nv50_crtc.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782
  1. /*
  2. * Copyright (C) 2008 Maarten Maathuis.
  3. * All Rights Reserved.
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining
  6. * a copy of this software and associated documentation files (the
  7. * "Software"), to deal in the Software without restriction, including
  8. * without limitation the rights to use, copy, modify, merge, publish,
  9. * distribute, sublicense, and/or sell copies of the Software, and to
  10. * permit persons to whom the Software is furnished to do so, subject to
  11. * the following conditions:
  12. *
  13. * The above copyright notice and this permission notice (including the
  14. * next paragraph) shall be included in all copies or substantial
  15. * portions of the Software.
  16. *
  17. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  18. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  19. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
  20. * IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
  21. * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  22. * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  23. * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  24. *
  25. */
  26. #include "drmP.h"
  27. #include "drm_mode.h"
  28. #include "drm_crtc_helper.h"
  29. #define NOUVEAU_DMA_DEBUG (nouveau_reg_debug & NOUVEAU_REG_DEBUG_EVO)
  30. #include "nouveau_reg.h"
  31. #include "nouveau_drv.h"
  32. #include "nouveau_hw.h"
  33. #include "nouveau_encoder.h"
  34. #include "nouveau_crtc.h"
  35. #include "nouveau_fb.h"
  36. #include "nouveau_connector.h"
  37. #include "nv50_display.h"
  38. static void
  39. nv50_crtc_lut_load(struct drm_crtc *crtc)
  40. {
  41. struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
  42. void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo);
  43. int i;
  44. NV_DEBUG_KMS(crtc->dev, "\n");
  45. for (i = 0; i < 256; i++) {
  46. writew(nv_crtc->lut.r[i] >> 2, lut + 8*i + 0);
  47. writew(nv_crtc->lut.g[i] >> 2, lut + 8*i + 2);
  48. writew(nv_crtc->lut.b[i] >> 2, lut + 8*i + 4);
  49. }
  50. if (nv_crtc->lut.depth == 30) {
  51. writew(nv_crtc->lut.r[i - 1] >> 2, lut + 8*i + 0);
  52. writew(nv_crtc->lut.g[i - 1] >> 2, lut + 8*i + 2);
  53. writew(nv_crtc->lut.b[i - 1] >> 2, lut + 8*i + 4);
  54. }
  55. }
  56. int
  57. nv50_crtc_blank(struct nouveau_crtc *nv_crtc, bool blanked)
  58. {
  59. struct drm_device *dev = nv_crtc->base.dev;
  60. struct drm_nouveau_private *dev_priv = dev->dev_private;
  61. struct nouveau_channel *evo = nv50_display(dev)->master;
  62. int index = nv_crtc->index, ret;
  63. NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
  64. NV_DEBUG_KMS(dev, "%s\n", blanked ? "blanked" : "unblanked");
  65. if (blanked) {
  66. nv_crtc->cursor.hide(nv_crtc, false);
  67. ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 7 : 5);
  68. if (ret) {
  69. NV_ERROR(dev, "no space while blanking crtc\n");
  70. return ret;
  71. }
  72. BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
  73. OUT_RING(evo, NV50_EVO_CRTC_CLUT_MODE_BLANK);
  74. OUT_RING(evo, 0);
  75. if (dev_priv->chipset != 0x50) {
  76. BEGIN_RING(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
  77. OUT_RING(evo, NV84_EVO_CRTC_CLUT_DMA_HANDLE_NONE);
  78. }
  79. BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
  80. OUT_RING(evo, NV50_EVO_CRTC_FB_DMA_HANDLE_NONE);
  81. } else {
  82. if (nv_crtc->cursor.visible)
  83. nv_crtc->cursor.show(nv_crtc, false);
  84. else
  85. nv_crtc->cursor.hide(nv_crtc, false);
  86. ret = RING_SPACE(evo, dev_priv->chipset != 0x50 ? 10 : 8);
  87. if (ret) {
  88. NV_ERROR(dev, "no space while unblanking crtc\n");
  89. return ret;
