  1531. int prio;
  1532. if (task_has_rt_policy(p))
  1533. prio = MAX_RT_PRIO-1 - p->rt_priority;
  1534. else
  1535. prio = __normal_prio(p);
  1536. return prio;
  1537. }
  1538. /*
  1539. * Calculate the current priority, i.e. the priority
  1540. * taken into account by the scheduler. This value might
  1541. * be boosted by RT tasks, or might be boosted by
  1542. * interactivity modifiers. Will be RT if the task got
  1543. * RT-boosted. If not then it returns p->normal_prio.
  1544. */
  1545. static int effective_prio(struct task_struct *p)
  1546. {
  1547. p->normal_prio = normal_prio(p);
  1548. /*
  1549. * If we are RT tasks or we were boosted to RT priority,
  1550. * keep the priority unchanged. Otherwise, update priority
  1551. * to the normal priority:
  1552. */
  1553. if (!rt_prio(p->prio))
  1554. return p->normal_prio;
  1555. return p->prio;
  1556. }
  1557. /*
  1558. * activate_task - move a task to the runqueue.
  1559. */
  1560. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  1561. {
  1562. if (task_contributes_to_load(p))
  1563. rq->nr_uninterruptible--;
  1564. enqueue_task(rq, p, wakeup);
  1565. inc_nr_running(rq);
  1566. }
  1567. /*
  1568. * deactivate_task - remove a task from the runqueue.
  1569. */
  1570. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  1571. {
  1572. if (task_contributes_to_load(p))
  1573. rq->nr_uninterruptible++;
  1574. dequeue_task(rq, p, sleep);
  1575. dec_nr_running(rq);
  1576. }
  1577. /**
  1578. * task_curr - is this task currently executing on a CPU?
  1579. * @p: the task in question.
  1580. */
  1581. inline int task_curr(const struct task_struct *p)
  1582. {
  1583. return cpu_curr(task_cpu(p)) == p;
  1584. }
  1585. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  1586. {
  1587. set_task_rq(p, cpu);
  1588. #ifdef CONFIG_SMP
  1589. /*
  1590. * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
  1591. * successfuly executed on another CPU. We must ensure that updates of
  1592. * per-task data have been completed by this moment.
  1593. */
  1594. smp_wmb();
  1595. task_thread_info(p)->cpu = cpu;
  1596. #endif
  1597. }
  1598. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  1599. const struct sched_class *prev_class,
  1600. int oldprio, int running)
  1601. {
  1602. if (prev_class != p->sched_class) {
  1603. if (prev_class->switched_from)
  1604. prev_class->switched_from(rq, p, running);
  1605. p->sched_class->switched_to(rq, p, running);
  1606. } else
  1607. p->sched_class->prio_changed(rq, p, oldprio, running);
  1608. }
  1609. #ifdef CONFIG_SMP
  1610. /* Used instead of source_load when we know the type == 0 */
  1611. static unsigned long weighted_cpuload(const int cpu)
  1612. {
  1613. return cpu_rq(cpu)->load.weight;
  1614. }
  1615. /*
  1616. * Is this task likely cache-hot:
  1617. */
  1618. static int
  1619. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  1620. {
  1621. s64 delta;
  1622. /*
  1623. * Buddy candidates are cache hot:
  1624. */
  1625. if (sched_feat(CACHE_HOT_BUDDY) &&
  1626. (&p->se == cfs_rq_of(&p->se)->next ||
  1627. &p->se == cfs_rq_of(&p->se)->last))
  1628. return 1;
  1629. if (p->sched_class != &fair_sched_class)
  1630. return 0;
  1631. if (sysctl_sched_migration_cost == -1)
  1632. return 1;
  1633. if (sysctl_sched_migration_cost == 0)
  1634. return 0;
  1635. delta = now - p->se.exec_start;
  1636. return delta < (s64)sysctl_sched_migration_cost;
  1637. }
  1638. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1639. {
  1640. int old_cpu = task_cpu(p);
  1641. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  1642. struct cfs_rq *old_cfsrq = task_cfs_rq(p),
  1643. *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
  1644. u64 clock_offset;
  1645. clock_offset = old_rq->clock - new_rq->clock;
  1646. trace_sched_migrate_task(p, new_cpu);
  1647. #ifdef CONFIG_SCHEDSTATS
  1648. if (p->se.wait_start)
  1649. p->se.wait_start -= clock_offset;
  1650. if (p->se.sleep_start)
  1651. p->se.sleep_start -= clock_offset;
  1652. if (p->se.block_start)
  1653. p->se.block_start -= clock_offset;
  1654. #endif
  1655. if (old_cpu != new_cpu) {
  1656. p->se.nr_migrations++;
  1657. new_rq->nr_migrations_in++;
  1658. #ifdef CONFIG_SCHEDSTATS
  1659. if (task_hot(p, old_rq->clock, NULL))
  1660. schedstat_inc(p, se.nr_forced2_migrations);
  1661. #endif
  1662. perf_counter_task_migration(p, new_cpu);
  1663. }
  1664. p->se.vruntime -= old_cfsrq->min_vruntime -
  1665. new_cfsrq->min_vruntime;
  1666. __set_task_cpu(p, new_cpu);
  1667. }
  1668. struct migration_req {
  1669. struct list_head list;
  1670. struct task_struct *task;
  1671. int dest_cpu;
  1672. struct completion done;
  1673. };
  1674. /*
  1675. * The task's runqueue lock must be held.
  1676. * Returns true if you have to wait for migration thread.
  1677. */
  1678. static int
  1679. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  1680. {
  1681. struct rq *rq = task_rq(p);
  1682. /*
  1683. * If the task is not on a runqueue (and not running), then
  1684. * it is sufficient to simply update the task's cpu field.
  1685. */
  1686. if (!p->se.on_rq && !task_running(rq, p)) {
  1687. set_task_cpu(p, dest_cpu);
  1688. return 0;
  1689. }
  1690. init_completion(&req->done);
  1691. req->task = p;
  1692. req->dest_cpu = dest_cpu;
  1693. list_add(&req->list, &rq->migration_queue);
  1694. return 1;
  1695. }
  1696. /*
  1697. * wait_task_context_switch - wait for a thread to complete at least one
  1698. * context switch.
  1699. *
  1700. * @p must not be current.
  1701. */
  1702. void wait_task_context_switch(struct task_struct *p)
  1703. {
  1704. unsigned long nvcsw, nivcsw, flags;
  1705. int running;
  1706. struct rq *rq;
  1707. nvcsw = p->nvcsw;
  1708. nivcsw = p->nivcsw;
  1709. for (;;) {
  1710. /*
  1711. * The runqueue is assigned before the actual context
  1712. * switch. We need to take the runqueue lock.
  1713. *
  1714. * We could check initially without the lock but it is
  1715. * very likely that we need to take the lock in every
  1716. * iteration.
  1717. */
  1718. rq = task_rq_lock(p, &flags);
  1719. running = task_running(rq, p);
  1720. task_rq_unlock(rq, &flags);
  1721. if (likely(!running))
  1722. break;
  1723. /*
  1724. * The switch count is incremented before the actual
  1725. * context switch. We thus wait for two switches to be
  1726. * sure at least one completed.
  1727. */
  1728. if ((p->nvcsw - nvcsw) > 1)
  1729. break;
  1730. if ((p->nivcsw - nivcsw) > 1)
  1731. break;
  1732. cpu_relax();
  1733. }
  1734. }
  1735. /*
  1736. * wait_task_inactive - wait for a thread to unschedule.
  1737. *
  1738. * If @match_state is nonzero, it's the @p->state value just checked and
  1739. * not expected to change. If it changes, i.e. @p might have woken up,
  1740. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1741. * we return a positive number (its total switch count). If a second call
  1742. * a short while later returns the same number, the caller can be sure that
  1743. * @p has remained unscheduled the whole time.
  1744. *
  1745. * The caller must ensure that the task *will* unschedule sometime soon,
  1746. * else this function might spin for a *long* time. This function can't
  1747. * be called with interrupts off, or it may introduce deadlock with
  1748. * smp_call_function() if an IPI is sent by the same process we are
  1749. * waiting to become inactive.
  1750. */
  1751. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1752. {
  1753. unsigned long flags;
  1754. int running, on_rq;
  1755. unsigned long ncsw;
  1756. struct rq *rq;
  1757. for (;;) {
  1758. /*
  1759. * We do the initial early heuristics without holding
  1760. * any task-queue locks at all. We'll only try to get
  1761. * the runqueue lock when things look like they will
  1762. * work out!
  1763. */
  1764. rq = task_rq(p);
  1765. /*
  1766. * If the task is actively running on another CPU
  1767. * still, just relax and busy-wait without holding
  1768. * any locks.
  1769. *
  1770. * NOTE! Since we don't hold any locks, it's not
  1771. * even sure that "rq" stays as the right runqueue!
  1772. * But we don't care, since "task_running()" will
  1773. * return false if the runqueue has changed and p
  1774. * is actually now running somewhere else!
  1775. */
  1776. while (task_running(rq, p)) {
  1777. if (match_state && unlikely(p->state != match_state))
  1778. return 0;
  1779. cpu_relax();
  1780. }
  1781. /*
  1782. * Ok, time to look more closely! We need the rq
  1783. * lock now, to be *sure*. If we're wrong, we'll
  1784. * just go back and repeat.
  1785. */
  1786. rq = task_rq_lock(p, &flags);
  1787. trace_sched_wait_task(rq, p);
  1788. running = task_running(rq, p);
  1789. on_rq = p->se.on_rq;
  1790. ncsw = 0;
  1791. if (!match_state || p->state == match_state)
  1792. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1793. task_rq_unlock(rq, &flags);
  1794. /*
  1795. * If it changed from the expected state, bail out now.
  1796. */
  1797. if (unlikely(!ncsw))
  1798. break;
  1799. /*
  1800. * Was it really running after all now that we
  1801. * checked with the proper locks actually held?
  1802. *
  1803. * Oops. Go back and try again..
  1804. */
  1805. if (unlikely(running)) {
  1806. cpu_relax();
  1807. continue;
  1808. }
  1809. /*
  1810. * It's not enough that it's not actively running,
  1811. * it must be off the runqueue _entirely_, and not
  1812. * preempted!
  1813. *
  1814. * So if it was still runnable (but just not actively
  1815. * running right now), it's preempted, and we should
  1816. * yield - it could be a while.
  1817. */
  1818. if (unlikely(on_rq)) {
  1819. schedule_timeout_uninterruptible(1);
  1820. continue;
  1821. }
  1822. /*
  1823. * Ahh, all good. It wasn't running, and it wasn't
  1824. * runnable, which means that it will never become
  1825. * running in the future either. We're all done!
  1826. */
  1827. break;
  1828. }
  1829. return ncsw;
  1830. }
  1831. /***
  1832. * kick_process - kick a running thread to enter/exit the kernel
  1833. * @p: the to-be-kicked thread
  1834. *
  1835. * Cause a process which is running on another CPU to enter
  1836. * kernel-mode, without any delay. (to get signals handled.)
  1837. *
  1838. * NOTE: this function doesnt have to take the runqueue lock,
  1839. * because all it wants to ensure is that the remote task enters
  1840. * the kernel. If the IPI races and the task has been migrated
  1841. * to another CPU then no harm is done and the purpose has been
  1842. * achieved as well.
  1843. */
  1844. void kick_process(struct task_struct *p)
  1845. {
  1846. int cpu;
  1847. preempt_disable();
  1848. cpu = task_cpu(p);
  1849. if ((cpu != smp_processor_id()) && task_curr(p))
  1850. smp_send_reschedule(cpu);
  1851. preempt_enable();
  1852. }
  1853. EXPORT_SYMBOL_GPL(kick_process);
  1854. /*
  1855. * Return a low guess at the load of a migration-source cpu weighted
  1856. * according to the scheduling class and "nice" value.
  1857. *
  1858. * We want to under-estimate the load of migration sources, to
  1859. * balance conservatively.
  1860. */
  1861. static unsigned long source_load(int cpu, int type)
  1862. {
  1863. struct rq *rq = cpu_rq(cpu);
  1864. unsigned long total = weighted_cpuload(cpu);
  1865. if (type == 0 || !sched_feat(LB_BIAS))
  1866. return total;
  1867. return min(rq->cpu_load[type-1], total);
  1868. }
  1869. /*
  1870. * Return a high guess at the load of a migration-target cpu weighted
  1871. * according to the scheduling class and "nice" value.
  1872. */
  1873. static unsigned long target_load(int cpu, int type)
  1874. {
  1875. struct rq *rq = cpu_rq(cpu);
  1876. unsigned long total = weighted_cpuload(cpu);
  1877. if (type == 0 || !sched_feat(LB_BIAS))
  1878. return total;
  1879. return max(rq->cpu_load[type-1], total);
  1880. }
  1881. /*
  1882. * find_idlest_group finds and returns the least busy CPU group within the
  1883. * domain.
  1884. */
  1885. static struct sched_group *
  1886. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1887. {
  1888. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1889. unsigned long min_load = ULONG_MAX, this_load = 0;
  1890. int load_idx = sd->forkexec_idx;
  1891. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1892. do {
  1893. unsigned long load, avg_load;
  1894. int local_group;
  1895. int i;
  1896. /* Skip over this group if it has no CPUs allowed */
  1897. if (!cpumask_intersects(sched_group_cpus(group),
  1898. &p->cpus_allowed))
  1899. continue;
  1900. local_group = cpumask_test_cpu(this_cpu,
  1901. sched_group_cpus(group));
  1902. /* Tally up the load of all CPUs in the group */
  1903. avg_load = 0;
  1904. for_each_cpu(i, sched_group_cpus(group)) {
  1905. /* Bias balancing toward cpus of our domain */
  1906. if (local_group)
  1907. load = source_load(i, load_idx);
  1908. else
  1909. load = target_load(i, load_idx);
  1910. avg_load += load;
  1911. }
  1912. /* Adjust by relative CPU power of the group */
  1913. avg_load = sg_div_cpu_power(group,
  1914. avg_load * SCHED_LOAD_SCALE);
  1915. if (local_group) {
  1916. this_load = avg_load;
  1917. this = group;
  1918. } else if (avg_load < min_load) {
  1919. min_load = avg_load;
  1920. idlest = group;
  1921. }
  1922. } while (group = group->next, group != sd->groups);
  1923. if (!idlest || 100*this_load < imbalance*min_load)
  1924. return NULL;
  1925. return idlest;
  1926. }
  1927. /*
  1928. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1929. */
  1930. static int
  1931. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1932. {
  1933. unsigned long load, min_load = ULONG_MAX;
  1934. int idlest = -1;
  1935. int i;
  1936. /* Traverse only the allowed CPUs */
  1937. for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
  1938. load = weighted_cpuload(i);
  1939. if (load < min_load || (load == min_load && i == this_cpu)) {
  1940. min_load = load;
  1941. idlest = i;
  1942. }
  1943. }
  1944. return idlest;
  1945. }
  1946. /*
  1947. * sched_balance_self: balance the current task (running on cpu) in domains
  1948. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1949. * SD_BALANCE_EXEC.
  1950. *
  1951. * Balance, ie. select the least loaded group.
  1952. *
  1953. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1954. *
  1955. * preempt must be disabled.
  1956. */
  1957. static int sched_balance_self(int cpu, int flag)
  1958. {
  1959. struct task_struct *t = current;
  1960. struct sched_domain *tmp, *sd = NULL;
  1961. for_each_domain(cpu, tmp) {
  1962. /*
  1963. * If power savings logic is enabled for a domain, stop there.
  1964. */
  1965. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1966. break;
  1967. if (tmp->flags & flag)
  1968. sd = tmp;
  1969. }
  1970. if (sd)
  1971. update_shares(sd);
  1972. while (sd) {
  1973. struct sched_group *group;
  1974. int new_cpu, weight;
  1975. if (!(sd->flags & flag)) {
  1976. sd = sd->child;
  1977. continue;
  1978. }
  1979. group = find_idlest_group(sd, t, cpu);
  1980. if (!group) {
  1981. sd = sd->child;
  1982. continue;
  1983. }
  1984. new_cpu = find_idlest_cpu(group, t, cpu);
  1985. if (new_cpu == -1 || new_cpu == cpu) {
  1986. /* Now try balancing at a lower domain level of cpu */
  1987. sd = sd->child;
  1988. continue;
  1989. }
  1990. /* Now try balancing at a lower domain level of new_cpu */
  1991. cpu = new_cpu;
  1992. weight = cpumask_weight(sched_domain_span(sd));
  1993. sd = NULL;
  1994. for_each_domain(cpu, tmp) {
  1995. if (weight <= cpumask_weight(sched_domain_span(tmp)))
  1996. break;
  1997. if (tmp->flags & flag)
  1998. sd = tmp;
  1999. }
  2000. /* while loop will break here if sd == NULL */
  2001. }
  2002. return cpu;
  2003. }
  2004. #endif /* CONFIG_SMP */
  2005. /**
  2006. * task_oncpu_function_call - call a function on the cpu on which a task runs
  2007. * @p: the task to evaluate
  2008. * @func: the function to be called
  2009. * @info: the function call argument
  2010. *
  2011. * Calls the function @func when the task is currently running. This might
  2012. * be on the current CPU, which just calls the function directly
  2013. */
  2014. void task_oncpu_function_call(struct task_struct *p,
  2015. void (*func) (void *info), void *info)
  2016. {
  2017. int cpu;
  2018. preempt_disable();
  2019. cpu = task_cpu(p);
  2020. if (task_curr(p))
  2021. smp_call_function_single(cpu, func, info, 1);
  2022. preempt_enable();
  2023. }
  2024. /***
  2025. * try_to_wake_up - wake up a thread
  2026. * @p: the to-be-woken-up thread
  2027. * @state: the mask of task states that can be woken
  2028. * @sync: do a synchronous wakeup?
  2029. *
  2030. * Put it on the run-queue if it's not already there. The "current"
  2031. * thread is always on the run-queue (except when the actual
  2032. * re-schedule is in progress), and as such you're allowed to do
  2033. * the simpler "current->state = TASK_RUNNING" to mark yourself
  2034. * runnable without the overhead of this.
  2035. *
  2036. * returns failure only if the task is already active.
  2037. */
  2038. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  2039. {
  2040. int cpu, orig_cpu, this_cpu, success = 0;
  2041. unsigned long flags;
  2042. long old_state;
  2043. struct rq *rq;
  2044. if (!sched_feat(SYNC_WAKEUPS))
  2045. sync = 0;
  2046. #ifdef CONFIG_SMP
  2047. if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
  2048. struct sched_domain *sd;
  2049. this_cpu = raw_smp_processor_id();
  2050. cpu = task_cpu(p);
  2051. for_each_domain(this_cpu, sd) {
  2052. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2053. update_shares(sd);
  2054. break;
  2055. }
  2056. }
  2057. }
  2058. #endif
  2059. smp_wmb();
  2060. rq = task_rq_lock(p, &flags);
  2061. update_rq_clock(rq);
  2062. old_state = p->state;
  2063. if (!(old_state & state))
  2064. goto out;
  2065. if (p->se.on_rq)
  2066. goto out_running;
  2067. cpu = task_cpu(p);
  2068. orig_cpu = cpu;
  2069. this_cpu = smp_processor_id();
  2070. #ifdef CONFIG_SMP
  2071. if (unlikely(task_running(rq, p)))
  2072. goto out_activate;
  2073. cpu = p->sched_class->select_task_rq(p, sync);
  2074. if (cpu != orig_cpu) {
  2075. set_task_cpu(p, cpu);
  2076. task_rq_unlock(rq, &flags);
  2077. /* might preempt at this point */
  2078. rq = task_rq_lock(p, &flags);
  2079. old_state = p->state;
  2080. if (!(old_state & state))
  2081. goto out;
  2082. if (p->se.on_rq)
  2083. goto out_running;
  2084. this_cpu = smp_processor_id();
  2085. cpu = task_cpu(p);
  2086. }
  2087. #ifdef CONFIG_SCHEDSTATS
  2088. schedstat_inc(rq, ttwu_count);
  2089. if (cpu == this_cpu)
  2090. schedstat_inc(rq, ttwu_local);
  2091. else {
  2092. struct sched_domain *sd;
  2093. for_each_domain(this_cpu, sd) {
  2094. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  2095. schedstat_inc(sd, ttwu_wake_remote);
  2096. break;
  2097. }
  2098. }
  2099. }
  2100. #endif /* CONFIG_SCHEDSTATS */
  2101. out_activate:
  2102. #endif /* CONFIG_SMP */
  2103. schedstat_inc(p, se.nr_wakeups);
  2104. if (sync)
  2105. schedstat_inc(p, se.nr_wakeups_sync);
  2106. if (orig_cpu != cpu)
  2107. schedstat_inc(p, se.nr_wakeups_migrate);
  2108. if (cpu == this_cpu)
  2109. schedstat_inc(p, se.nr_wakeups_local);
  2110. else
  2111. schedstat_inc(p, se.nr_wakeups_remote);
  2112. activate_task(rq, p, 1);
  2113. success = 1;
  2114. /*
  2115. * Only attribute actual wakeups done by this task.
  2116. */
  2117. if (!in_interrupt()) {
  2118. struct sched_entity *se = &current->se;
  2119. u64 sample = se->sum_exec_runtime;
  2120. if (se->last_wakeup)
  2121. sample -= se->last_wakeup;
  2122. else
  2123. sample -= se->start_runtime;
  2124. update_avg(&se->avg_wakeup, sample);
  2125. se->last_wakeup = se->sum_exec_runtime;
  2126. }
  2127. out_running:
  2128. trace_sched_wakeup(rq, p, success);
  2129. check_preempt_curr(rq, p, sync);
  2130. p->state = TASK_RUNNING;
  2131. #ifdef CONFIG_SMP
  2132. if (p->sched_class->task_wake_up)
  2133. p->sched_class->task_wake_up(rq, p);
  2134. #endif
  2135. out:
  2136. task_rq_unlock(rq, &flags);
  2137. return success;
  2138. }
  2139. /**
  2140. * wake_up_process - Wake up a specific process
  2141. * @p: The process to be woken up.
  2142. *
  2143. * Attempt to wake up the nominated process and move it to the set of runnable
  2144. * processes. Returns 1 if the process was woken up, 0 if it was already
  2145. * running.
  2146. *
  2147. * It may be assumed that this function implies a write memory barrier before
  2148. * changing the task state if and only if any tasks are woken up.
  2149. */
  2150. int wake_up_process(struct task_struct *p)
  2151. {
  2152. return try_to_wake_up(p, TASK_ALL, 0);
  2153. }
  2154. EXPORT_SYMBOL(wake_up_process);
  2155. int wake_up_state(struct task_struct *p, unsigned int state)
  2156. {
  2157. return try_to_wake_up(p, state, 0);
  2158. }
  2159. /*
  2160. * Perform scheduler related setup for a newly forked process p.
  2161. * p is forked by current.
  2162. *
  2163. * __sched_fork() is basic setup used by init_idle() too:
  2164. */
  2165. static void __sched_fork(struct task_struct *p)
  2166. {
  2167. p->se.exec_start = 0;
  2168. p->se.sum_exec_runtime = 0;
  2169. p->se.prev_sum_exec_runtime = 0;
  2170. p->se.nr_migrations = 0;
  2171. p->se.last_wakeup = 0;
  2172. p->se.avg_overlap = 0;
  2173. p->se.start_runtime = 0;
  2174. p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
  2175. #ifdef CONFIG_SCHEDSTATS
  2176. p->se.wait_start = 0;
  2177. p->se.sum_sleep_runtime = 0;
  2178. p->se.sleep_start = 0;
  2179. p->se.block_start = 0;
  2180. p->se.sleep_max = 0;
  2181. p->se.block_max = 0;
  2182. p->se.exec_max = 0;
  2183. p->se.slice_max = 0;
  2184. p->se.wait_max = 0;
  2185. #endif
  2186. INIT_LIST_HEAD(&p->rt.run_list);
  2187. p->se.on_rq = 0;
  2188. INIT_LIST_HEAD(&p->se.group_node);
  2189. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2190. INIT_HLIST_HEAD(&p->preempt_notifiers);
  2191. #endif
  2192. /*
  2193. * We mark the process as running here, but have not actually
  2194. * inserted it onto the runqueue yet. This guarantees that
  2195. * nobody will actually run it, and a signal or other external
  2196. * event cannot wake it up and insert it on the runqueue either.
  2197. */
  2198. p->state = TASK_RUNNING;
  2199. }
  2200. /*
  2201. * fork()/clone()-time setup:
  2202. */
  2203. void sched_fork(struct task_struct *p, int clone_flags)
  2204. {
  2205. int cpu = get_cpu();
  2206. __sched_fork(p);
  2207. #ifdef CONFIG_SMP
  2208. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  2209. #endif
  2210. set_task_cpu(p, cpu);
  2211. /*
  2212. * Make sure we do not leak PI boosting priority to the child.
  2213. */
  2214. p->prio = current->normal_prio;
  2215. /*
  2216. * Revert to default priority/policy on fork if requested.
  2217. */
  2218. if (unlikely(p->sched_reset_on_fork)) {
  2219. if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
  2220. p->policy = SCHED_NORMAL;
  2221. if (p->normal_prio < DEFAULT_PRIO)
  2222. p->prio = DEFAULT_PRIO;
  2223. /*
  2224. * We don't need the reset flag anymore after the fork. It has
  2225. * fulfilled its duty:
  2226. */
  2227. p->sched_reset_on_fork = 0;
  2228. }
  2229. if (!rt_prio(p->prio))
  2230. p->sched_class = &fair_sched_class;
  2231. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  2232. if (likely(sched_info_on()))
  2233. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2234. #endif
  2235. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  2236. p->oncpu = 0;
  2237. #endif
  2238. #ifdef CONFIG_PREEMPT
  2239. /* Want to start with kernel preemption disabled. */
  2240. task_thread_info(p)->preempt_count = 1;
  2241. #endif
  2242. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2243. put_cpu();
  2244. }
  2245. /*
  2246. * wake_up_new_task - wake up a newly created task for the first time.
  2247. *
  2248. * This function will do some initial scheduler statistics housekeeping
  2249. * that must be done for every newly created context, then puts the task
  2250. * on the runqueue and wakes it.
  2251. */
  2252. void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  2253. {
  2254. unsigned long flags;
  2255. struct rq *rq;
  2256. rq = task_rq_lock(p, &flags);
  2257. BUG_ON(p->state != TASK_RUNNING);
  2258. update_rq_clock(rq);
  2259. p->prio = effective_prio(p);
  2260. if (!p->sched_class->task_new || !current->se.on_rq) {
  2261. activate_task(rq, p, 0);
  2262. } else {
  2263. /*
  2264. * Let the scheduling class do new task startup
  2265. * management (if any):
  2266. */
  2267. p->sched_class->task_new(rq, p);
  2268. inc_nr_running(rq);
  2269. }
  2270. trace_sched_wakeup_new(rq, p, 1);
  2271. check_preempt_curr(rq, p, 0);
  2272. #ifdef CONFIG_SMP
  2273. if (p->sched_class->task_wake_up)
  2274. p->sched_class->task_wake_up(rq, p);
  2275. #endif
  2276. task_rq_unlock(rq, &flags);
  2277. }
  2278. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2279. /**
  2280. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2281. * @notifier: notifier struct to register
  2282. */
  2283. void preempt_notifier_register(struct preempt_notifier *notifier)
  2284. {
  2285. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2286. }
  2287. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2288. /**
  2289. * preempt_notifier_unregister - no longer interested in preemption notifications
  2290. * @notifier: notifier struct to unregister
  2291. *
  2292. * This is safe to call from within a preemption notifier.
  2293. */
  2294. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2295. {
  2296. hlist_del(&notifier->link);
  2297. }
  2298. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2299. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2300. {
  2301. struct preempt_notifier *notifier;
  2302. struct hlist_node *node;
  2303. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2304. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2305. }
  2306. static void
  2307. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2308. struct task_struct *next)
  2309. {
  2310. struct preempt_notifier *notifier;
  2311. struct hlist_node *node;
  2312. hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
  2313. notifier->ops->sched_out(notifier, next);
  2314. }
  2315. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2316. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2317. {
  2318. }
  2319. static void
  2320. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2321. struct task_struct *next)
  2322. {
  2323. }
  2324. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2325. /**
  2326. * prepare_task_switch - prepare to switch tasks
  2327. * @rq: the runqueue preparing to switch
  2328. * @prev: the current task that is being switched out
  2329. * @next: the task we are going to switch to.
  2330. *
  2331. * This is called with the rq lock held and interrupts off. It must
  2332. * be paired with a subsequent finish_task_switch after the context
  2333. * switch.
  2334. *
  2335. * prepare_task_switch sets up locking and calls architecture specific
  2336. * hooks.
  2337. */
  2338. static inline void
  2339. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2340. struct task_struct *next)
  2341. {
  2342. fire_sched_out_preempt_notifiers(prev, next);
  2343. prepare_lock_switch(rq, next);
  2344. prepare_arch_switch(next);
  2345. }
  2346. /**
  2347. * finish_task_switch - clean up after a task-switch
  2348. * @rq: runqueue associated with task-switch
  2349. * @prev: the thread we just switched away from.
  2350. *
  2351. * finish_task_switch must be called after the context switch, paired
  2352. * with a prepare_task_switch call before the context switch.
  2353. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2354. * and do any other architecture-specific cleanup actions.
  2355. *
  2356. * Note that we may have delayed dropping an mm in context_switch(). If
  2357. * so, we finish that here outside of the runqueue lock. (Doing it
  2358. * with the lock held can cause deadlocks; see schedule() for
  2359. * details.)
  2360. */
  2361. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  2362. __releases(rq->lock)
  2363. {
  2364. struct mm_struct *mm = rq->prev_mm;
  2365. long prev_state;
  2366. #ifdef CONFIG_SMP
  2367. int post_schedule = 0;
  2368. if (current->sched_class->needs_post_schedule)
  2369. post_schedule = current->sched_class->needs_post_schedule(rq);
  2370. #endif
  2371. rq->prev_mm = NULL;
  2372. /*
  2373. * A task struct has one reference for the use as "current".
  2374. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2375. * schedule one last time. The schedule call will never return, and
  2376. * the scheduled task must drop that reference.
  2377. * The test for TASK_DEAD must occur while the runqueue locks are
  2378. * still held, otherwise prev could be scheduled on another cpu, die
  2379. * there before we look at prev->state, and then the reference would
  2380. * be dropped twice.
  2381. * Manfred Spraul <manfred@colorfullife.com>
  2382. */
  2383. prev_state = prev->state;
  2384. finish_arch_switch(prev);
  2385. perf_counter_task_sched_in(current, cpu_of(rq));
  2386. finish_lock_switch(rq, prev);
  2387. #ifdef CONFIG_SMP
  2388. if (post_schedule)
  2389. current->sched_class->post_schedule(rq);
  2390. #endif
  2391. fire_sched_in_preempt_notifiers(current);
  2392. if (mm)
  2393. mmdrop(mm);
  2394. if (unlikely(prev_state == TASK_DEAD)) {
  2395. /*
  2396. * Remove function-return probe instances associated with this
  2397. * task and put them back on the free list.
  2398. */
  2399. kprobe_flush_task(prev);
  2400. put_task_struct(prev);
  2401. }
  2402. }
  2403. /**
  2404. * schedule_tail - first thing a freshly forked thread must call.
  2405. * @prev: the thread we just switched away from.
  2406. */
  2407. asmlinkage void schedule_tail(struct task_struct *prev)
  2408. __releases(rq->lock)
  2409. {
  2410. struct rq *rq = this_rq();
  2411. finish_task_switch(rq, prev);
  2412. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  2413. /* In this case, finish_task_switch does not reenable preemption */
  2414. preempt_enable();
  2415. #endif
  2416. if (current->set_child_tid)
  2417. put_user(task_pid_vnr(current), current->set_child_tid);
  2418. }
  2419. /*
  2420. * context_switch - switch to the new MM and the new
  2421. * thread's register state.
  2422. */
  2423. static inline void
  2424. context_switch(struct rq *rq, struct task_struct *prev,
  2425. struct task_struct *next)
  2426. {
  2427. struct mm_struct *mm, *oldmm;
  2428. prepare_task_switch(rq, prev, next);
  2429. trace_sched_switch(rq, prev, next);
  2430. mm = next->mm;
  2431. oldmm = prev->active_mm;
  2432. /*
  2433. * For paravirt, this is coupled with an exit in switch_to to
  2434. * combine the page table reload and the switch backend into
  2435. * one hypercall.
  2436. */
  2437. arch_start_context_switch(prev);
  2438. if (unlikely(!mm)) {
  2439. next->active_mm = oldmm;
  2440. atomic_inc(&oldmm->mm_count);
  2441. enter_lazy_tlb(oldmm, next);
  2442. } else
  2443. switch_mm(oldmm, mm, next);
  2444. if (unlikely(!prev->mm)) {
  2445. prev->active_mm = NULL;
  2446. rq->prev_mm = oldmm;
  2447. }
  2448. /*
  2449. * Since the runqueue lock will be released by the next
  2450. * task (which is an invalid locking op but in the case
  2451. * of the scheduler it's an obvious special-case), so we
  2452. * do an early lockdep release here:
  2453. */
  2454. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  2455. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2456. #endif
  2457. /* Here we just switch the register state and the stack. */
  2458. switch_to(prev, next, prev);
  2459. barrier();
  2460. /*
  2461. * this_rq must be evaluated again because prev may have moved
  2462. * CPUs since it called schedule(), thus the 'rq' on its stack
  2463. * frame will be invalid.
  2464. */
  2465. finish_task_switch(this_rq(), prev);
  2466. }
  2467. /*
  2468. * nr_running, nr_uninterruptible and nr_context_switches:
  2469. *
  2470. * externally visible scheduler statistics: current number of runnable
  2471. * threads, current number of uninterruptible-sleeping threads, total
  2472. * number of context switches performed since bootup.
