process.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309
  1. /*
  2. * Derived from "arch/i386/kernel/process.c"
  3. * Copyright (C) 1995 Linus Torvalds
  4. *
  5. * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
  6. * Paul Mackerras (paulus@cs.anu.edu.au)
  7. *
  8. * PowerPC version
  9. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10. *
  11. * This program is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License
  13. * as published by the Free Software Foundation; either version
  14. * 2 of the License, or (at your option) any later version.
  15. */
  16. #include <linux/errno.h>
  17. #include <linux/sched.h>
  18. #include <linux/kernel.h>
  19. #include <linux/mm.h>
  20. #include <linux/smp.h>
  21. #include <linux/stddef.h>
  22. #include <linux/unistd.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/slab.h>
  25. #include <linux/user.h>
  26. #include <linux/elf.h>
  27. #include <linux/init.h>
  28. #include <linux/prctl.h>
  29. #include <linux/init_task.h>
  30. #include <linux/export.h>
  31. #include <linux/kallsyms.h>
  32. #include <linux/mqueue.h>
  33. #include <linux/hardirq.h>
  34. #include <linux/utsname.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/kernel_stat.h>
  37. #include <linux/personality.h>
  38. #include <linux/random.h>
  39. #include <linux/hw_breakpoint.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/io.h>
  43. #include <asm/processor.h>
  44. #include <asm/mmu.h>
  45. #include <asm/prom.h>
  46. #include <asm/machdep.h>
  47. #include <asm/time.h>
  48. #include <asm/runlatch.h>
  49. #include <asm/syscalls.h>
  50. #include <asm/switch_to.h>
  51. #include <asm/debug.h>
  52. #ifdef CONFIG_PPC64
  53. #include <asm/firmware.h>
  54. #endif
  55. #include <linux/kprobes.h>
  56. #include <linux/kdebug.h>
  57. extern unsigned long _get_SP(void);
  58. #ifndef CONFIG_SMP
  59. struct task_struct *last_task_used_math = NULL;
  60. struct task_struct *last_task_used_altivec = NULL;
  61. struct task_struct *last_task_used_vsx = NULL;
  62. struct task_struct *last_task_used_spe = NULL;
  63. #endif
  64. /*
  65. * Make sure the floating-point register state in the
  66. * the thread_struct is up to date for task tsk.
  67. */
  68. void flush_fp_to_thread(struct task_struct *tsk)
  69. {
  70. if (tsk->thread.regs) {
  71. /*
  72. * We need to disable preemption here because if we didn't,
  73. * another process could get scheduled after the regs->msr
  74. * test but before we have finished saving the FP registers
  75. * to the thread_struct. That process could take over the
  76. * FPU, and then when we get scheduled again we would store
  77. * bogus values for the remaining FP registers.
  78. */
  79. preempt_disable();
  80. if (tsk->thread.regs->msr & MSR_FP) {
  81. #ifdef CONFIG_SMP
  82. /*
  83. * This should only ever be called for current or
  84. * for a stopped child process. Since we save away
  85. * the FP register state on context switch on SMP,
  86. * there is something wrong if a stopped child appears
  87. * to still have its FP state in the CPU registers.
  88. */
  89. BUG_ON(tsk != current);
  90. #endif
  91. giveup_fpu(tsk);
  92. }
  93. preempt_enable();
  94. }
  95. }
  96. EXPORT_SYMBOL_GPL(flush_fp_to_thread);
  97. void enable_kernel_fp(void)
  98. {
  99. WARN_ON(preemptible());
  100. #ifdef CONFIG_SMP
  101. if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
  102. giveup_fpu(current);
  103. else
  104. giveup_fpu(NULL); /* just enables FP for kernel */
  105. #else
  106. giveup_fpu(last_task_used_math);
  107. #endif /* CONFIG_SMP */
  108. }
  109. EXPORT_SYMBOL(enable_kernel_fp);
  110. #ifdef CONFIG_ALTIVEC
  111. void enable_kernel_altivec(void)
  112. {
  113. WARN_ON(preemptible());
  114. #ifdef CONFIG_SMP
  115. if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
  116. giveup_altivec(current);
  117. else
  118. giveup_altivec_notask();
  119. #else
  120. giveup_altivec(last_task_used_altivec);
  121. #endif /* CONFIG_SMP */
  122. }
  123. EXPORT_SYMBOL(enable_kernel_altivec);
  124. /*
  125. * Make sure the VMX/Altivec register state in the
  126. * the thread_struct is up to date for task tsk.