  90. }
  91. BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, CLUT_MODE), 2);
  92. OUT_RING(evo, nv_crtc->lut.depth == 8 ?
  93. NV50_EVO_CRTC_CLUT_MODE_OFF :
  94. NV50_EVO_CRTC_CLUT_MODE_ON);
  95. OUT_RING(evo, nv_crtc->lut.nvbo->bo.offset >> 8);
  96. if (dev_priv->chipset != 0x50) {
  97. BEGIN_RING(evo, 0, NV84_EVO_CRTC(index, CLUT_DMA), 1);
  98. OUT_RING(evo, NvEvoVRAM);
  99. }
  100. BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_OFFSET), 2);
  101. OUT_RING(evo, nv_crtc->fb.offset >> 8);
  102. OUT_RING(evo, 0);
  103. BEGIN_RING(evo, 0, NV50_EVO_CRTC(index, FB_DMA), 1);
  104. if (dev_priv->chipset != 0x50)
  105. if (nv_crtc->fb.tile_flags == 0x7a00 ||
  106. nv_crtc->fb.tile_flags == 0xfe00)
  107. OUT_RING(evo, NvEvoFB32);
  108. else
  109. if (nv_crtc->fb.tile_flags == 0x7000)
  110. OUT_RING(evo, NvEvoFB16);
  111. else
  112. OUT_RING(evo, NvEvoVRAM_LP);
  113. else
  114. OUT_RING(evo, NvEvoVRAM_LP);
  115. }
  116. nv_crtc->fb.blanked = blanked;
  117. return 0;
  118. }
  119. static int
  120. nv50_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool on, bool update)
  121. {
  122. struct drm_device *dev = nv_crtc->base.dev;
  123. struct nouveau_channel *evo = nv50_display(dev)->master;
  124. int ret;
  125. NV_DEBUG_KMS(dev, "\n");
  126. ret = RING_SPACE(evo, 2 + (update ? 2 : 0));
  127. if (ret) {
  128. NV_ERROR(dev, "no space while setting dither\n");
  129. return ret;
  130. }
  131. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, DITHER_CTRL), 1);
  132. if (on)
  133. OUT_RING(evo, NV50_EVO_CRTC_DITHER_CTRL_ON);
  134. else
  135. OUT_RING(evo, NV50_EVO_CRTC_DITHER_CTRL_OFF);
  136. if (update) {
  137. BEGIN_RING(evo, 0, NV50_EVO_UPDATE, 1);
  138. OUT_RING(evo, 0);
  139. FIRE_RING(evo);
  140. }
  141. return 0;
  142. }
  143. struct nouveau_connector *
  144. nouveau_crtc_connector_get(struct nouveau_crtc *nv_crtc)
  145. {
  146. struct drm_device *dev = nv_crtc->base.dev;
  147. struct drm_connector *connector;
  148. struct drm_crtc *crtc = to_drm_crtc(nv_crtc);
  149. /* The safest approach is to find an encoder with the right crtc, that
  150. * is also linked to a connector. */
  151. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  152. if (connector->encoder)
  153. if (connector->encoder->crtc == crtc)
  154. return nouveau_connector(connector);
  155. }
  156. return NULL;
  157. }
  158. static int
  159. nv50_crtc_set_scale(struct nouveau_crtc *nv_crtc, int scaling_mode, bool update)
  160. {
  161. struct nouveau_connector *nv_connector;
  162. struct drm_crtc *crtc = &nv_crtc->base;
  163. struct drm_device *dev = crtc->dev;
  164. struct nouveau_channel *evo = nv50_display(dev)->master;
  165. struct drm_display_mode *mode = &crtc->mode;
  166. u32 ctrl = 0, oX, oY;
  167. int ret;
  168. NV_DEBUG_KMS(dev, "\n");
  169. nv_connector = nouveau_crtc_connector_get(nv_crtc);
  170. if (!nv_connector || !nv_connector->native_mode) {
  171. NV_ERROR(dev, "no native mode, forcing panel scaling\n");
  172. scaling_mode = DRM_MODE_SCALE_NONE;
  173. }
  174. /* start off at the resolution we programmed the crtc for, this
  175. * effectively handles NONE/FULL scaling
  176. */
  177. if (scaling_mode != DRM_MODE_SCALE_NONE) {
  178. oX = nv_connector->native_mode->hdisplay;
  179. oY = nv_connector->native_mode->vdisplay;
  180. } else {
  181. oX = mode->hdisplay;
  182. oY = mode->vdisplay;
  183. }
  184. /* add overscan compensation if necessary, will keep the aspect
  185. * ratio the same as the backend mode unless overridden by the
  186. * user setting both hborder and vborder properties.