  2473. */
  2474. unsigned long nr_running(void)
  2475. {
  2476. unsigned long i, sum = 0;
  2477. for_each_online_cpu(i)
  2478. sum += cpu_rq(i)->nr_running;
  2479. return sum;
  2480. }
  2481. unsigned long nr_uninterruptible(void)
  2482. {
  2483. unsigned long i, sum = 0;
  2484. for_each_possible_cpu(i)
  2485. sum += cpu_rq(i)->nr_uninterruptible;
  2486. /*
  2487. * Since we read the counters lockless, it might be slightly
  2488. * inaccurate. Do not allow it to go below zero though:
  2489. */
  2490. if (unlikely((long)sum < 0))
  2491. sum = 0;
  2492. return sum;
  2493. }
  2494. unsigned long long nr_context_switches(void)
  2495. {
  2496. int i;
  2497. unsigned long long sum = 0;
  2498. for_each_possible_cpu(i)
  2499. sum += cpu_rq(i)->nr_switches;
  2500. return sum;
  2501. }
  2502. unsigned long nr_iowait(void)
  2503. {
  2504. unsigned long i, sum = 0;
  2505. for_each_possible_cpu(i)
  2506. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2507. return sum;
  2508. }
  2509. /* Variables and functions for calc_load */
  2510. static atomic_long_t calc_load_tasks;
  2511. static unsigned long calc_load_update;
  2512. unsigned long avenrun[3];
  2513. EXPORT_SYMBOL(avenrun);
  2514. /**
  2515. * get_avenrun - get the load average array
  2516. * @loads: pointer to dest load array
  2517. * @offset: offset to add
  2518. * @shift: shift count to shift the result left
  2519. *
  2520. * These values are estimates at best, so no need for locking.
  2521. */
  2522. void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
  2523. {
  2524. loads[0] = (avenrun[0] + offset) << shift;
  2525. loads[1] = (avenrun[1] + offset) << shift;
  2526. loads[2] = (avenrun[2] + offset) << shift;
  2527. }
  2528. static unsigned long
  2529. calc_load(unsigned long load, unsigned long exp, unsigned long active)
  2530. {
  2531. load *= exp;
  2532. load += active * (FIXED_1 - exp);
  2533. return load >> FSHIFT;
  2534. }
  2535. /*
  2536. * calc_load - update the avenrun load estimates 10 ticks after the
  2537. * CPUs have updated calc_load_tasks.
  2538. */
  2539. void calc_global_load(void)
  2540. {
  2541. unsigned long upd = calc_load_update + 10;
  2542. long active;
  2543. if (time_before(jiffies, upd))
  2544. return;
  2545. active = atomic_long_read(&calc_load_tasks);
  2546. active = active > 0 ? active * FIXED_1 : 0;
  2547. avenrun[0] = calc_load(avenrun[0], EXP_1, active);
  2548. avenrun[1] = calc_load(avenrun[1], EXP_5, active);
  2549. avenrun[2] = calc_load(avenrun[2], EXP_15, active);
  2550. calc_load_update += LOAD_FREQ;
  2551. }
  2552. /*
  2553. * Either called from update_cpu_load() or from a cpu going idle
  2554. */
  2555. static void calc_load_account_active(struct rq *this_rq)
  2556. {
  2557. long nr_active, delta;
  2558. nr_active = this_rq->nr_running;
  2559. nr_active += (long) this_rq->nr_uninterruptible;
  2560. if (nr_active != this_rq->calc_load_active) {
  2561. delta = nr_active - this_rq->calc_load_active;
  2562. this_rq->calc_load_active = nr_active;
  2563. atomic_long_add(delta, &calc_load_tasks);
  2564. }
  2565. }
  2566. /*
  2567. * Externally visible per-cpu scheduler statistics:
  2568. * cpu_nr_migrations(cpu) - number of migrations into that cpu
  2569. */
  2570. u64 cpu_nr_migrations(int cpu)
  2571. {
  2572. return cpu_rq(cpu)->nr_migrations_in;
  2573. }
  2574. /*
  2575. * Update rq->cpu_load[] statistics. This function is usually called every
  2576. * scheduler tick (TICK_NSEC).
  2577. */
  2578. static void update_cpu_load(struct rq *this_rq)
  2579. {
  2580. unsigned long this_load = this_rq->load.weight;
  2581. int i, scale;
  2582. this_rq->nr_load_updates++;
  2583. /* Update our load: */
  2584. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  2585. unsigned long old_load, new_load;
  2586. /* scale is effectively 1 << i now, and >> i divides by scale */
  2587. old_load = this_rq->cpu_load[i];
  2588. new_load = this_load;
  2589. /*
  2590. * Round up the averaging division if load is increasing. This
  2591. * prevents us from getting stuck on 9 if the load is 10, for
  2592. * example.
  2593. */
  2594. if (new_load > old_load)
  2595. new_load += scale-1;
  2596. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  2597. }
  2598. if (time_after_eq(jiffies, this_rq->calc_load_update)) {
  2599. this_rq->calc_load_update += LOAD_FREQ;
  2600. calc_load_account_active(this_rq);
  2601. }
  2602. }
  2603. #ifdef CONFIG_SMP
  2604. /*
  2605. * double_rq_lock - safely lock two runqueues
  2606. *
  2607. * Note this does not disable interrupts like task_rq_lock,
  2608. * you need to do so manually before calling.
  2609. */
  2610. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  2611. __acquires(rq1->lock)
  2612. __acquires(rq2->lock)
  2613. {
  2614. BUG_ON(!irqs_disabled());
  2615. if (rq1 == rq2) {
  2616. spin_lock(&rq1->lock);
  2617. __acquire(rq2->lock); /* Fake it out ;) */
  2618. } else {
  2619. if (rq1 < rq2) {
  2620. spin_lock(&rq1->lock);
  2621. spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
  2622. } else {
  2623. spin_lock(&rq2->lock);
  2624. spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
  2625. }
  2626. }
  2627. update_rq_clock(rq1);
  2628. update_rq_clock(rq2);
  2629. }
  2630. /*
  2631. * double_rq_unlock - safely unlock two runqueues
  2632. *
  2633. * Note this does not restore interrupts like task_rq_unlock,
  2634. * you need to do so manually after calling.
  2635. */
  2636. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  2637. __releases(rq1->lock)
  2638. __releases(rq2->lock)
  2639. {
  2640. spin_unlock(&rq1->lock);
  2641. if (rq1 != rq2)
  2642. spin_unlock(&rq2->lock);
  2643. else
  2644. __release(rq2->lock);
  2645. }
  2646. /*
  2647. * If dest_cpu is allowed for this process, migrate the task to it.
  2648. * This is accomplished by forcing the cpu_allowed mask to only
  2649. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  2650. * the cpu_allowed mask is restored.
  2651. */
  2652. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  2653. {
  2654. struct migration_req req;
  2655. unsigned long flags;
  2656. struct rq *rq;
  2657. rq = task_rq_lock(p, &flags);
  2658. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
  2659. || unlikely(!cpu_active(dest_cpu)))
  2660. goto out;
  2661. /* force the process onto the specified CPU */
  2662. if (migrate_task(p, dest_cpu, &req)) {
  2663. /* Need to wait for migration thread (might exit: take ref). */
  2664. struct task_struct *mt = rq->migration_thread;
  2665. get_task_struct(mt);
  2666. task_rq_unlock(rq, &flags);
  2667. wake_up_process(mt);
  2668. put_task_struct(mt);
  2669. wait_for_completion(&req.done);
  2670. return;
  2671. }
  2672. out:
  2673. task_rq_unlock(rq, &flags);
  2674. }
  2675. /*
  2676. * sched_exec - execve() is a valuable balancing opportunity, because at
  2677. * this point the task has the smallest effective memory and cache footprint.
  2678. */
  2679. void sched_exec(void)
  2680. {
  2681. int new_cpu, this_cpu = get_cpu();
  2682. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  2683. put_cpu();
  2684. if (new_cpu != this_cpu)
  2685. sched_migrate_task(current, new_cpu);
  2686. }
  2687. /*
  2688. * pull_task - move a task from a remote runqueue to the local runqueue.
  2689. * Both runqueues must be locked.
  2690. */
  2691. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2692. struct rq *this_rq, int this_cpu)
  2693. {
  2694. deactivate_task(src_rq, p, 0);
  2695. set_task_cpu(p, this_cpu);
  2696. activate_task(this_rq, p, 0);
  2697. /*
  2698. * Note that idle threads have a prio of MAX_PRIO, for this test
  2699. * to be always true for them.
  2700. */
  2701. check_preempt_curr(this_rq, p, 0);
  2702. }
  2703. /*
  2704. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2705. */
  2706. static
  2707. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2708. struct sched_domain *sd, enum cpu_idle_type idle,
  2709. int *all_pinned)
  2710. {
  2711. int tsk_cache_hot = 0;
  2712. /*
  2713. * We do not migrate tasks that are:
  2714. * 1) running (obviously), or
  2715. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2716. * 3) are cache-hot on their current CPU.
  2717. */
  2718. if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
  2719. schedstat_inc(p, se.nr_failed_migrations_affine);
  2720. return 0;
  2721. }
  2722. *all_pinned = 0;
  2723. if (task_running(rq, p)) {
  2724. schedstat_inc(p, se.nr_failed_migrations_running);
  2725. return 0;
  2726. }
  2727. /*
  2728. * Aggressive migration if:
  2729. * 1) task is cache cold, or
  2730. * 2) too many balance attempts have failed.
  2731. */
  2732. tsk_cache_hot = task_hot(p, rq->clock, sd);
  2733. if (!tsk_cache_hot ||
  2734. sd->nr_balance_failed > sd->cache_nice_tries) {
  2735. #ifdef CONFIG_SCHEDSTATS
  2736. if (tsk_cache_hot) {
  2737. schedstat_inc(sd, lb_hot_gained[idle]);
  2738. schedstat_inc(p, se.nr_forced_migrations);
  2739. }
  2740. #endif
  2741. return 1;
  2742. }
  2743. if (tsk_cache_hot) {
  2744. schedstat_inc(p, se.nr_failed_migrations_hot);
  2745. return 0;
  2746. }
  2747. return 1;
  2748. }
  2749. static unsigned long
  2750. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2751. unsigned long max_load_move, struct sched_domain *sd,
  2752. enum cpu_idle_type idle, int *all_pinned,
  2753. int *this_best_prio, struct rq_iterator *iterator)
  2754. {
  2755. int loops = 0, pulled = 0, pinned = 0;
  2756. struct task_struct *p;
  2757. long rem_load_move = max_load_move;
  2758. if (max_load_move == 0)
  2759. goto out;
  2760. pinned = 1;
  2761. /*
  2762. * Start the load-balancing iterator:
  2763. */
  2764. p = iterator->start(iterator->arg);
  2765. next:
  2766. if (!p || loops++ > sysctl_sched_nr_migrate)
  2767. goto out;
  2768. if ((p->se.load.weight >> 1) > rem_load_move ||
  2769. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2770. p = iterator->next(iterator->arg);
  2771. goto next;
  2772. }
  2773. pull_task(busiest, p, this_rq, this_cpu);
  2774. pulled++;
  2775. rem_load_move -= p->se.load.weight;
  2776. #ifdef CONFIG_PREEMPT
  2777. /*
  2778. * NEWIDLE balancing is a source of latency, so preemptible kernels
  2779. * will stop after the first task is pulled to minimize the critical
  2780. * section.
  2781. */
  2782. if (idle == CPU_NEWLY_IDLE)
  2783. goto out;
  2784. #endif
  2785. /*
  2786. * We only want to steal up to the prescribed amount of weighted load.
  2787. */
  2788. if (rem_load_move > 0) {
  2789. if (p->prio < *this_best_prio)
  2790. *this_best_prio = p->prio;
  2791. p = iterator->next(iterator->arg);
  2792. goto next;
  2793. }
  2794. out:
  2795. /*
  2796. * Right now, this is one of only two places pull_task() is called,
  2797. * so we can safely collect pull_task() stats here rather than
  2798. * inside pull_task().
  2799. */
  2800. schedstat_add(sd, lb_gained[idle], pulled);
  2801. if (all_pinned)
  2802. *all_pinned = pinned;
  2803. return max_load_move - rem_load_move;
  2804. }
  2805. /*
  2806. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2807. * this_rq, as part of a balancing operation within domain "sd".
  2808. * Returns 1 if successful and 0 otherwise.
  2809. *
  2810. * Called with both runqueues locked.
  2811. */
  2812. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2813. unsigned long max_load_move,
  2814. struct sched_domain *sd, enum cpu_idle_type idle,
  2815. int *all_pinned)
  2816. {
  2817. const struct sched_class *class = sched_class_highest;
  2818. unsigned long total_load_moved = 0;
  2819. int this_best_prio = this_rq->curr->prio;
  2820. do {
  2821. total_load_moved +=
  2822. class->load_balance(this_rq, this_cpu, busiest,
  2823. max_load_move - total_load_moved,
  2824. sd, idle, all_pinned, &this_best_prio);
  2825. class = class->next;
  2826. #ifdef CONFIG_PREEMPT
  2827. /*
  2828. * NEWIDLE balancing is a source of latency, so preemptible
  2829. * kernels will stop after the first task is pulled to minimize
  2830. * the critical section.
  2831. */
  2832. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2833. break;
  2834. #endif
  2835. } while (class && max_load_move > total_load_moved);
  2836. return total_load_moved > 0;
  2837. }
  2838. static int
  2839. iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2840. struct sched_domain *sd, enum cpu_idle_type idle,
  2841. struct rq_iterator *iterator)
  2842. {
  2843. struct task_struct *p = iterator->start(iterator->arg);
  2844. int pinned = 0;
  2845. while (p) {
  2846. if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  2847. pull_task(busiest, p, this_rq, this_cpu);
  2848. /*
  2849. * Right now, this is only the second place pull_task()
  2850. * is called, so we can safely collect pull_task()
  2851. * stats here rather than inside pull_task().
  2852. */
  2853. schedstat_inc(sd, lb_gained[idle]);
  2854. return 1;
  2855. }
  2856. p = iterator->next(iterator->arg);
  2857. }
  2858. return 0;
  2859. }
  2860. /*
  2861. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2862. * part of active balancing operations within "domain".
  2863. * Returns 1 if successful and 0 otherwise.
  2864. *
  2865. * Called with both runqueues locked.
  2866. */
  2867. static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2868. struct sched_domain *sd, enum cpu_idle_type idle)
  2869. {
  2870. const struct sched_class *class;
  2871. for (class = sched_class_highest; class; class = class->next)
  2872. if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
  2873. return 1;
  2874. return 0;
  2875. }
  2876. /********** Helpers for find_busiest_group ************************/
  2877. /*
  2878. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2879. * during load balancing.
  2880. */
  2881. struct sd_lb_stats {
  2882. struct sched_group *busiest; /* Busiest group in this sd */
  2883. struct sched_group *this; /* Local group in this sd */
  2884. unsigned long total_load; /* Total load of all groups in sd */
  2885. unsigned long total_pwr; /* Total power of all groups in sd */
  2886. unsigned long avg_load; /* Average load across all groups in sd */
  2887. /** Statistics of this group */
  2888. unsigned long this_load;
  2889. unsigned long this_load_per_task;
  2890. unsigned long this_nr_running;
  2891. /* Statistics of the busiest group */
  2892. unsigned long max_load;
  2893. unsigned long busiest_load_per_task;
  2894. unsigned long busiest_nr_running;
  2895. int group_imb; /* Is there imbalance in this sd */
  2896. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2897. int power_savings_balance; /* Is powersave balance needed for this sd */
  2898. struct sched_group *group_min; /* Least loaded group in sd */
  2899. struct sched_group *group_leader; /* Group which relieves group_min */
  2900. unsigned long min_load_per_task; /* load_per_task in group_min */
  2901. unsigned long leader_nr_running; /* Nr running of group_leader */
  2902. unsigned long min_nr_running; /* Nr running of group_min */
  2903. #endif
  2904. };
  2905. /*
  2906. * sg_lb_stats - stats of a sched_group required for load_balancing
  2907. */
  2908. struct sg_lb_stats {
  2909. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2910. unsigned long group_load; /* Total load over the CPUs of the group */
  2911. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2912. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2913. unsigned long group_capacity;
  2914. int group_imb; /* Is there an imbalance in the group ? */
  2915. };
  2916. /**
  2917. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2918. * @group: The group whose first cpu is to be returned.
  2919. */
  2920. static inline unsigned int group_first_cpu(struct sched_group *group)
  2921. {
  2922. return cpumask_first(sched_group_cpus(group));
  2923. }
  2924. /**
  2925. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2926. * @sd: The sched_domain whose load_idx is to be obtained.
  2927. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2928. */
  2929. static inline int get_sd_load_idx(struct sched_domain *sd,
  2930. enum cpu_idle_type idle)
  2931. {
  2932. int load_idx;
  2933. switch (idle) {
  2934. case CPU_NOT_IDLE:
  2935. load_idx = sd->busy_idx;
  2936. break;
  2937. case CPU_NEWLY_IDLE:
  2938. load_idx = sd->newidle_idx;
  2939. break;
  2940. default:
  2941. load_idx = sd->idle_idx;
  2942. break;
  2943. }
  2944. return load_idx;
  2945. }
  2946. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2947. /**
  2948. * init_sd_power_savings_stats - Initialize power savings statistics for
  2949. * the given sched_domain, during load balancing.
  2950. *
  2951. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2952. * @sds: Variable containing the statistics for sd.
  2953. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2954. */
  2955. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2956. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2957. {
  2958. /*
  2959. * Busy processors will not participate in power savings
  2960. * balance.
  2961. */
  2962. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2963. sds->power_savings_balance = 0;
  2964. else {
  2965. sds->power_savings_balance = 1;
  2966. sds->min_nr_running = ULONG_MAX;
  2967. sds->leader_nr_running = 0;
  2968. }
  2969. }
  2970. /**
  2971. * update_sd_power_savings_stats - Update the power saving stats for a
  2972. * sched_domain while performing load balancing.
  2973. *
  2974. * @group: sched_group belonging to the sched_domain under consideration.
  2975. * @sds: Variable containing the statistics of the sched_domain
  2976. * @local_group: Does group contain the CPU for which we're performing
  2977. * load balancing ?
  2978. * @sgs: Variable containing the statistics of the group.
  2979. */
  2980. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2981. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2982. {
  2983. if (!sds->power_savings_balance)
  2984. return;
  2985. /*
  2986. * If the local group is idle or completely loaded
  2987. * no need to do power savings balance at this domain
  2988. */
  2989. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2990. !sds->this_nr_running))
  2991. sds->power_savings_balance = 0;
  2992. /*
  2993. * If a group is already running at full capacity or idle,
  2994. * don't include that group in power savings calculations
  2995. */
  2996. if (!sds->power_savings_balance ||
  2997. sgs->sum_nr_running >= sgs->group_capacity ||
  2998. !sgs->sum_nr_running)
  2999. return;
  3000. /*
  3001. * Calculate the group which has the least non-idle load.
  3002. * This is the group from where we need to pick up the load
  3003. * for saving power
  3004. */
  3005. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3006. (sgs->sum_nr_running == sds->min_nr_running &&
  3007. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3008. sds->group_min = group;
  3009. sds->min_nr_running = sgs->sum_nr_running;
  3010. sds->min_load_per_task = sgs->sum_weighted_load /
  3011. sgs->sum_nr_running;
  3012. }
  3013. /*
  3014. * Calculate the group which is almost near its
  3015. * capacity but still has some space to pick up some load
  3016. * from other group and save more power
  3017. */
  3018. if (sgs->sum_nr_running > sgs->group_capacity - 1)
  3019. return;
  3020. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3021. (sgs->sum_nr_running == sds->leader_nr_running &&
  3022. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3023. sds->group_leader = group;
  3024. sds->leader_nr_running = sgs->sum_nr_running;
  3025. }
  3026. }
  3027. /**
  3028. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3029. * @sds: Variable containing the statistics of the sched_domain
  3030. * under consideration.
  3031. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3032. * @imbalance: Variable to store the imbalance.
  3033. *
  3034. * Description:
  3035. * Check if we have potential to perform some power-savings balance.
  3036. * If yes, set the busiest group to be the least loaded group in the
  3037. * sched_domain, so that it's CPUs can be put to idle.
  3038. *
  3039. * Returns 1 if there is potential to perform power-savings balance.
  3040. * Else returns 0.
  3041. */
  3042. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3043. int this_cpu, unsigned long *imbalance)
  3044. {
  3045. if (!sds->power_savings_balance)
  3046. return 0;
  3047. if (sds->this != sds->group_leader ||
  3048. sds->group_leader == sds->group_min)
  3049. return 0;
  3050. *imbalance = sds->min_load_per_task;
  3051. sds->busiest = sds->group_min;
  3052. if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
  3053. cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
  3054. group_first_cpu(sds->group_leader);
  3055. }
  3056. return 1;
  3057. }
  3058. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3059. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3060. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3061. {
  3062. return;
  3063. }
  3064. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3065. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3066. {
  3067. return;
  3068. }
  3069. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3070. int this_cpu, unsigned long *imbalance)
  3071. {
  3072. return 0;
  3073. }
  3074. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3075. /**
  3076. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3077. * @group: sched_group whose statistics are to be updated.
  3078. * @this_cpu: Cpu for which load balance is currently performed.
  3079. * @idle: Idle status of this_cpu
  3080. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3081. * @sd_idle: Idle status of the sched_domain containing group.
  3082. * @local_group: Does group contain this_cpu.
  3083. * @cpus: Set of cpus considered for load balancing.
  3084. * @balance: Should we balance.
  3085. * @sgs: variable to hold the statistics for this group.
  3086. */
  3087. static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
  3088. enum cpu_idle_type idle, int load_idx, int *sd_idle,
  3089. int local_group, const struct cpumask *cpus,
  3090. int *balance, struct sg_lb_stats *sgs)
  3091. {
  3092. unsigned long load, max_cpu_load, min_cpu_load;
  3093. int i;
  3094. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3095. unsigned long sum_avg_load_per_task;
  3096. unsigned long avg_load_per_task;
  3097. if (local_group)
  3098. balance_cpu = group_first_cpu(group);
  3099. /* Tally up the load of all CPUs in the group */
  3100. sum_avg_load_per_task = avg_load_per_task = 0;
  3101. max_cpu_load = 0;
  3102. min_cpu_load = ~0UL;
  3103. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3104. struct rq *rq = cpu_rq(i);
  3105. if (*sd_idle && rq->nr_running)
  3106. *sd_idle = 0;
  3107. /* Bias balancing toward cpus of our domain */
  3108. if (local_group) {
  3109. if (idle_cpu(i) && !first_idle_cpu) {
  3110. first_idle_cpu = 1;
  3111. balance_cpu = i;
  3112. }
  3113. load = target_load(i, load_idx);
  3114. } else {
  3115. load = source_load(i, load_idx);
  3116. if (load > max_cpu_load)
  3117. max_cpu_load = load;
  3118. if (min_cpu_load > load)
  3119. min_cpu_load = load;
  3120. }
  3121. sgs->group_load += load;
  3122. sgs->sum_nr_running += rq->nr_running;
  3123. sgs->sum_weighted_load += weighted_cpuload(i);
  3124. sum_avg_load_per_task += cpu_avg_load_per_task(i);
  3125. }
  3126. /*
  3127. * First idle cpu or the first cpu(busiest) in this sched group
  3128. * is eligible for doing load balancing at this and above
  3129. * domains. In the newly idle case, we will allow all the cpu's
  3130. * to do the newly idle load balance.
  3131. */
  3132. if (idle != CPU_NEWLY_IDLE && local_group &&
  3133. balance_cpu != this_cpu && balance) {
  3134. *balance = 0;
  3135. return;
  3136. }
  3137. /* Adjust by relative CPU power of the group */
  3138. sgs->avg_load = sg_div_cpu_power(group,
  3139. sgs->group_load * SCHED_LOAD_SCALE);
  3140. /*
  3141. * Consider the group unbalanced when the imbalance is larger
  3142. * than the average weight of two tasks.
  3143. *
  3144. * APZ: with cgroup the avg task weight can vary wildly and
  3145. * might not be a suitable number - should we keep a
  3146. * normalized nr_running number somewhere that negates
  3147. * the hierarchy?
  3148. */
  3149. avg_load_per_task = sg_div_cpu_power(group,
  3150. sum_avg_load_per_task * SCHED_LOAD_SCALE);
  3151. if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
  3152. sgs->group_imb = 1;
  3153. sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  3154. }
  3155. /**
  3156. * update_sd_lb_stats - Update sched_group's statistics for load balancing.
  3157. * @sd: sched_domain whose statistics are to be updated.
  3158. * @this_cpu: Cpu for which load balance is currently performed.
  3159. * @idle: Idle status of this_cpu
  3160. * @sd_idle: Idle status of the sched_domain containing group.
  3161. * @cpus: Set of cpus considered for load balancing.
  3162. * @balance: Should we balance.
  3163. * @sds: variable to hold the statistics for this sched_domain.
  3164. */
  3165. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3166. enum cpu_idle_type idle, int *sd_idle,
  3167. const struct cpumask *cpus, int *balance,
  3168. struct sd_lb_stats *sds)
  3169. {
  3170. struct sched_group *group = sd->groups;
  3171. struct sg_lb_stats sgs;
  3172. int load_idx;
  3173. init_sd_power_savings_stats(sd, sds, idle);
  3174. load_idx = get_sd_load_idx(sd, idle);
  3175. do {
  3176. int local_group;
  3177. local_group = cpumask_test_cpu(this_cpu,
  3178. sched_group_cpus(group));
  3179. memset(&sgs, 0, sizeof(sgs));
  3180. update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
  3181. local_group, cpus, balance, &sgs);
  3182. if (local_group && balance && !(*balance))
  3183. return;
  3184. sds->total_load += sgs.group_load;
  3185. sds->total_pwr += group->__cpu_power;
  3186. if (local_group) {
  3187. sds->this_load = sgs.avg_load;
  3188. sds->this = group;
  3189. sds->this_nr_running = sgs.sum_nr_running;
  3190. sds->this_load_per_task = sgs.sum_weighted_load;
  3191. } else if (sgs.avg_load > sds->max_load &&
  3192. (sgs.sum_nr_running > sgs.group_capacity ||
  3193. sgs.group_imb)) {
  3194. sds->max_load = sgs.avg_load;
  3195. sds->busiest = group;
  3196. sds->busiest_nr_running = sgs.sum_nr_running;
  3197. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3198. sds->group_imb = sgs.group_imb;
  3199. }
  3200. update_sd_power_savings_stats(group, sds, local_group, &sgs);
  3201. group = group->next;
  3202. } while (group != sd->groups);
  3203. }
  3204. /**
  3205. * fix_small_imbalance - Calculate the minor imbalance that exists
  3206. * amongst the groups of a sched_domain, during
  3207. * load balancing.
  3208. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3209. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3210. * @imbalance: Variable to store the imbalance.
  3211. */
  3212. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3213. int this_cpu, unsigned long *imbalance)
  3214. {
  3215. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3216. unsigned int imbn = 2;
  3217. if (sds->this_nr_running) {
  3218. sds->this_load_per_task /= sds->this_nr_running;
  3219. if (sds->busiest_load_per_task >
  3220. sds->this_load_per_task)
  3221. imbn = 1;
  3222. } else
  3223. sds->this_load_per_task =
  3224. cpu_avg_load_per_task(this_cpu);
  3225. if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
  3226. sds->busiest_load_per_task * imbn) {
  3227. *imbalance = sds->busiest_load_per_task;
  3228. return;
  3229. }
  3230. /*
  3231. * OK, we don't have enough imbalance to justify moving tasks,
  3232. * however we may be able to increase total CPU power used by
  3233. * moving them.
  3234. */
  3235. pwr_now += sds->busiest->__cpu_power *
  3236. min(sds->busiest_load_per_task, sds->max_load);
  3237. pwr_now += sds->this->__cpu_power *
  3238. min(sds->this_load_per_task, sds->this_load);
  3239. pwr_now /= SCHED_LOAD_SCALE;
  3240. /* Amount of load we'd subtract */
  3241. tmp = sg_div_cpu_power(sds->busiest,
  3242. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3243. if (sds->max_load > tmp)
  3244. pwr_move += sds->busiest->__cpu_power *
  3245. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3246. /* Amount of load we'd add */
  3247. if (sds->max_load * sds->busiest->__cpu_power <
  3248. sds->busiest_load_per_task * SCHED_LOAD_SCALE)
  3249. tmp = sg_div_cpu_power(sds->this,
  3250. sds->max_load * sds->busiest->__cpu_power);
  3251. else
  3252. tmp = sg_div_cpu_power(sds->this,
  3253. sds->busiest_load_per_task * SCHED_LOAD_SCALE);
  3254. pwr_move += sds->this->__cpu_power *
  3255. min(sds->this_load_per_task, sds->this_load + tmp);
  3256. pwr_move /= SCHED_LOAD_SCALE;
  3257. /* Move if we gain throughput */
  3258. if (pwr_move > pwr_now)
  3259. *imbalance = sds->busiest_load_per_task;
  3260. }
  3261. /**
  3262. * calculate_imbalance - Calculate the amount of imbalance present within the
  3263. * groups of a given sched_domain during load balance.
  3264. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3265. * @this_cpu: Cpu for which currently load balance is being performed.
  3266. * @imbalance: The variable to store the imbalance.
  3267. */
  3268. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3269. unsigned long *imbalance)
  3270. {
  3271. unsigned long max_pull;
  3272. /*
  3273. * In the presence of smp nice balancing, certain scenarios can have
  3274. * max load less than avg load(as we skip the groups at or below
  3275. * its cpu_power, while calculating max_load..)
  3276. */
  3277. if (sds->max_load < sds->avg_load) {
  3278. *imbalance = 0;
  3279. return fix_small_imbalance(sds, this_cpu, imbalance);
  3280. }
  3281. /* Don't want to pull so many tasks that a group would go idle */
  3282. max_pull = min(sds->max_load - sds->avg_load,
  3283. sds->max_load - sds->busiest_load_per_task);
  3284. /* How much load to actually move to equalise the imbalance */
  3285. *imbalance = min(max_pull * sds->busiest->__cpu_power,
  3286. (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
  3287. / SCHED_LOAD_SCALE;
  3288. /*
  3289. * if *imbalance is less than the average load per runnable task
  3290. * there is no gaurantee that any tasks will be moved so we'll have
  3291. * a think about bumping its value to force at least one task to be
  3292. * moved
  3293. */
  3294. if (*imbalance < sds->busiest_load_per_task)
  3295. return fix_small_imbalance(sds, this_cpu, imbalance);
  3296. }
  3297. /******* find_busiest_group() helpers end here *********************/
  3298. /**
  3299. * find_busiest_group - Returns the busiest group within the sched_domain
  3300. * if there is an imbalance. If there isn't an imbalance, and
  3301. * the user has opted for power-savings, it returns a group whose
  3302. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3303. * such a group exists.
  3304. *
  3305. * Also calculates the amount of weighted load which should be moved
  3306. * to restore balance.
  3307. *
  3308. * @sd: The sched_domain whose busiest group is to be returned.
  3309. * @this_cpu: The cpu for which load balancing is currently being performed.
  3310. * @imbalance: Variable which stores amount of weighted load which should
  3311. * be moved to restore balance/put a group to idle.
  3312. * @idle: The idle status of this_cpu.
  3313. * @sd_idle: The idleness of sd
  3314. * @cpus: The set of CPUs under consideration for load-balancing.
  3315. * @balance: Pointer to a variable indicating if this_cpu
  3316. * is the appropriate cpu to perform load balancing at this_level.
  3317. *
  3318. * Returns: - the busiest group if imbalance exists.
  3319. * - If no imbalance and user has opted for power-savings balance,
  3320. * return the least loaded group whose CPUs can be
  3321. * put to idle by rebalancing its tasks onto our group.
  3322. */
  3323. static struct sched_group *
  3324. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3325. unsigned long *imbalance, enum cpu_idle_type idle,
  3326. int *sd_idle, const struct cpumask *cpus, int *balance)
  3327. {
  3328. struct sd_lb_stats sds;
  3329. memset(&sds, 0, sizeof(sds));
  3330. /*
  3331. * Compute the various statistics relavent for load balancing at
  3332. * this level.
  3333. */
  3334. update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
  3335. balance, &sds);
  3336. /* Cases where imbalance does not exist from POV of this_cpu */
  3337. /* 1) this_cpu is not the appropriate cpu to perform load balancing
  3338. * at this level.
  3339. * 2) There is no busy sibling group to pull from.
  3340. * 3) This group is the busiest group.
  3341. * 4) This group is more busy than the avg busieness at this
  3342. * sched_domain.
  3343. * 5) The imbalance is within the specified limit.
  3344. * 6) Any rebalance would lead to ping-pong
  3345. */
  3346. if (balance && !(*balance))
  3347. goto ret;
  3348. if (!sds.busiest || sds.busiest_nr_running == 0)
  3349. goto out_balanced;
  3350. if (sds.this_load >= sds.max_load)
  3351. goto out_balanced;
  3352. sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
  3353. if (sds.this_load >= sds.avg_load)
  3354. goto out_balanced;
  3355. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3356. goto out_balanced;
  3357. sds.busiest_load_per_task /= sds.busiest_nr_running;
  3358. if (sds.group_imb)
  3359. sds.busiest_load_per_task =
  3360. min(sds.busiest_load_per_task, sds.avg_load);
  3361. /*
  3362. * We're trying to get all the cpus to the average_load, so we don't
  3363. * want to push ourselves above the average load, nor do we wish to
  3364. * reduce the max loaded cpu below the average load, as either of these
  3365. * actions would just result in more rebalancing later, and ping-pong
  3366. * tasks around. Thus we look for the minimum possible imbalance.
  3367. * Negative imbalances (*we* are more loaded than anyone else) will
  3368. * be counted as no imbalance for these purposes -- we can't fix that
  3369. * by pulling tasks to us. Be careful of negative numbers as they'll
  3370. * appear as very large values with unsigned longs.