  127. */
  128. void flush_altivec_to_thread(struct task_struct *tsk)
  129. {
  130. if (tsk->thread.regs) {
  131. preempt_disable();
  132. if (tsk->thread.regs->msr & MSR_VEC) {
  133. #ifdef CONFIG_SMP
  134. BUG_ON(tsk != current);
  135. #endif
  136. giveup_altivec(tsk);
  137. }
  138. preempt_enable();
  139. }
  140. }
  141. EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
  142. #endif /* CONFIG_ALTIVEC */
  143. #ifdef CONFIG_VSX
  144. #if 0
  145. /* not currently used, but some crazy RAID module might want to later */
  146. void enable_kernel_vsx(void)
  147. {
  148. WARN_ON(preemptible());
  149. #ifdef CONFIG_SMP
  150. if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
  151. giveup_vsx(current);
  152. else
  153. giveup_vsx(NULL); /* just enable vsx for kernel - force */
  154. #else
  155. giveup_vsx(last_task_used_vsx);
  156. #endif /* CONFIG_SMP */
  157. }
  158. EXPORT_SYMBOL(enable_kernel_vsx);
  159. #endif
  160. void giveup_vsx(struct task_struct *tsk)
  161. {
  162. giveup_fpu(tsk);
  163. giveup_altivec(tsk);
  164. __giveup_vsx(tsk);
  165. }
  166. void flush_vsx_to_thread(struct task_struct *tsk)
  167. {
  168. if (tsk->thread.regs) {
  169. preempt_disable();
  170. if (tsk->thread.regs->msr & MSR_VSX) {
  171. #ifdef CONFIG_SMP
  172. BUG_ON(tsk != current);
  173. #endif
  174. giveup_vsx(tsk);
  175. }
  176. preempt_enable();
  177. }
  178. }
  179. EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
  180. #endif /* CONFIG_VSX */
  181. #ifdef CONFIG_SPE
  182. void enable_kernel_spe(void)
  183. {
  184. WARN_ON(preemptible());
  185. #ifdef CONFIG_SMP
  186. if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
  187. giveup_spe(current);
  188. else
  189. giveup_spe(NULL); /* just enable SPE for kernel - force */
  190. #else
  191. giveup_spe(last_task_used_spe);
  192. #endif /* __SMP __ */
  193. }
  194. EXPORT_SYMBOL(enable_kernel_spe);
  195. void flush_spe_to_thread(struct task_struct *tsk)
  196. {
  197. if (tsk->thread.regs) {
  198. preempt_disable();
  199. if (tsk->thread.regs->msr & MSR_SPE) {
  200. #ifdef CONFIG_SMP
  201. BUG_ON(tsk != current);
  202. #endif
  203. tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
  204. giveup_spe(tsk);
  205. }
  206. preempt_enable();
  207. }
  208. }
  209. #endif /* CONFIG_SPE */
  210. #ifndef CONFIG_SMP
  211. /*
  212. * If we are doing lazy switching of CPU state (FP, altivec or SPE),
  213. * and the current task has some state, discard it.
