srat.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448
  1. /*
  2. * Some of the code in this file has been gleaned from the 64 bit
  3. * discontigmem support code base.
  4. *
  5. * Copyright (C) 2002, IBM Corp.
  6. *
  7. * All rights reserved.
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful, but
  15. * WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  17. * NON INFRINGEMENT. See the GNU General Public License for more
  18. * details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23. *
  24. * Send feedback to Pat Gaughen <gone@us.ibm.com>
  25. */
  26. #include <linux/mm.h>
  27. #include <linux/bootmem.h>
  28. #include <linux/mmzone.h>
  29. #include <linux/acpi.h>
  30. #include <linux/nodemask.h>
  31. #include <asm/srat.h>
  32. #include <asm/topology.h>
  33. /*
  34. * proximity macros and definitions
  35. */
  36. #define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */
  37. #define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */
  38. #define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit))
  39. #define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit)))
  40. /* bitmap length; _PXM is at most 255 */
  41. #define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8)
  42. static u8 pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */
  43. #define MAX_CHUNKS_PER_NODE 3
  44. #define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES)
  45. struct node_memory_chunk_s {
  46. unsigned long start_pfn;
  47. unsigned long end_pfn;
  48. u8 pxm; // proximity domain of node
  49. u8 nid; // which cnode contains this chunk?
  50. u8 bank; // which mem bank on this node
  51. };
  52. static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS];
  53. static int num_memory_chunks; /* total number of memory chunks */
  54. static int zholes_size_init;
  55. static unsigned long zholes_size[MAX_NUMNODES * MAX_NR_ZONES];
  56. extern void * boot_ioremap(unsigned long, unsigned long);
  57. /* Identify CPU proximity domains */
  58. static void __init parse_cpu_affinity_structure(char *p)
  59. {
  60. struct acpi_table_processor_affinity *cpu_affinity =
  61. (struct acpi_table_processor_affinity *) p;
  62. if (!cpu_affinity->flags.enabled)
  63. return; /* empty entry */
  64. /* mark this node as "seen" in node bitmap */
  65. BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain);
  66. printk("CPU 0x%02X in proximity domain 0x%02X\n",
  67. cpu_affinity->apic_id, cpu_affinity->proximity_domain);
  68. }
  69. /*
  70. * Identify memory proximity domains and hot-remove capabilities.
  71. * Fill node memory chunk list structure.
  72. */
  73. static void __init parse_memory_affinity_structure (char *sratp)
  74. {
  75. unsigned long long paddr, size;
  76. unsigned long start_pfn, end_pfn;
  77. u8 pxm;
  78. struct node_memory_chunk_s *p, *q, *pend;
  79. struct acpi_table_memory_affinity *memory_affinity =
  80. (struct acpi_table_memory_affinity *) sratp;
  81. if (!memory_affinity->flags.enabled)
  82. return; /* empty entry */
  83. /* mark this node as "seen" in node bitmap */
  84. BMAP_SET(pxm_bitmap, memory_affinity->proximity_domain);
  85. /* calculate info for memory chunk structure */
  86. paddr = memory_affinity->base_addr_hi;
  87. paddr = (paddr << 32) | memory_affinity->base_addr_lo;
  88. size = memory_affinity->length_hi;
  89. size = (size << 32) | memory_affinity->length_lo;
  90. start_pfn = paddr >> PAGE_SHIFT;
  91. end_pfn = (paddr + size) >> PAGE_SHIFT;
  92. pxm = memory_affinity->proximity_domain;
  93. if (num_memory_chunks >= MAXCHUNKS) {
  94. printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n",
  95. size/(1024*1024), paddr);
  96. return;
  97. }
  98. /* Insertion sort based on base address */
  99. pend = &node_memory_chunk[num_memory_chunks];
  100. for (p = &node_memory_chunk[0]; p < pend; p++) {
  101. if (start_pfn < p->start_pfn)
  102. break;
  103. }
  104. if (p < pend) {
  105. for (q = pend; q >= p; q--)
  106. *(q + 1) = *q;
  107. }
  108. p->start_pfn = start_pfn;
  109. p->end_pfn = end_pfn;
  110. p->pxm = pxm;
  111. num_memory_chunks++;
  112. printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n",
  113. start_pfn, end_pfn,
  114. memory_affinity->memory_type,
  115. memory_affinity->proximity_domain,
  116. (memory_affinity->flags.hot_pluggable ?