  187. */
  188. if (nv_connector && ( nv_connector->underscan == UNDERSCAN_ON ||
  189. (nv_connector->underscan == UNDERSCAN_AUTO &&
  190. nv_connector->edid &&
  191. drm_detect_hdmi_monitor(nv_connector->edid)))) {
  192. u32 bX = nv_connector->underscan_hborder;
  193. u32 bY = nv_connector->underscan_vborder;
  194. u32 aspect = (oY << 19) / oX;
  195. if (bX) {
  196. oX -= (bX * 2);
  197. if (bY) oY -= (bY * 2);
  198. else oY = ((oX * aspect) + (aspect / 2)) >> 19;
  199. } else {
  200. oX -= (oX >> 4) + 32;
  201. if (bY) oY -= (bY * 2);
  202. else oY = ((oX * aspect) + (aspect / 2)) >> 19;
  203. }
  204. }
  205. /* handle CENTER/ASPECT scaling, taking into account the areas
  206. * removed already for overscan compensation
  207. */
  208. switch (scaling_mode) {
  209. case DRM_MODE_SCALE_CENTER:
  210. oX = min((u32)mode->hdisplay, oX);
  211. oY = min((u32)mode->vdisplay, oY);
  212. /* fall-through */
  213. case DRM_MODE_SCALE_ASPECT:
  214. if (oY < oX) {
  215. u32 aspect = (mode->hdisplay << 19) / mode->vdisplay;
  216. oX = ((oY * aspect) + (aspect / 2)) >> 19;
  217. } else {
  218. u32 aspect = (mode->vdisplay << 19) / mode->hdisplay;
  219. oY = ((oX * aspect) + (aspect / 2)) >> 19;
  220. }
  221. break;
  222. default:
  223. break;
  224. }
  225. if (mode->hdisplay != oX || mode->vdisplay != oY ||
  226. mode->flags & DRM_MODE_FLAG_INTERLACE ||
  227. mode->flags & DRM_MODE_FLAG_DBLSCAN)
  228. ctrl |= NV50_EVO_CRTC_SCALE_CTRL_ACTIVE;
  229. ret = RING_SPACE(evo, 5);
  230. if (ret)
  231. return ret;
  232. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_CTRL), 1);
  233. OUT_RING (evo, ctrl);
  234. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_RES1), 2);
  235. OUT_RING (evo, oY << 16 | oX);
  236. OUT_RING (evo, oY << 16 | oX);
  237. if (update) {
  238. nv50_display_flip_stop(crtc);
  239. nv50_display_sync(dev);
  240. nv50_display_flip_next(crtc, crtc->fb, NULL);
  241. }
  242. return 0;
  243. }
  244. int
  245. nv50_crtc_set_clock(struct drm_device *dev, int head, int pclk)
  246. {
  247. struct drm_nouveau_private *dev_priv = dev->dev_private;
  248. struct pll_lims pll;
  249. uint32_t reg1, reg2;
  250. int ret, N1, M1, N2, M2, P;
  251. ret = get_pll_limits(dev, PLL_VPLL0 + head, &pll);
  252. if (ret)
  253. return ret;
  254. if (pll.vco2.maxfreq) {
  255. ret = nv50_calc_pll(dev, &pll, pclk, &N1, &M1, &N2, &M2, &P);
  256. if (ret <= 0)
  257. return 0;
  258. NV_DEBUG(dev, "pclk %d out %d NM1 %d %d NM2 %d %d P %d\n",
  259. pclk, ret, N1, M1, N2, M2, P);
  260. reg1 = nv_rd32(dev, pll.reg + 4) & 0xff00ff00;
  261. reg2 = nv_rd32(dev, pll.reg + 8) & 0x8000ff00;
  262. nv_wr32(dev, pll.reg + 0, 0x10000611);
  263. nv_wr32(dev, pll.reg + 4, reg1 | (M1 << 16) | N1);
  264. nv_wr32(dev, pll.reg + 8, reg2 | (P << 28) | (M2 << 16) | N2);
  265. } else
  266. if (dev_priv->chipset < NV_C0) {
  267. ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P);
  268. if (ret <= 0)
  269. return 0;
  270. NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n",
  271. pclk, ret, N1, N2, M1, P);
  272. reg1 = nv_rd32(dev, pll.reg + 4) & 0xffc00000;
  273. nv_wr32(dev, pll.reg + 0, 0x50000610);
  274. nv_wr32(dev, pll.reg + 4, reg1 | (P << 16) | (M1 << 8) | N1);
  275. nv_wr32(dev, pll.reg + 8, N2);
  276. } else {
  277. ret = nva3_calc_pll(dev, &pll, pclk, &N1, &N2, &M1, &P);
  278. if (ret <= 0)
  279. return 0;
  280. NV_DEBUG(dev, "pclk %d out %d N %d fN 0x%04x M %d P %d\n",