  214. */
  215. void discard_lazy_cpu_state(void)
  216. {
  217. preempt_disable();
  218. if (last_task_used_math == current)
  219. last_task_used_math = NULL;
  220. #ifdef CONFIG_ALTIVEC
  221. if (last_task_used_altivec == current)
  222. last_task_used_altivec = NULL;
  223. #endif /* CONFIG_ALTIVEC */
  224. #ifdef CONFIG_VSX
  225. if (last_task_used_vsx == current)
  226. last_task_used_vsx = NULL;
  227. #endif /* CONFIG_VSX */
  228. #ifdef CONFIG_SPE
  229. if (last_task_used_spe == current)
  230. last_task_used_spe = NULL;
  231. #endif
  232. preempt_enable();
  233. }
  234. #endif /* CONFIG_SMP */
  235. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  236. void do_send_trap(struct pt_regs *regs, unsigned long address,
  237. unsigned long error_code, int signal_code, int breakpt)
  238. {
  239. siginfo_t info;
  240. current->thread.trap_nr = signal_code;
  241. if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
  242. 11, SIGSEGV) == NOTIFY_STOP)
  243. return;
  244. /* Deliver the signal to userspace */
  245. info.si_signo = SIGTRAP;
  246. info.si_errno = breakpt; /* breakpoint or watchpoint id */
  247. info.si_code = signal_code;
  248. info.si_addr = (void __user *)address;
  249. force_sig_info(SIGTRAP, &info, current);
  250. }
  251. #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
  252. void do_break (struct pt_regs *regs, unsigned long address,
  253. unsigned long error_code)
  254. {
  255. siginfo_t info;
  256. current->thread.trap_nr = TRAP_HWBKPT;
  257. if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
  258. 11, SIGSEGV) == NOTIFY_STOP)
  259. return;
  260. if (debugger_break_match(regs))
  261. return;
  262. /* Clear the breakpoint */
  263. hw_breakpoint_disable();
  264. /* Deliver the signal to userspace */
  265. info.si_signo = SIGTRAP;
  266. info.si_errno = 0;
  267. info.si_code = TRAP_HWBKPT;
  268. info.si_addr = (void __user *)address;
  269. force_sig_info(SIGTRAP, &info, current);
  270. }
  271. #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
  272. static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
  273. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  274. /*
  275. * Set the debug registers back to their default "safe" values.
  276. */
  277. static void set_debug_reg_defaults(struct thread_struct *thread)
  278. {
  279. thread->iac1 = thread->iac2 = 0;
  280. #if CONFIG_PPC_ADV_DEBUG_IACS > 2
  281. thread->iac3 = thread->iac4 = 0;
  282. #endif
  283. thread->dac1 = thread->dac2 = 0;
  284. #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
  285. thread->dvc1 = thread->dvc2 = 0;
  286. #endif
  287. thread->dbcr0 = 0;
  288. #ifdef CONFIG_BOOKE
  289. /*
  290. * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
  291. */
  292. thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \
  293. DBCR1_IAC3US | DBCR1_IAC4US;
  294. /*
  295. * Force Data Address Compare User/Supervisor bits to be User-only
  296. * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
  297. */
  298. thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
  299. #else
  300. thread->dbcr1 = 0;
  301. #endif
  302. }
  303. static void prime_debug_regs(struct thread_struct *thread)
  304. {
  305. mtspr(SPRN_IAC1, thread->iac1);
  306. mtspr(SPRN_IAC2, thread->iac2);
  307. #if CONFIG_PPC_ADV_DEBUG_IACS > 2
  308. mtspr(SPRN_IAC3, thread->iac3);
  309. mtspr(SPRN_IAC4, thread->iac4);
  310. #endif
  311. mtspr(SPRN_DAC1, thread->dac1);
  312. mtspr(SPRN_DAC2, thread->dac2);
  313. #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
  314. mtspr(SPRN_DVC1, thread->dvc1);
  315. mtspr(SPRN_DVC2, thread->dvc2);
  316. #endif
  317. mtspr(SPRN_DBCR0, thread->dbcr0);
  318. mtspr(SPRN_DBCR1, thread->dbcr1);
  319. #ifdef CONFIG_BOOKE
  320. mtspr(SPRN_DBCR2, thread->dbcr2);
  321. #endif
  322. }
  323. /*
  324. * Unless neither the old or new thread are making use of the
  325. * debug registers, set the debug registers from the values
  326. * stored in the new thread.