  117. "enabled and removable" : "enabled" ) );
  118. }
  119. /* Take a chunk of pages from page frame cstart to cend and count the number
  120. * of pages in each zone, returned via zones[].
  121. */
  122. static __init void chunk_to_zones(unsigned long cstart, unsigned long cend,
  123. unsigned long *zones)
  124. {
  125. unsigned long max_dma;
  126. extern unsigned long max_low_pfn;
  127. int z;
  128. unsigned long rend;
  129. /* FIXME: MAX_DMA_ADDRESS and max_low_pfn are trying to provide
  130. * similarly scoped information and should be handled in a consistant
  131. * manner.
  132. */
  133. max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  134. /* Split the hole into the zones in which it falls. Repeatedly
  135. * take the segment in which the remaining hole starts, round it
  136. * to the end of that zone.
  137. */
  138. memset(zones, 0, MAX_NR_ZONES * sizeof(long));
  139. while (cstart < cend) {
  140. if (cstart < max_dma) {
  141. z = ZONE_DMA;
  142. rend = (cend < max_dma)? cend : max_dma;
  143. } else if (cstart < max_low_pfn) {
  144. z = ZONE_NORMAL;
  145. rend = (cend < max_low_pfn)? cend : max_low_pfn;
  146. } else {
  147. z = ZONE_HIGHMEM;
  148. rend = cend;
  149. }
  150. zones[z] += rend - cstart;
  151. cstart = rend;
  152. }
  153. }
  154. /*
  155. * The SRAT table always lists ascending addresses, so can always
  156. * assume that the first "start" address that you see is the real
  157. * start of the node, and that the current "end" address is after
  158. * the previous one.
  159. */
  160. static __init void node_read_chunk(int nid, struct node_memory_chunk_s *memory_chunk)
  161. {
  162. /*
  163. * Only add present memory as told by the e820.
  164. * There is no guarantee from the SRAT that the memory it
  165. * enumerates is present at boot time because it represents
  166. * *possible* memory hotplug areas the same as normal RAM.
  167. */
  168. if (memory_chunk->start_pfn >= max_pfn) {
  169. printk (KERN_INFO "Ignoring SRAT pfns: 0x%08lx -> %08lx\n",
  170. memory_chunk->start_pfn, memory_chunk->end_pfn);
  171. return;
  172. }
  173. if (memory_chunk->nid != nid)
  174. return;
  175. if (!node_has_online_mem(nid))
  176. node_start_pfn[nid] = memory_chunk->start_pfn;
  177. if (node_start_pfn[nid] > memory_chunk->start_pfn)
  178. node_start_pfn[nid] = memory_chunk->start_pfn;
  179. if (node_end_pfn[nid] < memory_chunk->end_pfn)
  180. node_end_pfn[nid] = memory_chunk->end_pfn;
  181. }
  182. /* Parse the ACPI Static Resource Affinity Table */
  183. static int __init acpi20_parse_srat(struct acpi_table_srat *sratp)
  184. {
  185. u8 *start, *end, *p;
  186. int i, j, nid;
  187. start = (u8 *)(&(sratp->reserved) + 1); /* skip header */
  188. p = start;
  189. end = (u8 *)sratp + sratp->header.length;
  190. memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */
  191. memset(node_memory_chunk, 0, sizeof(node_memory_chunk));
  192. memset(zholes_size, 0, sizeof(zholes_size));
  193. num_memory_chunks = 0;
  194. while (p < end) {
  195. switch (*p) {
  196. case ACPI_SRAT_PROCESSOR_AFFINITY:
  197. parse_cpu_affinity_structure(p);
  198. break;
  199. case ACPI_SRAT_MEMORY_AFFINITY:
  200. parse_memory_affinity_structure(p);
  201. break;
  202. default:
  203. printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]);
  204. break;
  205. }
  206. p += p[1];
  207. if (p[1] == 0) {
  208. printk("acpi20_parse_srat: Entry length value is zero;"
  209. " can't parse any further!\n");
  210. break;
  211. }
  212. }
  213. if (num_memory_chunks == 0) {
  214. printk("could not finy any ACPI SRAT memory areas.\n");
  215. goto out_fail;
  216. }
  217. /* Calculate total number of nodes in system from PXM bitmap and create
  218. * a set of sequential node IDs starting at zero. (ACPI doesn't seem
  219. * to specify the range of _PXM values.)