  281. pclk, ret, N1, N2, M1, P);
  282. nv_mask(dev, pll.reg + 0x0c, 0x00000000, 0x00000100);
  283. nv_wr32(dev, pll.reg + 0x04, (P << 16) | (N1 << 8) | M1);
  284. nv_wr32(dev, pll.reg + 0x10, N2 << 16);
  285. }
  286. return 0;
  287. }
  288. static void
  289. nv50_crtc_destroy(struct drm_crtc *crtc)
  290. {
  291. struct drm_device *dev;
  292. struct nouveau_crtc *nv_crtc;
  293. if (!crtc)
  294. return;
  295. dev = crtc->dev;
  296. nv_crtc = nouveau_crtc(crtc);
  297. NV_DEBUG_KMS(dev, "\n");
  298. drm_crtc_cleanup(&nv_crtc->base);
  299. nouveau_bo_unmap(nv_crtc->lut.nvbo);
  300. nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
  301. nouveau_bo_unmap(nv_crtc->cursor.nvbo);
  302. nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
  303. kfree(nv_crtc->mode);
  304. kfree(nv_crtc);
  305. }
  306. int
  307. nv50_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv,
  308. uint32_t buffer_handle, uint32_t width, uint32_t height)
  309. {
  310. struct drm_device *dev = crtc->dev;
  311. struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
  312. struct nouveau_bo *cursor = NULL;
  313. struct drm_gem_object *gem;
  314. int ret = 0, i;
  315. if (!buffer_handle) {
  316. nv_crtc->cursor.hide(nv_crtc, true);
  317. return 0;
  318. }
  319. if (width != 64 || height != 64)
  320. return -EINVAL;
  321. gem = drm_gem_object_lookup(dev, file_priv, buffer_handle);
  322. if (!gem)
  323. return -ENOENT;
  324. cursor = nouveau_gem_object(gem);
  325. ret = nouveau_bo_map(cursor);
  326. if (ret)
  327. goto out;
  328. /* The simple will do for now. */
  329. for (i = 0; i < 64 * 64; i++)
  330. nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, nouveau_bo_rd32(cursor, i));
  331. nouveau_bo_unmap(cursor);
  332. nv_crtc->cursor.set_offset(nv_crtc, nv_crtc->cursor.nvbo->bo.offset);
  333. nv_crtc->cursor.show(nv_crtc, true);
  334. out:
  335. drm_gem_object_unreference_unlocked(gem);
  336. return ret;
  337. }
  338. int
  339. nv50_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  340. {
  341. struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
  342. nv_crtc->cursor.set_pos(nv_crtc, x, y);
  343. return 0;
  344. }
  345. static void
  346. nv50_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
  347. uint32_t start, uint32_t size)
  348. {
  349. int end = (start + size > 256) ? 256 : start + size, i;
  350. struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
  351. for (i = start; i < end; i++) {
  352. nv_crtc->lut.r[i] = r[i];
  353. nv_crtc->lut.g[i] = g[i];
  354. nv_crtc->lut.b[i] = b[i];
  355. }
  356. /* We need to know the depth before we upload, but it's possible to
  357. * get called before a framebuffer is bound. If this is the case,
  358. * mark the lut values as dirty by setting depth==0, and it'll be
  359. * uploaded on the first mode_set_base()
  360. */
  361. if (!nv_crtc->base.fb) {
  362. nv_crtc->lut.depth = 0;
  363. return;
  364. }
  365. nv50_crtc_lut_load(crtc);
  366. }
  367. static void
  368. nv50_crtc_save(struct drm_crtc *crtc)
  369. {
  370. NV_ERROR(crtc->dev, "!!\n");
  371. }
  372. static void
  373. nv50_crtc_restore(struct drm_crtc *crtc)
  374. {
  375. NV_ERROR(crtc->dev, "!!\n");
  376. }
  377. static const struct drm_crtc_funcs nv50_crtc_funcs = {
  378. .save = nv50_crtc_save,
  379. .restore = nv50_crtc_restore,
  380. .cursor_set = nv50_crtc_cursor_set,
  381. .cursor_move = nv50_crtc_cursor_move,
  382. .gamma_set = nv50_crtc_gamma_set,