  3371. */
  3372. if (sds.max_load <= sds.busiest_load_per_task)
  3373. goto out_balanced;
  3374. /* Looks like there is an imbalance. Compute it */
  3375. calculate_imbalance(&sds, this_cpu, imbalance);
  3376. return sds.busiest;
  3377. out_balanced:
  3378. /*
  3379. * There is no obvious imbalance. But check if we can do some balancing
  3380. * to save power.
  3381. */
  3382. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3383. return sds.busiest;
  3384. ret:
  3385. *imbalance = 0;
  3386. return NULL;
  3387. }
  3388. /*
  3389. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3390. */
  3391. static struct rq *
  3392. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  3393. unsigned long imbalance, const struct cpumask *cpus)
  3394. {
  3395. struct rq *busiest = NULL, *rq;
  3396. unsigned long max_load = 0;
  3397. int i;
  3398. for_each_cpu(i, sched_group_cpus(group)) {
  3399. unsigned long wl;
  3400. if (!cpumask_test_cpu(i, cpus))
  3401. continue;
  3402. rq = cpu_rq(i);
  3403. wl = weighted_cpuload(i);
  3404. if (rq->nr_running == 1 && wl > imbalance)
  3405. continue;
  3406. if (wl > max_load) {
  3407. max_load = wl;
  3408. busiest = rq;
  3409. }
  3410. }
  3411. return busiest;
  3412. }
  3413. /*
  3414. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3415. * so long as it is large enough.
  3416. */
  3417. #define MAX_PINNED_INTERVAL 512
  3418. /* Working cpumask for load_balance and load_balance_newidle. */
  3419. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3420. /*
  3421. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3422. * tasks if there is an imbalance.
  3423. */
  3424. static int load_balance(int this_cpu, struct rq *this_rq,
  3425. struct sched_domain *sd, enum cpu_idle_type idle,
  3426. int *balance)
  3427. {
  3428. int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  3429. struct sched_group *group;
  3430. unsigned long imbalance;
  3431. struct rq *busiest;
  3432. unsigned long flags;
  3433. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3434. cpumask_setall(cpus);
  3435. /*
  3436. * When power savings policy is enabled for the parent domain, idle
  3437. * sibling can pick up load irrespective of busy siblings. In this case,
  3438. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  3439. * portraying it as CPU_NOT_IDLE.
  3440. */
  3441. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  3442. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3443. sd_idle = 1;
  3444. schedstat_inc(sd, lb_count[idle]);
  3445. redo:
  3446. update_shares(sd);
  3447. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  3448. cpus, balance);
  3449. if (*balance == 0)
  3450. goto out_balanced;
  3451. if (!group) {
  3452. schedstat_inc(sd, lb_nobusyg[idle]);
  3453. goto out_balanced;
  3454. }
  3455. busiest = find_busiest_queue(group, idle, imbalance, cpus);
  3456. if (!busiest) {
  3457. schedstat_inc(sd, lb_nobusyq[idle]);
  3458. goto out_balanced;
  3459. }
  3460. BUG_ON(busiest == this_rq);
  3461. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3462. ld_moved = 0;
  3463. if (busiest->nr_running > 1) {
  3464. /*
  3465. * Attempt to move tasks. If find_busiest_group has found
  3466. * an imbalance but busiest->nr_running <= 1, the group is
  3467. * still unbalanced. ld_moved simply stays zero, so it is
  3468. * correctly treated as an imbalance.
  3469. */
  3470. local_irq_save(flags);
  3471. double_rq_lock(this_rq, busiest);
  3472. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3473. imbalance, sd, idle, &all_pinned);
  3474. double_rq_unlock(this_rq, busiest);
  3475. local_irq_restore(flags);
  3476. /*
  3477. * some other cpu did the load balance for us.
  3478. */
  3479. if (ld_moved && this_cpu != smp_processor_id())
  3480. resched_cpu(this_cpu);
  3481. /* All tasks on this runqueue were pinned by CPU affinity */
  3482. if (unlikely(all_pinned)) {
  3483. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3484. if (!cpumask_empty(cpus))
  3485. goto redo;
  3486. goto out_balanced;
  3487. }
  3488. }
  3489. if (!ld_moved) {
  3490. schedstat_inc(sd, lb_failed[idle]);
  3491. sd->nr_balance_failed++;
  3492. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  3493. spin_lock_irqsave(&busiest->lock, flags);
  3494. /* don't kick the migration_thread, if the curr
  3495. * task on busiest cpu can't be moved to this_cpu
  3496. */
  3497. if (!cpumask_test_cpu(this_cpu,
  3498. &busiest->curr->cpus_allowed)) {
  3499. spin_unlock_irqrestore(&busiest->lock, flags);
  3500. all_pinned = 1;
  3501. goto out_one_pinned;
  3502. }
  3503. if (!busiest->active_balance) {
  3504. busiest->active_balance = 1;
  3505. busiest->push_cpu = this_cpu;
  3506. active_balance = 1;
  3507. }
  3508. spin_unlock_irqrestore(&busiest->lock, flags);
  3509. if (active_balance)
  3510. wake_up_process(busiest->migration_thread);
  3511. /*
  3512. * We've kicked active balancing, reset the failure
  3513. * counter.
  3514. */
  3515. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3516. }
  3517. } else
  3518. sd->nr_balance_failed = 0;
  3519. if (likely(!active_balance)) {
  3520. /* We were unbalanced, so reset the balancing interval */
  3521. sd->balance_interval = sd->min_interval;
  3522. } else {
  3523. /*
  3524. * If we've begun active balancing, start to back off. This
  3525. * case may not be covered by the all_pinned logic if there
  3526. * is only 1 task on the busy runqueue (because we don't call
  3527. * move_tasks).
  3528. */
  3529. if (sd->balance_interval < sd->max_interval)
  3530. sd->balance_interval *= 2;
  3531. }
  3532. if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3533. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3534. ld_moved = -1;
  3535. goto out;
  3536. out_balanced:
  3537. schedstat_inc(sd, lb_balanced[idle]);
  3538. sd->nr_balance_failed = 0;
  3539. out_one_pinned:
  3540. /* tune up the balancing interval */
  3541. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3542. (sd->balance_interval < sd->max_interval))
  3543. sd->balance_interval *= 2;
  3544. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3545. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3546. ld_moved = -1;
  3547. else
  3548. ld_moved = 0;
  3549. out:
  3550. if (ld_moved)
  3551. update_shares(sd);
  3552. return ld_moved;
  3553. }
  3554. /*
  3555. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3556. * tasks if there is an imbalance.
  3557. *
  3558. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  3559. * this_rq is locked.
  3560. */
  3561. static int
  3562. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  3563. {
  3564. struct sched_group *group;
  3565. struct rq *busiest = NULL;
  3566. unsigned long imbalance;
  3567. int ld_moved = 0;
  3568. int sd_idle = 0;
  3569. int all_pinned = 0;
  3570. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3571. cpumask_setall(cpus);
  3572. /*
  3573. * When power savings policy is enabled for the parent domain, idle
  3574. * sibling can pick up load irrespective of busy siblings. In this case,
  3575. * let the state of idle sibling percolate up as IDLE, instead of
  3576. * portraying it as CPU_NOT_IDLE.
  3577. */
  3578. if (sd->flags & SD_SHARE_CPUPOWER &&
  3579. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3580. sd_idle = 1;
  3581. schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
  3582. redo:
  3583. update_shares_locked(this_rq, sd);
  3584. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  3585. &sd_idle, cpus, NULL);
  3586. if (!group) {
  3587. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  3588. goto out_balanced;
  3589. }
  3590. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
  3591. if (!busiest) {
  3592. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  3593. goto out_balanced;
  3594. }
  3595. BUG_ON(busiest == this_rq);
  3596. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  3597. ld_moved = 0;
  3598. if (busiest->nr_running > 1) {
  3599. /* Attempt to move tasks */
  3600. double_lock_balance(this_rq, busiest);
  3601. /* this_rq->clock is already updated */
  3602. update_rq_clock(busiest);
  3603. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3604. imbalance, sd, CPU_NEWLY_IDLE,
  3605. &all_pinned);
  3606. double_unlock_balance(this_rq, busiest);
  3607. if (unlikely(all_pinned)) {
  3608. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3609. if (!cpumask_empty(cpus))
  3610. goto redo;
  3611. }
  3612. }
  3613. if (!ld_moved) {
  3614. int active_balance = 0;
  3615. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  3616. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3617. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3618. return -1;
  3619. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3620. return -1;
  3621. if (sd->nr_balance_failed++ < 2)
  3622. return -1;
  3623. /*
  3624. * The only task running in a non-idle cpu can be moved to this
  3625. * cpu in an attempt to completely freeup the other CPU
  3626. * package. The same method used to move task in load_balance()
  3627. * have been extended for load_balance_newidle() to speedup
  3628. * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
  3629. *
  3630. * The package power saving logic comes from
  3631. * find_busiest_group(). If there are no imbalance, then
  3632. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3633. * f_b_g() will select a group from which a running task may be
  3634. * pulled to this cpu in order to make the other package idle.
  3635. * If there is no opportunity to make a package idle and if
  3636. * there are no imbalance, then f_b_g() will return NULL and no
  3637. * action will be taken in load_balance_newidle().
  3638. *
  3639. * Under normal task pull operation due to imbalance, there
  3640. * will be more than one task in the source run queue and
  3641. * move_tasks() will succeed. ld_moved will be true and this
  3642. * active balance code will not be triggered.
  3643. */
  3644. /* Lock busiest in correct order while this_rq is held */
  3645. double_lock_balance(this_rq, busiest);
  3646. /*
  3647. * don't kick the migration_thread, if the curr
  3648. * task on busiest cpu can't be moved to this_cpu
  3649. */
  3650. if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
  3651. double_unlock_balance(this_rq, busiest);
  3652. all_pinned = 1;
  3653. return ld_moved;
  3654. }
  3655. if (!busiest->active_balance) {
  3656. busiest->active_balance = 1;
  3657. busiest->push_cpu = this_cpu;
  3658. active_balance = 1;
  3659. }
  3660. double_unlock_balance(this_rq, busiest);
  3661. /*
  3662. * Should not call ttwu while holding a rq->lock
  3663. */
  3664. spin_unlock(&this_rq->lock);
  3665. if (active_balance)
  3666. wake_up_process(busiest->migration_thread);
  3667. spin_lock(&this_rq->lock);
  3668. } else
  3669. sd->nr_balance_failed = 0;
  3670. update_shares_locked(this_rq, sd);
  3671. return ld_moved;
  3672. out_balanced:
  3673. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  3674. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  3675. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  3676. return -1;
  3677. sd->nr_balance_failed = 0;
  3678. return 0;
  3679. }
  3680. /*
  3681. * idle_balance is called by schedule() if this_cpu is about to become
  3682. * idle. Attempts to pull tasks from other CPUs.
  3683. */
  3684. static void idle_balance(int this_cpu, struct rq *this_rq)
  3685. {
  3686. struct sched_domain *sd;
  3687. int pulled_task = 0;
  3688. unsigned long next_balance = jiffies + HZ;
  3689. for_each_domain(this_cpu, sd) {
  3690. unsigned long interval;
  3691. if (!(sd->flags & SD_LOAD_BALANCE))
  3692. continue;
  3693. if (sd->flags & SD_BALANCE_NEWIDLE)
  3694. /* If we've pulled tasks over stop searching: */
  3695. pulled_task = load_balance_newidle(this_cpu, this_rq,
  3696. sd);
  3697. interval = msecs_to_jiffies(sd->balance_interval);
  3698. if (time_after(next_balance, sd->last_balance + interval))
  3699. next_balance = sd->last_balance + interval;
  3700. if (pulled_task)
  3701. break;
  3702. }
  3703. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3704. /*
  3705. * We are going idle. next_balance may be set based on
  3706. * a busy processor. So reset next_balance.
  3707. */
  3708. this_rq->next_balance = next_balance;
  3709. }
  3710. }
  3711. /*
  3712. * active_load_balance is run by migration threads. It pushes running tasks
  3713. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  3714. * running on each physical CPU where possible, and avoids physical /
  3715. * logical imbalances.
  3716. *
  3717. * Called with busiest_rq locked.
  3718. */
  3719. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  3720. {
  3721. int target_cpu = busiest_rq->push_cpu;
  3722. struct sched_domain *sd;
  3723. struct rq *target_rq;
  3724. /* Is there any task to move? */
  3725. if (busiest_rq->nr_running <= 1)
  3726. return;
  3727. target_rq = cpu_rq(target_cpu);
  3728. /*
  3729. * This condition is "impossible", if it occurs
  3730. * we need to fix it. Originally reported by
  3731. * Bjorn Helgaas on a 128-cpu setup.
  3732. */
  3733. BUG_ON(busiest_rq == target_rq);
  3734. /* move a task from busiest_rq to target_rq */
  3735. double_lock_balance(busiest_rq, target_rq);
  3736. update_rq_clock(busiest_rq);
  3737. update_rq_clock(target_rq);
  3738. /* Search for an sd spanning us and the target CPU. */
  3739. for_each_domain(target_cpu, sd) {
  3740. if ((sd->flags & SD_LOAD_BALANCE) &&
  3741. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3742. break;
  3743. }
  3744. if (likely(sd)) {
  3745. schedstat_inc(sd, alb_count);
  3746. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3747. sd, CPU_IDLE))
  3748. schedstat_inc(sd, alb_pushed);
  3749. else
  3750. schedstat_inc(sd, alb_failed);
  3751. }
  3752. double_unlock_balance(busiest_rq, target_rq);
  3753. }
  3754. #ifdef CONFIG_NO_HZ
  3755. static struct {
  3756. atomic_t load_balancer;
  3757. cpumask_var_t cpu_mask;
  3758. cpumask_var_t ilb_grp_nohz_mask;
  3759. } nohz ____cacheline_aligned = {
  3760. .load_balancer = ATOMIC_INIT(-1),
  3761. };
  3762. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3763. /**
  3764. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3765. * @cpu: The cpu whose lowest level of sched domain is to
  3766. * be returned.
  3767. * @flag: The flag to check for the lowest sched_domain
  3768. * for the given cpu.
  3769. *
  3770. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3771. */
  3772. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3773. {
  3774. struct sched_domain *sd;
  3775. for_each_domain(cpu, sd)
  3776. if (sd && (sd->flags & flag))
  3777. break;
  3778. return sd;
  3779. }
  3780. /**
  3781. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3782. * @cpu: The cpu whose domains we're iterating over.
  3783. * @sd: variable holding the value of the power_savings_sd
  3784. * for cpu.
  3785. * @flag: The flag to filter the sched_domains to be iterated.
  3786. *
  3787. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3788. * set, starting from the lowest sched_domain to the highest.
  3789. */
  3790. #define for_each_flag_domain(cpu, sd, flag) \
  3791. for (sd = lowest_flag_domain(cpu, flag); \
  3792. (sd && (sd->flags & flag)); sd = sd->parent)
  3793. /**
  3794. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3795. * @ilb_group: group to be checked for semi-idleness
  3796. *
  3797. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3798. *
  3799. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3800. * and atleast one non-idle CPU. This helper function checks if the given
  3801. * sched_group is semi-idle or not.
  3802. */
  3803. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3804. {
  3805. cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
  3806. sched_group_cpus(ilb_group));
  3807. /*
  3808. * A sched_group is semi-idle when it has atleast one busy cpu
  3809. * and atleast one idle cpu.
  3810. */
  3811. if (cpumask_empty(nohz.ilb_grp_nohz_mask))
  3812. return 0;
  3813. if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
  3814. return 0;
  3815. return 1;
  3816. }
  3817. /**
  3818. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3819. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3820. *
  3821. * Returns: Returns the id of the idle load balancer if it exists,
  3822. * Else, returns >= nr_cpu_ids.
  3823. *
  3824. * This algorithm picks the idle load balancer such that it belongs to a
  3825. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3826. * completely idle packages/cores just for the purpose of idle load balancing
  3827. * when there are other idle cpu's which are better suited for that job.
  3828. */
  3829. static int find_new_ilb(int cpu)
  3830. {
  3831. struct sched_domain *sd;
  3832. struct sched_group *ilb_group;
  3833. /*
  3834. * Have idle load balancer selection from semi-idle packages only
  3835. * when power-aware load balancing is enabled
  3836. */
  3837. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3838. goto out_done;
  3839. /*
  3840. * Optimize for the case when we have no idle CPUs or only one
  3841. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3842. */
  3843. if (cpumask_weight(nohz.cpu_mask) < 2)
  3844. goto out_done;
  3845. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3846. ilb_group = sd->groups;
  3847. do {
  3848. if (is_semi_idle_group(ilb_group))
  3849. return cpumask_first(nohz.ilb_grp_nohz_mask);
  3850. ilb_group = ilb_group->next;
  3851. } while (ilb_group != sd->groups);
  3852. }
  3853. out_done:
  3854. return cpumask_first(nohz.cpu_mask);
  3855. }
  3856. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3857. static inline int find_new_ilb(int call_cpu)
  3858. {
  3859. return cpumask_first(nohz.cpu_mask);
  3860. }
  3861. #endif
  3862. /*
  3863. * This routine will try to nominate the ilb (idle load balancing)
  3864. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3865. * load balancing on behalf of all those cpus. If all the cpus in the system
  3866. * go into this tickless mode, then there will be no ilb owner (as there is
  3867. * no need for one) and all the cpus will sleep till the next wakeup event
  3868. * arrives...
  3869. *
  3870. * For the ilb owner, tick is not stopped. And this tick will be used
  3871. * for idle load balancing. ilb owner will still be part of
  3872. * nohz.cpu_mask..
  3873. *
  3874. * While stopping the tick, this cpu will become the ilb owner if there
  3875. * is no other owner. And will be the owner till that cpu becomes busy
  3876. * or if all cpus in the system stop their ticks at which point
  3877. * there is no need for ilb owner.
  3878. *
  3879. * When the ilb owner becomes busy, it nominates another owner, during the
  3880. * next busy scheduler_tick()
  3881. */
  3882. int select_nohz_load_balancer(int stop_tick)
  3883. {
  3884. int cpu = smp_processor_id();
  3885. if (stop_tick) {
  3886. cpu_rq(cpu)->in_nohz_recently = 1;
  3887. if (!cpu_active(cpu)) {
  3888. if (atomic_read(&nohz.load_balancer) != cpu)
  3889. return 0;
  3890. /*
  3891. * If we are going offline and still the leader,
  3892. * give up!
  3893. */
  3894. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3895. BUG();
  3896. return 0;
  3897. }
  3898. cpumask_set_cpu(cpu, nohz.cpu_mask);
  3899. /* time for ilb owner also to sleep */
  3900. if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  3901. if (atomic_read(&nohz.load_balancer) == cpu)
  3902. atomic_set(&nohz.load_balancer, -1);
  3903. return 0;
  3904. }
  3905. if (atomic_read(&nohz.load_balancer) == -1) {
  3906. /* make me the ilb owner */
  3907. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  3908. return 1;
  3909. } else if (atomic_read(&nohz.load_balancer) == cpu) {
  3910. int new_ilb;
  3911. if (!(sched_smt_power_savings ||
  3912. sched_mc_power_savings))
  3913. return 1;
  3914. /*
  3915. * Check to see if there is a more power-efficient
  3916. * ilb.
  3917. */
  3918. new_ilb = find_new_ilb(cpu);
  3919. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3920. atomic_set(&nohz.load_balancer, -1);
  3921. resched_cpu(new_ilb);
  3922. return 0;
  3923. }
  3924. return 1;
  3925. }
  3926. } else {
  3927. if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
  3928. return 0;
  3929. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  3930. if (atomic_read(&nohz.load_balancer) == cpu)
  3931. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  3932. BUG();
  3933. }
  3934. return 0;
  3935. }
  3936. #endif
  3937. static DEFINE_SPINLOCK(balancing);
  3938. /*
  3939. * It checks each scheduling domain to see if it is due to be balanced,
  3940. * and initiates a balancing operation if so.
  3941. *
  3942. * Balancing parameters are set up in arch_init_sched_domains.
  3943. */
  3944. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3945. {
  3946. int balance = 1;
  3947. struct rq *rq = cpu_rq(cpu);
  3948. unsigned long interval;
  3949. struct sched_domain *sd;
  3950. /* Earliest time when we have to do rebalance again */
  3951. unsigned long next_balance = jiffies + 60*HZ;
  3952. int update_next_balance = 0;
  3953. int need_serialize;
  3954. for_each_domain(cpu, sd) {
  3955. if (!(sd->flags & SD_LOAD_BALANCE))
  3956. continue;
  3957. interval = sd->balance_interval;
  3958. if (idle != CPU_IDLE)
  3959. interval *= sd->busy_factor;
  3960. /* scale ms to jiffies */
  3961. interval = msecs_to_jiffies(interval);
  3962. if (unlikely(!interval))
  3963. interval = 1;
  3964. if (interval > HZ*NR_CPUS/10)
  3965. interval = HZ*NR_CPUS/10;
  3966. need_serialize = sd->flags & SD_SERIALIZE;
  3967. if (need_serialize) {
  3968. if (!spin_trylock(&balancing))
  3969. goto out;
  3970. }
  3971. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3972. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3973. /*
  3974. * We've pulled tasks over so either we're no
  3975. * longer idle, or one of our SMT siblings is
  3976. * not idle.
  3977. */
  3978. idle = CPU_NOT_IDLE;
  3979. }
  3980. sd->last_balance = jiffies;
  3981. }
  3982. if (need_serialize)
  3983. spin_unlock(&balancing);
  3984. out:
  3985. if (time_after(next_balance, sd->last_balance + interval)) {
  3986. next_balance = sd->last_balance + interval;
  3987. update_next_balance = 1;
  3988. }
  3989. /*
  3990. * Stop the load balance at this level. There is another
  3991. * CPU in our sched group which is doing load balancing more
  3992. * actively.
  3993. */
  3994. if (!balance)
  3995. break;
  3996. }
  3997. /*
  3998. * next_balance will be updated only when there is a need.
  3999. * When the cpu is attached to null domain for ex, it will not be
  4000. * updated.
  4001. */
  4002. if (likely(update_next_balance))
  4003. rq->next_balance = next_balance;
  4004. }
  4005. /*
  4006. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4007. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  4008. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4009. */
  4010. static void run_rebalance_domains(struct softirq_action *h)
  4011. {
  4012. int this_cpu = smp_processor_id();
  4013. struct rq *this_rq = cpu_rq(this_cpu);
  4014. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  4015. CPU_IDLE : CPU_NOT_IDLE;
  4016. rebalance_domains(this_cpu, idle);
  4017. #ifdef CONFIG_NO_HZ
  4018. /*
  4019. * If this cpu is the owner for idle load balancing, then do the
  4020. * balancing on behalf of the other idle cpus whose ticks are
  4021. * stopped.
  4022. */
  4023. if (this_rq->idle_at_tick &&
  4024. atomic_read(&nohz.load_balancer) == this_cpu) {
  4025. struct rq *rq;
  4026. int balance_cpu;
  4027. for_each_cpu(balance_cpu, nohz.cpu_mask) {
  4028. if (balance_cpu == this_cpu)
  4029. continue;
  4030. /*
  4031. * If this cpu gets work to do, stop the load balancing
  4032. * work being done for other cpus. Next load
  4033. * balancing owner will pick it up.
  4034. */
  4035. if (need_resched())
  4036. break;
  4037. rebalance_domains(balance_cpu, CPU_IDLE);
  4038. rq = cpu_rq(balance_cpu);
  4039. if (time_after(this_rq->next_balance, rq->next_balance))
  4040. this_rq->next_balance = rq->next_balance;
  4041. }
  4042. }
  4043. #endif
  4044. }
  4045. static inline int on_null_domain(int cpu)
  4046. {
  4047. return !rcu_dereference(cpu_rq(cpu)->sd);
  4048. }
  4049. /*
  4050. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4051. *
  4052. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  4053. * idle load balancing owner or decide to stop the periodic load balancing,
  4054. * if the whole system is idle.
  4055. */
  4056. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4057. {
  4058. #ifdef CONFIG_NO_HZ
  4059. /*
  4060. * If we were in the nohz mode recently and busy at the current
  4061. * scheduler tick, then check if we need to nominate new idle
  4062. * load balancer.
  4063. */
  4064. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  4065. rq->in_nohz_recently = 0;
  4066. if (atomic_read(&nohz.load_balancer) == cpu) {
  4067. cpumask_clear_cpu(cpu, nohz.cpu_mask);
  4068. atomic_set(&nohz.load_balancer, -1);
  4069. }
  4070. if (atomic_read(&nohz.load_balancer) == -1) {
  4071. int ilb = find_new_ilb(cpu);
  4072. if (ilb < nr_cpu_ids)
  4073. resched_cpu(ilb);
  4074. }
  4075. }
  4076. /*
  4077. * If this cpu is idle and doing idle load balancing for all the
  4078. * cpus with ticks stopped, is it time for that to stop?
  4079. */
  4080. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  4081. cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
  4082. resched_cpu(cpu);
  4083. return;
  4084. }
  4085. /*
  4086. * If this cpu is idle and the idle load balancing is done by
  4087. * someone else, then no need raise the SCHED_SOFTIRQ
  4088. */
  4089. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  4090. cpumask_test_cpu(cpu, nohz.cpu_mask))
  4091. return;
  4092. #endif
  4093. /* Don't need to rebalance while attached to NULL domain */
  4094. if (time_after_eq(jiffies, rq->next_balance) &&
  4095. likely(!on_null_domain(cpu)))
  4096. raise_softirq(SCHED_SOFTIRQ);
  4097. }
  4098. #else /* CONFIG_SMP */
  4099. /*
  4100. * on UP we do not need to balance between CPUs:
  4101. */
  4102. static inline void idle_balance(int cpu, struct rq *rq)
  4103. {
  4104. }
  4105. #endif
  4106. DEFINE_PER_CPU(struct kernel_stat, kstat);
  4107. EXPORT_PER_CPU_SYMBOL(kstat);
  4108. /*
  4109. * Return any ns on the sched_clock that have not yet been accounted in
  4110. * @p in case that task is currently running.
  4111. *
  4112. * Called with task_rq_lock() held on @rq.
  4113. */
  4114. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  4115. {
  4116. u64 ns = 0;
  4117. if (task_current(rq, p)) {
  4118. update_rq_clock(rq);
  4119. ns = rq->clock - p->se.exec_start;
  4120. if ((s64)ns < 0)
  4121. ns = 0;
  4122. }
  4123. return ns;
  4124. }
  4125. unsigned long long task_delta_exec(struct task_struct *p)
  4126. {
  4127. unsigned long flags;
  4128. struct rq *rq;
  4129. u64 ns = 0;
  4130. rq = task_rq_lock(p, &flags);
  4131. ns = do_task_delta_exec(p, rq);
  4132. task_rq_unlock(rq, &flags);
  4133. return ns;
  4134. }
  4135. /*
  4136. * Return accounted runtime for the task.
  4137. * In case the task is currently running, return the runtime plus current's
  4138. * pending runtime that have not been accounted yet.
  4139. */
  4140. unsigned long long task_sched_runtime(struct task_struct *p)
  4141. {
  4142. unsigned long flags;
  4143. struct rq *rq;
  4144. u64 ns = 0;
  4145. rq = task_rq_lock(p, &flags);
  4146. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  4147. task_rq_unlock(rq, &flags);
  4148. return ns;
  4149. }
  4150. /*
  4151. * Return sum_exec_runtime for the thread group.
  4152. * In case the task is currently running, return the sum plus current's
  4153. * pending runtime that have not been accounted yet.
  4154. *
  4155. * Note that the thread group might have other running tasks as well,
  4156. * so the return value not includes other pending runtime that other
  4157. * running tasks might have.
  4158. */
  4159. unsigned long long thread_group_sched_runtime(struct task_struct *p)
  4160. {
  4161. struct task_cputime totals;
  4162. unsigned long flags;
  4163. struct rq *rq;
  4164. u64 ns;
  4165. rq = task_rq_lock(p, &flags);
  4166. thread_group_cputime(p, &totals);
  4167. ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
  4168. task_rq_unlock(rq, &flags);
  4169. return ns;
  4170. }
  4171. /*
  4172. * Account user cpu time to a process.
  4173. * @p: the process that the cpu time gets accounted to
  4174. * @cputime: the cpu time spent in user space since the last update
  4175. * @cputime_scaled: cputime scaled by cpu frequency
  4176. */
  4177. void account_user_time(struct task_struct *p, cputime_t cputime,
  4178. cputime_t cputime_scaled)
  4179. {
  4180. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4181. cputime64_t tmp;
  4182. /* Add user time to process. */
  4183. p->utime = cputime_add(p->utime, cputime);
  4184. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4185. account_group_user_time(p, cputime);
  4186. /* Add user time to cpustat. */
  4187. tmp = cputime_to_cputime64(cputime);
  4188. if (TASK_NICE(p) > 0)
  4189. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  4190. else
  4191. cpustat->user = cputime64_add(cpustat->user, tmp);
  4192. cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
  4193. /* Account for user time used */
  4194. acct_update_integrals(p);
  4195. }
  4196. /*
  4197. * Account guest cpu time to a process.
  4198. * @p: the process that the cpu time gets accounted to
  4199. * @cputime: the cpu time spent in virtual machine since the last update
  4200. * @cputime_scaled: cputime scaled by cpu frequency
  4201. */
  4202. static void account_guest_time(struct task_struct *p, cputime_t cputime,
  4203. cputime_t cputime_scaled)
  4204. {
  4205. cputime64_t tmp;
  4206. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4207. tmp = cputime_to_cputime64(cputime);
  4208. /* Add guest time to process. */
  4209. p->utime = cputime_add(p->utime, cputime);
  4210. p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
  4211. account_group_user_time(p, cputime);
  4212. p->gtime = cputime_add(p->gtime, cputime);
  4213. /* Add guest time to cpustat. */
  4214. cpustat->user = cputime64_add(cpustat->user, tmp);
  4215. cpustat->guest = cputime64_add(cpustat->guest, tmp);
  4216. }
  4217. /*
  4218. * Account system cpu time to a process.
  4219. * @p: the process that the cpu time gets accounted to
  4220. * @hardirq_offset: the offset to subtract from hardirq_count()
  4221. * @cputime: the cpu time spent in kernel space since the last update
  4222. * @cputime_scaled: cputime scaled by cpu frequency
  4223. */
  4224. void account_system_time(struct task_struct *p, int hardirq_offset,
  4225. cputime_t cputime, cputime_t cputime_scaled)
  4226. {
  4227. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4228. cputime64_t tmp;
  4229. if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
  4230. account_guest_time(p, cputime, cputime_scaled);
  4231. return;
  4232. }
  4233. /* Add system time to process. */
  4234. p->stime = cputime_add(p->stime, cputime);
  4235. p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
  4236. account_group_system_time(p, cputime);
  4237. /* Add system time to cpustat. */
  4238. tmp = cputime_to_cputime64(cputime);
  4239. if (hardirq_count() - hardirq_offset)
  4240. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  4241. else if (softirq_count())
  4242. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  4243. else
  4244. cpustat->system = cputime64_add(cpustat->system, tmp);
  4245. cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
  4246. /* Account for system time used */
  4247. acct_update_integrals(p);
  4248. }
  4249. /*
  4250. * Account for involuntary wait time.
  4251. * @steal: the cpu time spent in involuntary wait
  4252. */
  4253. void account_steal_time(cputime_t cputime)
  4254. {
  4255. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4256. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4257. cpustat->steal = cputime64_add(cpustat->steal, cputime64);
  4258. }
  4259. /*
  4260. * Account for idle time.
  4261. * @cputime: the cpu time spent in idle wait
  4262. */
  4263. void account_idle_time(cputime_t cputime)
  4264. {
  4265. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  4266. cputime64_t cputime64 = cputime_to_cputime64(cputime);
  4267. struct rq *rq = this_rq();
  4268. if (atomic_read(&rq->nr_iowait) > 0)
  4269. cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
  4270. else
  4271. cpustat->idle = cputime64_add(cpustat->idle, cputime64);
  4272. }
  4273. #ifndef CONFIG_VIRT_CPU_ACCOUNTING
  4274. /*
  4275. * Account a single tick of cpu time.
  4276. * @p: the process that the cpu time gets accounted to
  4277. * @user_tick: indicates if the tick is a user or a system tick
  4278. */
  4279. void account_process_tick(struct task_struct *p, int user_tick)
  4280. {
  4281. cputime_t one_jiffy = jiffies_to_cputime(1);
  4282. cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
  4283. struct rq *rq = this_rq();
  4284. if (user_tick)
  4285. account_user_time(p, one_jiffy, one_jiffy_scaled);
  4286. else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
  4287. account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
  4288. one_jiffy_scaled);
  4289. else
  4290. account_idle_time(one_jiffy);
  4291. }
  4292. /*
  4293. * Account multiple ticks of steal time.
  4294. * @p: the process from which the cpu time has been stolen
  4295. * @ticks: number of stolen ticks
  4296. */
  4297. void account_steal_ticks(unsigned long ticks)
  4298. {
  4299. account_steal_time(jiffies_to_cputime(ticks));
  4300. }
  4301. /*
  4302. * Account multiple ticks of idle time.
  4303. * @ticks: number of stolen ticks
  4304. */
  4305. void account_idle_ticks(unsigned long ticks)
  4306. {
  4307. account_idle_time(jiffies_to_cputime(ticks));
  4308. }
  4309. #endif
  4310. /*
  4311. * Use precise platform statistics if available:
  4312. */
  4313. #ifdef CONFIG_VIRT_CPU_ACCOUNTING
  4314. cputime_t task_utime(struct task_struct *p)
  4315. {
  4316. return p->utime;
  4317. }
  4318. cputime_t task_stime(struct task_struct *p)
  4319. {
  4320. return p->stime;
  4321. }
  4322. #else
  4323. cputime_t task_utime(struct task_struct *p)
  4324. {
  4325. clock_t utime = cputime_to_clock_t(p->utime),
  4326. total = utime + cputime_to_clock_t(p->stime);
  4327. u64 temp;
  4328. /*
  4329. * Use CFS's precise accounting:
  4330. */
  4331. temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
  4332. if (total) {
  4333. temp *= utime;
  4334. do_div(temp, total);
  4335. }
  4336. utime = (clock_t)temp;
  4337. p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
  4338. return p->prev_utime;
  4339. }
  4340. cputime_t task_stime(struct task_struct *p)
  4341. {
  4342. clock_t stime;
  4343. /*
  4344. * Use CFS's precise accounting. (we subtract utime from
  4345. * the total, to make sure the total observed by userspace
  4346. * grows monotonically - apps rely on that):
  4347. */
  4348. stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
  4349. cputime_to_clock_t(task_utime(p));
  4350. if (stime >= 0)
  4351. p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
  4352. return p->prev_stime;
  4353. }
  4354. #endif
  4355. inline cputime_t task_gtime(struct task_struct *p)
  4356. {
  4357. return p->gtime;
  4358. }
  4359. /*
  4360. * This function gets called by the timer code, with HZ frequency.