  220. */
  221. /*
  222. * MCD - we no longer HAVE to number nodes sequentially. PXM domain
  223. * numbers could go as high as 256, and MAX_NUMNODES for i386 is typically
  224. * 32, so we will continue numbering them in this manner until MAX_NUMNODES
  225. * approaches MAX_PXM_DOMAINS for i386.
  226. */
  227. nodes_clear(node_online_map);
  228. for (i = 0; i < MAX_PXM_DOMAINS; i++) {
  229. if (BMAP_TEST(pxm_bitmap, i)) {
  230. int nid = acpi_map_pxm_to_node(i);
  231. node_set_online(nid);
  232. }
  233. }
  234. BUG_ON(num_online_nodes() == 0);
  235. /* set cnode id in memory chunk structure */
  236. for (i = 0; i < num_memory_chunks; i++)
  237. node_memory_chunk[i].nid = pxm_to_node(node_memory_chunk[i].pxm);
  238. printk("pxm bitmap: ");
  239. for (i = 0; i < sizeof(pxm_bitmap); i++) {
  240. printk("%02X ", pxm_bitmap[i]);
  241. }
  242. printk("\n");
  243. printk("Number of logical nodes in system = %d\n", num_online_nodes());
  244. printk("Number of memory chunks in system = %d\n", num_memory_chunks);
  245. for (j = 0; j < num_memory_chunks; j++){
  246. struct node_memory_chunk_s * chunk = &node_memory_chunk[j];
  247. printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
  248. j, chunk->nid, chunk->start_pfn, chunk->end_pfn);
  249. node_read_chunk(chunk->nid, chunk);
  250. }
  251. for_each_online_node(nid) {
  252. unsigned long start = node_start_pfn[nid];
  253. unsigned long end = node_end_pfn[nid];
  254. memory_present(nid, start, end);
  255. node_remap_size[nid] = node_memmap_size_bytes(nid, start, end);
  256. }
  257. return 1;
  258. out_fail:
  259. return 0;
  260. }
  261. int __init get_memcfg_from_srat(void)
  262. {
  263. struct acpi_table_header *header = NULL;
  264. struct acpi_table_rsdp *rsdp = NULL;
  265. struct acpi_table_rsdt *rsdt = NULL;
  266. struct acpi_pointer *rsdp_address = NULL;
  267. struct acpi_table_rsdt saved_rsdt;
  268. int tables = 0;
  269. int i = 0;
  270. if (ACPI_FAILURE(acpi_find_root_pointer(ACPI_PHYSICAL_ADDRESSING,
  271. rsdp_address))) {
  272. printk("%s: System description tables not found\n",
  273. __FUNCTION__);
  274. goto out_err;
  275. }
  276. if (rsdp_address->pointer_type == ACPI_PHYSICAL_POINTER) {
  277. printk("%s: assigning address to rsdp\n", __FUNCTION__);
  278. rsdp = (struct acpi_table_rsdp *)
  279. (u32)rsdp_address->pointer.physical;
  280. } else {
  281. printk("%s: rsdp_address is not a physical pointer\n", __FUNCTION__);
  282. goto out_err;
  283. }
  284. if (!rsdp) {
  285. printk("%s: Didn't find ACPI root!\n", __FUNCTION__);
  286. goto out_err;
  287. }
  288. printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision,
  289. rsdp->oem_id);
  290. if (strncmp(rsdp->signature, RSDP_SIG,strlen(RSDP_SIG))) {
  291. printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__);
  292. goto out_err;
  293. }
  294. rsdt = (struct acpi_table_rsdt *)
  295. boot_ioremap(rsdp->rsdt_address, sizeof(struct acpi_table_rsdt));
  296. if (!rsdt) {
  297. printk(KERN_WARNING
  298. "%s: ACPI: Invalid root system description tables (RSDT)\n",
  299. __FUNCTION__);
  300. goto out_err;
  301. }
  302. header = & rsdt->header;
  303. if (strncmp(header->signature, RSDT_SIG, strlen(RSDT_SIG))) {
  304. printk(KERN_WARNING "ACPI: RSDT signature incorrect\n");
  305. goto out_err;
  306. }
  307. /*
  308. * The number of tables is computed by taking the
  309. * size of all entries (header size minus total
  310. * size of RSDT) divided by the size of each entry
  311. * (4-byte table pointers).