  327. */
  328. static void switch_booke_debug_regs(struct thread_struct *new_thread)
  329. {
  330. if ((current->thread.dbcr0 & DBCR0_IDM)
  331. || (new_thread->dbcr0 & DBCR0_IDM))
  332. prime_debug_regs(new_thread);
  333. }
  334. #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
  335. #ifndef CONFIG_HAVE_HW_BREAKPOINT
  336. static void set_debug_reg_defaults(struct thread_struct *thread)
  337. {
  338. thread->hw_brk.address = 0;
  339. thread->hw_brk.type = 0;
  340. set_breakpoint(&thread->hw_brk);
  341. }
  342. #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
  343. #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
  344. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  345. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  346. {
  347. mtspr(SPRN_DAC1, dabr);
  348. #ifdef CONFIG_PPC_47x
  349. isync();
  350. #endif
  351. return 0;
  352. }
  353. #elif defined(CONFIG_PPC_BOOK3S)
  354. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  355. {
  356. mtspr(SPRN_DABR, dabr);
  357. mtspr(SPRN_DABRX, dabrx);
  358. return 0;
  359. }
  360. #else
  361. static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
  362. {
  363. return -EINVAL;
  364. }
  365. #endif
  366. static inline int set_dabr(struct arch_hw_breakpoint *brk)
  367. {
  368. unsigned long dabr, dabrx;
  369. dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
  370. dabrx = ((brk->type >> 3) & 0x7);
  371. if (ppc_md.set_dabr)
  372. return ppc_md.set_dabr(dabr, dabrx);
  373. return __set_dabr(dabr, dabrx);
  374. }
  375. static inline int set_dawr(struct arch_hw_breakpoint *brk)
  376. {
  377. unsigned long dawr, dawrx;
  378. dawr = brk->address;
  379. dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
  380. << (63 - 58); //* read/write bits */
  381. dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
  382. << (63 - 59); //* translate */
  383. dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
  384. >> 3; //* PRIM bits */
  385. if (ppc_md.set_dawr)
  386. return ppc_md.set_dawr(dawr, dawrx);
  387. mtspr(SPRN_DAWR, dawr);
  388. mtspr(SPRN_DAWRX, dawrx);
  389. return 0;
  390. }
  391. int set_breakpoint(struct arch_hw_breakpoint *brk)
  392. {
  393. __get_cpu_var(current_brk) = *brk;
  394. if (cpu_has_feature(CPU_FTR_DAWR))
  395. return set_dawr(brk);
  396. return set_dabr(brk);
  397. }
  398. #ifdef CONFIG_PPC64
  399. DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
  400. #endif
  401. static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
  402. struct arch_hw_breakpoint *b)
  403. {
  404. if (a->address != b->address)
  405. return false;
  406. if (a->type != b->type)
  407. return false;
  408. if (a->len != b->len)
  409. return false;
  410. return true;
  411. }
  412. struct task_struct *__switch_to(struct task_struct *prev,
  413. struct task_struct *new)
  414. {
  415. struct thread_struct *new_thread, *old_thread;
  416. unsigned long flags;
  417. struct task_struct *last;
  418. #ifdef CONFIG_PPC_BOOK3S_64
  419. struct ppc64_tlb_batch *batch;
  420. #endif
  421. #ifdef CONFIG_SMP
  422. /* avoid complexity of lazy save/restore of fpu
  423. * by just saving it every time we switch out if
  424. * this task used the fpu during the last quantum.
  425. *
  426. * If it tries to use the fpu again, it'll trap and
  427. * reload its fp regs. So we don't have to do a restore
  428. * every switch, just a save.
  429. * -- Cort
  430. */
  431. if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
  432. giveup_fpu(prev);
  433. #ifdef CONFIG_ALTIVEC
  434. /*
  435. * If the previous thread used altivec in the last quantum
  436. * (thus changing altivec regs) then save them.
  437. * We used to check the VRSAVE register but not all apps
  438. * set it, so we don't rely on it now (and in fact we need
  439. * to save & restore VSCR even if VRSAVE == 0). -- paulus
  440. *
  441. * On SMP we always save/restore altivec regs just to avoid the
  442. * complexity of changing processors.
  443. * -- Cort
  444. */
  445. if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
  446. giveup_altivec(prev);
  447. #endif /* CONFIG_ALTIVEC */
  448. #ifdef CONFIG_VSX
  449. if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
  450. /* VMX and FPU registers are already save here */
  451. __giveup_vsx(prev);
  452. #endif /* CONFIG_VSX */
  453. #ifdef CONFIG_SPE
  454. /*
  455. * If the previous thread used spe in the last quantum
  456. * (thus changing spe regs) then save them.
  457. *
  458. * On SMP we always save/restore spe regs just to avoid the
  459. * complexity of changing processors.