  4361. * We call it with interrupts disabled.
  4362. *
  4363. * It also gets called by the fork code, when changing the parent's
  4364. * timeslices.
  4365. */
  4366. void scheduler_tick(void)
  4367. {
  4368. int cpu = smp_processor_id();
  4369. struct rq *rq = cpu_rq(cpu);
  4370. struct task_struct *curr = rq->curr;
  4371. sched_clock_tick();
  4372. spin_lock(&rq->lock);
  4373. update_rq_clock(rq);
  4374. update_cpu_load(rq);
  4375. curr->sched_class->task_tick(rq, curr, 0);
  4376. spin_unlock(&rq->lock);
  4377. perf_counter_task_tick(curr, cpu);
  4378. #ifdef CONFIG_SMP
  4379. rq->idle_at_tick = idle_cpu(cpu);
  4380. trigger_load_balance(rq, cpu);
  4381. #endif
  4382. }
  4383. notrace unsigned long get_parent_ip(unsigned long addr)
  4384. {
  4385. if (in_lock_functions(addr)) {
  4386. addr = CALLER_ADDR2;
  4387. if (in_lock_functions(addr))
  4388. addr = CALLER_ADDR3;
  4389. }
  4390. return addr;
  4391. }
  4392. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  4393. defined(CONFIG_PREEMPT_TRACER))
  4394. void __kprobes add_preempt_count(int val)
  4395. {
  4396. #ifdef CONFIG_DEBUG_PREEMPT
  4397. /*
  4398. * Underflow?
  4399. */
  4400. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  4401. return;
  4402. #endif
  4403. preempt_count() += val;
  4404. #ifdef CONFIG_DEBUG_PREEMPT
  4405. /*
  4406. * Spinlock count overflowing soon?
  4407. */
  4408. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  4409. PREEMPT_MASK - 10);
  4410. #endif
  4411. if (preempt_count() == val)
  4412. trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4413. }
  4414. EXPORT_SYMBOL(add_preempt_count);
  4415. void __kprobes sub_preempt_count(int val)
  4416. {
  4417. #ifdef CONFIG_DEBUG_PREEMPT
  4418. /*
  4419. * Underflow?
  4420. */
  4421. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  4422. return;
  4423. /*
  4424. * Is the spinlock portion underflowing?
  4425. */
  4426. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  4427. !(preempt_count() & PREEMPT_MASK)))
  4428. return;
  4429. #endif
  4430. if (preempt_count() == val)
  4431. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  4432. preempt_count() -= val;
  4433. }
  4434. EXPORT_SYMBOL(sub_preempt_count);
  4435. #endif
  4436. /*
  4437. * Print scheduling while atomic bug:
  4438. */
  4439. static noinline void __schedule_bug(struct task_struct *prev)
  4440. {
  4441. struct pt_regs *regs = get_irq_regs();
  4442. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  4443. prev->comm, prev->pid, preempt_count());
  4444. debug_show_held_locks(prev);
  4445. print_modules();
  4446. if (irqs_disabled())
  4447. print_irqtrace_events(prev);
  4448. if (regs)
  4449. show_regs(regs);
  4450. else
  4451. dump_stack();
  4452. }
  4453. /*
  4454. * Various schedule()-time debugging checks and statistics:
  4455. */
  4456. static inline void schedule_debug(struct task_struct *prev)
  4457. {
  4458. /*
  4459. * Test if we are atomic. Since do_exit() needs to call into
  4460. * schedule() atomically, we ignore that path for now.
  4461. * Otherwise, whine if we are scheduling when we should not be.
  4462. */
  4463. if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
  4464. __schedule_bug(prev);
  4465. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  4466. schedstat_inc(this_rq(), sched_count);
  4467. #ifdef CONFIG_SCHEDSTATS
  4468. if (unlikely(prev->lock_depth >= 0)) {
  4469. schedstat_inc(this_rq(), bkl_count);
  4470. schedstat_inc(prev, sched_info.bkl_count);
  4471. }
  4472. #endif
  4473. }
  4474. static void put_prev_task(struct rq *rq, struct task_struct *prev)
  4475. {
  4476. if (prev->state == TASK_RUNNING) {
  4477. u64 runtime = prev->se.sum_exec_runtime;
  4478. runtime -= prev->se.prev_sum_exec_runtime;
  4479. runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
  4480. /*
  4481. * In order to avoid avg_overlap growing stale when we are
  4482. * indeed overlapping and hence not getting put to sleep, grow
  4483. * the avg_overlap on preemption.
  4484. *
  4485. * We use the average preemption runtime because that
  4486. * correlates to the amount of cache footprint a task can
  4487. * build up.
  4488. */
  4489. update_avg(&prev->se.avg_overlap, runtime);
  4490. }
  4491. prev->sched_class->put_prev_task(rq, prev);
  4492. }
  4493. /*
  4494. * Pick up the highest-prio task:
  4495. */
  4496. static inline struct task_struct *
  4497. pick_next_task(struct rq *rq)
  4498. {
  4499. const struct sched_class *class;
  4500. struct task_struct *p;
  4501. /*
  4502. * Optimization: we know that if all tasks are in
  4503. * the fair class we can call that function directly:
  4504. */
  4505. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  4506. p = fair_sched_class.pick_next_task(rq);
  4507. if (likely(p))
  4508. return p;
  4509. }
  4510. class = sched_class_highest;
  4511. for ( ; ; ) {
  4512. p = class->pick_next_task(rq);
  4513. if (p)
  4514. return p;
  4515. /*
  4516. * Will never be NULL as the idle class always
  4517. * returns a non-NULL p:
  4518. */
  4519. class = class->next;
  4520. }
  4521. }
  4522. /*
  4523. * schedule() is the main scheduler function.
  4524. */
  4525. asmlinkage void __sched schedule(void)
  4526. {
  4527. struct task_struct *prev, *next;
  4528. unsigned long *switch_count;
  4529. struct rq *rq;
  4530. int cpu;
  4531. need_resched:
  4532. preempt_disable();
  4533. cpu = smp_processor_id();
  4534. rq = cpu_rq(cpu);
  4535. rcu_qsctr_inc(cpu);
  4536. prev = rq->curr;
  4537. switch_count = &prev->nivcsw;
  4538. release_kernel_lock(prev);
  4539. need_resched_nonpreemptible:
  4540. schedule_debug(prev);
  4541. if (sched_feat(HRTICK))
  4542. hrtick_clear(rq);
  4543. spin_lock_irq(&rq->lock);
  4544. update_rq_clock(rq);
  4545. clear_tsk_need_resched(prev);
  4546. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  4547. if (unlikely(signal_pending_state(prev->state, prev)))
  4548. prev->state = TASK_RUNNING;
  4549. else
  4550. deactivate_task(rq, prev, 1);
  4551. switch_count = &prev->nvcsw;
  4552. }
  4553. #ifdef CONFIG_SMP
  4554. if (prev->sched_class->pre_schedule)
  4555. prev->sched_class->pre_schedule(rq, prev);
  4556. #endif
  4557. if (unlikely(!rq->nr_running))
  4558. idle_balance(cpu, rq);
  4559. put_prev_task(rq, prev);
  4560. next = pick_next_task(rq);
  4561. if (likely(prev != next)) {
  4562. sched_info_switch(prev, next);
  4563. perf_counter_task_sched_out(prev, next, cpu);
  4564. rq->nr_switches++;
  4565. rq->curr = next;
  4566. ++*switch_count;
  4567. context_switch(rq, prev, next); /* unlocks the rq */
  4568. /*
  4569. * the context switch might have flipped the stack from under
  4570. * us, hence refresh the local variables.
  4571. */
  4572. cpu = smp_processor_id();
  4573. rq = cpu_rq(cpu);
  4574. } else
  4575. spin_unlock_irq(&rq->lock);
  4576. if (unlikely(reacquire_kernel_lock(current) < 0))
  4577. goto need_resched_nonpreemptible;
  4578. preempt_enable_no_resched();
  4579. if (need_resched())
  4580. goto need_resched;
  4581. }
  4582. EXPORT_SYMBOL(schedule);
  4583. #ifdef CONFIG_SMP
  4584. /*
  4585. * Look out! "owner" is an entirely speculative pointer
  4586. * access and not reliable.
  4587. */
  4588. int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
  4589. {
  4590. unsigned int cpu;
  4591. struct rq *rq;
  4592. if (!sched_feat(OWNER_SPIN))
  4593. return 0;
  4594. #ifdef CONFIG_DEBUG_PAGEALLOC
  4595. /*
  4596. * Need to access the cpu field knowing that
  4597. * DEBUG_PAGEALLOC could have unmapped it if
  4598. * the mutex owner just released it and exited.
  4599. */
  4600. if (probe_kernel_address(&owner->cpu, cpu))
  4601. goto out;
  4602. #else
  4603. cpu = owner->cpu;
  4604. #endif
  4605. /*
  4606. * Even if the access succeeded (likely case),
  4607. * the cpu field may no longer be valid.
  4608. */
  4609. if (cpu >= nr_cpumask_bits)
  4610. goto out;
  4611. /*
  4612. * We need to validate that we can do a
  4613. * get_cpu() and that we have the percpu area.
  4614. */
  4615. if (!cpu_online(cpu))
  4616. goto out;
  4617. rq = cpu_rq(cpu);
  4618. for (;;) {
  4619. /*
  4620. * Owner changed, break to re-assess state.
  4621. */
  4622. if (lock->owner != owner)
  4623. break;
  4624. /*
  4625. * Is that owner really running on that cpu?
  4626. */
  4627. if (task_thread_info(rq->curr) != owner || need_resched())
  4628. return 0;
  4629. cpu_relax();
  4630. }
  4631. out:
  4632. return 1;
  4633. }
  4634. #endif
  4635. #ifdef CONFIG_PREEMPT
  4636. /*
  4637. * this is the entry point to schedule() from in-kernel preemption
  4638. * off of preempt_enable. Kernel preemptions off return from interrupt
  4639. * occur there and call schedule directly.
  4640. */
  4641. asmlinkage void __sched preempt_schedule(void)
  4642. {
  4643. struct thread_info *ti = current_thread_info();
  4644. /*
  4645. * If there is a non-zero preempt_count or interrupts are disabled,
  4646. * we do not want to preempt the current task. Just return..
  4647. */
  4648. if (likely(ti->preempt_count || irqs_disabled()))
  4649. return;
  4650. do {
  4651. add_preempt_count(PREEMPT_ACTIVE);
  4652. schedule();
  4653. sub_preempt_count(PREEMPT_ACTIVE);
  4654. /*
  4655. * Check again in case we missed a preemption opportunity
  4656. * between schedule and now.
  4657. */
  4658. barrier();
  4659. } while (need_resched());
  4660. }
  4661. EXPORT_SYMBOL(preempt_schedule);
  4662. /*
  4663. * this is the entry point to schedule() from kernel preemption
  4664. * off of irq context.
  4665. * Note, that this is called and return with irqs disabled. This will
  4666. * protect us against recursive calling from irq.
  4667. */
  4668. asmlinkage void __sched preempt_schedule_irq(void)
  4669. {
  4670. struct thread_info *ti = current_thread_info();
  4671. /* Catch callers which need to be fixed */
  4672. BUG_ON(ti->preempt_count || !irqs_disabled());
  4673. do {
  4674. add_preempt_count(PREEMPT_ACTIVE);
  4675. local_irq_enable();
  4676. schedule();
  4677. local_irq_disable();
  4678. sub_preempt_count(PREEMPT_ACTIVE);
  4679. /*
  4680. * Check again in case we missed a preemption opportunity
  4681. * between schedule and now.
  4682. */
  4683. barrier();
  4684. } while (need_resched());
  4685. }
  4686. #endif /* CONFIG_PREEMPT */
  4687. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  4688. void *key)
  4689. {
  4690. return try_to_wake_up(curr->private, mode, sync);
  4691. }
  4692. EXPORT_SYMBOL(default_wake_function);
  4693. /*
  4694. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  4695. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  4696. * number) then we wake all the non-exclusive tasks and one exclusive task.
  4697. *
  4698. * There are circumstances in which we can try to wake a task which has already
  4699. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  4700. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  4701. */
  4702. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  4703. int nr_exclusive, int sync, void *key)
  4704. {
  4705. wait_queue_t *curr, *next;
  4706. list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
  4707. unsigned flags = curr->flags;
  4708. if (curr->func(curr, mode, sync, key) &&
  4709. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  4710. break;
  4711. }
  4712. }
  4713. /**
  4714. * __wake_up - wake up threads blocked on a waitqueue.
  4715. * @q: the waitqueue
  4716. * @mode: which threads
  4717. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4718. * @key: is directly passed to the wakeup function
  4719. *
  4720. * It may be assumed that this function implies a write memory barrier before
  4721. * changing the task state if and only if any tasks are woken up.
  4722. */
  4723. void __wake_up(wait_queue_head_t *q, unsigned int mode,
  4724. int nr_exclusive, void *key)
  4725. {
  4726. unsigned long flags;
  4727. spin_lock_irqsave(&q->lock, flags);
  4728. __wake_up_common(q, mode, nr_exclusive, 0, key);
  4729. spin_unlock_irqrestore(&q->lock, flags);
  4730. }
  4731. EXPORT_SYMBOL(__wake_up);
  4732. /*
  4733. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  4734. */
  4735. void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  4736. {
  4737. __wake_up_common(q, mode, 1, 0, NULL);
  4738. }
  4739. void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
  4740. {
  4741. __wake_up_common(q, mode, 1, 0, key);
  4742. }
  4743. /**
  4744. * __wake_up_sync_key - wake up threads blocked on a waitqueue.
  4745. * @q: the waitqueue
  4746. * @mode: which threads
  4747. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  4748. * @key: opaque value to be passed to wakeup targets
  4749. *
  4750. * The sync wakeup differs that the waker knows that it will schedule
  4751. * away soon, so while the target thread will be woken up, it will not
  4752. * be migrated to another CPU - ie. the two threads are 'synchronized'
  4753. * with each other. This can prevent needless bouncing between CPUs.
  4754. *
  4755. * On UP it can prevent extra preemption.
  4756. *
  4757. * It may be assumed that this function implies a write memory barrier before
  4758. * changing the task state if and only if any tasks are woken up.
  4759. */
  4760. void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
  4761. int nr_exclusive, void *key)
  4762. {
  4763. unsigned long flags;
  4764. int sync = 1;
  4765. if (unlikely(!q))
  4766. return;
  4767. if (unlikely(!nr_exclusive))
  4768. sync = 0;
  4769. spin_lock_irqsave(&q->lock, flags);
  4770. __wake_up_common(q, mode, nr_exclusive, sync, key);
  4771. spin_unlock_irqrestore(&q->lock, flags);
  4772. }
  4773. EXPORT_SYMBOL_GPL(__wake_up_sync_key);
  4774. /*
  4775. * __wake_up_sync - see __wake_up_sync_key()
  4776. */
  4777. void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  4778. {
  4779. __wake_up_sync_key(q, mode, nr_exclusive, NULL);
  4780. }
  4781. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  4782. /**
  4783. * complete: - signals a single thread waiting on this completion
  4784. * @x: holds the state of this particular completion
  4785. *
  4786. * This will wake up a single thread waiting on this completion. Threads will be
  4787. * awakened in the same order in which they were queued.
  4788. *
  4789. * See also complete_all(), wait_for_completion() and related routines.
  4790. *
  4791. * It may be assumed that this function implies a write memory barrier before
  4792. * changing the task state if and only if any tasks are woken up.
  4793. */
  4794. void complete(struct completion *x)
  4795. {
  4796. unsigned long flags;
  4797. spin_lock_irqsave(&x->wait.lock, flags);
  4798. x->done++;
  4799. __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
  4800. spin_unlock_irqrestore(&x->wait.lock, flags);
  4801. }
  4802. EXPORT_SYMBOL(complete);
  4803. /**
  4804. * complete_all: - signals all threads waiting on this completion
  4805. * @x: holds the state of this particular completion
  4806. *
  4807. * This will wake up all threads waiting on this particular completion event.
  4808. *
  4809. * It may be assumed that this function implies a write memory barrier before
  4810. * changing the task state if and only if any tasks are woken up.
  4811. */
  4812. void complete_all(struct completion *x)
  4813. {
  4814. unsigned long flags;
  4815. spin_lock_irqsave(&x->wait.lock, flags);
  4816. x->done += UINT_MAX/2;
  4817. __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
  4818. spin_unlock_irqrestore(&x->wait.lock, flags);
  4819. }
  4820. EXPORT_SYMBOL(complete_all);
  4821. static inline long __sched
  4822. do_wait_for_common(struct completion *x, long timeout, int state)
  4823. {
  4824. if (!x->done) {
  4825. DECLARE_WAITQUEUE(wait, current);
  4826. wait.flags |= WQ_FLAG_EXCLUSIVE;
  4827. __add_wait_queue_tail(&x->wait, &wait);
  4828. do {
  4829. if (signal_pending_state(state, current)) {
  4830. timeout = -ERESTARTSYS;
  4831. break;
  4832. }
  4833. __set_current_state(state);
  4834. spin_unlock_irq(&x->wait.lock);
  4835. timeout = schedule_timeout(timeout);
  4836. spin_lock_irq(&x->wait.lock);
  4837. } while (!x->done && timeout);
  4838. __remove_wait_queue(&x->wait, &wait);
  4839. if (!x->done)
  4840. return timeout;
  4841. }
  4842. x->done--;
  4843. return timeout ?: 1;
  4844. }
  4845. static long __sched
  4846. wait_for_common(struct completion *x, long timeout, int state)
  4847. {
  4848. might_sleep();
  4849. spin_lock_irq(&x->wait.lock);
  4850. timeout = do_wait_for_common(x, timeout, state);
  4851. spin_unlock_irq(&x->wait.lock);
  4852. return timeout;
  4853. }
  4854. /**
  4855. * wait_for_completion: - waits for completion of a task
  4856. * @x: holds the state of this particular completion
  4857. *
  4858. * This waits to be signaled for completion of a specific task. It is NOT
  4859. * interruptible and there is no timeout.
  4860. *
  4861. * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
  4862. * and interrupt capability. Also see complete().
  4863. */
  4864. void __sched wait_for_completion(struct completion *x)
  4865. {
  4866. wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
  4867. }
  4868. EXPORT_SYMBOL(wait_for_completion);
  4869. /**
  4870. * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
  4871. * @x: holds the state of this particular completion
  4872. * @timeout: timeout value in jiffies
  4873. *
  4874. * This waits for either a completion of a specific task to be signaled or for a
  4875. * specified timeout to expire. The timeout is in jiffies. It is not
  4876. * interruptible.
  4877. */
  4878. unsigned long __sched
  4879. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  4880. {
  4881. return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
  4882. }
  4883. EXPORT_SYMBOL(wait_for_completion_timeout);
  4884. /**
  4885. * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
  4886. * @x: holds the state of this particular completion
  4887. *
  4888. * This waits for completion of a specific task to be signaled. It is
  4889. * interruptible.
  4890. */
  4891. int __sched wait_for_completion_interruptible(struct completion *x)
  4892. {
  4893. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
  4894. if (t == -ERESTARTSYS)
  4895. return t;
  4896. return 0;
  4897. }
  4898. EXPORT_SYMBOL(wait_for_completion_interruptible);
  4899. /**
  4900. * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
  4901. * @x: holds the state of this particular completion
  4902. * @timeout: timeout value in jiffies
  4903. *
  4904. * This waits for either a completion of a specific task to be signaled or for a
  4905. * specified timeout to expire. It is interruptible. The timeout is in jiffies.
  4906. */
  4907. unsigned long __sched
  4908. wait_for_completion_interruptible_timeout(struct completion *x,
  4909. unsigned long timeout)
  4910. {
  4911. return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
  4912. }
  4913. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  4914. /**
  4915. * wait_for_completion_killable: - waits for completion of a task (killable)
  4916. * @x: holds the state of this particular completion
  4917. *
  4918. * This waits to be signaled for completion of a specific task. It can be
  4919. * interrupted by a kill signal.
  4920. */
  4921. int __sched wait_for_completion_killable(struct completion *x)
  4922. {
  4923. long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
  4924. if (t == -ERESTARTSYS)
  4925. return t;
  4926. return 0;
  4927. }
  4928. EXPORT_SYMBOL(wait_for_completion_killable);
  4929. /**
  4930. * try_wait_for_completion - try to decrement a completion without blocking
  4931. * @x: completion structure
  4932. *
  4933. * Returns: 0 if a decrement cannot be done without blocking
  4934. * 1 if a decrement succeeded.
  4935. *
  4936. * If a completion is being used as a counting completion,
  4937. * attempt to decrement the counter without blocking. This
  4938. * enables us to avoid waiting if the resource the completion
  4939. * is protecting is not available.
  4940. */
  4941. bool try_wait_for_completion(struct completion *x)
  4942. {
  4943. int ret = 1;
  4944. spin_lock_irq(&x->wait.lock);
  4945. if (!x->done)
  4946. ret = 0;
  4947. else
  4948. x->done--;
  4949. spin_unlock_irq(&x->wait.lock);
  4950. return ret;
  4951. }
  4952. EXPORT_SYMBOL(try_wait_for_completion);
  4953. /**
  4954. * completion_done - Test to see if a completion has any waiters
  4955. * @x: completion structure
  4956. *
  4957. * Returns: 0 if there are waiters (wait_for_completion() in progress)
  4958. * 1 if there are no waiters.
  4959. *
  4960. */
  4961. bool completion_done(struct completion *x)
  4962. {
  4963. int ret = 1;
  4964. spin_lock_irq(&x->wait.lock);
  4965. if (!x->done)
  4966. ret = 0;
  4967. spin_unlock_irq(&x->wait.lock);
  4968. return ret;
  4969. }
  4970. EXPORT_SYMBOL(completion_done);
  4971. static long __sched
  4972. sleep_on_common(wait_queue_head_t *q, int state, long timeout)
  4973. {
  4974. unsigned long flags;
  4975. wait_queue_t wait;
  4976. init_waitqueue_entry(&wait, current);
  4977. __set_current_state(state);
  4978. spin_lock_irqsave(&q->lock, flags);
  4979. __add_wait_queue(q, &wait);
  4980. spin_unlock(&q->lock);
  4981. timeout = schedule_timeout(timeout);
  4982. spin_lock_irq(&q->lock);
  4983. __remove_wait_queue(q, &wait);
  4984. spin_unlock_irqrestore(&q->lock, flags);
  4985. return timeout;
  4986. }
  4987. void __sched interruptible_sleep_on(wait_queue_head_t *q)
  4988. {
  4989. sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  4990. }
  4991. EXPORT_SYMBOL(interruptible_sleep_on);
  4992. long __sched
  4993. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  4994. {
  4995. return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
  4996. }
  4997. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  4998. void __sched sleep_on(wait_queue_head_t *q)
  4999. {
  5000. sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
  5001. }
  5002. EXPORT_SYMBOL(sleep_on);
  5003. long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  5004. {
  5005. return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
  5006. }
  5007. EXPORT_SYMBOL(sleep_on_timeout);
  5008. #ifdef CONFIG_RT_MUTEXES
  5009. /*
  5010. * rt_mutex_setprio - set the current priority of a task
  5011. * @p: task
  5012. * @prio: prio value (kernel-internal form)
  5013. *
  5014. * This function changes the 'effective' priority of a task. It does
  5015. * not touch ->normal_prio like __setscheduler().
  5016. *
  5017. * Used by the rt_mutex code to implement priority inheritance logic.
  5018. */
  5019. void rt_mutex_setprio(struct task_struct *p, int prio)
  5020. {
  5021. unsigned long flags;
  5022. int oldprio, on_rq, running;
  5023. struct rq *rq;
  5024. const struct sched_class *prev_class = p->sched_class;
  5025. BUG_ON(prio < 0 || prio > MAX_PRIO);
  5026. rq = task_rq_lock(p, &flags);
  5027. update_rq_clock(rq);
  5028. oldprio = p->prio;
  5029. on_rq = p->se.on_rq;
  5030. running = task_current(rq, p);
  5031. if (on_rq)
  5032. dequeue_task(rq, p, 0);
  5033. if (running)
  5034. p->sched_class->put_prev_task(rq, p);
  5035. if (rt_prio(prio))
  5036. p->sched_class = &rt_sched_class;
  5037. else
  5038. p->sched_class = &fair_sched_class;
  5039. p->prio = prio;
  5040. if (running)
  5041. p->sched_class->set_curr_task(rq);
  5042. if (on_rq) {
  5043. enqueue_task(rq, p, 0);
  5044. check_class_changed(rq, p, prev_class, oldprio, running);
  5045. }
  5046. task_rq_unlock(rq, &flags);
  5047. }
  5048. #endif
  5049. void set_user_nice(struct task_struct *p, long nice)
  5050. {
  5051. int old_prio, delta, on_rq;
  5052. unsigned long flags;
  5053. struct rq *rq;
  5054. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  5055. return;
  5056. /*
  5057. * We have to be careful, if called from sys_setpriority(),
  5058. * the task might be in the middle of scheduling on another CPU.
  5059. */
  5060. rq = task_rq_lock(p, &flags);
  5061. update_rq_clock(rq);
  5062. /*
  5063. * The RT priorities are set via sched_setscheduler(), but we still
  5064. * allow the 'normal' nice value to be set - but as expected
  5065. * it wont have any effect on scheduling until the task is
  5066. * SCHED_FIFO/SCHED_RR:
  5067. */
  5068. if (task_has_rt_policy(p)) {
  5069. p->static_prio = NICE_TO_PRIO(nice);
  5070. goto out_unlock;
  5071. }
  5072. on_rq = p->se.on_rq;
  5073. if (on_rq)
  5074. dequeue_task(rq, p, 0);
  5075. p->static_prio = NICE_TO_PRIO(nice);
  5076. set_load_weight(p);
  5077. old_prio = p->prio;
  5078. p->prio = effective_prio(p);
  5079. delta = p->prio - old_prio;
  5080. if (on_rq) {
  5081. enqueue_task(rq, p, 0);
  5082. /*
  5083. * If the task increased its priority or is running and
  5084. * lowered its priority, then reschedule its CPU:
  5085. */
  5086. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  5087. resched_task(rq->curr);
  5088. }
  5089. out_unlock:
  5090. task_rq_unlock(rq, &flags);
  5091. }
  5092. EXPORT_SYMBOL(set_user_nice);
  5093. /*
  5094. * can_nice - check if a task can reduce its nice value
  5095. * @p: task
  5096. * @nice: nice value
  5097. */
  5098. int can_nice(const struct task_struct *p, const int nice)
  5099. {
  5100. /* convert nice value [19,-20] to rlimit style value [1,40] */
  5101. int nice_rlim = 20 - nice;
  5102. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  5103. capable(CAP_SYS_NICE));
  5104. }
  5105. #ifdef __ARCH_WANT_SYS_NICE
  5106. /*
  5107. * sys_nice - change the priority of the current process.
  5108. * @increment: priority increment
  5109. *
  5110. * sys_setpriority is a more generic, but much slower function that
  5111. * does similar things.
  5112. */
  5113. SYSCALL_DEFINE1(nice, int, increment)
  5114. {
  5115. long nice, retval;
  5116. /*
  5117. * Setpriority might change our priority at the same moment.
  5118. * We don't have to worry. Conceptually one call occurs first
  5119. * and we have a single winner.
  5120. */
  5121. if (increment < -40)
  5122. increment = -40;
  5123. if (increment > 40)
  5124. increment = 40;
  5125. nice = TASK_NICE(current) + increment;
  5126. if (nice < -20)
  5127. nice = -20;
  5128. if (nice > 19)
  5129. nice = 19;
  5130. if (increment < 0 && !can_nice(current, nice))
  5131. return -EPERM;
  5132. retval = security_task_setnice(current, nice);
  5133. if (retval)
  5134. return retval;
  5135. set_user_nice(current, nice);
  5136. return 0;
  5137. }
  5138. #endif
  5139. /**
  5140. * task_prio - return the priority value of a given task.
  5141. * @p: the task in question.
  5142. *
  5143. * This is the priority value as seen by users in /proc.
  5144. * RT tasks are offset by -200. Normal tasks are centered
  5145. * around 0, value goes from -16 to +15.
  5146. */
  5147. int task_prio(const struct task_struct *p)
  5148. {
  5149. return p->prio - MAX_RT_PRIO;
  5150. }
  5151. /**
  5152. * task_nice - return the nice value of a given task.
  5153. * @p: the task in question.
  5154. */
  5155. int task_nice(const struct task_struct *p)
  5156. {
  5157. return TASK_NICE(p);
  5158. }
  5159. EXPORT_SYMBOL(task_nice);
  5160. /**
  5161. * idle_cpu - is a given cpu idle currently?
  5162. * @cpu: the processor in question.
  5163. */
  5164. int idle_cpu(int cpu)
  5165. {
  5166. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  5167. }
  5168. /**
  5169. * idle_task - return the idle task for a given cpu.
  5170. * @cpu: the processor in question.
  5171. */
  5172. struct task_struct *idle_task(int cpu)
  5173. {
  5174. return cpu_rq(cpu)->idle;
  5175. }
  5176. /**
  5177. * find_process_by_pid - find a process with a matching PID value.
  5178. * @pid: the pid in question.
  5179. */
  5180. static struct task_struct *find_process_by_pid(pid_t pid)
  5181. {
  5182. return pid ? find_task_by_vpid(pid) : current;
  5183. }
  5184. /* Actually do priority change: must hold rq lock. */
  5185. static void
  5186. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  5187. {
  5188. BUG_ON(p->se.on_rq);
  5189. p->policy = policy;
  5190. switch (p->policy) {
  5191. case SCHED_NORMAL:
  5192. case SCHED_BATCH:
  5193. case SCHED_IDLE:
  5194. p->sched_class = &fair_sched_class;
  5195. break;
  5196. case SCHED_FIFO:
  5197. case SCHED_RR:
  5198. p->sched_class = &rt_sched_class;
  5199. break;
  5200. }
  5201. p->rt_priority = prio;
  5202. p->normal_prio = normal_prio(p);
  5203. /* we are holding p->pi_lock already */
  5204. p->prio = rt_mutex_getprio(p);
  5205. set_load_weight(p);
  5206. }
  5207. /*
  5208. * check the target process has a UID that matches the current process's
  5209. */
  5210. static bool check_same_owner(struct task_struct *p)
  5211. {
  5212. const struct cred *cred = current_cred(), *pcred;
  5213. bool match;
  5214. rcu_read_lock();
  5215. pcred = __task_cred(p);
  5216. match = (cred->euid == pcred->euid ||
  5217. cred->euid == pcred->uid);
  5218. rcu_read_unlock();
  5219. return match;
  5220. }
  5221. static int __sched_setscheduler(struct task_struct *p, int policy,
  5222. struct sched_param *param, bool user)
  5223. {
  5224. int retval, oldprio, oldpolicy = -1, on_rq, running;
  5225. unsigned long flags;
  5226. const struct sched_class *prev_class = p->sched_class;
  5227. struct rq *rq;
  5228. int reset_on_fork;
  5229. /* may grab non-irq protected spin_locks */
  5230. BUG_ON(in_interrupt());
  5231. recheck:
  5232. /* double check policy once rq lock held */
  5233. if (policy < 0) {
  5234. reset_on_fork = p->sched_reset_on_fork;
  5235. policy = oldpolicy = p->policy;
  5236. } else {
  5237. reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
  5238. policy &= ~SCHED_RESET_ON_FORK;
  5239. if (policy != SCHED_FIFO && policy != SCHED_RR &&
  5240. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  5241. policy != SCHED_IDLE)
  5242. return -EINVAL;
  5243. }
  5244. /*
  5245. * Valid priorities for SCHED_FIFO and SCHED_RR are
  5246. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  5247. * SCHED_BATCH and SCHED_IDLE is 0.
  5248. */
  5249. if (param->sched_priority < 0 ||
  5250. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  5251. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  5252. return -EINVAL;
  5253. if (rt_policy(policy) != (param->sched_priority != 0))
  5254. return -EINVAL;
  5255. /*
  5256. * Allow unprivileged RT tasks to decrease priority:
  5257. */
  5258. if (user && !capable(CAP_SYS_NICE)) {
  5259. if (rt_policy(policy)) {
  5260. unsigned long rlim_rtprio;
  5261. if (!lock_task_sighand(p, &flags))
  5262. return -ESRCH;
  5263. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  5264. unlock_task_sighand(p, &flags);
  5265. /* can't set/change the rt policy */
  5266. if (policy != p->policy && !rlim_rtprio)
  5267. return -EPERM;
  5268. /* can't increase priority */
  5269. if (param->sched_priority > p->rt_priority &&
  5270. param->sched_priority > rlim_rtprio)
  5271. return -EPERM;
  5272. }
  5273. /*
  5274. * Like positive nice levels, dont allow tasks to
  5275. * move out of SCHED_IDLE either:
  5276. */
  5277. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  5278. return -EPERM;
  5279. /* can't change other user's priorities */
  5280. if (!check_same_owner(p))
  5281. return -EPERM;
  5282. /* Normal users shall not reset the sched_reset_on_fork flag */
  5283. if (p->sched_reset_on_fork && !reset_on_fork)
  5284. return -EPERM;
  5285. }
  5286. if (user) {
  5287. #ifdef CONFIG_RT_GROUP_SCHED
  5288. /*
  5289. * Do not allow realtime tasks into groups that have no runtime
  5290. * assigned.