  383. .set_config = drm_crtc_helper_set_config,
  384. .page_flip = nouveau_crtc_page_flip,
  385. .destroy = nv50_crtc_destroy,
  386. };
  387. static void
  388. nv50_crtc_dpms(struct drm_crtc *crtc, int mode)
  389. {
  390. }
  391. static void
  392. nv50_crtc_prepare(struct drm_crtc *crtc)
  393. {
  394. struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
  395. struct drm_device *dev = crtc->dev;
  396. NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
  397. nv50_display_flip_stop(crtc);
  398. drm_vblank_pre_modeset(dev, nv_crtc->index);
  399. nv50_crtc_blank(nv_crtc, true);
  400. }
  401. static void
  402. nv50_crtc_commit(struct drm_crtc *crtc)
  403. {
  404. struct drm_device *dev = crtc->dev;
  405. struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
  406. NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
  407. nv50_crtc_blank(nv_crtc, false);
  408. drm_vblank_post_modeset(dev, nv_crtc->index);
  409. nv50_display_sync(dev);
  410. nv50_display_flip_next(crtc, crtc->fb, NULL);
  411. }
  412. static bool
  413. nv50_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode,
  414. struct drm_display_mode *adjusted_mode)
  415. {
  416. return true;
  417. }
  418. static int
  419. nv50_crtc_do_mode_set_base(struct drm_crtc *crtc,
  420. struct drm_framebuffer *passed_fb,
  421. int x, int y, bool atomic)
  422. {
  423. struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
  424. struct drm_device *dev = nv_crtc->base.dev;
  425. struct drm_nouveau_private *dev_priv = dev->dev_private;
  426. struct nouveau_channel *evo = nv50_display(dev)->master;
  427. struct drm_framebuffer *drm_fb;
  428. struct nouveau_framebuffer *fb;
  429. int ret;
  430. NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
  431. /* no fb bound */
  432. if (!atomic && !crtc->fb) {
  433. NV_DEBUG_KMS(dev, "No FB bound\n");
  434. return 0;
  435. }
  436. /* If atomic, we want to switch to the fb we were passed, so
  437. * now we update pointers to do that. (We don't pin; just
  438. * assume we're already pinned and update the base address.)
  439. */
  440. if (atomic) {
  441. drm_fb = passed_fb;
  442. fb = nouveau_framebuffer(passed_fb);
  443. } else {
  444. drm_fb = crtc->fb;
  445. fb = nouveau_framebuffer(crtc->fb);
  446. /* If not atomic, we can go ahead and pin, and unpin the
  447. * old fb we were passed.
  448. */
  449. ret = nouveau_bo_pin(fb->nvbo, TTM_PL_FLAG_VRAM);
  450. if (ret)
  451. return ret;
  452. if (passed_fb) {
  453. struct nouveau_framebuffer *ofb = nouveau_framebuffer(passed_fb);
  454. nouveau_bo_unpin(ofb->nvbo);
  455. }
  456. }
  457. nv_crtc->fb.offset = fb->nvbo->bo.offset;
  458. nv_crtc->fb.tile_flags = nouveau_bo_tile_layout(fb->nvbo);
  459. nv_crtc->fb.cpp = drm_fb->bits_per_pixel / 8;
  460. if (!nv_crtc->fb.blanked && dev_priv->chipset != 0x50) {
  461. ret = RING_SPACE(evo, 2);
  462. if (ret)
  463. return ret;
  464. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_DMA), 1);
  465. OUT_RING (evo, fb->r_dma);
  466. }
  467. ret = RING_SPACE(evo, 12);
  468. if (ret)
  469. return ret;
  470. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_OFFSET), 5);
  471. OUT_RING (evo, nv_crtc->fb.offset >> 8);
  472. OUT_RING (evo, 0);
  473. OUT_RING (evo, (drm_fb->height << 16) | drm_fb->width);
  474. OUT_RING (evo, fb->r_pitch);
  475. OUT_RING (evo, fb->r_format);
  476. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, CLUT_MODE), 1);