  460. */
  461. if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
  462. giveup_spe(prev);
  463. #endif /* CONFIG_SPE */
  464. #else /* CONFIG_SMP */
  465. #ifdef CONFIG_ALTIVEC
  466. /* Avoid the trap. On smp this this never happens since
  467. * we don't set last_task_used_altivec -- Cort
  468. */
  469. if (new->thread.regs && last_task_used_altivec == new)
  470. new->thread.regs->msr |= MSR_VEC;
  471. #endif /* CONFIG_ALTIVEC */
  472. #ifdef CONFIG_VSX
  473. if (new->thread.regs && last_task_used_vsx == new)
  474. new->thread.regs->msr |= MSR_VSX;
  475. #endif /* CONFIG_VSX */
  476. #ifdef CONFIG_SPE
  477. /* Avoid the trap. On smp this this never happens since
  478. * we don't set last_task_used_spe
  479. */
  480. if (new->thread.regs && last_task_used_spe == new)
  481. new->thread.regs->msr |= MSR_SPE;
  482. #endif /* CONFIG_SPE */
  483. #endif /* CONFIG_SMP */
  484. #ifdef CONFIG_PPC_ADV_DEBUG_REGS
  485. switch_booke_debug_regs(&new->thread);
  486. #else
  487. /*
  488. * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
  489. * schedule DABR
  490. */
  491. #ifndef CONFIG_HAVE_HW_BREAKPOINT
  492. if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
  493. set_breakpoint(&new->thread.hw_brk);
  494. #endif /* CONFIG_HAVE_HW_BREAKPOINT */
  495. #endif
  496. new_thread = &new->thread;
  497. old_thread = &current->thread;
  498. #ifdef CONFIG_PPC64
  499. /*
  500. * Collect processor utilization data per process
  501. */
  502. if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
  503. struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
  504. long unsigned start_tb, current_tb;
  505. start_tb = old_thread->start_tb;
  506. cu->current_tb = current_tb = mfspr(SPRN_PURR);
  507. old_thread->accum_tb += (current_tb - start_tb);
  508. new_thread->start_tb = current_tb;
  509. }
  510. #endif /* CONFIG_PPC64 */
  511. #ifdef CONFIG_PPC_BOOK3S_64
  512. batch = &__get_cpu_var(ppc64_tlb_batch);
  513. if (batch->active) {
  514. current_thread_info()->local_flags |= _TLF_LAZY_MMU;
  515. if (batch->index)
  516. __flush_tlb_pending(batch);
  517. batch->active = 0;
  518. }
  519. #endif /* CONFIG_PPC_BOOK3S_64 */
  520. local_irq_save(flags);
  521. /*
  522. * We can't take a PMU exception inside _switch() since there is a
  523. * window where the kernel stack SLB and the kernel stack are out
  524. * of sync. Hard disable here.
  525. */
  526. hard_irq_disable();
  527. last = _switch(old_thread, new_thread);
  528. #ifdef CONFIG_PPC_BOOK3S_64
  529. if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
  530. current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
  531. batch = &__get_cpu_var(ppc64_tlb_batch);
  532. batch->active = 1;
  533. }
  534. #endif /* CONFIG_PPC_BOOK3S_64 */
  535. local_irq_restore(flags);
  536. return last;
  537. }
  538. static int instructions_to_print = 16;
  539. static void show_instructions(struct pt_regs *regs)
  540. {
  541. int i;
  542. unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
  543. sizeof(int));
  544. printk("Instruction dump:");
  545. for (i = 0; i < instructions_to_print; i++) {
  546. int instr;
  547. if (!(i % 8))
  548. printk("\n");
  549. #if !defined(CONFIG_BOOKE)
  550. /* If executing with the IMMU off, adjust pc rather
  551. * than print XXXXXXXX.
  552. */
  553. if (!(regs->msr & MSR_IR))
  554. pc = (unsigned long)phys_to_virt(pc);
  555. #endif
  556. /* We use __get_user here *only* to avoid an OOPS on a
  557. * bad address because the pc *should* only be a
  558. * kernel address.