  5291. */
  5292. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  5293. task_group(p)->rt_bandwidth.rt_runtime == 0)
  5294. return -EPERM;
  5295. #endif
  5296. retval = security_task_setscheduler(p, policy, param);
  5297. if (retval)
  5298. return retval;
  5299. }
  5300. /*
  5301. * make sure no PI-waiters arrive (or leave) while we are
  5302. * changing the priority of the task:
  5303. */
  5304. spin_lock_irqsave(&p->pi_lock, flags);
  5305. /*
  5306. * To be able to change p->policy safely, the apropriate
  5307. * runqueue lock must be held.
  5308. */
  5309. rq = __task_rq_lock(p);
  5310. /* recheck policy now with rq lock held */
  5311. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  5312. policy = oldpolicy = -1;
  5313. __task_rq_unlock(rq);
  5314. spin_unlock_irqrestore(&p->pi_lock, flags);
  5315. goto recheck;
  5316. }
  5317. update_rq_clock(rq);
  5318. on_rq = p->se.on_rq;
  5319. running = task_current(rq, p);
  5320. if (on_rq)
  5321. deactivate_task(rq, p, 0);
  5322. if (running)
  5323. p->sched_class->put_prev_task(rq, p);
  5324. p->sched_reset_on_fork = reset_on_fork;
  5325. oldprio = p->prio;
  5326. __setscheduler(rq, p, policy, param->sched_priority);
  5327. if (running)
  5328. p->sched_class->set_curr_task(rq);
  5329. if (on_rq) {
  5330. activate_task(rq, p, 0);
  5331. check_class_changed(rq, p, prev_class, oldprio, running);
  5332. }
  5333. __task_rq_unlock(rq);
  5334. spin_unlock_irqrestore(&p->pi_lock, flags);
  5335. rt_mutex_adjust_pi(p);
  5336. return 0;
  5337. }
  5338. /**
  5339. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  5340. * @p: the task in question.
  5341. * @policy: new policy.
  5342. * @param: structure containing the new RT priority.
  5343. *
  5344. * NOTE that the task may be already dead.
  5345. */
  5346. int sched_setscheduler(struct task_struct *p, int policy,
  5347. struct sched_param *param)
  5348. {
  5349. return __sched_setscheduler(p, policy, param, true);
  5350. }
  5351. EXPORT_SYMBOL_GPL(sched_setscheduler);
  5352. /**
  5353. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  5354. * @p: the task in question.
  5355. * @policy: new policy.
  5356. * @param: structure containing the new RT priority.
  5357. *
  5358. * Just like sched_setscheduler, only don't bother checking if the
  5359. * current context has permission. For example, this is needed in
  5360. * stop_machine(): we create temporary high priority worker threads,
  5361. * but our caller might not have that capability.
  5362. */
  5363. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  5364. struct sched_param *param)
  5365. {
  5366. return __sched_setscheduler(p, policy, param, false);
  5367. }
  5368. static int
  5369. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  5370. {
  5371. struct sched_param lparam;
  5372. struct task_struct *p;
  5373. int retval;
  5374. if (!param || pid < 0)
  5375. return -EINVAL;
  5376. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  5377. return -EFAULT;
  5378. rcu_read_lock();
  5379. retval = -ESRCH;
  5380. p = find_process_by_pid(pid);
  5381. if (p != NULL)
  5382. retval = sched_setscheduler(p, policy, &lparam);
  5383. rcu_read_unlock();
  5384. return retval;
  5385. }
  5386. /**
  5387. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  5388. * @pid: the pid in question.
  5389. * @policy: new policy.
  5390. * @param: structure containing the new RT priority.
  5391. */
  5392. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  5393. struct sched_param __user *, param)
  5394. {
  5395. /* negative values for policy are not valid */
  5396. if (policy < 0)
  5397. return -EINVAL;
  5398. return do_sched_setscheduler(pid, policy, param);
  5399. }
  5400. /**
  5401. * sys_sched_setparam - set/change the RT priority of a thread
  5402. * @pid: the pid in question.
  5403. * @param: structure containing the new RT priority.
  5404. */
  5405. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  5406. {
  5407. return do_sched_setscheduler(pid, -1, param);
  5408. }
  5409. /**
  5410. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  5411. * @pid: the pid in question.
  5412. */
  5413. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  5414. {
  5415. struct task_struct *p;
  5416. int retval;
  5417. if (pid < 0)
  5418. return -EINVAL;
  5419. retval = -ESRCH;
  5420. read_lock(&tasklist_lock);
  5421. p = find_process_by_pid(pid);
  5422. if (p) {
  5423. retval = security_task_getscheduler(p);
  5424. if (!retval)
  5425. retval = p->policy
  5426. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  5427. }
  5428. read_unlock(&tasklist_lock);
  5429. return retval;
  5430. }
  5431. /**
  5432. * sys_sched_getparam - get the RT priority of a thread
  5433. * @pid: the pid in question.
  5434. * @param: structure containing the RT priority.
  5435. */
  5436. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  5437. {
  5438. struct sched_param lp;
  5439. struct task_struct *p;
  5440. int retval;
  5441. if (!param || pid < 0)
  5442. return -EINVAL;
  5443. read_lock(&tasklist_lock);
  5444. p = find_process_by_pid(pid);
  5445. retval = -ESRCH;
  5446. if (!p)
  5447. goto out_unlock;
  5448. retval = security_task_getscheduler(p);
  5449. if (retval)
  5450. goto out_unlock;
  5451. lp.sched_priority = p->rt_priority;
  5452. read_unlock(&tasklist_lock);
  5453. /*
  5454. * This one might sleep, we cannot do it with a spinlock held ...
  5455. */
  5456. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  5457. return retval;
  5458. out_unlock:
  5459. read_unlock(&tasklist_lock);
  5460. return retval;
  5461. }
  5462. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  5463. {
  5464. cpumask_var_t cpus_allowed, new_mask;
  5465. struct task_struct *p;
  5466. int retval;
  5467. get_online_cpus();
  5468. read_lock(&tasklist_lock);
  5469. p = find_process_by_pid(pid);
  5470. if (!p) {
  5471. read_unlock(&tasklist_lock);
  5472. put_online_cpus();
  5473. return -ESRCH;
  5474. }
  5475. /*
  5476. * It is not safe to call set_cpus_allowed with the
  5477. * tasklist_lock held. We will bump the task_struct's
  5478. * usage count and then drop tasklist_lock.
  5479. */
  5480. get_task_struct(p);
  5481. read_unlock(&tasklist_lock);
  5482. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  5483. retval = -ENOMEM;
  5484. goto out_put_task;
  5485. }
  5486. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  5487. retval = -ENOMEM;
  5488. goto out_free_cpus_allowed;
  5489. }
  5490. retval = -EPERM;
  5491. if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
  5492. goto out_unlock;
  5493. retval = security_task_setscheduler(p, 0, NULL);
  5494. if (retval)
  5495. goto out_unlock;
  5496. cpuset_cpus_allowed(p, cpus_allowed);
  5497. cpumask_and(new_mask, in_mask, cpus_allowed);
  5498. again:
  5499. retval = set_cpus_allowed_ptr(p, new_mask);
  5500. if (!retval) {
  5501. cpuset_cpus_allowed(p, cpus_allowed);
  5502. if (!cpumask_subset(new_mask, cpus_allowed)) {
  5503. /*
  5504. * We must have raced with a concurrent cpuset
  5505. * update. Just reset the cpus_allowed to the
  5506. * cpuset's cpus_allowed
  5507. */
  5508. cpumask_copy(new_mask, cpus_allowed);
  5509. goto again;
  5510. }
  5511. }
  5512. out_unlock:
  5513. free_cpumask_var(new_mask);
  5514. out_free_cpus_allowed:
  5515. free_cpumask_var(cpus_allowed);
  5516. out_put_task:
  5517. put_task_struct(p);
  5518. put_online_cpus();
  5519. return retval;
  5520. }
  5521. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  5522. struct cpumask *new_mask)
  5523. {
  5524. if (len < cpumask_size())
  5525. cpumask_clear(new_mask);
  5526. else if (len > cpumask_size())
  5527. len = cpumask_size();
  5528. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  5529. }
  5530. /**
  5531. * sys_sched_setaffinity - set the cpu affinity of a process
  5532. * @pid: pid of the process
  5533. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5534. * @user_mask_ptr: user-space pointer to the new cpu mask
  5535. */
  5536. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  5537. unsigned long __user *, user_mask_ptr)
  5538. {
  5539. cpumask_var_t new_mask;
  5540. int retval;
  5541. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  5542. return -ENOMEM;
  5543. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  5544. if (retval == 0)
  5545. retval = sched_setaffinity(pid, new_mask);
  5546. free_cpumask_var(new_mask);
  5547. return retval;
  5548. }
  5549. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  5550. {
  5551. struct task_struct *p;
  5552. int retval;
  5553. get_online_cpus();
  5554. read_lock(&tasklist_lock);
  5555. retval = -ESRCH;
  5556. p = find_process_by_pid(pid);
  5557. if (!p)
  5558. goto out_unlock;
  5559. retval = security_task_getscheduler(p);
  5560. if (retval)
  5561. goto out_unlock;
  5562. cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
  5563. out_unlock:
  5564. read_unlock(&tasklist_lock);
  5565. put_online_cpus();
  5566. return retval;
  5567. }
  5568. /**
  5569. * sys_sched_getaffinity - get the cpu affinity of a process
  5570. * @pid: pid of the process
  5571. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  5572. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  5573. */
  5574. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  5575. unsigned long __user *, user_mask_ptr)
  5576. {
  5577. int ret;
  5578. cpumask_var_t mask;
  5579. if (len < cpumask_size())
  5580. return -EINVAL;
  5581. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  5582. return -ENOMEM;
  5583. ret = sched_getaffinity(pid, mask);
  5584. if (ret == 0) {
  5585. if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
  5586. ret = -EFAULT;
  5587. else
  5588. ret = cpumask_size();
  5589. }
  5590. free_cpumask_var(mask);
  5591. return ret;
  5592. }
  5593. /**
  5594. * sys_sched_yield - yield the current processor to other threads.
  5595. *
  5596. * This function yields the current CPU to other tasks. If there are no
  5597. * other threads running on this CPU then this function will return.
  5598. */
  5599. SYSCALL_DEFINE0(sched_yield)
  5600. {
  5601. struct rq *rq = this_rq_lock();
  5602. schedstat_inc(rq, yld_count);
  5603. current->sched_class->yield_task(rq);
  5604. /*
  5605. * Since we are going to call schedule() anyway, there's
  5606. * no need to preempt or enable interrupts:
  5607. */
  5608. __release(rq->lock);
  5609. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  5610. _raw_spin_unlock(&rq->lock);
  5611. preempt_enable_no_resched();
  5612. schedule();
  5613. return 0;
  5614. }
  5615. static void __cond_resched(void)
  5616. {
  5617. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5618. __might_sleep(__FILE__, __LINE__);
  5619. #endif
  5620. /*
  5621. * The BKS might be reacquired before we have dropped
  5622. * PREEMPT_ACTIVE, which could trigger a second
  5623. * cond_resched() call.
  5624. */
  5625. do {
  5626. add_preempt_count(PREEMPT_ACTIVE);
  5627. schedule();
  5628. sub_preempt_count(PREEMPT_ACTIVE);
  5629. } while (need_resched());
  5630. }
  5631. int __sched _cond_resched(void)
  5632. {
  5633. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  5634. system_state == SYSTEM_RUNNING) {
  5635. __cond_resched();
  5636. return 1;
  5637. }
  5638. return 0;
  5639. }
  5640. EXPORT_SYMBOL(_cond_resched);
  5641. /*
  5642. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  5643. * call schedule, and on return reacquire the lock.
  5644. *
  5645. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  5646. * operations here to prevent schedule() from being called twice (once via
  5647. * spin_unlock(), once by hand).
  5648. */
  5649. int cond_resched_lock(spinlock_t *lock)
  5650. {
  5651. int resched = need_resched() && system_state == SYSTEM_RUNNING;
  5652. int ret = 0;
  5653. if (spin_needbreak(lock) || resched) {
  5654. spin_unlock(lock);
  5655. if (resched && need_resched())
  5656. __cond_resched();
  5657. else
  5658. cpu_relax();
  5659. ret = 1;
  5660. spin_lock(lock);
  5661. }
  5662. return ret;
  5663. }
  5664. EXPORT_SYMBOL(cond_resched_lock);
  5665. int __sched cond_resched_softirq(void)
  5666. {
  5667. BUG_ON(!in_softirq());
  5668. if (need_resched() && system_state == SYSTEM_RUNNING) {
  5669. local_bh_enable();
  5670. __cond_resched();
  5671. local_bh_disable();
  5672. return 1;
  5673. }
  5674. return 0;
  5675. }
  5676. EXPORT_SYMBOL(cond_resched_softirq);
  5677. /**
  5678. * yield - yield the current processor to other threads.
  5679. *
  5680. * This is a shortcut for kernel-space yielding - it marks the
  5681. * thread runnable and calls sys_sched_yield().
  5682. */
  5683. void __sched yield(void)
  5684. {
  5685. set_current_state(TASK_RUNNING);
  5686. sys_sched_yield();
  5687. }
  5688. EXPORT_SYMBOL(yield);
  5689. /*
  5690. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  5691. * that process accounting knows that this is a task in IO wait state.
  5692. *
  5693. * But don't do that if it is a deliberate, throttling IO wait (this task
  5694. * has set its backing_dev_info: the queue against which it should throttle)
  5695. */
  5696. void __sched io_schedule(void)
  5697. {
  5698. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5699. delayacct_blkio_start();
  5700. atomic_inc(&rq->nr_iowait);
  5701. schedule();
  5702. atomic_dec(&rq->nr_iowait);
  5703. delayacct_blkio_end();
  5704. }
  5705. EXPORT_SYMBOL(io_schedule);
  5706. long __sched io_schedule_timeout(long timeout)
  5707. {
  5708. struct rq *rq = &__raw_get_cpu_var(runqueues);
  5709. long ret;
  5710. delayacct_blkio_start();
  5711. atomic_inc(&rq->nr_iowait);
  5712. ret = schedule_timeout(timeout);
  5713. atomic_dec(&rq->nr_iowait);
  5714. delayacct_blkio_end();
  5715. return ret;
  5716. }
  5717. /**
  5718. * sys_sched_get_priority_max - return maximum RT priority.
  5719. * @policy: scheduling class.
  5720. *
  5721. * this syscall returns the maximum rt_priority that can be used
  5722. * by a given scheduling class.
  5723. */
  5724. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  5725. {
  5726. int ret = -EINVAL;
  5727. switch (policy) {
  5728. case SCHED_FIFO:
  5729. case SCHED_RR:
  5730. ret = MAX_USER_RT_PRIO-1;
  5731. break;
  5732. case SCHED_NORMAL:
  5733. case SCHED_BATCH:
  5734. case SCHED_IDLE:
  5735. ret = 0;
  5736. break;
  5737. }
  5738. return ret;
  5739. }
  5740. /**
  5741. * sys_sched_get_priority_min - return minimum RT priority.
  5742. * @policy: scheduling class.
  5743. *
  5744. * this syscall returns the minimum rt_priority that can be used
  5745. * by a given scheduling class.
  5746. */
  5747. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  5748. {
  5749. int ret = -EINVAL;
  5750. switch (policy) {
  5751. case SCHED_FIFO:
  5752. case SCHED_RR:
  5753. ret = 1;
  5754. break;
  5755. case SCHED_NORMAL:
  5756. case SCHED_BATCH:
  5757. case SCHED_IDLE:
  5758. ret = 0;
  5759. }
  5760. return ret;
  5761. }
  5762. /**
  5763. * sys_sched_rr_get_interval - return the default timeslice of a process.
  5764. * @pid: pid of the process.
  5765. * @interval: userspace pointer to the timeslice value.
  5766. *
  5767. * this syscall writes the default timeslice value of a given process
  5768. * into the user-space timespec buffer. A value of '0' means infinity.
  5769. */
  5770. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  5771. struct timespec __user *, interval)
  5772. {
  5773. struct task_struct *p;
  5774. unsigned int time_slice;
  5775. int retval;
  5776. struct timespec t;
  5777. if (pid < 0)
  5778. return -EINVAL;
  5779. retval = -ESRCH;
  5780. read_lock(&tasklist_lock);
  5781. p = find_process_by_pid(pid);
  5782. if (!p)
  5783. goto out_unlock;
  5784. retval = security_task_getscheduler(p);
  5785. if (retval)
  5786. goto out_unlock;
  5787. /*
  5788. * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
  5789. * tasks that are on an otherwise idle runqueue:
  5790. */
  5791. time_slice = 0;
  5792. if (p->policy == SCHED_RR) {
  5793. time_slice = DEF_TIMESLICE;
  5794. } else if (p->policy != SCHED_FIFO) {
  5795. struct sched_entity *se = &p->se;
  5796. unsigned long flags;
  5797. struct rq *rq;
  5798. rq = task_rq_lock(p, &flags);
  5799. if (rq->cfs.load.weight)
  5800. time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  5801. task_rq_unlock(rq, &flags);
  5802. }
  5803. read_unlock(&tasklist_lock);
  5804. jiffies_to_timespec(time_slice, &t);
  5805. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  5806. return retval;
  5807. out_unlock:
  5808. read_unlock(&tasklist_lock);
  5809. return retval;
  5810. }
  5811. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  5812. void sched_show_task(struct task_struct *p)
  5813. {
  5814. unsigned long free = 0;
  5815. unsigned state;
  5816. state = p->state ? __ffs(p->state) + 1 : 0;
  5817. printk(KERN_INFO "%-13.13s %c", p->comm,
  5818. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  5819. #if BITS_PER_LONG == 32
  5820. if (state == TASK_RUNNING)
  5821. printk(KERN_CONT " running ");
  5822. else
  5823. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  5824. #else
  5825. if (state == TASK_RUNNING)
  5826. printk(KERN_CONT " running task ");
  5827. else
  5828. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  5829. #endif
  5830. #ifdef CONFIG_DEBUG_STACK_USAGE
  5831. free = stack_not_used(p);
  5832. #endif
  5833. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  5834. task_pid_nr(p), task_pid_nr(p->real_parent),
  5835. (unsigned long)task_thread_info(p)->flags);
  5836. show_stack(p, NULL);
  5837. }
  5838. void show_state_filter(unsigned long state_filter)
  5839. {
  5840. struct task_struct *g, *p;
  5841. #if BITS_PER_LONG == 32
  5842. printk(KERN_INFO
  5843. " task PC stack pid father\n");
  5844. #else
  5845. printk(KERN_INFO
  5846. " task PC stack pid father\n");
  5847. #endif
  5848. read_lock(&tasklist_lock);
  5849. do_each_thread(g, p) {
  5850. /*
  5851. * reset the NMI-timeout, listing all files on a slow
  5852. * console might take alot of time:
  5853. */
  5854. touch_nmi_watchdog();
  5855. if (!state_filter || (p->state & state_filter))
  5856. sched_show_task(p);
  5857. } while_each_thread(g, p);
  5858. touch_all_softlockup_watchdogs();
  5859. #ifdef CONFIG_SCHED_DEBUG
  5860. sysrq_sched_debug_show();
  5861. #endif
  5862. read_unlock(&tasklist_lock);
  5863. /*
  5864. * Only show locks if all tasks are dumped:
  5865. */
  5866. if (state_filter == -1)
  5867. debug_show_all_locks();
  5868. }
  5869. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  5870. {
  5871. idle->sched_class = &idle_sched_class;
  5872. }
  5873. /**
  5874. * init_idle - set up an idle thread for a given CPU
  5875. * @idle: task in question
  5876. * @cpu: cpu the idle task belongs to
  5877. *
  5878. * NOTE: this function does not set the idle thread's NEED_RESCHED
  5879. * flag, to make booting more robust.
  5880. */
  5881. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  5882. {
  5883. struct rq *rq = cpu_rq(cpu);
  5884. unsigned long flags;
  5885. spin_lock_irqsave(&rq->lock, flags);
  5886. __sched_fork(idle);
  5887. idle->se.exec_start = sched_clock();
  5888. idle->prio = idle->normal_prio = MAX_PRIO;
  5889. cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
  5890. __set_task_cpu(idle, cpu);
  5891. rq->curr = rq->idle = idle;
  5892. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  5893. idle->oncpu = 1;
  5894. #endif
  5895. spin_unlock_irqrestore(&rq->lock, flags);
  5896. /* Set the preempt count _outside_ the spinlocks! */
  5897. #if defined(CONFIG_PREEMPT)
  5898. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  5899. #else
  5900. task_thread_info(idle)->preempt_count = 0;
  5901. #endif
  5902. /*
  5903. * The idle tasks have their own, simple scheduling class:
  5904. */
  5905. idle->sched_class = &idle_sched_class;
  5906. ftrace_graph_init_task(idle);
  5907. }
  5908. /*
  5909. * In a system that switches off the HZ timer nohz_cpu_mask
  5910. * indicates which cpus entered this state. This is used
  5911. * in the rcu update to wait only for active cpus. For system
  5912. * which do not switch off the HZ timer nohz_cpu_mask should
  5913. * always be CPU_BITS_NONE.
  5914. */
  5915. cpumask_var_t nohz_cpu_mask;
  5916. /*
  5917. * Increase the granularity value when there are more CPUs,
  5918. * because with more CPUs the 'effective latency' as visible
  5919. * to users decreases. But the relationship is not linear,
  5920. * so pick a second-best guess by going with the log2 of the
  5921. * number of CPUs.
  5922. *
  5923. * This idea comes from the SD scheduler of Con Kolivas:
  5924. */
  5925. static inline void sched_init_granularity(void)
  5926. {
  5927. unsigned int factor = 1 + ilog2(num_online_cpus());
  5928. const unsigned long limit = 200000000;
  5929. sysctl_sched_min_granularity *= factor;
  5930. if (sysctl_sched_min_granularity > limit)
  5931. sysctl_sched_min_granularity = limit;
  5932. sysctl_sched_latency *= factor;
  5933. if (sysctl_sched_latency > limit)
  5934. sysctl_sched_latency = limit;
  5935. sysctl_sched_wakeup_granularity *= factor;
  5936. sysctl_sched_shares_ratelimit *= factor;
  5937. }
  5938. #ifdef CONFIG_SMP
  5939. /*
  5940. * This is how migration works:
  5941. *
  5942. * 1) we queue a struct migration_req structure in the source CPU's
  5943. * runqueue and wake up that CPU's migration thread.
  5944. * 2) we down() the locked semaphore => thread blocks.
  5945. * 3) migration thread wakes up (implicitly it forces the migrated
  5946. * thread off the CPU)
  5947. * 4) it gets the migration request and checks whether the migrated
  5948. * task is still in the wrong runqueue.
  5949. * 5) if it's in the wrong runqueue then the migration thread removes
  5950. * it and puts it into the right queue.
  5951. * 6) migration thread up()s the semaphore.
  5952. * 7) we wake up and the migration is done.
  5953. */
  5954. /*
  5955. * Change a given task's CPU affinity. Migrate the thread to a
  5956. * proper CPU and schedule it away if the CPU it's executing on
  5957. * is removed from the allowed bitmask.
  5958. *
  5959. * NOTE: the caller must have a valid reference to the task, the
  5960. * task must not exit() & deallocate itself prematurely. The
  5961. * call is not atomic; no spinlocks may be held.
  5962. */
  5963. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  5964. {
  5965. struct migration_req req;
  5966. unsigned long flags;
  5967. struct rq *rq;
  5968. int ret = 0;
  5969. rq = task_rq_lock(p, &flags);
  5970. if (!cpumask_intersects(new_mask, cpu_online_mask)) {
  5971. ret = -EINVAL;
  5972. goto out;
  5973. }
  5974. if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
  5975. !cpumask_equal(&p->cpus_allowed, new_mask))) {
  5976. ret = -EINVAL;
  5977. goto out;
  5978. }
  5979. if (p->sched_class->set_cpus_allowed)
  5980. p->sched_class->set_cpus_allowed(p, new_mask);
  5981. else {
  5982. cpumask_copy(&p->cpus_allowed, new_mask);
  5983. p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
  5984. }
  5985. /* Can the task run on the task's current CPU? If so, we're done */
  5986. if (cpumask_test_cpu(task_cpu(p), new_mask))
  5987. goto out;
  5988. if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
  5989. /* Need help from migration thread: drop lock and wait. */
  5990. task_rq_unlock(rq, &flags);
  5991. wake_up_process(rq->migration_thread);
  5992. wait_for_completion(&req.done);
  5993. tlb_migrate_finish(p->mm);
  5994. return 0;
  5995. }
  5996. out:
  5997. task_rq_unlock(rq, &flags);
  5998. return ret;
  5999. }
  6000. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  6001. /*
  6002. * Move (not current) task off this cpu, onto dest cpu. We're doing
  6003. * this because either it can't run here any more (set_cpus_allowed()
  6004. * away from this CPU, or CPU going down), or because we're
  6005. * attempting to rebalance this task on exec (sched_exec).
  6006. *
  6007. * So we race with normal scheduler movements, but that's OK, as long
  6008. * as the task is no longer on this CPU.
  6009. *
  6010. * Returns non-zero if task was successfully migrated.
  6011. */
  6012. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  6013. {
  6014. struct rq *rq_dest, *rq_src;
  6015. int ret = 0, on_rq;
  6016. if (unlikely(!cpu_active(dest_cpu)))
  6017. return ret;
  6018. rq_src = cpu_rq(src_cpu);
  6019. rq_dest = cpu_rq(dest_cpu);
  6020. double_rq_lock(rq_src, rq_dest);
  6021. /* Already moved. */
  6022. if (task_cpu(p) != src_cpu)
  6023. goto done;
  6024. /* Affinity changed (again). */
  6025. if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6026. goto fail;
  6027. on_rq = p->se.on_rq;
  6028. if (on_rq)
  6029. deactivate_task(rq_src, p, 0);
  6030. set_task_cpu(p, dest_cpu);
  6031. if (on_rq) {
  6032. activate_task(rq_dest, p, 0);
  6033. check_preempt_curr(rq_dest, p, 0);
  6034. }
  6035. done:
  6036. ret = 1;
  6037. fail:
  6038. double_rq_unlock(rq_src, rq_dest);
  6039. return ret;
  6040. }
  6041. /*
  6042. * migration_thread - this is a highprio system thread that performs
  6043. * thread migration by bumping thread off CPU then 'pushing' onto
  6044. * another runqueue.
  6045. */
  6046. static int migration_thread(void *data)
  6047. {
  6048. int cpu = (long)data;
  6049. struct rq *rq;
  6050. rq = cpu_rq(cpu);
  6051. BUG_ON(rq->migration_thread != current);
  6052. set_current_state(TASK_INTERRUPTIBLE);
  6053. while (!kthread_should_stop()) {
  6054. struct migration_req *req;
  6055. struct list_head *head;
  6056. spin_lock_irq(&rq->lock);
  6057. if (cpu_is_offline(cpu)) {
  6058. spin_unlock_irq(&rq->lock);
  6059. goto wait_to_die;
  6060. }
  6061. if (rq->active_balance) {
  6062. active_load_balance(rq, cpu);
  6063. rq->active_balance = 0;
  6064. }
  6065. head = &rq->migration_queue;
  6066. if (list_empty(head)) {
  6067. spin_unlock_irq(&rq->lock);
  6068. schedule();
  6069. set_current_state(TASK_INTERRUPTIBLE);
  6070. continue;
  6071. }
  6072. req = list_entry(head->next, struct migration_req, list);
  6073. list_del_init(head->next);
  6074. spin_unlock(&rq->lock);
  6075. __migrate_task(req->task, cpu, req->dest_cpu);
  6076. local_irq_enable();
  6077. complete(&req->done);
  6078. }
  6079. __set_current_state(TASK_RUNNING);
  6080. return 0;
  6081. wait_to_die:
  6082. /* Wait for kthread_stop */
  6083. set_current_state(TASK_INTERRUPTIBLE);
  6084. while (!kthread_should_stop()) {
  6085. schedule();
  6086. set_current_state(TASK_INTERRUPTIBLE);
  6087. }
  6088. __set_current_state(TASK_RUNNING);
  6089. return 0;
  6090. }
  6091. #ifdef CONFIG_HOTPLUG_CPU
  6092. static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
  6093. {
  6094. int ret;
  6095. local_irq_disable();
  6096. ret = __migrate_task(p, src_cpu, dest_cpu);
  6097. local_irq_enable();
  6098. return ret;
  6099. }
  6100. /*
  6101. * Figure out where task on dead CPU should go, use force if necessary.
  6102. */
  6103. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  6104. {
  6105. int dest_cpu;
  6106. const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
  6107. again:
  6108. /* Look for allowed, online CPU in same node. */
  6109. for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
  6110. if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
  6111. goto move;
  6112. /* Any allowed, online CPU? */
  6113. dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
  6114. if (dest_cpu < nr_cpu_ids)
  6115. goto move;
  6116. /* No more Mr. Nice Guy. */
  6117. if (dest_cpu >= nr_cpu_ids) {
  6118. cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
  6119. dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
  6120. /*
  6121. * Don't tell them about moving exiting tasks or
  6122. * kernel threads (both mm NULL), since they never
  6123. * leave kernel.
  6124. */
  6125. if (p->mm && printk_ratelimit()) {
  6126. printk(KERN_INFO "process %d (%s) no "
  6127. "longer affine to cpu%d\n",
  6128. task_pid_nr(p), p->comm, dead_cpu);
  6129. }
  6130. }
  6131. move:
  6132. /* It can have affinity changed while we were choosing. */
  6133. if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
  6134. goto again;
  6135. }
  6136. /*
  6137. * While a dead CPU has no uninterruptible tasks queued at this point,
  6138. * it might still have a nonzero ->nr_uninterruptible counter, because
  6139. * for performance reasons the counter is not stricly tracking tasks to
  6140. * their home CPUs. So we just add the counter to another CPU's counter,
  6141. * to keep the global sum constant after CPU-down:
  6142. */
  6143. static void migrate_nr_uninterruptible(struct rq *rq_src)
  6144. {
  6145. struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
  6146. unsigned long flags;
  6147. local_irq_save(flags);
  6148. double_rq_lock(rq_src, rq_dest);
  6149. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  6150. rq_src->nr_uninterruptible = 0;
  6151. double_rq_unlock(rq_src, rq_dest);
  6152. local_irq_restore(flags);
  6153. }
  6154. /* Run through task list and migrate tasks from the dead cpu. */
  6155. static void migrate_live_tasks(int src_cpu)
  6156. {
  6157. struct task_struct *p, *t;
  6158. read_lock(&tasklist_lock);
  6159. do_each_thread(t, p) {
  6160. if (p == current)
  6161. continue;
  6162. if (task_cpu(p) == src_cpu)
  6163. move_task_off_dead_cpu(src_cpu, p);
  6164. } while_each_thread(t, p);
  6165. read_unlock(&tasklist_lock);
  6166. }
  6167. /*
  6168. * Schedules idle task to be the next runnable task on current CPU.
  6169. * It does so by boosting its priority to highest possible.
  6170. * Used by CPU offline code.
  6171. */
  6172. void sched_idle_next(void)
  6173. {
  6174. int this_cpu = smp_processor_id();
  6175. struct rq *rq = cpu_rq(this_cpu);
  6176. struct task_struct *p = rq->idle;
  6177. unsigned long flags;
  6178. /* cpu has to be offline */
  6179. BUG_ON(cpu_online(this_cpu));
  6180. /*
  6181. * Strictly not necessary since rest of the CPUs are stopped by now
  6182. * and interrupts disabled on the current cpu.
  6183. */
  6184. spin_lock_irqsave(&rq->lock, flags);
  6185. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6186. update_rq_clock(rq);
  6187. activate_task(rq, p, 0);
  6188. spin_unlock_irqrestore(&rq->lock, flags);
  6189. }
  6190. /*
  6191. * Ensures that the idle task is using init_mm right before its cpu goes
  6192. * offline.
  6193. */
  6194. void idle_task_exit(void)
  6195. {
  6196. struct mm_struct *mm = current->active_mm;
  6197. BUG_ON(cpu_online(smp_processor_id()));
  6198. if (mm != &init_mm)
  6199. switch_mm(mm, &init_mm, current);
  6200. mmdrop(mm);
  6201. }
  6202. /* called under rq->lock with disabled interrupts */
  6203. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  6204. {
  6205. struct rq *rq = cpu_rq(dead_cpu);
  6206. /* Must be exiting, otherwise would be on tasklist. */
  6207. BUG_ON(!p->exit_state);
  6208. /* Cannot have done final schedule yet: would have vanished. */
  6209. BUG_ON(p->state == TASK_DEAD);
  6210. get_task_struct(p);
  6211. /*
  6212. * Drop lock around migration; if someone else moves it,
  6213. * that's OK. No task can be added to this CPU, so iteration is
  6214. * fine.
  6215. */
  6216. spin_unlock_irq(&rq->lock);
  6217. move_task_off_dead_cpu(dead_cpu, p);
  6218. spin_lock_irq(&rq->lock);
  6219. put_task_struct(p);
  6220. }
  6221. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  6222. static void migrate_dead_tasks(unsigned int dead_cpu)
  6223. {
  6224. struct rq *rq = cpu_rq(dead_cpu);
  6225. struct task_struct *next;
  6226. for ( ; ; ) {
  6227. if (!rq->nr_running)
  6228. break;
  6229. update_rq_clock(rq);
  6230. next = pick_next_task(rq);
  6231. if (!next)
  6232. break;
  6233. next->sched_class->put_prev_task(rq, next);
  6234. migrate_dead(dead_cpu, next);
  6235. }
  6236. }
  6237. /*
  6238. * remove the tasks which were accounted by rq from calc_load_tasks.