  477. OUT_RING (evo, fb->base.depth == 8 ?
  478. NV50_EVO_CRTC_CLUT_MODE_OFF : NV50_EVO_CRTC_CLUT_MODE_ON);
  479. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, COLOR_CTRL), 1);
  480. OUT_RING (evo, NV50_EVO_CRTC_COLOR_CTRL_COLOR);
  481. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, FB_POS), 1);
  482. OUT_RING (evo, (y << 16) | x);
  483. if (nv_crtc->lut.depth != fb->base.depth) {
  484. nv_crtc->lut.depth = fb->base.depth;
  485. nv50_crtc_lut_load(crtc);
  486. }
  487. return 0;
  488. }
  489. static int
  490. nv50_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *mode,
  491. struct drm_display_mode *adjusted_mode, int x, int y,
  492. struct drm_framebuffer *old_fb)
  493. {
  494. struct drm_device *dev = crtc->dev;
  495. struct nouveau_channel *evo = nv50_display(dev)->master;
  496. struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc);
  497. struct nouveau_connector *nv_connector = NULL;
  498. uint32_t hsync_dur, vsync_dur, hsync_start_to_end, vsync_start_to_end;
  499. uint32_t hunk1, vunk1, vunk2a, vunk2b;
  500. int ret;
  501. /* Find the connector attached to this CRTC */
  502. nv_connector = nouveau_crtc_connector_get(nv_crtc);
  503. *nv_crtc->mode = *adjusted_mode;
  504. NV_DEBUG_KMS(dev, "index %d\n", nv_crtc->index);
  505. hsync_dur = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
  506. vsync_dur = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
  507. hsync_start_to_end = adjusted_mode->htotal - adjusted_mode->hsync_start;
  508. vsync_start_to_end = adjusted_mode->vtotal - adjusted_mode->vsync_start;
  509. /* I can't give this a proper name, anyone else can? */
  510. hunk1 = adjusted_mode->htotal -
  511. adjusted_mode->hsync_start + adjusted_mode->hdisplay;
  512. vunk1 = adjusted_mode->vtotal -
  513. adjusted_mode->vsync_start + adjusted_mode->vdisplay;
  514. /* Another strange value, this time only for interlaced adjusted_modes. */
  515. vunk2a = 2 * adjusted_mode->vtotal -
  516. adjusted_mode->vsync_start + adjusted_mode->vdisplay;
  517. vunk2b = adjusted_mode->vtotal -
  518. adjusted_mode->vsync_start + adjusted_mode->vtotal;
  519. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  520. vsync_dur /= 2;
  521. vsync_start_to_end /= 2;
  522. vunk1 /= 2;
  523. vunk2a /= 2;
  524. vunk2b /= 2;
  525. /* magic */
  526. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN) {
  527. vsync_start_to_end -= 1;
  528. vunk1 -= 1;
  529. vunk2a -= 1;
  530. vunk2b -= 1;
  531. }
  532. }
  533. ret = RING_SPACE(evo, 19);
  534. if (ret)
  535. return ret;
  536. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, CLOCK), 2);
  537. OUT_RING(evo, adjusted_mode->clock | 0x800000);
  538. OUT_RING(evo, (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) ? 2 : 0);
  539. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, DISPLAY_START), 5);
  540. OUT_RING(evo, 0);
  541. OUT_RING(evo, (adjusted_mode->vtotal << 16) | adjusted_mode->htotal);
  542. OUT_RING(evo, (vsync_dur - 1) << 16 | (hsync_dur - 1));
  543. OUT_RING(evo, (vsync_start_to_end - 1) << 16 |
  544. (hsync_start_to_end - 1));
  545. OUT_RING(evo, (vunk1 - 1) << 16 | (hunk1 - 1));
  546. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  547. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, UNK0824), 1);
  548. OUT_RING(evo, (vunk2b - 1) << 16 | (vunk2a - 1));
  549. } else {
  550. OUT_RING(evo, 0);
  551. OUT_RING(evo, 0);
  552. }
  553. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, UNK082C), 1);
  554. OUT_RING (evo, 0);
  555. /* required to make display sync channel not hate life */
  556. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, UNK900), 1);
  557. OUT_RING (evo, 0x00000311);