  312. */
  313. tables = (header->length - sizeof(struct acpi_table_header)) / 4;
  314. if (!tables)
  315. goto out_err;
  316. memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt));
  317. if (saved_rsdt.header.length > sizeof(saved_rsdt)) {
  318. printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n",
  319. saved_rsdt.header.length);
  320. goto out_err;
  321. }
  322. printk("Begin SRAT table scan....\n");
  323. for (i = 0; i < tables; i++) {
  324. /* Map in header, then map in full table length. */
  325. header = (struct acpi_table_header *)
  326. boot_ioremap(saved_rsdt.entry[i], sizeof(struct acpi_table_header));
  327. if (!header)
  328. break;
  329. header = (struct acpi_table_header *)
  330. boot_ioremap(saved_rsdt.entry[i], header->length);
  331. if (!header)
  332. break;
  333. if (strncmp((char *) &header->signature, "SRAT", 4))
  334. continue;
  335. /* we've found the srat table. don't need to look at any more tables */
  336. return acpi20_parse_srat((struct acpi_table_srat *)header);
  337. }
  338. out_err:
  339. printk("failed to get NUMA memory information from SRAT table\n");
  340. return 0;
  341. }
  342. /* For each node run the memory list to determine whether there are
  343. * any memory holes. For each hole determine which ZONE they fall
  344. * into.
  345. *
  346. * NOTE#1: this requires knowledge of the zone boundries and so
  347. * _cannot_ be performed before those are calculated in setup_memory.
  348. *
  349. * NOTE#2: we rely on the fact that the memory chunks are ordered by
  350. * start pfn number during setup.
  351. */
  352. static void __init get_zholes_init(void)
  353. {
  354. int nid;
  355. int c;
  356. int first;
  357. unsigned long end = 0;
  358. for_each_online_node(nid) {
  359. first = 1;
  360. for (c = 0; c < num_memory_chunks; c++){
  361. if (node_memory_chunk[c].nid == nid) {
  362. if (first) {
  363. end = node_memory_chunk[c].end_pfn;
  364. first = 0;
  365. } else {
  366. /* Record any gap between this chunk
  367. * and the previous chunk on this node
  368. * against the zones it spans.
  369. */
  370. chunk_to_zones(end,
  371. node_memory_chunk[c].start_pfn,
  372. &zholes_size[nid * MAX_NR_ZONES]);
  373. }
  374. }
  375. }
  376. }
  377. }
  378. unsigned long * __init get_zholes_size(int nid)
  379. {
  380. if (!zholes_size_init) {
  381. zholes_size_init++;
  382. get_zholes_init();
  383. }
  384. if (nid >= MAX_NUMNODES || !node_online(nid))
  385. printk("%s: nid = %d is invalid/offline. num_online_nodes = %d",
  386. __FUNCTION__, nid, num_online_nodes());
  387. return &zholes_size[nid * MAX_NR_ZONES];
  388. }