  6239. */
  6240. static void calc_global_load_remove(struct rq *rq)
  6241. {
  6242. atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
  6243. }
  6244. #endif /* CONFIG_HOTPLUG_CPU */
  6245. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  6246. static struct ctl_table sd_ctl_dir[] = {
  6247. {
  6248. .procname = "sched_domain",
  6249. .mode = 0555,
  6250. },
  6251. {0, },
  6252. };
  6253. static struct ctl_table sd_ctl_root[] = {
  6254. {
  6255. .ctl_name = CTL_KERN,
  6256. .procname = "kernel",
  6257. .mode = 0555,
  6258. .child = sd_ctl_dir,
  6259. },
  6260. {0, },
  6261. };
  6262. static struct ctl_table *sd_alloc_ctl_entry(int n)
  6263. {
  6264. struct ctl_table *entry =
  6265. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  6266. return entry;
  6267. }
  6268. static void sd_free_ctl_entry(struct ctl_table **tablep)
  6269. {
  6270. struct ctl_table *entry;
  6271. /*
  6272. * In the intermediate directories, both the child directory and
  6273. * procname are dynamically allocated and could fail but the mode
  6274. * will always be set. In the lowest directory the names are
  6275. * static strings and all have proc handlers.
  6276. */
  6277. for (entry = *tablep; entry->mode; entry++) {
  6278. if (entry->child)
  6279. sd_free_ctl_entry(&entry->child);
  6280. if (entry->proc_handler == NULL)
  6281. kfree(entry->procname);
  6282. }
  6283. kfree(*tablep);
  6284. *tablep = NULL;
  6285. }
  6286. static void
  6287. set_table_entry(struct ctl_table *entry,
  6288. const char *procname, void *data, int maxlen,
  6289. mode_t mode, proc_handler *proc_handler)
  6290. {
  6291. entry->procname = procname;
  6292. entry->data = data;
  6293. entry->maxlen = maxlen;
  6294. entry->mode = mode;
  6295. entry->proc_handler = proc_handler;
  6296. }
  6297. static struct ctl_table *
  6298. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  6299. {
  6300. struct ctl_table *table = sd_alloc_ctl_entry(13);
  6301. if (table == NULL)
  6302. return NULL;
  6303. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  6304. sizeof(long), 0644, proc_doulongvec_minmax);
  6305. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  6306. sizeof(long), 0644, proc_doulongvec_minmax);
  6307. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  6308. sizeof(int), 0644, proc_dointvec_minmax);
  6309. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  6310. sizeof(int), 0644, proc_dointvec_minmax);
  6311. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  6312. sizeof(int), 0644, proc_dointvec_minmax);
  6313. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  6314. sizeof(int), 0644, proc_dointvec_minmax);
  6315. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  6316. sizeof(int), 0644, proc_dointvec_minmax);
  6317. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  6318. sizeof(int), 0644, proc_dointvec_minmax);
  6319. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  6320. sizeof(int), 0644, proc_dointvec_minmax);
  6321. set_table_entry(&table[9], "cache_nice_tries",
  6322. &sd->cache_nice_tries,
  6323. sizeof(int), 0644, proc_dointvec_minmax);
  6324. set_table_entry(&table[10], "flags", &sd->flags,
  6325. sizeof(int), 0644, proc_dointvec_minmax);
  6326. set_table_entry(&table[11], "name", sd->name,
  6327. CORENAME_MAX_SIZE, 0444, proc_dostring);
  6328. /* &table[12] is terminator */
  6329. return table;
  6330. }
  6331. static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  6332. {
  6333. struct ctl_table *entry, *table;
  6334. struct sched_domain *sd;
  6335. int domain_num = 0, i;
  6336. char buf[32];
  6337. for_each_domain(cpu, sd)
  6338. domain_num++;
  6339. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  6340. if (table == NULL)
  6341. return NULL;
  6342. i = 0;
  6343. for_each_domain(cpu, sd) {
  6344. snprintf(buf, 32, "domain%d", i);
  6345. entry->procname = kstrdup(buf, GFP_KERNEL);
  6346. entry->mode = 0555;
  6347. entry->child = sd_alloc_ctl_domain_table(sd);
  6348. entry++;
  6349. i++;
  6350. }
  6351. return table;
  6352. }
  6353. static struct ctl_table_header *sd_sysctl_header;
  6354. static void register_sched_domain_sysctl(void)
  6355. {
  6356. int i, cpu_num = num_online_cpus();
  6357. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  6358. char buf[32];
  6359. WARN_ON(sd_ctl_dir[0].child);
  6360. sd_ctl_dir[0].child = entry;
  6361. if (entry == NULL)
  6362. return;
  6363. for_each_online_cpu(i) {
  6364. snprintf(buf, 32, "cpu%d", i);
  6365. entry->procname = kstrdup(buf, GFP_KERNEL);
  6366. entry->mode = 0555;
  6367. entry->child = sd_alloc_ctl_cpu_table(i);
  6368. entry++;
  6369. }
  6370. WARN_ON(sd_sysctl_header);
  6371. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  6372. }
  6373. /* may be called multiple times per register */
  6374. static void unregister_sched_domain_sysctl(void)
  6375. {
  6376. if (sd_sysctl_header)
  6377. unregister_sysctl_table(sd_sysctl_header);
  6378. sd_sysctl_header = NULL;
  6379. if (sd_ctl_dir[0].child)
  6380. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  6381. }
  6382. #else
  6383. static void register_sched_domain_sysctl(void)
  6384. {
  6385. }
  6386. static void unregister_sched_domain_sysctl(void)
  6387. {
  6388. }
  6389. #endif
  6390. static void set_rq_online(struct rq *rq)
  6391. {
  6392. if (!rq->online) {
  6393. const struct sched_class *class;
  6394. cpumask_set_cpu(rq->cpu, rq->rd->online);
  6395. rq->online = 1;
  6396. for_each_class(class) {
  6397. if (class->rq_online)
  6398. class->rq_online(rq);
  6399. }
  6400. }
  6401. }
  6402. static void set_rq_offline(struct rq *rq)
  6403. {
  6404. if (rq->online) {
  6405. const struct sched_class *class;
  6406. for_each_class(class) {
  6407. if (class->rq_offline)
  6408. class->rq_offline(rq);
  6409. }
  6410. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  6411. rq->online = 0;
  6412. }
  6413. }
  6414. /*
  6415. * migration_call - callback that gets triggered when a CPU is added.
  6416. * Here we can start up the necessary migration thread for the new CPU.
  6417. */
  6418. static int __cpuinit
  6419. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  6420. {
  6421. struct task_struct *p;
  6422. int cpu = (long)hcpu;
  6423. unsigned long flags;
  6424. struct rq *rq;
  6425. switch (action) {
  6426. case CPU_UP_PREPARE:
  6427. case CPU_UP_PREPARE_FROZEN:
  6428. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  6429. if (IS_ERR(p))
  6430. return NOTIFY_BAD;
  6431. kthread_bind(p, cpu);
  6432. /* Must be high prio: stop_machine expects to yield to it. */
  6433. rq = task_rq_lock(p, &flags);
  6434. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  6435. task_rq_unlock(rq, &flags);
  6436. cpu_rq(cpu)->migration_thread = p;
  6437. break;
  6438. case CPU_ONLINE:
  6439. case CPU_ONLINE_FROZEN:
  6440. /* Strictly unnecessary, as first user will wake it. */
  6441. wake_up_process(cpu_rq(cpu)->migration_thread);
  6442. /* Update our root-domain */
  6443. rq = cpu_rq(cpu);
  6444. spin_lock_irqsave(&rq->lock, flags);
  6445. rq->calc_load_update = calc_load_update;
  6446. rq->calc_load_active = 0;
  6447. if (rq->rd) {
  6448. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6449. set_rq_online(rq);
  6450. }
  6451. spin_unlock_irqrestore(&rq->lock, flags);
  6452. break;
  6453. #ifdef CONFIG_HOTPLUG_CPU
  6454. case CPU_UP_CANCELED:
  6455. case CPU_UP_CANCELED_FROZEN:
  6456. if (!cpu_rq(cpu)->migration_thread)
  6457. break;
  6458. /* Unbind it from offline cpu so it can run. Fall thru. */
  6459. kthread_bind(cpu_rq(cpu)->migration_thread,
  6460. cpumask_any(cpu_online_mask));
  6461. kthread_stop(cpu_rq(cpu)->migration_thread);
  6462. cpu_rq(cpu)->migration_thread = NULL;
  6463. break;
  6464. case CPU_DEAD:
  6465. case CPU_DEAD_FROZEN:
  6466. cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
  6467. migrate_live_tasks(cpu);
  6468. rq = cpu_rq(cpu);
  6469. kthread_stop(rq->migration_thread);
  6470. rq->migration_thread = NULL;
  6471. /* Idle task back to normal (off runqueue, low prio) */
  6472. spin_lock_irq(&rq->lock);
  6473. update_rq_clock(rq);
  6474. deactivate_task(rq, rq->idle, 0);
  6475. rq->idle->static_prio = MAX_PRIO;
  6476. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  6477. rq->idle->sched_class = &idle_sched_class;
  6478. migrate_dead_tasks(cpu);
  6479. spin_unlock_irq(&rq->lock);
  6480. cpuset_unlock();
  6481. migrate_nr_uninterruptible(rq);
  6482. BUG_ON(rq->nr_running != 0);
  6483. calc_global_load_remove(rq);
  6484. /*
  6485. * No need to migrate the tasks: it was best-effort if
  6486. * they didn't take sched_hotcpu_mutex. Just wake up
  6487. * the requestors.
  6488. */
  6489. spin_lock_irq(&rq->lock);
  6490. while (!list_empty(&rq->migration_queue)) {
  6491. struct migration_req *req;
  6492. req = list_entry(rq->migration_queue.next,
  6493. struct migration_req, list);
  6494. list_del_init(&req->list);
  6495. spin_unlock_irq(&rq->lock);
  6496. complete(&req->done);
  6497. spin_lock_irq(&rq->lock);
  6498. }
  6499. spin_unlock_irq(&rq->lock);
  6500. break;
  6501. case CPU_DYING:
  6502. case CPU_DYING_FROZEN:
  6503. /* Update our root-domain */
  6504. rq = cpu_rq(cpu);
  6505. spin_lock_irqsave(&rq->lock, flags);
  6506. if (rq->rd) {
  6507. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  6508. set_rq_offline(rq);
  6509. }
  6510. spin_unlock_irqrestore(&rq->lock, flags);
  6511. break;
  6512. #endif
  6513. }
  6514. return NOTIFY_OK;
  6515. }
  6516. /*
  6517. * Register at high priority so that task migration (migrate_all_tasks)
  6518. * happens before everything else. This has to be lower priority than
  6519. * the notifier in the perf_counter subsystem, though.
  6520. */
  6521. static struct notifier_block __cpuinitdata migration_notifier = {
  6522. .notifier_call = migration_call,
  6523. .priority = 10
  6524. };
  6525. static int __init migration_init(void)
  6526. {
  6527. void *cpu = (void *)(long)smp_processor_id();
  6528. int err;
  6529. /* Start one for the boot CPU: */
  6530. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  6531. BUG_ON(err == NOTIFY_BAD);
  6532. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  6533. register_cpu_notifier(&migration_notifier);
  6534. return err;
  6535. }
  6536. early_initcall(migration_init);
  6537. #endif
  6538. #ifdef CONFIG_SMP
  6539. #ifdef CONFIG_SCHED_DEBUG
  6540. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  6541. struct cpumask *groupmask)
  6542. {
  6543. struct sched_group *group = sd->groups;
  6544. char str[256];
  6545. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  6546. cpumask_clear(groupmask);
  6547. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  6548. if (!(sd->flags & SD_LOAD_BALANCE)) {
  6549. printk("does not load-balance\n");
  6550. if (sd->parent)
  6551. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  6552. " has parent");
  6553. return -1;
  6554. }
  6555. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  6556. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  6557. printk(KERN_ERR "ERROR: domain->span does not contain "
  6558. "CPU%d\n", cpu);
  6559. }
  6560. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  6561. printk(KERN_ERR "ERROR: domain->groups does not contain"
  6562. " CPU%d\n", cpu);
  6563. }
  6564. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  6565. do {
  6566. if (!group) {
  6567. printk("\n");
  6568. printk(KERN_ERR "ERROR: group is NULL\n");
  6569. break;
  6570. }
  6571. if (!group->__cpu_power) {
  6572. printk(KERN_CONT "\n");
  6573. printk(KERN_ERR "ERROR: domain->cpu_power not "
  6574. "set\n");
  6575. break;
  6576. }
  6577. if (!cpumask_weight(sched_group_cpus(group))) {
  6578. printk(KERN_CONT "\n");
  6579. printk(KERN_ERR "ERROR: empty group\n");
  6580. break;
  6581. }
  6582. if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
  6583. printk(KERN_CONT "\n");
  6584. printk(KERN_ERR "ERROR: repeated CPUs\n");
  6585. break;
  6586. }
  6587. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  6588. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  6589. printk(KERN_CONT " %s", str);
  6590. if (group->__cpu_power != SCHED_LOAD_SCALE) {
  6591. printk(KERN_CONT " (__cpu_power = %d)",
  6592. group->__cpu_power);
  6593. }
  6594. group = group->next;
  6595. } while (group != sd->groups);
  6596. printk(KERN_CONT "\n");
  6597. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  6598. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  6599. if (sd->parent &&
  6600. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  6601. printk(KERN_ERR "ERROR: parent span is not a superset "
  6602. "of domain->span\n");
  6603. return 0;
  6604. }
  6605. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  6606. {
  6607. cpumask_var_t groupmask;
  6608. int level = 0;
  6609. if (!sd) {
  6610. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  6611. return;
  6612. }
  6613. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  6614. if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
  6615. printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
  6616. return;
  6617. }
  6618. for (;;) {
  6619. if (sched_domain_debug_one(sd, cpu, level, groupmask))
  6620. break;
  6621. level++;
  6622. sd = sd->parent;
  6623. if (!sd)
  6624. break;
  6625. }
  6626. free_cpumask_var(groupmask);
  6627. }
  6628. #else /* !CONFIG_SCHED_DEBUG */
  6629. # define sched_domain_debug(sd, cpu) do { } while (0)
  6630. #endif /* CONFIG_SCHED_DEBUG */
  6631. static int sd_degenerate(struct sched_domain *sd)
  6632. {
  6633. if (cpumask_weight(sched_domain_span(sd)) == 1)
  6634. return 1;
  6635. /* Following flags need at least 2 groups */
  6636. if (sd->flags & (SD_LOAD_BALANCE |
  6637. SD_BALANCE_NEWIDLE |
  6638. SD_BALANCE_FORK |
  6639. SD_BALANCE_EXEC |
  6640. SD_SHARE_CPUPOWER |
  6641. SD_SHARE_PKG_RESOURCES)) {
  6642. if (sd->groups != sd->groups->next)
  6643. return 0;
  6644. }
  6645. /* Following flags don't use groups */
  6646. if (sd->flags & (SD_WAKE_IDLE |
  6647. SD_WAKE_AFFINE |
  6648. SD_WAKE_BALANCE))
  6649. return 0;
  6650. return 1;
  6651. }
  6652. static int
  6653. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  6654. {
  6655. unsigned long cflags = sd->flags, pflags = parent->flags;
  6656. if (sd_degenerate(parent))
  6657. return 1;
  6658. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  6659. return 0;
  6660. /* Does parent contain flags not in child? */
  6661. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  6662. if (cflags & SD_WAKE_AFFINE)
  6663. pflags &= ~SD_WAKE_BALANCE;
  6664. /* Flags needing groups don't count if only 1 group in parent */
  6665. if (parent->groups == parent->groups->next) {
  6666. pflags &= ~(SD_LOAD_BALANCE |
  6667. SD_BALANCE_NEWIDLE |
  6668. SD_BALANCE_FORK |
  6669. SD_BALANCE_EXEC |
  6670. SD_SHARE_CPUPOWER |
  6671. SD_SHARE_PKG_RESOURCES);
  6672. if (nr_node_ids == 1)
  6673. pflags &= ~SD_SERIALIZE;
  6674. }
  6675. if (~cflags & pflags)
  6676. return 0;
  6677. return 1;
  6678. }
  6679. static void free_rootdomain(struct root_domain *rd)
  6680. {
  6681. cpupri_cleanup(&rd->cpupri);
  6682. free_cpumask_var(rd->rto_mask);
  6683. free_cpumask_var(rd->online);
  6684. free_cpumask_var(rd->span);
  6685. kfree(rd);
  6686. }
  6687. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  6688. {
  6689. struct root_domain *old_rd = NULL;
  6690. unsigned long flags;
  6691. spin_lock_irqsave(&rq->lock, flags);
  6692. if (rq->rd) {
  6693. old_rd = rq->rd;
  6694. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  6695. set_rq_offline(rq);
  6696. cpumask_clear_cpu(rq->cpu, old_rd->span);
  6697. /*
  6698. * If we dont want to free the old_rt yet then
  6699. * set old_rd to NULL to skip the freeing later
  6700. * in this function:
  6701. */
  6702. if (!atomic_dec_and_test(&old_rd->refcount))
  6703. old_rd = NULL;
  6704. }
  6705. atomic_inc(&rd->refcount);
  6706. rq->rd = rd;
  6707. cpumask_set_cpu(rq->cpu, rd->span);
  6708. if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
  6709. set_rq_online(rq);
  6710. spin_unlock_irqrestore(&rq->lock, flags);
  6711. if (old_rd)
  6712. free_rootdomain(old_rd);
  6713. }
  6714. static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
  6715. {
  6716. gfp_t gfp = GFP_KERNEL;
  6717. memset(rd, 0, sizeof(*rd));
  6718. if (bootmem)
  6719. gfp = GFP_NOWAIT;
  6720. if (!alloc_cpumask_var(&rd->span, gfp))
  6721. goto out;
  6722. if (!alloc_cpumask_var(&rd->online, gfp))
  6723. goto free_span;
  6724. if (!alloc_cpumask_var(&rd->rto_mask, gfp))
  6725. goto free_online;
  6726. if (cpupri_init(&rd->cpupri, bootmem) != 0)
  6727. goto free_rto_mask;
  6728. return 0;
  6729. free_rto_mask:
  6730. free_cpumask_var(rd->rto_mask);
  6731. free_online:
  6732. free_cpumask_var(rd->online);
  6733. free_span:
  6734. free_cpumask_var(rd->span);
  6735. out:
  6736. return -ENOMEM;
  6737. }
  6738. static void init_defrootdomain(void)
  6739. {
  6740. init_rootdomain(&def_root_domain, true);
  6741. atomic_set(&def_root_domain.refcount, 1);
  6742. }
  6743. static struct root_domain *alloc_rootdomain(void)
  6744. {
  6745. struct root_domain *rd;
  6746. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  6747. if (!rd)
  6748. return NULL;
  6749. if (init_rootdomain(rd, false) != 0) {
  6750. kfree(rd);
  6751. return NULL;
  6752. }
  6753. return rd;
  6754. }
  6755. /*
  6756. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  6757. * hold the hotplug lock.
  6758. */
  6759. static void
  6760. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  6761. {
  6762. struct rq *rq = cpu_rq(cpu);
  6763. struct sched_domain *tmp;
  6764. /* Remove the sched domains which do not contribute to scheduling. */
  6765. for (tmp = sd; tmp; ) {
  6766. struct sched_domain *parent = tmp->parent;
  6767. if (!parent)
  6768. break;
  6769. if (sd_parent_degenerate(tmp, parent)) {
  6770. tmp->parent = parent->parent;
  6771. if (parent->parent)
  6772. parent->parent->child = tmp;
  6773. } else
  6774. tmp = tmp->parent;
  6775. }
  6776. if (sd && sd_degenerate(sd)) {
  6777. sd = sd->parent;
  6778. if (sd)
  6779. sd->child = NULL;
  6780. }
  6781. sched_domain_debug(sd, cpu);
  6782. rq_attach_root(rq, rd);
  6783. rcu_assign_pointer(rq->sd, sd);
  6784. }
  6785. /* cpus with isolated domains */
  6786. static cpumask_var_t cpu_isolated_map;
  6787. /* Setup the mask of cpus configured for isolated domains */
  6788. static int __init isolated_cpu_setup(char *str)
  6789. {
  6790. cpulist_parse(str, cpu_isolated_map);
  6791. return 1;
  6792. }
  6793. __setup("isolcpus=", isolated_cpu_setup);
  6794. /*
  6795. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  6796. * to a function which identifies what group(along with sched group) a CPU
  6797. * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
  6798. * (due to the fact that we keep track of groups covered with a struct cpumask).
  6799. *
  6800. * init_sched_build_groups will build a circular linked list of the groups
  6801. * covered by the given span, and will set each group's ->cpumask correctly,
  6802. * and ->cpu_power to 0.
  6803. */
  6804. static void
  6805. init_sched_build_groups(const struct cpumask *span,
  6806. const struct cpumask *cpu_map,
  6807. int (*group_fn)(int cpu, const struct cpumask *cpu_map,
  6808. struct sched_group **sg,
  6809. struct cpumask *tmpmask),
  6810. struct cpumask *covered, struct cpumask *tmpmask)
  6811. {
  6812. struct sched_group *first = NULL, *last = NULL;
  6813. int i;
  6814. cpumask_clear(covered);
  6815. for_each_cpu(i, span) {
  6816. struct sched_group *sg;
  6817. int group = group_fn(i, cpu_map, &sg, tmpmask);
  6818. int j;
  6819. if (cpumask_test_cpu(i, covered))
  6820. continue;
  6821. cpumask_clear(sched_group_cpus(sg));
  6822. sg->__cpu_power = 0;
  6823. for_each_cpu(j, span) {
  6824. if (group_fn(j, cpu_map, NULL, tmpmask) != group)
  6825. continue;
  6826. cpumask_set_cpu(j, covered);
  6827. cpumask_set_cpu(j, sched_group_cpus(sg));
  6828. }
  6829. if (!first)
  6830. first = sg;
  6831. if (last)
  6832. last->next = sg;
  6833. last = sg;
  6834. }
  6835. last->next = first;
  6836. }
  6837. #define SD_NODES_PER_DOMAIN 16
  6838. #ifdef CONFIG_NUMA
  6839. /**
  6840. * find_next_best_node - find the next node to include in a sched_domain
  6841. * @node: node whose sched_domain we're building
  6842. * @used_nodes: nodes already in the sched_domain
  6843. *
  6844. * Find the next node to include in a given scheduling domain. Simply
  6845. * finds the closest node not already in the @used_nodes map.
  6846. *
  6847. * Should use nodemask_t.
  6848. */
  6849. static int find_next_best_node(int node, nodemask_t *used_nodes)
  6850. {
  6851. int i, n, val, min_val, best_node = 0;
  6852. min_val = INT_MAX;
  6853. for (i = 0; i < nr_node_ids; i++) {
  6854. /* Start at @node */
  6855. n = (node + i) % nr_node_ids;
  6856. if (!nr_cpus_node(n))
  6857. continue;
  6858. /* Skip already used nodes */
  6859. if (node_isset(n, *used_nodes))
  6860. continue;
  6861. /* Simple min distance search */
  6862. val = node_distance(node, n);
  6863. if (val < min_val) {
  6864. min_val = val;
  6865. best_node = n;
  6866. }
  6867. }
  6868. node_set(best_node, *used_nodes);
  6869. return best_node;
  6870. }
  6871. /**
  6872. * sched_domain_node_span - get a cpumask for a node's sched_domain
  6873. * @node: node whose cpumask we're constructing
  6874. * @span: resulting cpumask
  6875. *
  6876. * Given a node, construct a good cpumask for its sched_domain to span. It
  6877. * should be one that prevents unnecessary balancing, but also spreads tasks
  6878. * out optimally.
  6879. */
  6880. static void sched_domain_node_span(int node, struct cpumask *span)
  6881. {
  6882. nodemask_t used_nodes;
  6883. int i;
  6884. cpumask_clear(span);
  6885. nodes_clear(used_nodes);
  6886. cpumask_or(span, span, cpumask_of_node(node));
  6887. node_set(node, used_nodes);
  6888. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  6889. int next_node = find_next_best_node(node, &used_nodes);
  6890. cpumask_or(span, span, cpumask_of_node(next_node));
  6891. }
  6892. }
  6893. #endif /* CONFIG_NUMA */
  6894. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  6895. /*
  6896. * The cpus mask in sched_group and sched_domain hangs off the end.
  6897. *
  6898. * ( See the the comments in include/linux/sched.h:struct sched_group
  6899. * and struct sched_domain. )
  6900. */
  6901. struct static_sched_group {
  6902. struct sched_group sg;
  6903. DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
  6904. };
  6905. struct static_sched_domain {
  6906. struct sched_domain sd;
  6907. DECLARE_BITMAP(span, CONFIG_NR_CPUS);
  6908. };
  6909. /*
  6910. * SMT sched-domains:
  6911. */
  6912. #ifdef CONFIG_SCHED_SMT
  6913. static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
  6914. static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
  6915. static int
  6916. cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
  6917. struct sched_group **sg, struct cpumask *unused)
  6918. {
  6919. if (sg)
  6920. *sg = &per_cpu(sched_group_cpus, cpu).sg;
  6921. return cpu;
  6922. }
  6923. #endif /* CONFIG_SCHED_SMT */
  6924. /*
  6925. * multi-core sched-domains:
  6926. */
  6927. #ifdef CONFIG_SCHED_MC
  6928. static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
  6929. static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
  6930. #endif /* CONFIG_SCHED_MC */
  6931. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  6932. static int
  6933. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6934. struct sched_group **sg, struct cpumask *mask)
  6935. {
  6936. int group;
  6937. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6938. group = cpumask_first(mask);
  6939. if (sg)
  6940. *sg = &per_cpu(sched_group_core, group).sg;
  6941. return group;
  6942. }
  6943. #elif defined(CONFIG_SCHED_MC)
  6944. static int
  6945. cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
  6946. struct sched_group **sg, struct cpumask *unused)
  6947. {
  6948. if (sg)
  6949. *sg = &per_cpu(sched_group_core, cpu).sg;
  6950. return cpu;
  6951. }
  6952. #endif
  6953. static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
  6954. static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
  6955. static int
  6956. cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
  6957. struct sched_group **sg, struct cpumask *mask)
  6958. {
  6959. int group;
  6960. #ifdef CONFIG_SCHED_MC
  6961. cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
  6962. group = cpumask_first(mask);
  6963. #elif defined(CONFIG_SCHED_SMT)
  6964. cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
  6965. group = cpumask_first(mask);
  6966. #else
  6967. group = cpu;
  6968. #endif
  6969. if (sg)
  6970. *sg = &per_cpu(sched_group_phys, group).sg;
  6971. return group;
  6972. }
  6973. #ifdef CONFIG_NUMA
  6974. /*
  6975. * The init_sched_build_groups can't handle what we want to do with node
  6976. * groups, so roll our own. Now each node has its own list of groups which
  6977. * gets dynamically allocated.
  6978. */
  6979. static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
  6980. static struct sched_group ***sched_group_nodes_bycpu;
  6981. static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
  6982. static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
  6983. static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
  6984. struct sched_group **sg,
  6985. struct cpumask *nodemask)
  6986. {
  6987. int group;
  6988. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
  6989. group = cpumask_first(nodemask);
  6990. if (sg)
  6991. *sg = &per_cpu(sched_group_allnodes, group).sg;
  6992. return group;
  6993. }
  6994. static void init_numa_sched_groups_power(struct sched_group *group_head)
  6995. {
  6996. struct sched_group *sg = group_head;
  6997. int j;
  6998. if (!sg)
  6999. return;
  7000. do {
  7001. for_each_cpu(j, sched_group_cpus(sg)) {
  7002. struct sched_domain *sd;
  7003. sd = &per_cpu(phys_domains, j).sd;
  7004. if (j != group_first_cpu(sd->groups)) {
  7005. /*
  7006. * Only add "power" once for each
  7007. * physical package.
  7008. */
  7009. continue;
  7010. }
  7011. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  7012. }
  7013. sg = sg->next;
  7014. } while (sg != group_head);
  7015. }
  7016. #endif /* CONFIG_NUMA */
  7017. #ifdef CONFIG_NUMA
  7018. /* Free memory allocated for various sched_group structures */
  7019. static void free_sched_groups(const struct cpumask *cpu_map,
  7020. struct cpumask *nodemask)
  7021. {
  7022. int cpu, i;
  7023. for_each_cpu(cpu, cpu_map) {
  7024. struct sched_group **sched_group_nodes
  7025. = sched_group_nodes_bycpu[cpu];
  7026. if (!sched_group_nodes)
  7027. continue;
  7028. for (i = 0; i < nr_node_ids; i++) {
  7029. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  7030. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7031. if (cpumask_empty(nodemask))
  7032. continue;
  7033. if (sg == NULL)
  7034. continue;
  7035. sg = sg->next;
  7036. next_sg:
  7037. oldsg = sg;
  7038. sg = sg->next;
  7039. kfree(oldsg);
  7040. if (oldsg != sched_group_nodes[i])
  7041. goto next_sg;
  7042. }
  7043. kfree(sched_group_nodes);
  7044. sched_group_nodes_bycpu[cpu] = NULL;
  7045. }
  7046. }
  7047. #else /* !CONFIG_NUMA */
  7048. static void free_sched_groups(const struct cpumask *cpu_map,
  7049. struct cpumask *nodemask)
  7050. {
  7051. }
  7052. #endif /* CONFIG_NUMA */
  7053. /*
  7054. * Initialize sched groups cpu_power.
  7055. *
  7056. * cpu_power indicates the capacity of sched group, which is used while
  7057. * distributing the load between different sched groups in a sched domain.
  7058. * Typically cpu_power for all the groups in a sched domain will be same unless
  7059. * there are asymmetries in the topology. If there are asymmetries, group
  7060. * having more cpu_power will pickup more load compared to the group having
  7061. * less cpu_power.
  7062. *
  7063. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  7064. * the maximum number of tasks a group can handle in the presence of other idle
  7065. * or lightly loaded groups in the same sched domain.
  7066. */
  7067. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  7068. {
  7069. struct sched_domain *child;
  7070. struct sched_group *group;
  7071. WARN_ON(!sd || !sd->groups);
  7072. if (cpu != group_first_cpu(sd->groups))
  7073. return;
  7074. child = sd->child;
  7075. sd->groups->__cpu_power = 0;
  7076. /*
  7077. * For perf policy, if the groups in child domain share resources
  7078. * (for example cores sharing some portions of the cache hierarchy
  7079. * or SMT), then set this domain groups cpu_power such that each group
  7080. * can handle only one task, when there are other idle groups in the
  7081. * same sched domain.
  7082. */
  7083. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  7084. (child->flags &
  7085. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  7086. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  7087. return;
  7088. }
  7089. /*
  7090. * add cpu_power of each child group to this groups cpu_power
  7091. */
  7092. group = child->groups;
  7093. do {
  7094. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  7095. group = group->next;
  7096. } while (group != child->groups);
  7097. }
  7098. /*
  7099. * Initializers for schedule domains
  7100. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  7101. */
  7102. #ifdef CONFIG_SCHED_DEBUG
  7103. # define SD_INIT_NAME(sd, type) sd->name = #type
  7104. #else
  7105. # define SD_INIT_NAME(sd, type) do { } while (0)
  7106. #endif
  7107. #define SD_INIT(sd, type) sd_init_##type(sd)
  7108. #define SD_INIT_FUNC(type) \
  7109. static noinline void sd_init_##type(struct sched_domain *sd) \
  7110. { \
  7111. memset(sd, 0, sizeof(*sd)); \
  7112. *sd = SD_##type##_INIT; \
  7113. sd->level = SD_LV_##type; \
  7114. SD_INIT_NAME(sd, type); \
  7115. }
  7116. SD_INIT_FUNC(CPU)
  7117. #ifdef CONFIG_NUMA
  7118. SD_INIT_FUNC(ALLNODES)
  7119. SD_INIT_FUNC(NODE)
  7120. #endif
  7121. #ifdef CONFIG_SCHED_SMT
  7122. SD_INIT_FUNC(SIBLING)
  7123. #endif
  7124. #ifdef CONFIG_SCHED_MC
  7125. SD_INIT_FUNC(MC)
  7126. #endif
  7127. static int default_relax_domain_level = -1;
  7128. static int __init setup_relax_domain_level(char *str)
  7129. {
  7130. unsigned long val;
  7131. val = simple_strtoul(str, NULL, 0);
  7132. if (val < SD_LV_MAX)
  7133. default_relax_domain_level = val;
  7134. return 1;
  7135. }
  7136. __setup("relax_domain_level=", setup_relax_domain_level);
  7137. static void set_domain_attribute(struct sched_domain *sd,
  7138. struct sched_domain_attr *attr)
  7139. {
  7140. int request;
  7141. if (!attr || attr->relax_domain_level < 0) {
  7142. if (default_relax_domain_level < 0)
  7143. return;
  7144. else
  7145. request = default_relax_domain_level;
  7146. } else
  7147. request = attr->relax_domain_level;
  7148. if (request < sd->level) {
  7149. /* turn off idle balance on this domain */
  7150. sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
  7151. } else {
  7152. /* turn on idle balance on this domain */
  7153. sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
  7154. }
  7155. }
  7156. /*
  7157. * Build sched domains for a given set of cpus and attach the sched domains
  7158. * to the individual cpus
  7159. */
  7160. static int __build_sched_domains(const struct cpumask *cpu_map,
  7161. struct sched_domain_attr *attr)
  7162. {
  7163. int i, err = -ENOMEM;
  7164. struct root_domain *rd;
  7165. cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
  7166. tmpmask;
  7167. #ifdef CONFIG_NUMA
  7168. cpumask_var_t domainspan, covered, notcovered;
  7169. struct sched_group **sched_group_nodes = NULL;
  7170. int sd_allnodes = 0;
  7171. if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
  7172. goto out;
  7173. if (!alloc_cpumask_var(&covered, GFP_KERNEL))
  7174. goto free_domainspan;
  7175. if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
  7176. goto free_covered;
  7177. #endif
  7178. if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
  7179. goto free_notcovered;
  7180. if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
  7181. goto free_nodemask;
  7182. if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
  7183. goto free_this_sibling_map;
  7184. if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
  7185. goto free_this_core_map;
  7186. if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
  7187. goto free_send_covered;
  7188. #ifdef CONFIG_NUMA
  7189. /*
  7190. * Allocate the per-node list of sched groups
  7191. */
  7192. sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
  7193. GFP_KERNEL);
  7194. if (!sched_group_nodes) {
  7195. printk(KERN_WARNING "Can not alloc sched group node list\n");
  7196. goto free_tmpmask;
  7197. }
  7198. #endif
  7199. rd = alloc_rootdomain();
  7200. if (!rd) {
  7201. printk(KERN_WARNING "Cannot alloc root domain\n");
  7202. goto free_sched_groups;
  7203. }
  7204. #ifdef CONFIG_NUMA
  7205. sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
  7206. #endif
  7207. /*
  7208. * Set up domains for cpus specified by the cpu_map.
