slab.h 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. #ifndef MM_SLAB_H
  2. #define MM_SLAB_H
  3. /*
  4. * Internal slab definitions
  5. */
  6. /*
  7. * State of the slab allocator.
  8. *
  9. * This is used to describe the states of the allocator during bootup.
  10. * Allocators use this to gradually bootstrap themselves. Most allocators
  11. * have the problem that the structures used for managing slab caches are
  12. * allocated from slab caches themselves.
  13. */
  14. enum slab_state {
  15. DOWN, /* No slab functionality yet */
  16. PARTIAL, /* SLUB: kmem_cache_node available */
  17. PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
  18. PARTIAL_L3, /* SLAB: kmalloc size for l3 struct available */
  19. UP, /* Slab caches usable but not all extras yet */
  20. FULL /* Everything is working */
  21. };
  22. extern enum slab_state slab_state;
  23. /* The slab cache mutex protects the management structures during changes */
  24. extern struct mutex slab_mutex;
  25. /* The list of all slab caches on the system */
  26. extern struct list_head slab_caches;
  27. /* The slab cache that manages slab cache information */
  28. extern struct kmem_cache *kmem_cache;
  29. unsigned long calculate_alignment(unsigned long flags,
  30. unsigned long align, unsigned long size);
  31. /* Functions provided by the slab allocators */
  32. extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
  33. extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
  34. unsigned long flags);
  35. extern void create_boot_cache(struct kmem_cache *, const char *name,
  36. size_t size, unsigned long flags);
  37. struct mem_cgroup;
  38. #ifdef CONFIG_SLUB
  39. struct kmem_cache *
  40. __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
  41. size_t align, unsigned long flags, void (*ctor)(void *));
  42. #else
  43. static inline struct kmem_cache *
  44. __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
  45. size_t align, unsigned long flags, void (*ctor)(void *))
  46. { return NULL; }
  47. #endif
  48. /* Legal flag mask for kmem_cache_create(), for various configurations */
  49. #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
  50. SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
  51. #if defined(CONFIG_DEBUG_SLAB)
  52. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  53. #elif defined(CONFIG_SLUB_DEBUG)
  54. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  55. SLAB_TRACE | SLAB_DEBUG_FREE)
  56. #else
  57. #define SLAB_DEBUG_FLAGS (0)
  58. #endif
  59. #if defined(CONFIG_SLAB)
  60. #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
  61. SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
  62. #elif defined(CONFIG_SLUB)
  63. #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
  64. SLAB_TEMPORARY | SLAB_NOTRACK)
  65. #else
  66. #define SLAB_CACHE_FLAGS (0)
  67. #endif
  68. #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
  69. int __kmem_cache_shutdown(struct kmem_cache *);
  70. struct seq_file;
  71. struct file;
  72. struct slabinfo {
  73. unsigned long active_objs;
  74. unsigned long num_objs;
  75. unsigned long active_slabs;
  76. unsigned long num_slabs;
  77. unsigned long shared_avail;
  78. unsigned int limit;
  79. unsigned int batchcount;
  80. unsigned int shared;
  81. unsigned int objects_per_slab;
  82. unsigned int cache_order;
  83. };
  84. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
  85. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
  86. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  87. size_t count, loff_t *ppos);
  88. #ifdef CONFIG_MEMCG_KMEM
  89. static inline bool is_root_cache(struct kmem_cache *s)
  90. {
  91. return !s->memcg_params || s->memcg_params->is_root_cache;
  92. }
  93. static inline bool cache_match_memcg(struct kmem_cache *cachep,
  94. struct mem_cgroup *memcg)
  95. {
  96. return (is_root_cache(cachep) && !memcg) ||
  97. (cachep->memcg_params->memcg == memcg);
  98. }
  99. static inline bool slab_equal_or_root(struct kmem_cache *s,
  100. struct kmem_cache *p)
  101. {
  102. return (p == s) ||
  103. (s->memcg_params && (p == s->memcg_params->root_cache));
  104. }
  105. #else
  106. static inline bool is_root_cache(struct kmem_cache *s)
  107. {
  108. return true;
  109. }
  110. static inline bool cache_match_memcg(struct kmem_cache *cachep,
  111. struct mem_cgroup *memcg)
  112. {
  113. return true;
  114. }
  115. static inline bool slab_equal_or_root(struct kmem_cache *s,
  116. struct kmem_cache *p)
  117. {
  118. return true;
  119. }
  120. #endif
  121. static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
  122. {
  123. struct kmem_cache *cachep;
  124. struct page *page;
  125. /*
  126. * When kmemcg is not being used, both assignments should return the
  127. * same value. but we don't want to pay the assignment price in that
  128. * case. If it is not compiled in, the compiler should be smart enough
  129. * to not do even the assignment. In that case, slab_equal_or_root
  130. * will also be a constant.
  131. */
  132. if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
  133. return s;
  134. page = virt_to_head_page(x);
  135. cachep = page->slab_cache;
  136. if (slab_equal_or_root(cachep, s))
  137. return cachep;
  138. pr_err("%s: Wrong slab cache. %s but object is from %s\n",
  139. __FUNCTION__, cachep->name, s->name);
  140. WARN_ON_ONCE(1);
  141. return s;
  142. }
  143. #endif