  558. /* This is the actual resolution of the mode. */
  559. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, REAL_RES), 1);
  560. OUT_RING(evo, (mode->vdisplay << 16) | mode->hdisplay);
  561. BEGIN_RING(evo, 0, NV50_EVO_CRTC(nv_crtc->index, SCALE_CENTER_OFFSET), 1);
  562. OUT_RING(evo, NV50_EVO_CRTC_SCALE_CENTER_OFFSET_VAL(0, 0));
  563. nv_crtc->set_dither(nv_crtc, nv_connector->use_dithering, false);
  564. nv_crtc->set_scale(nv_crtc, nv_connector->scaling_mode, false);
  565. return nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
  566. }
  567. static int
  568. nv50_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
  569. struct drm_framebuffer *old_fb)
  570. {
  571. int ret;
  572. nv50_display_flip_stop(crtc);
  573. ret = nv50_crtc_do_mode_set_base(crtc, old_fb, x, y, false);
  574. if (ret)
  575. return ret;
  576. ret = nv50_display_sync(crtc->dev);
  577. if (ret)
  578. return ret;
  579. return nv50_display_flip_next(crtc, crtc->fb, NULL);
  580. }
  581. static int
  582. nv50_crtc_mode_set_base_atomic(struct drm_crtc *crtc,
  583. struct drm_framebuffer *fb,
  584. int x, int y, enum mode_set_atomic state)
  585. {
  586. int ret;
  587. nv50_display_flip_stop(crtc);
  588. ret = nv50_crtc_do_mode_set_base(crtc, fb, x, y, true);
  589. if (ret)
  590. return ret;
  591. return nv50_display_sync(crtc->dev);
  592. }
  593. static const struct drm_crtc_helper_funcs nv50_crtc_helper_funcs = {
  594. .dpms = nv50_crtc_dpms,
  595. .prepare = nv50_crtc_prepare,
  596. .commit = nv50_crtc_commit,
  597. .mode_fixup = nv50_crtc_mode_fixup,
  598. .mode_set = nv50_crtc_mode_set,
  599. .mode_set_base = nv50_crtc_mode_set_base,
  600. .mode_set_base_atomic = nv50_crtc_mode_set_base_atomic,
  601. .load_lut = nv50_crtc_lut_load,
  602. };
  603. int
  604. nv50_crtc_create(struct drm_device *dev, int index)
  605. {
  606. struct nouveau_crtc *nv_crtc = NULL;
  607. int ret, i;
  608. NV_DEBUG_KMS(dev, "\n");
  609. nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL);
  610. if (!nv_crtc)
  611. return -ENOMEM;
  612. nv_crtc->mode = kzalloc(sizeof(*nv_crtc->mode), GFP_KERNEL);
  613. if (!nv_crtc->mode) {
  614. kfree(nv_crtc);
  615. return -ENOMEM;
  616. }
  617. /* Default CLUT parameters, will be activated on the hw upon
  618. * first mode set.
  619. */
  620. for (i = 0; i < 256; i++) {
  621. nv_crtc->lut.r[i] = i << 8;
  622. nv_crtc->lut.g[i] = i << 8;
  623. nv_crtc->lut.b[i] = i << 8;
  624. }
  625. nv_crtc->lut.depth = 0;
  626. ret = nouveau_bo_new(dev, 4096, 0x100, TTM_PL_FLAG_VRAM,
  627. 0, 0x0000, &nv_crtc->lut.nvbo);
  628. if (!ret) {
  629. ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM);
  630. if (!ret)
  631. ret = nouveau_bo_map(nv_crtc->lut.nvbo);
  632. if (ret)
  633. nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo);
  634. }
  635. if (ret) {
  636. kfree(nv_crtc->mode);
  637. kfree(nv_crtc);
  638. return ret;
  639. }
  640. nv_crtc->index = index;
  641. /* set function pointers */
  642. nv_crtc->set_dither = nv50_crtc_set_dither;
  643. nv_crtc->set_scale = nv50_crtc_set_scale;
  644. drm_crtc_init(dev, &nv_crtc->base, &nv50_crtc_funcs);
  645. drm_crtc_helper_add(&nv_crtc->base, &nv50_crtc_helper_funcs);
  646. drm_mode_crtc_set_gamma_size(&nv_crtc->base, 256);
  647. ret = nouveau_bo_new(dev, 64*64*4, 0x100, TTM_PL_FLAG_VRAM,
  648. 0, 0x0000, &nv_crtc->cursor.nvbo);
  649. if (!ret) {
  650. ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM);
  651. if (!ret)
  652. ret = nouveau_bo_map(nv_crtc->cursor.nvbo);
  653. if (ret)
  654. nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo);
  655. }
  656. nv50_cursor_init(nv_crtc);
  657. return 0;
  658. }