  7209. */
  7210. for_each_cpu(i, cpu_map) {
  7211. struct sched_domain *sd = NULL, *p;
  7212. cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
  7213. #ifdef CONFIG_NUMA
  7214. if (cpumask_weight(cpu_map) >
  7215. SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
  7216. sd = &per_cpu(allnodes_domains, i).sd;
  7217. SD_INIT(sd, ALLNODES);
  7218. set_domain_attribute(sd, attr);
  7219. cpumask_copy(sched_domain_span(sd), cpu_map);
  7220. cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
  7221. p = sd;
  7222. sd_allnodes = 1;
  7223. } else
  7224. p = NULL;
  7225. sd = &per_cpu(node_domains, i).sd;
  7226. SD_INIT(sd, NODE);
  7227. set_domain_attribute(sd, attr);
  7228. sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
  7229. sd->parent = p;
  7230. if (p)
  7231. p->child = sd;
  7232. cpumask_and(sched_domain_span(sd),
  7233. sched_domain_span(sd), cpu_map);
  7234. #endif
  7235. p = sd;
  7236. sd = &per_cpu(phys_domains, i).sd;
  7237. SD_INIT(sd, CPU);
  7238. set_domain_attribute(sd, attr);
  7239. cpumask_copy(sched_domain_span(sd), nodemask);
  7240. sd->parent = p;
  7241. if (p)
  7242. p->child = sd;
  7243. cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
  7244. #ifdef CONFIG_SCHED_MC
  7245. p = sd;
  7246. sd = &per_cpu(core_domains, i).sd;
  7247. SD_INIT(sd, MC);
  7248. set_domain_attribute(sd, attr);
  7249. cpumask_and(sched_domain_span(sd), cpu_map,
  7250. cpu_coregroup_mask(i));
  7251. sd->parent = p;
  7252. p->child = sd;
  7253. cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
  7254. #endif
  7255. #ifdef CONFIG_SCHED_SMT
  7256. p = sd;
  7257. sd = &per_cpu(cpu_domains, i).sd;
  7258. SD_INIT(sd, SIBLING);
  7259. set_domain_attribute(sd, attr);
  7260. cpumask_and(sched_domain_span(sd),
  7261. topology_thread_cpumask(i), cpu_map);
  7262. sd->parent = p;
  7263. p->child = sd;
  7264. cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
  7265. #endif
  7266. }
  7267. #ifdef CONFIG_SCHED_SMT
  7268. /* Set up CPU (sibling) groups */
  7269. for_each_cpu(i, cpu_map) {
  7270. cpumask_and(this_sibling_map,
  7271. topology_thread_cpumask(i), cpu_map);
  7272. if (i != cpumask_first(this_sibling_map))
  7273. continue;
  7274. init_sched_build_groups(this_sibling_map, cpu_map,
  7275. &cpu_to_cpu_group,
  7276. send_covered, tmpmask);
  7277. }
  7278. #endif
  7279. #ifdef CONFIG_SCHED_MC
  7280. /* Set up multi-core groups */
  7281. for_each_cpu(i, cpu_map) {
  7282. cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
  7283. if (i != cpumask_first(this_core_map))
  7284. continue;
  7285. init_sched_build_groups(this_core_map, cpu_map,
  7286. &cpu_to_core_group,
  7287. send_covered, tmpmask);
  7288. }
  7289. #endif
  7290. /* Set up physical groups */
  7291. for (i = 0; i < nr_node_ids; i++) {
  7292. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7293. if (cpumask_empty(nodemask))
  7294. continue;
  7295. init_sched_build_groups(nodemask, cpu_map,
  7296. &cpu_to_phys_group,
  7297. send_covered, tmpmask);
  7298. }
  7299. #ifdef CONFIG_NUMA
  7300. /* Set up node groups */
  7301. if (sd_allnodes) {
  7302. init_sched_build_groups(cpu_map, cpu_map,
  7303. &cpu_to_allnodes_group,
  7304. send_covered, tmpmask);
  7305. }
  7306. for (i = 0; i < nr_node_ids; i++) {
  7307. /* Set up node groups */
  7308. struct sched_group *sg, *prev;
  7309. int j;
  7310. cpumask_clear(covered);
  7311. cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
  7312. if (cpumask_empty(nodemask)) {
  7313. sched_group_nodes[i] = NULL;
  7314. continue;
  7315. }
  7316. sched_domain_node_span(i, domainspan);
  7317. cpumask_and(domainspan, domainspan, cpu_map);
  7318. sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
  7319. GFP_KERNEL, i);
  7320. if (!sg) {
  7321. printk(KERN_WARNING "Can not alloc domain group for "
  7322. "node %d\n", i);
  7323. goto error;
  7324. }
  7325. sched_group_nodes[i] = sg;
  7326. for_each_cpu(j, nodemask) {
  7327. struct sched_domain *sd;
  7328. sd = &per_cpu(node_domains, j).sd;
  7329. sd->groups = sg;
  7330. }
  7331. sg->__cpu_power = 0;
  7332. cpumask_copy(sched_group_cpus(sg), nodemask);
  7333. sg->next = sg;
  7334. cpumask_or(covered, covered, nodemask);
  7335. prev = sg;
  7336. for (j = 0; j < nr_node_ids; j++) {
  7337. int n = (i + j) % nr_node_ids;
  7338. cpumask_complement(notcovered, covered);
  7339. cpumask_and(tmpmask, notcovered, cpu_map);
  7340. cpumask_and(tmpmask, tmpmask, domainspan);
  7341. if (cpumask_empty(tmpmask))
  7342. break;
  7343. cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
  7344. if (cpumask_empty(tmpmask))
  7345. continue;
  7346. sg = kmalloc_node(sizeof(struct sched_group) +
  7347. cpumask_size(),
  7348. GFP_KERNEL, i);
  7349. if (!sg) {
  7350. printk(KERN_WARNING
  7351. "Can not alloc domain group for node %d\n", j);
  7352. goto error;
  7353. }
  7354. sg->__cpu_power = 0;
  7355. cpumask_copy(sched_group_cpus(sg), tmpmask);
  7356. sg->next = prev->next;
  7357. cpumask_or(covered, covered, tmpmask);
  7358. prev->next = sg;
  7359. prev = sg;
  7360. }
  7361. }
  7362. #endif
  7363. /* Calculate CPU power for physical packages and nodes */
  7364. #ifdef CONFIG_SCHED_SMT
  7365. for_each_cpu(i, cpu_map) {
  7366. struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
  7367. init_sched_groups_power(i, sd);
  7368. }
  7369. #endif
  7370. #ifdef CONFIG_SCHED_MC
  7371. for_each_cpu(i, cpu_map) {
  7372. struct sched_domain *sd = &per_cpu(core_domains, i).sd;
  7373. init_sched_groups_power(i, sd);
  7374. }
  7375. #endif
  7376. for_each_cpu(i, cpu_map) {
  7377. struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
  7378. init_sched_groups_power(i, sd);
  7379. }
  7380. #ifdef CONFIG_NUMA
  7381. for (i = 0; i < nr_node_ids; i++)
  7382. init_numa_sched_groups_power(sched_group_nodes[i]);
  7383. if (sd_allnodes) {
  7384. struct sched_group *sg;
  7385. cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
  7386. tmpmask);
  7387. init_numa_sched_groups_power(sg);
  7388. }
  7389. #endif
  7390. /* Attach the domains */
  7391. for_each_cpu(i, cpu_map) {
  7392. struct sched_domain *sd;
  7393. #ifdef CONFIG_SCHED_SMT
  7394. sd = &per_cpu(cpu_domains, i).sd;
  7395. #elif defined(CONFIG_SCHED_MC)
  7396. sd = &per_cpu(core_domains, i).sd;
  7397. #else
  7398. sd = &per_cpu(phys_domains, i).sd;
  7399. #endif
  7400. cpu_attach_domain(sd, rd, i);
  7401. }
  7402. err = 0;
  7403. free_tmpmask:
  7404. free_cpumask_var(tmpmask);
  7405. free_send_covered:
  7406. free_cpumask_var(send_covered);
  7407. free_this_core_map:
  7408. free_cpumask_var(this_core_map);
  7409. free_this_sibling_map:
  7410. free_cpumask_var(this_sibling_map);
  7411. free_nodemask:
  7412. free_cpumask_var(nodemask);
  7413. free_notcovered:
  7414. #ifdef CONFIG_NUMA
  7415. free_cpumask_var(notcovered);
  7416. free_covered:
  7417. free_cpumask_var(covered);
  7418. free_domainspan:
  7419. free_cpumask_var(domainspan);
  7420. out:
  7421. #endif
  7422. return err;
  7423. free_sched_groups:
  7424. #ifdef CONFIG_NUMA
  7425. kfree(sched_group_nodes);
  7426. #endif
  7427. goto free_tmpmask;
  7428. #ifdef CONFIG_NUMA
  7429. error:
  7430. free_sched_groups(cpu_map, tmpmask);
  7431. free_rootdomain(rd);
  7432. goto free_tmpmask;
  7433. #endif
  7434. }
  7435. static int build_sched_domains(const struct cpumask *cpu_map)
  7436. {
  7437. return __build_sched_domains(cpu_map, NULL);
  7438. }
  7439. static struct cpumask *doms_cur; /* current sched domains */
  7440. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  7441. static struct sched_domain_attr *dattr_cur;
  7442. /* attribues of custom domains in 'doms_cur' */
  7443. /*
  7444. * Special case: If a kmalloc of a doms_cur partition (array of
  7445. * cpumask) fails, then fallback to a single sched domain,
  7446. * as determined by the single cpumask fallback_doms.
  7447. */
  7448. static cpumask_var_t fallback_doms;
  7449. /*
  7450. * arch_update_cpu_topology lets virtualized architectures update the
  7451. * cpu core maps. It is supposed to return 1 if the topology changed
  7452. * or 0 if it stayed the same.
  7453. */
  7454. int __attribute__((weak)) arch_update_cpu_topology(void)
  7455. {
  7456. return 0;
  7457. }
  7458. /*
  7459. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  7460. * For now this just excludes isolated cpus, but could be used to
  7461. * exclude other special cases in the future.
  7462. */
  7463. static int arch_init_sched_domains(const struct cpumask *cpu_map)
  7464. {
  7465. int err;
  7466. arch_update_cpu_topology();
  7467. ndoms_cur = 1;
  7468. doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
  7469. if (!doms_cur)
  7470. doms_cur = fallback_doms;
  7471. cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
  7472. dattr_cur = NULL;
  7473. err = build_sched_domains(doms_cur);
  7474. register_sched_domain_sysctl();
  7475. return err;
  7476. }
  7477. static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
  7478. struct cpumask *tmpmask)
  7479. {
  7480. free_sched_groups(cpu_map, tmpmask);
  7481. }
  7482. /*
  7483. * Detach sched domains from a group of cpus specified in cpu_map
  7484. * These cpus will now be attached to the NULL domain
  7485. */
  7486. static void detach_destroy_domains(const struct cpumask *cpu_map)
  7487. {
  7488. /* Save because hotplug lock held. */
  7489. static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
  7490. int i;
  7491. for_each_cpu(i, cpu_map)
  7492. cpu_attach_domain(NULL, &def_root_domain, i);
  7493. synchronize_sched();
  7494. arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
  7495. }
  7496. /* handle null as "default" */
  7497. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  7498. struct sched_domain_attr *new, int idx_new)
  7499. {
  7500. struct sched_domain_attr tmp;
  7501. /* fast path */
  7502. if (!new && !cur)
  7503. return 1;
  7504. tmp = SD_ATTR_INIT;
  7505. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  7506. new ? (new + idx_new) : &tmp,
  7507. sizeof(struct sched_domain_attr));
  7508. }
  7509. /*
  7510. * Partition sched domains as specified by the 'ndoms_new'
  7511. * cpumasks in the array doms_new[] of cpumasks. This compares
  7512. * doms_new[] to the current sched domain partitioning, doms_cur[].
  7513. * It destroys each deleted domain and builds each new domain.
  7514. *
  7515. * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
  7516. * The masks don't intersect (don't overlap.) We should setup one
  7517. * sched domain for each mask. CPUs not in any of the cpumasks will
  7518. * not be load balanced. If the same cpumask appears both in the
  7519. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  7520. * it as it is.
  7521. *
  7522. * The passed in 'doms_new' should be kmalloc'd. This routine takes
  7523. * ownership of it and will kfree it when done with it. If the caller
  7524. * failed the kmalloc call, then it can pass in doms_new == NULL &&
  7525. * ndoms_new == 1, and partition_sched_domains() will fallback to
  7526. * the single partition 'fallback_doms', it also forces the domains
  7527. * to be rebuilt.
  7528. *
  7529. * If doms_new == NULL it will be replaced with cpu_online_mask.
  7530. * ndoms_new == 0 is a special case for destroying existing domains,
  7531. * and it will not create the default domain.
  7532. *
  7533. * Call with hotplug lock held
  7534. */
  7535. /* FIXME: Change to struct cpumask *doms_new[] */
  7536. void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
  7537. struct sched_domain_attr *dattr_new)
  7538. {
  7539. int i, j, n;
  7540. int new_topology;
  7541. mutex_lock(&sched_domains_mutex);
  7542. /* always unregister in case we don't destroy any domains */
  7543. unregister_sched_domain_sysctl();
  7544. /* Let architecture update cpu core mappings. */
  7545. new_topology = arch_update_cpu_topology();
  7546. n = doms_new ? ndoms_new : 0;
  7547. /* Destroy deleted domains */
  7548. for (i = 0; i < ndoms_cur; i++) {
  7549. for (j = 0; j < n && !new_topology; j++) {
  7550. if (cpumask_equal(&doms_cur[i], &doms_new[j])
  7551. && dattrs_equal(dattr_cur, i, dattr_new, j))
  7552. goto match1;
  7553. }
  7554. /* no match - a current sched domain not in new doms_new[] */
  7555. detach_destroy_domains(doms_cur + i);
  7556. match1:
  7557. ;
  7558. }
  7559. if (doms_new == NULL) {
  7560. ndoms_cur = 0;
  7561. doms_new = fallback_doms;
  7562. cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
  7563. WARN_ON_ONCE(dattr_new);
  7564. }
  7565. /* Build new domains */
  7566. for (i = 0; i < ndoms_new; i++) {
  7567. for (j = 0; j < ndoms_cur && !new_topology; j++) {
  7568. if (cpumask_equal(&doms_new[i], &doms_cur[j])
  7569. && dattrs_equal(dattr_new, i, dattr_cur, j))
  7570. goto match2;
  7571. }
  7572. /* no match - add a new doms_new */
  7573. __build_sched_domains(doms_new + i,
  7574. dattr_new ? dattr_new + i : NULL);
  7575. match2:
  7576. ;
  7577. }
  7578. /* Remember the new sched domains */
  7579. if (doms_cur != fallback_doms)
  7580. kfree(doms_cur);
  7581. kfree(dattr_cur); /* kfree(NULL) is safe */
  7582. doms_cur = doms_new;
  7583. dattr_cur = dattr_new;
  7584. ndoms_cur = ndoms_new;
  7585. register_sched_domain_sysctl();
  7586. mutex_unlock(&sched_domains_mutex);
  7587. }
  7588. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  7589. static void arch_reinit_sched_domains(void)
  7590. {
  7591. get_online_cpus();
  7592. /* Destroy domains first to force the rebuild */
  7593. partition_sched_domains(0, NULL, NULL);
  7594. rebuild_sched_domains();
  7595. put_online_cpus();
  7596. }
  7597. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  7598. {
  7599. unsigned int level = 0;
  7600. if (sscanf(buf, "%u", &level) != 1)
  7601. return -EINVAL;
  7602. /*
  7603. * level is always be positive so don't check for
  7604. * level < POWERSAVINGS_BALANCE_NONE which is 0
  7605. * What happens on 0 or 1 byte write,
  7606. * need to check for count as well?
  7607. */
  7608. if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
  7609. return -EINVAL;
  7610. if (smt)
  7611. sched_smt_power_savings = level;
  7612. else
  7613. sched_mc_power_savings = level;
  7614. arch_reinit_sched_domains();
  7615. return count;
  7616. }
  7617. #ifdef CONFIG_SCHED_MC
  7618. static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
  7619. char *page)
  7620. {
  7621. return sprintf(page, "%u\n", sched_mc_power_savings);
  7622. }
  7623. static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
  7624. const char *buf, size_t count)
  7625. {
  7626. return sched_power_savings_store(buf, count, 0);
  7627. }
  7628. static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
  7629. sched_mc_power_savings_show,
  7630. sched_mc_power_savings_store);
  7631. #endif
  7632. #ifdef CONFIG_SCHED_SMT
  7633. static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
  7634. char *page)
  7635. {
  7636. return sprintf(page, "%u\n", sched_smt_power_savings);
  7637. }
  7638. static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
  7639. const char *buf, size_t count)
  7640. {
  7641. return sched_power_savings_store(buf, count, 1);
  7642. }
  7643. static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
  7644. sched_smt_power_savings_show,
  7645. sched_smt_power_savings_store);
  7646. #endif
  7647. int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  7648. {
  7649. int err = 0;
  7650. #ifdef CONFIG_SCHED_SMT
  7651. if (smt_capable())
  7652. err = sysfs_create_file(&cls->kset.kobj,
  7653. &attr_sched_smt_power_savings.attr);
  7654. #endif
  7655. #ifdef CONFIG_SCHED_MC
  7656. if (!err && mc_capable())
  7657. err = sysfs_create_file(&cls->kset.kobj,
  7658. &attr_sched_mc_power_savings.attr);
  7659. #endif
  7660. return err;
  7661. }
  7662. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  7663. #ifndef CONFIG_CPUSETS
  7664. /*
  7665. * Add online and remove offline CPUs from the scheduler domains.
  7666. * When cpusets are enabled they take over this function.
  7667. */
  7668. static int update_sched_domains(struct notifier_block *nfb,
  7669. unsigned long action, void *hcpu)
  7670. {
  7671. switch (action) {
  7672. case CPU_ONLINE:
  7673. case CPU_ONLINE_FROZEN:
  7674. case CPU_DEAD:
  7675. case CPU_DEAD_FROZEN:
  7676. partition_sched_domains(1, NULL, NULL);
  7677. return NOTIFY_OK;
  7678. default:
  7679. return NOTIFY_DONE;
  7680. }
  7681. }
  7682. #endif
  7683. static int update_runtime(struct notifier_block *nfb,
  7684. unsigned long action, void *hcpu)
  7685. {
  7686. int cpu = (int)(long)hcpu;
  7687. switch (action) {
  7688. case CPU_DOWN_PREPARE:
  7689. case CPU_DOWN_PREPARE_FROZEN:
  7690. disable_runtime(cpu_rq(cpu));
  7691. return NOTIFY_OK;
  7692. case CPU_DOWN_FAILED:
  7693. case CPU_DOWN_FAILED_FROZEN:
  7694. case CPU_ONLINE:
  7695. case CPU_ONLINE_FROZEN:
  7696. enable_runtime(cpu_rq(cpu));
  7697. return NOTIFY_OK;
  7698. default:
  7699. return NOTIFY_DONE;
  7700. }
  7701. }
  7702. void __init sched_init_smp(void)
  7703. {
  7704. cpumask_var_t non_isolated_cpus;
  7705. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  7706. #if defined(CONFIG_NUMA)
  7707. sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
  7708. GFP_KERNEL);
  7709. BUG_ON(sched_group_nodes_bycpu == NULL);
  7710. #endif
  7711. get_online_cpus();
  7712. mutex_lock(&sched_domains_mutex);
  7713. arch_init_sched_domains(cpu_online_mask);
  7714. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  7715. if (cpumask_empty(non_isolated_cpus))
  7716. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  7717. mutex_unlock(&sched_domains_mutex);
  7718. put_online_cpus();
  7719. #ifndef CONFIG_CPUSETS
  7720. /* XXX: Theoretical race here - CPU may be hotplugged now */
  7721. hotcpu_notifier(update_sched_domains, 0);
  7722. #endif
  7723. /* RT runtime code needs to handle some hotplug events */
  7724. hotcpu_notifier(update_runtime, 0);
  7725. init_hrtick();
  7726. /* Move init over to a non-isolated CPU */
  7727. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  7728. BUG();
  7729. sched_init_granularity();
  7730. free_cpumask_var(non_isolated_cpus);
  7731. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  7732. init_sched_rt_class();
  7733. }
  7734. #else
  7735. void __init sched_init_smp(void)
  7736. {
  7737. sched_init_granularity();
  7738. }
  7739. #endif /* CONFIG_SMP */
  7740. int in_sched_functions(unsigned long addr)
  7741. {
  7742. return in_lock_functions(addr) ||
  7743. (addr >= (unsigned long)__sched_text_start
  7744. && addr < (unsigned long)__sched_text_end);
  7745. }
  7746. static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  7747. {
  7748. cfs_rq->tasks_timeline = RB_ROOT;
  7749. INIT_LIST_HEAD(&cfs_rq->tasks);
  7750. #ifdef CONFIG_FAIR_GROUP_SCHED
  7751. cfs_rq->rq = rq;
  7752. #endif
  7753. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  7754. }
  7755. static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
  7756. {
  7757. struct rt_prio_array *array;
  7758. int i;
  7759. array = &rt_rq->active;
  7760. for (i = 0; i < MAX_RT_PRIO; i++) {
  7761. INIT_LIST_HEAD(array->queue + i);
  7762. __clear_bit(i, array->bitmap);
  7763. }
  7764. /* delimiter for bitsearch: */
  7765. __set_bit(MAX_RT_PRIO, array->bitmap);
  7766. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  7767. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  7768. #ifdef CONFIG_SMP
  7769. rt_rq->highest_prio.next = MAX_RT_PRIO;
  7770. #endif
  7771. #endif
  7772. #ifdef CONFIG_SMP
  7773. rt_rq->rt_nr_migratory = 0;
  7774. rt_rq->overloaded = 0;
  7775. plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
  7776. #endif
  7777. rt_rq->rt_time = 0;
  7778. rt_rq->rt_throttled = 0;
  7779. rt_rq->rt_runtime = 0;
  7780. spin_lock_init(&rt_rq->rt_runtime_lock);
  7781. #ifdef CONFIG_RT_GROUP_SCHED
  7782. rt_rq->rt_nr_boosted = 0;
  7783. rt_rq->rq = rq;
  7784. #endif
  7785. }
  7786. #ifdef CONFIG_FAIR_GROUP_SCHED
  7787. static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  7788. struct sched_entity *se, int cpu, int add,
  7789. struct sched_entity *parent)
  7790. {
  7791. struct rq *rq = cpu_rq(cpu);
  7792. tg->cfs_rq[cpu] = cfs_rq;
  7793. init_cfs_rq(cfs_rq, rq);
  7794. cfs_rq->tg = tg;
  7795. if (add)
  7796. list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  7797. tg->se[cpu] = se;
  7798. /* se could be NULL for init_task_group */
  7799. if (!se)
  7800. return;
  7801. if (!parent)
  7802. se->cfs_rq = &rq->cfs;
  7803. else
  7804. se->cfs_rq = parent->my_q;
  7805. se->my_q = cfs_rq;
  7806. se->load.weight = tg->shares;
  7807. se->load.inv_weight = 0;
  7808. se->parent = parent;
  7809. }
  7810. #endif
  7811. #ifdef CONFIG_RT_GROUP_SCHED
  7812. static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
  7813. struct sched_rt_entity *rt_se, int cpu, int add,
  7814. struct sched_rt_entity *parent)
  7815. {
  7816. struct rq *rq = cpu_rq(cpu);
  7817. tg->rt_rq[cpu] = rt_rq;
  7818. init_rt_rq(rt_rq, rq);
  7819. rt_rq->tg = tg;
  7820. rt_rq->rt_se = rt_se;
  7821. rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
  7822. if (add)
  7823. list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
  7824. tg->rt_se[cpu] = rt_se;
  7825. if (!rt_se)
  7826. return;
  7827. if (!parent)
  7828. rt_se->rt_rq = &rq->rt;
  7829. else
  7830. rt_se->rt_rq = parent->my_q;
  7831. rt_se->my_q = rt_rq;
  7832. rt_se->parent = parent;
  7833. INIT_LIST_HEAD(&rt_se->run_list);
  7834. }
  7835. #endif
  7836. void __init sched_init(void)
  7837. {
  7838. int i, j;
  7839. unsigned long alloc_size = 0, ptr;
  7840. #ifdef CONFIG_FAIR_GROUP_SCHED
  7841. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7842. #endif
  7843. #ifdef CONFIG_RT_GROUP_SCHED
  7844. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  7845. #endif
  7846. #ifdef CONFIG_USER_SCHED
  7847. alloc_size *= 2;
  7848. #endif
  7849. #ifdef CONFIG_CPUMASK_OFFSTACK
  7850. alloc_size += num_possible_cpus() * cpumask_size();
  7851. #endif
  7852. /*
  7853. * As sched_init() is called before page_alloc is setup,
  7854. * we use alloc_bootmem().
  7855. */
  7856. if (alloc_size) {
  7857. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  7858. #ifdef CONFIG_FAIR_GROUP_SCHED
  7859. init_task_group.se = (struct sched_entity **)ptr;
  7860. ptr += nr_cpu_ids * sizeof(void **);
  7861. init_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7862. ptr += nr_cpu_ids * sizeof(void **);
  7863. #ifdef CONFIG_USER_SCHED
  7864. root_task_group.se = (struct sched_entity **)ptr;
  7865. ptr += nr_cpu_ids * sizeof(void **);
  7866. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  7867. ptr += nr_cpu_ids * sizeof(void **);
  7868. #endif /* CONFIG_USER_SCHED */
  7869. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7870. #ifdef CONFIG_RT_GROUP_SCHED
  7871. init_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7872. ptr += nr_cpu_ids * sizeof(void **);
  7873. init_task_group.rt_rq = (struct rt_rq **)ptr;
  7874. ptr += nr_cpu_ids * sizeof(void **);
  7875. #ifdef CONFIG_USER_SCHED
  7876. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  7877. ptr += nr_cpu_ids * sizeof(void **);
  7878. root_task_group.rt_rq = (struct rt_rq **)ptr;
  7879. ptr += nr_cpu_ids * sizeof(void **);
  7880. #endif /* CONFIG_USER_SCHED */
  7881. #endif /* CONFIG_RT_GROUP_SCHED */
  7882. #ifdef CONFIG_CPUMASK_OFFSTACK
  7883. for_each_possible_cpu(i) {
  7884. per_cpu(load_balance_tmpmask, i) = (void *)ptr;
  7885. ptr += cpumask_size();
  7886. }
  7887. #endif /* CONFIG_CPUMASK_OFFSTACK */
  7888. }
  7889. #ifdef CONFIG_SMP
  7890. init_defrootdomain();
  7891. #endif
  7892. init_rt_bandwidth(&def_rt_bandwidth,
  7893. global_rt_period(), global_rt_runtime());
  7894. #ifdef CONFIG_RT_GROUP_SCHED
  7895. init_rt_bandwidth(&init_task_group.rt_bandwidth,
  7896. global_rt_period(), global_rt_runtime());
  7897. #ifdef CONFIG_USER_SCHED
  7898. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  7899. global_rt_period(), RUNTIME_INF);
  7900. #endif /* CONFIG_USER_SCHED */
  7901. #endif /* CONFIG_RT_GROUP_SCHED */
  7902. #ifdef CONFIG_GROUP_SCHED
  7903. list_add(&init_task_group.list, &task_groups);
  7904. INIT_LIST_HEAD(&init_task_group.children);
  7905. #ifdef CONFIG_USER_SCHED
  7906. INIT_LIST_HEAD(&root_task_group.children);
  7907. init_task_group.parent = &root_task_group;
  7908. list_add(&init_task_group.siblings, &root_task_group.children);
  7909. #endif /* CONFIG_USER_SCHED */
  7910. #endif /* CONFIG_GROUP_SCHED */
  7911. for_each_possible_cpu(i) {
  7912. struct rq *rq;
  7913. rq = cpu_rq(i);
  7914. spin_lock_init(&rq->lock);
  7915. rq->nr_running = 0;
  7916. rq->calc_load_active = 0;
  7917. rq->calc_load_update = jiffies + LOAD_FREQ;
  7918. init_cfs_rq(&rq->cfs, rq);
  7919. init_rt_rq(&rq->rt, rq);
  7920. #ifdef CONFIG_FAIR_GROUP_SCHED
  7921. init_task_group.shares = init_task_group_load;
  7922. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  7923. #ifdef CONFIG_CGROUP_SCHED
  7924. /*
  7925. * How much cpu bandwidth does init_task_group get?
  7926. *
  7927. * In case of task-groups formed thr' the cgroup filesystem, it
  7928. * gets 100% of the cpu resources in the system. This overall
  7929. * system cpu resource is divided among the tasks of
  7930. * init_task_group and its child task-groups in a fair manner,
  7931. * based on each entity's (task or task-group's) weight
  7932. * (se->load.weight).
  7933. *
  7934. * In other words, if init_task_group has 10 tasks of weight
  7935. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  7936. * then A0's share of the cpu resource is:
  7937. *
  7938. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  7939. *
  7940. * We achieve this by letting init_task_group's tasks sit
  7941. * directly in rq->cfs (i.e init_task_group->se[] = NULL).
  7942. */
  7943. init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
  7944. #elif defined CONFIG_USER_SCHED
  7945. root_task_group.shares = NICE_0_LOAD;
  7946. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
  7947. /*
  7948. * In case of task-groups formed thr' the user id of tasks,
  7949. * init_task_group represents tasks belonging to root user.
  7950. * Hence it forms a sibling of all subsequent groups formed.
  7951. * In this case, init_task_group gets only a fraction of overall
  7952. * system cpu resource, based on the weight assigned to root
  7953. * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
  7954. * by letting tasks of init_task_group sit in a separate cfs_rq
  7955. * (init_cfs_rq) and having one entity represent this group of
  7956. * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
  7957. */
  7958. init_tg_cfs_entry(&init_task_group,
  7959. &per_cpu(init_cfs_rq, i),
  7960. &per_cpu(init_sched_entity, i), i, 1,
  7961. root_task_group.se[i]);
  7962. #endif
  7963. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7964. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  7965. #ifdef CONFIG_RT_GROUP_SCHED
  7966. INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
  7967. #ifdef CONFIG_CGROUP_SCHED
  7968. init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
  7969. #elif defined CONFIG_USER_SCHED
  7970. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
  7971. init_tg_rt_entry(&init_task_group,
  7972. &per_cpu(init_rt_rq, i),
  7973. &per_cpu(init_sched_rt_entity, i), i, 1,
  7974. root_task_group.rt_se[i]);
  7975. #endif
  7976. #endif
  7977. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  7978. rq->cpu_load[j] = 0;
  7979. #ifdef CONFIG_SMP
  7980. rq->sd = NULL;
  7981. rq->rd = NULL;
  7982. rq->active_balance = 0;
  7983. rq->next_balance = jiffies;
  7984. rq->push_cpu = 0;
  7985. rq->cpu = i;
  7986. rq->online = 0;
  7987. rq->migration_thread = NULL;
  7988. INIT_LIST_HEAD(&rq->migration_queue);
  7989. rq_attach_root(rq, &def_root_domain);
  7990. #endif
  7991. init_rq_hrtick(rq);
  7992. atomic_set(&rq->nr_iowait, 0);
  7993. }
  7994. set_load_weight(&init_task);
  7995. #ifdef CONFIG_PREEMPT_NOTIFIERS
  7996. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  7997. #endif
  7998. #ifdef CONFIG_SMP
  7999. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  8000. #endif
  8001. #ifdef CONFIG_RT_MUTEXES
  8002. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  8003. #endif
  8004. /*
  8005. * The boot idle thread does lazy MMU switching as well:
  8006. */
  8007. atomic_inc(&init_mm.mm_count);
  8008. enter_lazy_tlb(&init_mm, current);
  8009. /*
  8010. * Make us the idle thread. Technically, schedule() should not be
  8011. * called from this thread, however somewhere below it might be,
  8012. * but because we are the idle thread, we just pick up running again
  8013. * when this runqueue becomes "idle".
  8014. */
  8015. init_idle(current, smp_processor_id());
  8016. calc_load_update = jiffies + LOAD_FREQ;
  8017. /*
  8018. * During early bootup we pretend to be a normal task:
  8019. */
  8020. current->sched_class = &fair_sched_class;
  8021. /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
  8022. alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
  8023. #ifdef CONFIG_SMP
  8024. #ifdef CONFIG_NO_HZ
  8025. alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
  8026. alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
  8027. #endif
  8028. alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  8029. #endif /* SMP */
  8030. perf_counter_init();
  8031. scheduler_running = 1;
  8032. }
  8033. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  8034. void __might_sleep(char *file, int line)
  8035. {
  8036. #ifdef in_atomic
  8037. static unsigned long prev_jiffy; /* ratelimiting */
  8038. if ((!in_atomic() && !irqs_disabled()) ||
  8039. system_state != SYSTEM_RUNNING || oops_in_progress)
  8040. return;
  8041. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  8042. return;
  8043. prev_jiffy = jiffies;
  8044. printk(KERN_ERR
  8045. "BUG: sleeping function called from invalid context at %s:%d\n",
  8046. file, line);
  8047. printk(KERN_ERR
  8048. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  8049. in_atomic(), irqs_disabled(),
  8050. current->pid, current->comm);
  8051. debug_show_held_locks(current);
  8052. if (irqs_disabled())
  8053. print_irqtrace_events(current);
  8054. dump_stack();
  8055. #endif
  8056. }
  8057. EXPORT_SYMBOL(__might_sleep);
  8058. #endif
  8059. #ifdef CONFIG_MAGIC_SYSRQ
  8060. static void normalize_task(struct rq *rq, struct task_struct *p)
  8061. {
  8062. int on_rq;
  8063. update_rq_clock(rq);
  8064. on_rq = p->se.on_rq;
  8065. if (on_rq)
  8066. deactivate_task(rq, p, 0);
  8067. __setscheduler(rq, p, SCHED_NORMAL, 0);
  8068. if (on_rq) {
  8069. activate_task(rq, p, 0);
  8070. resched_task(rq->curr);
  8071. }
  8072. }
  8073. void normalize_rt_tasks(void)
  8074. {
  8075. struct task_struct *g, *p;
  8076. unsigned long flags;
  8077. struct rq *rq;
  8078. read_lock_irqsave(&tasklist_lock, flags);
  8079. do_each_thread(g, p) {
  8080. /*
  8081. * Only normalize user tasks:
  8082. */
  8083. if (!p->mm)
  8084. continue;
  8085. p->se.exec_start = 0;
  8086. #ifdef CONFIG_SCHEDSTATS
  8087. p->se.wait_start = 0;
  8088. p->se.sleep_start = 0;
  8089. p->se.block_start = 0;
  8090. #endif
  8091. if (!rt_task(p)) {
  8092. /*
  8093. * Renice negative nice level userspace
  8094. * tasks back to 0:
  8095. */
  8096. if (TASK_NICE(p) < 0 && p->mm)
  8097. set_user_nice(p, 0);
  8098. continue;
  8099. }
  8100. spin_lock(&p->pi_lock);
  8101. rq = __task_rq_lock(p);
  8102. normalize_task(rq, p);
  8103. __task_rq_unlock(rq);
  8104. spin_unlock(&p->pi_lock);
  8105. } while_each_thread(g, p);
  8106. read_unlock_irqrestore(&tasklist_lock, flags);
  8107. }
  8108. #endif /* CONFIG_MAGIC_SYSRQ */
  8109. #ifdef CONFIG_IA64
  8110. /*
  8111. * These functions are only useful for the IA64 MCA handling.
  8112. *
  8113. * They can only be called when the whole system has been
  8114. * stopped - every CPU needs to be quiescent, and no scheduling
  8115. * activity can take place. Using them for anything else would
  8116. * be a serious bug, and as a result, they aren't even visible
  8117. * under any other configuration.
  8118. */
  8119. /**
  8120. * curr_task - return the current task for a given cpu.
  8121. * @cpu: the processor in question.
  8122. *
  8123. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8124. */
  8125. struct task_struct *curr_task(int cpu)
  8126. {
  8127. return cpu_curr(cpu);
  8128. }
  8129. /**
  8130. * set_curr_task - set the current task for a given cpu.
  8131. * @cpu: the processor in question.
  8132. * @p: the task pointer to set.
  8133. *
  8134. * Description: This function must only be used when non-maskable interrupts
  8135. * are serviced on a separate stack. It allows the architecture to switch the
  8136. * notion of the current task on a cpu in a non-blocking manner. This function
  8137. * must be called with all CPU's synchronized, and interrupts disabled, the
  8138. * and caller must save the original value of the current task (see
  8139. * curr_task() above) and restore that value before reenabling interrupts and
  8140. * re-starting the system.
  8141. *
  8142. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  8143. */
  8144. void set_curr_task(int cpu, struct task_struct *p)
  8145. {
  8146. cpu_curr(cpu) = p;
  8147. }
  8148. #endif
  8149. #ifdef CONFIG_FAIR_GROUP_SCHED
  8150. static void free_fair_sched_group(struct task_group *tg)
  8151. {
  8152. int i;
  8153. for_each_possible_cpu(i) {
  8154. if (tg->cfs_rq)
  8155. kfree(tg->cfs_rq[i]);
  8156. if (tg->se)
  8157. kfree(tg->se[i]);
  8158. }
  8159. kfree(tg->cfs_rq);
  8160. kfree(tg->se);
  8161. }
  8162. static
  8163. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8164. {
  8165. struct cfs_rq *cfs_rq;
  8166. struct sched_entity *se;
  8167. struct rq *rq;
  8168. int i;
  8169. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  8170. if (!tg->cfs_rq)
  8171. goto err;
  8172. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  8173. if (!tg->se)
  8174. goto err;
  8175. tg->shares = NICE_0_LOAD;
  8176. for_each_possible_cpu(i) {
  8177. rq = cpu_rq(i);
  8178. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  8179. GFP_KERNEL, cpu_to_node(i));
  8180. if (!cfs_rq)
  8181. goto err;
  8182. se = kzalloc_node(sizeof(struct sched_entity),
  8183. GFP_KERNEL, cpu_to_node(i));
  8184. if (!se)
  8185. goto err;
  8186. init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
  8187. }
  8188. return 1;
  8189. err:
  8190. return 0;
  8191. }
  8192. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8193. {
  8194. list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
  8195. &cpu_rq(cpu)->leaf_cfs_rq_list);
  8196. }
  8197. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8198. {
  8199. list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
  8200. }
  8201. #else /* !CONFG_FAIR_GROUP_SCHED */
  8202. static inline void free_fair_sched_group(struct task_group *tg)
  8203. {
  8204. }
  8205. static inline
  8206. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  8207. {
  8208. return 1;
  8209. }
  8210. static inline void register_fair_sched_group(struct task_group *tg, int cpu)
  8211. {
  8212. }
  8213. static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
  8214. {
  8215. }
  8216. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8217. #ifdef CONFIG_RT_GROUP_SCHED
  8218. static void free_rt_sched_group(struct task_group *tg)
  8219. {
  8220. int i;
  8221. destroy_rt_bandwidth(&tg->rt_bandwidth);
  8222. for_each_possible_cpu(i) {
  8223. if (tg->rt_rq)
  8224. kfree(tg->rt_rq[i]);
  8225. if (tg->rt_se)
  8226. kfree(tg->rt_se[i]);
  8227. }
  8228. kfree(tg->rt_rq);
  8229. kfree(tg->rt_se);
  8230. }
  8231. static
  8232. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8233. {
  8234. struct rt_rq *rt_rq;
  8235. struct sched_rt_entity *rt_se;
  8236. struct rq *rq;
  8237. int i;
  8238. tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
  8239. if (!tg->rt_rq)
  8240. goto err;
  8241. tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
  8242. if (!tg->rt_se)
  8243. goto err;
  8244. init_rt_bandwidth(&tg->rt_bandwidth,
  8245. ktime_to_ns(def_rt_bandwidth.rt_period), 0);
  8246. for_each_possible_cpu(i) {
  8247. rq = cpu_rq(i);
  8248. rt_rq = kzalloc_node(sizeof(struct rt_rq),
  8249. GFP_KERNEL, cpu_to_node(i));
  8250. if (!rt_rq)
  8251. goto err;
  8252. rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
  8253. GFP_KERNEL, cpu_to_node(i));
  8254. if (!rt_se)
  8255. goto err;
  8256. init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
  8257. }
  8258. return 1;
  8259. err:
  8260. return 0;
  8261. }
  8262. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8263. {
  8264. list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
  8265. &cpu_rq(cpu)->leaf_rt_rq_list);
  8266. }
  8267. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8268. {
  8269. list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
  8270. }
  8271. #else /* !CONFIG_RT_GROUP_SCHED */
  8272. static inline void free_rt_sched_group(struct task_group *tg)
  8273. {
  8274. }
  8275. static inline
  8276. int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
  8277. {
  8278. return 1;
  8279. }
  8280. static inline void register_rt_sched_group(struct task_group *tg, int cpu)
  8281. {
  8282. }
  8283. static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
  8284. {
  8285. }
  8286. #endif /* CONFIG_RT_GROUP_SCHED */
  8287. #ifdef CONFIG_GROUP_SCHED
  8288. static void free_sched_group(struct task_group *tg)
  8289. {
  8290. free_fair_sched_group(tg);
  8291. free_rt_sched_group(tg);
  8292. kfree(tg);
  8293. }
  8294. /* allocate runqueue etc for a new task group */
  8295. struct task_group *sched_create_group(struct task_group *parent)
  8296. {
  8297. struct task_group *tg;
  8298. unsigned long flags;
  8299. int i;
  8300. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  8301. if (!tg)
  8302. return ERR_PTR(-ENOMEM);
  8303. if (!alloc_fair_sched_group(tg, parent))
  8304. goto err;
  8305. if (!alloc_rt_sched_group(tg, parent))
  8306. goto err;
  8307. spin_lock_irqsave(&task_group_lock, flags);
  8308. for_each_possible_cpu(i) {
  8309. register_fair_sched_group(tg, i);
  8310. register_rt_sched_group(tg, i);
  8311. }
  8312. list_add_rcu(&tg->list, &task_groups);
  8313. WARN_ON(!parent); /* root should already exist */
  8314. tg->parent = parent;
  8315. INIT_LIST_HEAD(&tg->children);
  8316. list_add_rcu(&tg->siblings, &parent->children);
  8317. spin_unlock_irqrestore(&task_group_lock, flags);
  8318. return tg;
  8319. err:
  8320. free_sched_group(tg);
  8321. return ERR_PTR(-ENOMEM);
  8322. }
  8323. /* rcu callback to free various structures associated with a task group */
  8324. static void free_sched_group_rcu(struct rcu_head *rhp)
  8325. {
  8326. /* now it should be safe to free those cfs_rqs */
  8327. free_sched_group(container_of(rhp, struct task_group, rcu));
  8328. }
  8329. /* Destroy runqueue etc associated with a task group */
  8330. void sched_destroy_group(struct task_group *tg)
  8331. {
  8332. unsigned long flags;
  8333. int i;
  8334. spin_lock_irqsave(&task_group_lock, flags);
  8335. for_each_possible_cpu(i) {
  8336. unregister_fair_sched_group(tg, i);
  8337. unregister_rt_sched_group(tg, i);
  8338. }
  8339. list_del_rcu(&tg->list);
  8340. list_del_rcu(&tg->siblings);
  8341. spin_unlock_irqrestore(&task_group_lock, flags);
  8342. /* wait for possible concurrent references to cfs_rqs complete */
  8343. call_rcu(&tg->rcu, free_sched_group_rcu);
  8344. }
  8345. /* change task's runqueue when it moves between groups.
  8346. * The caller of this function should have put the task in its new group
  8347. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  8348. * reflect its new group.
  8349. */
  8350. void sched_move_task(struct task_struct *tsk)
  8351. {
  8352. int on_rq, running;
  8353. unsigned long flags;
  8354. struct rq *rq;
  8355. rq = task_rq_lock(tsk, &flags);
  8356. update_rq_clock(rq);
  8357. running = task_current(rq, tsk);
  8358. on_rq = tsk->se.on_rq;
  8359. if (on_rq)
  8360. dequeue_task(rq, tsk, 0);
  8361. if (unlikely(running))
  8362. tsk->sched_class->put_prev_task(rq, tsk);
  8363. set_task_rq(tsk, task_cpu(tsk));
  8364. #ifdef CONFIG_FAIR_GROUP_SCHED
  8365. if (tsk->sched_class->moved_group)
  8366. tsk->sched_class->moved_group(tsk);
  8367. #endif
  8368. if (unlikely(running))
  8369. tsk->sched_class->set_curr_task(rq);
  8370. if (on_rq)
  8371. enqueue_task(rq, tsk, 0);
  8372. task_rq_unlock(rq, &flags);
  8373. }
  8374. #endif /* CONFIG_GROUP_SCHED */
  8375. #ifdef CONFIG_FAIR_GROUP_SCHED
  8376. static void __set_se_shares(struct sched_entity *se, unsigned long shares)
  8377. {
  8378. struct cfs_rq *cfs_rq = se->cfs_rq;
  8379. int on_rq;
  8380. on_rq = se->on_rq;
  8381. if (on_rq)
  8382. dequeue_entity(cfs_rq, se, 0);
  8383. se->load.weight = shares;
  8384. se->load.inv_weight = 0;
  8385. if (on_rq)
  8386. enqueue_entity(cfs_rq, se, 0);
  8387. }
  8388. static void set_se_shares(struct sched_entity *se, unsigned long shares)
  8389. {
  8390. struct cfs_rq *cfs_rq = se->cfs_rq;
  8391. struct rq *rq = cfs_rq->rq;
  8392. unsigned long flags;
  8393. spin_lock_irqsave(&rq->lock, flags);
  8394. __set_se_shares(se, shares);
  8395. spin_unlock_irqrestore(&rq->lock, flags);
  8396. }
  8397. static DEFINE_MUTEX(shares_mutex);
  8398. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  8399. {
  8400. int i;
  8401. unsigned long flags;
  8402. /*
  8403. * We can't change the weight of the root cgroup.
  8404. */
  8405. if (!tg->se[0])
  8406. return -EINVAL;
  8407. if (shares < MIN_SHARES)
  8408. shares = MIN_SHARES;
  8409. else if (shares > MAX_SHARES)
  8410. shares = MAX_SHARES;
  8411. mutex_lock(&shares_mutex);
  8412. if (tg->shares == shares)
  8413. goto done;
  8414. spin_lock_irqsave(&task_group_lock, flags);
  8415. for_each_possible_cpu(i)
  8416. unregister_fair_sched_group(tg, i);
  8417. list_del_rcu(&tg->siblings);
  8418. spin_unlock_irqrestore(&task_group_lock, flags);
  8419. /* wait for any ongoing reference to this group to finish */
  8420. synchronize_sched();
  8421. /*
  8422. * Now we are free to modify the group's share on each cpu
  8423. * w/o tripping rebalance_share or load_balance_fair.
  8424. */
  8425. tg->shares = shares;
  8426. for_each_possible_cpu(i) {
  8427. /*
  8428. * force a rebalance
  8429. */
  8430. cfs_rq_set_shares(tg->cfs_rq[i], 0);
  8431. set_se_shares(tg->se[i], shares);
  8432. }
  8433. /*
  8434. * Enable load balance activity on this group, by inserting it back on
  8435. * each cpu's rq->leaf_cfs_rq_list.
  8436. */
  8437. spin_lock_irqsave(&task_group_lock, flags);
  8438. for_each_possible_cpu(i)
  8439. register_fair_sched_group(tg, i);
  8440. list_add_rcu(&tg->siblings, &tg->parent->children);
  8441. spin_unlock_irqrestore(&task_group_lock, flags);
  8442. done:
  8443. mutex_unlock(&shares_mutex);
  8444. return 0;
  8445. }
  8446. unsigned long sched_group_shares(struct task_group *tg)
  8447. {
  8448. return tg->shares;
  8449. }
  8450. #endif
  8451. #ifdef CONFIG_RT_GROUP_SCHED
  8452. /*
  8453. * Ensure that the real time constraints are schedulable.
  8454. */
  8455. static DEFINE_MUTEX(rt_constraints_mutex);
  8456. static unsigned long to_ratio(u64 period, u64 runtime)
  8457. {
  8458. if (runtime == RUNTIME_INF)
  8459. return 1ULL << 20;
  8460. return div64_u64(runtime << 20, period);
  8461. }
  8462. /* Must be called with tasklist_lock held */
  8463. static inline int tg_has_rt_tasks(struct task_group *tg)
  8464. {
  8465. struct task_struct *g, *p;
  8466. do_each_thread(g, p) {
  8467. if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
  8468. return 1;
  8469. } while_each_thread(g, p);
  8470. return 0;
  8471. }
  8472. struct rt_schedulable_data {
  8473. struct task_group *tg;
  8474. u64 rt_period;
  8475. u64 rt_runtime;
  8476. };
  8477. static int tg_schedulable(struct task_group *tg, void *data)
  8478. {
  8479. struct rt_schedulable_data *d = data;
  8480. struct task_group *child;
  8481. unsigned long total, sum = 0;
  8482. u64 period, runtime;
  8483. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8484. runtime = tg->rt_bandwidth.rt_runtime;
  8485. if (tg == d->tg) {
  8486. period = d->rt_period;
  8487. runtime = d->rt_runtime;
  8488. }
  8489. #ifdef CONFIG_USER_SCHED
  8490. if (tg == &root_task_group) {
  8491. period = global_rt_period();
  8492. runtime = global_rt_runtime();
  8493. }
  8494. #endif
  8495. /*
  8496. * Cannot have more runtime than the period.
  8497. */
  8498. if (runtime > period && runtime != RUNTIME_INF)
  8499. return -EINVAL;
  8500. /*
  8501. * Ensure we don't starve existing RT tasks.
  8502. */
  8503. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  8504. return -EBUSY;
  8505. total = to_ratio(period, runtime);
  8506. /*
  8507. * Nobody can have more than the global setting allows.
  8508. */
  8509. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  8510. return -EINVAL;
  8511. /*
  8512. * The sum of our children's runtime should not exceed our own.
  8513. */
  8514. list_for_each_entry_rcu(child, &tg->children, siblings) {
  8515. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  8516. runtime = child->rt_bandwidth.rt_runtime;
  8517. if (child == d->tg) {
  8518. period = d->rt_period;
  8519. runtime = d->rt_runtime;
  8520. }
  8521. sum += to_ratio(period, runtime);
  8522. }
  8523. if (sum > total)
  8524. return -EINVAL;
  8525. return 0;
  8526. }
  8527. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  8528. {
  8529. struct rt_schedulable_data data = {
  8530. .tg = tg,
  8531. .rt_period = period,
  8532. .rt_runtime = runtime,
  8533. };
  8534. return walk_tg_tree(tg_schedulable, tg_nop, &data);
  8535. }
  8536. static int tg_set_bandwidth(struct task_group *tg,
  8537. u64 rt_period, u64 rt_runtime)
  8538. {
  8539. int i, err = 0;
  8540. mutex_lock(&rt_constraints_mutex);
  8541. read_lock(&tasklist_lock);
  8542. err = __rt_schedulable(tg, rt_period, rt_runtime);
  8543. if (err)
  8544. goto unlock;
  8545. spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8546. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  8547. tg->rt_bandwidth.rt_runtime = rt_runtime;
  8548. for_each_possible_cpu(i) {
  8549. struct rt_rq *rt_rq = tg->rt_rq[i];
  8550. spin_lock(&rt_rq->rt_runtime_lock);
  8551. rt_rq->rt_runtime = rt_runtime;
  8552. spin_unlock(&rt_rq->rt_runtime_lock);
  8553. }
  8554. spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  8555. unlock:
  8556. read_unlock(&tasklist_lock);
  8557. mutex_unlock(&rt_constraints_mutex);
  8558. return err;
  8559. }
  8560. int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  8561. {
  8562. u64 rt_runtime, rt_period;
  8563. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8564. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  8565. if (rt_runtime_us < 0)
  8566. rt_runtime = RUNTIME_INF;
  8567. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8568. }
  8569. long sched_group_rt_runtime(struct task_group *tg)
  8570. {
  8571. u64 rt_runtime_us;
  8572. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  8573. return -1;
  8574. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  8575. do_div(rt_runtime_us, NSEC_PER_USEC);
  8576. return rt_runtime_us;
  8577. }
  8578. int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  8579. {
  8580. u64 rt_runtime, rt_period;
  8581. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  8582. rt_runtime = tg->rt_bandwidth.rt_runtime;
  8583. if (rt_period == 0)
  8584. return -EINVAL;
  8585. return tg_set_bandwidth(tg, rt_period, rt_runtime);
  8586. }
  8587. long sched_group_rt_period(struct task_group *tg)
  8588. {
  8589. u64 rt_period_us;
  8590. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  8591. do_div(rt_period_us, NSEC_PER_USEC);
  8592. return rt_period_us;
  8593. }
  8594. static int sched_rt_global_constraints(void)
  8595. {
  8596. u64 runtime, period;
  8597. int ret = 0;
  8598. if (sysctl_sched_rt_period <= 0)
  8599. return -EINVAL;
  8600. runtime = global_rt_runtime();
  8601. period = global_rt_period();
  8602. /*
  8603. * Sanity check on the sysctl variables.
  8604. */
  8605. if (runtime > period && runtime != RUNTIME_INF)
  8606. return -EINVAL;
  8607. mutex_lock(&rt_constraints_mutex);
  8608. read_lock(&tasklist_lock);
  8609. ret = __rt_schedulable(NULL, 0, 0);
  8610. read_unlock(&tasklist_lock);
  8611. mutex_unlock(&rt_constraints_mutex);
  8612. return ret;
  8613. }
  8614. int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  8615. {
  8616. /* Don't accept realtime tasks when there is no way for them to run */
  8617. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  8618. return 0;
  8619. return 1;
  8620. }
  8621. #else /* !CONFIG_RT_GROUP_SCHED */
  8622. static int sched_rt_global_constraints(void)
  8623. {
  8624. unsigned long flags;
  8625. int i;
  8626. if (sysctl_sched_rt_period <= 0)
  8627. return -EINVAL;
  8628. /*
  8629. * There's always some RT tasks in the root group
  8630. * -- migration, kstopmachine etc..
  8631. */
  8632. if (sysctl_sched_rt_runtime == 0)
  8633. return -EBUSY;
  8634. spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  8635. for_each_possible_cpu(i) {
  8636. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  8637. spin_lock(&rt_rq->rt_runtime_lock);
  8638. rt_rq->rt_runtime = global_rt_runtime();
  8639. spin_unlock(&rt_rq->rt_runtime_lock);
  8640. }
  8641. spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  8642. return 0;
  8643. }
  8644. #endif /* CONFIG_RT_GROUP_SCHED */
  8645. int sched_rt_handler(struct ctl_table *table, int write,
  8646. struct file *filp, void __user *buffer, size_t *lenp,
  8647. loff_t *ppos)
  8648. {
  8649. int ret;
  8650. int old_period, old_runtime;
  8651. static DEFINE_MUTEX(mutex);
  8652. mutex_lock(&mutex);
  8653. old_period = sysctl_sched_rt_period;
  8654. old_runtime = sysctl_sched_rt_runtime;
  8655. ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
  8656. if (!ret && write) {
  8657. ret = sched_rt_global_constraints();
  8658. if (ret) {
  8659. sysctl_sched_rt_period = old_period;
  8660. sysctl_sched_rt_runtime = old_runtime;
  8661. } else {
  8662. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  8663. def_rt_bandwidth.rt_period =
  8664. ns_to_ktime(global_rt_period());
  8665. }
  8666. }
  8667. mutex_unlock(&mutex);
  8668. return ret;
  8669. }
  8670. #ifdef CONFIG_CGROUP_SCHED
  8671. /* return corresponding task_group object of a cgroup */
  8672. static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
  8673. {
  8674. return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
  8675. struct task_group, css);
  8676. }
  8677. static struct cgroup_subsys_state *
  8678. cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8679. {
  8680. struct task_group *tg, *parent;
  8681. if (!cgrp->parent) {
  8682. /* This is early initialization for the top cgroup */
  8683. return &init_task_group.css;
  8684. }
  8685. parent = cgroup_tg(cgrp->parent);
  8686. tg = sched_create_group(parent);
  8687. if (IS_ERR(tg))
  8688. return ERR_PTR(-ENOMEM);
  8689. return &tg->css;
  8690. }
  8691. static void
  8692. cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8693. {
  8694. struct task_group *tg = cgroup_tg(cgrp);
  8695. sched_destroy_group(tg);
  8696. }
  8697. static int
  8698. cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8699. struct task_struct *tsk)
  8700. {
  8701. #ifdef CONFIG_RT_GROUP_SCHED
  8702. if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
  8703. return -EINVAL;
  8704. #else
  8705. /* We don't support RT-tasks being in separate groups */
  8706. if (tsk->sched_class != &fair_sched_class)
  8707. return -EINVAL;
  8708. #endif
  8709. return 0;
  8710. }
  8711. static void
  8712. cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
  8713. struct cgroup *old_cont, struct task_struct *tsk)
  8714. {
  8715. sched_move_task(tsk);
  8716. }
  8717. #ifdef CONFIG_FAIR_GROUP_SCHED
  8718. static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
  8719. u64 shareval)
  8720. {
  8721. return sched_group_set_shares(cgroup_tg(cgrp), shareval);
  8722. }
  8723. static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
  8724. {
  8725. struct task_group *tg = cgroup_tg(cgrp);
  8726. return (u64) tg->shares;
  8727. }
  8728. #endif /* CONFIG_FAIR_GROUP_SCHED */
  8729. #ifdef CONFIG_RT_GROUP_SCHED
  8730. static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
  8731. s64 val)
  8732. {
  8733. return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
  8734. }
  8735. static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
  8736. {
  8737. return sched_group_rt_runtime(cgroup_tg(cgrp));
  8738. }
  8739. static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
  8740. u64 rt_period_us)
  8741. {
  8742. return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
  8743. }
  8744. static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
  8745. {
  8746. return sched_group_rt_period(cgroup_tg(cgrp));
  8747. }
  8748. #endif /* CONFIG_RT_GROUP_SCHED */
  8749. static struct cftype cpu_files[] = {
  8750. #ifdef CONFIG_FAIR_GROUP_SCHED
  8751. {
  8752. .name = "shares",
  8753. .read_u64 = cpu_shares_read_u64,
  8754. .write_u64 = cpu_shares_write_u64,
  8755. },
  8756. #endif
  8757. #ifdef CONFIG_RT_GROUP_SCHED
  8758. {
  8759. .name = "rt_runtime_us",
  8760. .read_s64 = cpu_rt_runtime_read,
  8761. .write_s64 = cpu_rt_runtime_write,
  8762. },
  8763. {
  8764. .name = "rt_period_us",
  8765. .read_u64 = cpu_rt_period_read_uint,
  8766. .write_u64 = cpu_rt_period_write_uint,
  8767. },
  8768. #endif
  8769. };
  8770. static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  8771. {
  8772. return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
  8773. }
  8774. struct cgroup_subsys cpu_cgroup_subsys = {
  8775. .name = "cpu",
  8776. .create = cpu_cgroup_create,
  8777. .destroy = cpu_cgroup_destroy,
  8778. .can_attach = cpu_cgroup_can_attach,
  8779. .attach = cpu_cgroup_attach,
  8780. .populate = cpu_cgroup_populate,
  8781. .subsys_id = cpu_cgroup_subsys_id,
  8782. .early_init = 1,
  8783. };
  8784. #endif /* CONFIG_CGROUP_SCHED */
  8785. #ifdef CONFIG_CGROUP_CPUACCT
  8786. /*
  8787. * CPU accounting code for task groups.
  8788. *
  8789. * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
  8790. * (balbir@in.ibm.com).
  8791. */
  8792. /* track cpu usage of a group of tasks and its child groups */
  8793. struct cpuacct {
  8794. struct cgroup_subsys_state css;
  8795. /* cpuusage holds pointer to a u64-type object on every cpu */
  8796. u64 *cpuusage;
  8797. struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
  8798. struct cpuacct *parent;
  8799. };
  8800. struct cgroup_subsys cpuacct_subsys;
  8801. /* return cpu accounting group corresponding to this container */
  8802. static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
  8803. {
  8804. return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
  8805. struct cpuacct, css);
  8806. }
  8807. /* return cpu accounting group to which this task belongs */
  8808. static inline struct cpuacct *task_ca(struct task_struct *tsk)
  8809. {
  8810. return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
  8811. struct cpuacct, css);
  8812. }
  8813. /* create a new cpu accounting group */
  8814. static struct cgroup_subsys_state *cpuacct_create(
  8815. struct cgroup_subsys *ss, struct cgroup *cgrp)
  8816. {
  8817. struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
  8818. int i;
  8819. if (!ca)
  8820. goto out;
  8821. ca->cpuusage = alloc_percpu(u64);
  8822. if (!ca->cpuusage)
  8823. goto out_free_ca;
  8824. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8825. if (percpu_counter_init(&ca->cpustat[i], 0))
  8826. goto out_free_counters;
  8827. if (cgrp->parent)
  8828. ca->parent = cgroup_ca(cgrp->parent);
  8829. return &ca->css;
  8830. out_free_counters:
  8831. while (--i >= 0)
  8832. percpu_counter_destroy(&ca->cpustat[i]);
  8833. free_percpu(ca->cpuusage);
  8834. out_free_ca:
  8835. kfree(ca);
  8836. out:
  8837. return ERR_PTR(-ENOMEM);
  8838. }
  8839. /* destroy an existing cpu accounting group */
  8840. static void
  8841. cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8842. {
  8843. struct cpuacct *ca = cgroup_ca(cgrp);
  8844. int i;
  8845. for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
  8846. percpu_counter_destroy(&ca->cpustat[i]);
  8847. free_percpu(ca->cpuusage);
  8848. kfree(ca);
  8849. }
  8850. static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
  8851. {
  8852. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8853. u64 data;
  8854. #ifndef CONFIG_64BIT
  8855. /*
  8856. * Take rq->lock to make 64-bit read safe on 32-bit platforms.
  8857. */
  8858. spin_lock_irq(&cpu_rq(cpu)->lock);
  8859. data = *cpuusage;
  8860. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8861. #else
  8862. data = *cpuusage;
  8863. #endif
  8864. return data;
  8865. }
  8866. static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
  8867. {
  8868. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8869. #ifndef CONFIG_64BIT
  8870. /*
  8871. * Take rq->lock to make 64-bit write safe on 32-bit platforms.
  8872. */
  8873. spin_lock_irq(&cpu_rq(cpu)->lock);
  8874. *cpuusage = val;
  8875. spin_unlock_irq(&cpu_rq(cpu)->lock);
  8876. #else
  8877. *cpuusage = val;
  8878. #endif
  8879. }
  8880. /* return total cpu usage (in nanoseconds) of a group */
  8881. static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
  8882. {
  8883. struct cpuacct *ca = cgroup_ca(cgrp);
  8884. u64 totalcpuusage = 0;
  8885. int i;
  8886. for_each_present_cpu(i)
  8887. totalcpuusage += cpuacct_cpuusage_read(ca, i);
  8888. return totalcpuusage;
  8889. }
  8890. static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
  8891. u64 reset)
  8892. {
  8893. struct cpuacct *ca = cgroup_ca(cgrp);
  8894. int err = 0;
  8895. int i;
  8896. if (reset) {
  8897. err = -EINVAL;
  8898. goto out;
  8899. }
  8900. for_each_present_cpu(i)
  8901. cpuacct_cpuusage_write(ca, i, 0);
  8902. out:
  8903. return err;
  8904. }
  8905. static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
  8906. struct seq_file *m)
  8907. {
  8908. struct cpuacct *ca = cgroup_ca(cgroup);
  8909. u64 percpu;
  8910. int i;
  8911. for_each_present_cpu(i) {
  8912. percpu = cpuacct_cpuusage_read(ca, i);
  8913. seq_printf(m, "%llu ", (unsigned long long) percpu);
  8914. }
  8915. seq_printf(m, "\n");
  8916. return 0;
  8917. }
  8918. static const char *cpuacct_stat_desc[] = {
  8919. [CPUACCT_STAT_USER] = "user",
  8920. [CPUACCT_STAT_SYSTEM] = "system",
  8921. };
  8922. static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
  8923. struct cgroup_map_cb *cb)
  8924. {
  8925. struct cpuacct *ca = cgroup_ca(cgrp);
  8926. int i;
  8927. for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
  8928. s64 val = percpu_counter_read(&ca->cpustat[i]);
  8929. val = cputime64_to_clock_t(val);
  8930. cb->fill(cb, cpuacct_stat_desc[i], val);
  8931. }
  8932. return 0;
  8933. }
  8934. static struct cftype files[] = {
  8935. {
  8936. .name = "usage",
  8937. .read_u64 = cpuusage_read,
  8938. .write_u64 = cpuusage_write,
  8939. },
  8940. {
  8941. .name = "usage_percpu",
  8942. .read_seq_string = cpuacct_percpu_seq_read,
  8943. },
  8944. {
  8945. .name = "stat",
  8946. .read_map = cpuacct_stats_show,
  8947. },
  8948. };
  8949. static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
  8950. {
  8951. return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
  8952. }
  8953. /*
  8954. * charge this task's execution time to its accounting group.
  8955. *
  8956. * called with rq->lock held.
  8957. */
  8958. static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
  8959. {
  8960. struct cpuacct *ca;
  8961. int cpu;
  8962. if (unlikely(!cpuacct_subsys.active))
  8963. return;
  8964. cpu = task_cpu(tsk);
  8965. rcu_read_lock();
  8966. ca = task_ca(tsk);
  8967. for (; ca; ca = ca->parent) {
  8968. u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
  8969. *cpuusage += cputime;
  8970. }
  8971. rcu_read_unlock();
  8972. }
  8973. /*
  8974. * Charge the system/user time to the task's accounting group.
  8975. */
  8976. static void cpuacct_update_stats(struct task_struct *tsk,
  8977. enum cpuacct_stat_index idx, cputime_t val)
  8978. {
  8979. struct cpuacct *ca;
  8980. if (unlikely(!cpuacct_subsys.active))
  8981. return;
  8982. rcu_read_lock();
  8983. ca = task_ca(tsk);
  8984. do {
  8985. percpu_counter_add(&ca->cpustat[idx], val);
  8986. ca = ca->parent;
  8987. } while (ca);
  8988. rcu_read_unlock();
  8989. }
  8990. struct cgroup_subsys cpuacct_subsys = {
  8991. .name = "cpuacct",
  8992. .create = cpuacct_create,
  8993. .destroy = cpuacct_destroy,
  8994. .populate = cpuacct_populate,
  8995. .subsys_id = cpuacct_subsys_id,
  8996. };
  8997. #endif /* CONFIG_CGROUP_CPUACCT */