  559. */
  560. if (!__kernel_text_address(pc) ||
  561. __get_user(instr, (unsigned int __user *)pc)) {
  562. printk(KERN_CONT "XXXXXXXX ");
  563. } else {
  564. if (regs->nip == pc)
  565. printk(KERN_CONT "<%08x> ", instr);
  566. else
  567. printk(KERN_CONT "%08x ", instr);
  568. }
  569. pc += sizeof(int);
  570. }
  571. printk("\n");
  572. }
  573. static struct regbit {
  574. unsigned long bit;
  575. const char *name;
  576. } msr_bits[] = {
  577. #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
  578. {MSR_SF, "SF"},
  579. {MSR_HV, "HV"},
  580. #endif
  581. {MSR_VEC, "VEC"},
  582. {MSR_VSX, "VSX"},
  583. #ifdef CONFIG_BOOKE
  584. {MSR_CE, "CE"},
  585. #endif
  586. {MSR_EE, "EE"},
  587. {MSR_PR, "PR"},
  588. {MSR_FP, "FP"},
  589. {MSR_ME, "ME"},
  590. #ifdef CONFIG_BOOKE
  591. {MSR_DE, "DE"},
  592. #else
  593. {MSR_SE, "SE"},
  594. {MSR_BE, "BE"},
  595. #endif
  596. {MSR_IR, "IR"},
  597. {MSR_DR, "DR"},
  598. {MSR_PMM, "PMM"},
  599. #ifndef CONFIG_BOOKE
  600. {MSR_RI, "RI"},
  601. {MSR_LE, "LE"},
  602. #endif
  603. {0, NULL}
  604. };
  605. static void printbits(unsigned long val, struct regbit *bits)
  606. {
  607. const char *sep = "";
  608. printk("<");
  609. for (; bits->bit; ++bits)
  610. if (val & bits->bit) {
  611. printk("%s%s", sep, bits->name);
  612. sep = ",";
  613. }
  614. printk(">");
  615. }
  616. #ifdef CONFIG_PPC64
  617. #define REG "%016lx"
  618. #define REGS_PER_LINE 4
  619. #define LAST_VOLATILE 13
  620. #else
  621. #define REG "%08lx"
  622. #define REGS_PER_LINE 8
  623. #define LAST_VOLATILE 12
  624. #endif
  625. void show_regs(struct pt_regs * regs)
  626. {
  627. int i, trap;
  628. printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
  629. regs->nip, regs->link, regs->ctr);
  630. printk("REGS: %p TRAP: %04lx %s (%s)\n",
  631. regs, regs->trap, print_tainted(), init_utsname()->release);
  632. printk("MSR: "REG" ", regs->msr);
  633. printbits(regs->msr, msr_bits);
  634. printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
  635. #ifdef CONFIG_PPC64
  636. printk("SOFTE: %ld\n", regs->softe);
  637. #endif
  638. trap = TRAP(regs);
  639. if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
  640. printk("CFAR: "REG"\n", regs->orig_gpr3);
  641. if (trap == 0x300 || trap == 0x600)
  642. #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
  643. printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
  644. #else
  645. printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
  646. #endif
  647. printk("TASK = %p[%d] '%s' THREAD: %p",
  648. current, task_pid_nr(current), current->comm, task_thread_info(current));
  649. #ifdef CONFIG_SMP
  650. printk(" CPU: %d", raw_smp_processor_id());
  651. #endif /* CONFIG_SMP */
  652. for (i = 0; i < 32; i++) {
  653. if ((i % REGS_PER_LINE) == 0)
  654. printk("\nGPR%02d: ", i);
  655. printk(REG " ", regs->gpr[i]);
  656. if (i == LAST_VOLATILE && !FULL_REGS(regs))
  657. break;
  658. }
  659. printk("\n");
  660. #ifdef CONFIG_KALLSYMS
  661. /*
  662. * Lookup NIP late so we have the best change of getting the
  663. * above info out without failing
  664. */
  665. printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
  666. printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
  667. #endif
  668. show_stack(current, (unsigned long *) regs->gpr[1]);
  669. if (!user_mode(regs))
  670. show_instructions(regs);
  671. }
  672. void exit_thread(void)
  673. {
  674. discard_lazy_cpu_state();
  675. }
  676. void flush_thread(void)
  677. {
  678. discard_lazy_cpu_state();
  679. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  680. flush_ptrace_hw_breakpoint(current);
  681. #else /* CONFIG_HAVE_HW_BREAKPOINT */
  682. set_debug_reg_defaults(&current->thread);
  683. #endif /* CONFIG_HAVE_HW_BREAKPOINT */
  684. }
  685. void
  686. release_thread(struct task_struct *t)
  687. {
  688. }
  689. /*
  690. * this gets called so that we can store coprocessor state into memory and
  691. * copy the current task into the new thread.
  692. */
  693. int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  694. {
  695. flush_fp_to_thread(src);
  696. flush_altivec_to_thread(src);
  697. flush_vsx_to_thread(src);
  698. flush_spe_to_thread(src);
  699. #ifdef CONFIG_HAVE_HW_BREAKPOINT
  700. flush_ptrace_hw_breakpoint(src);
  701. #endif /* CONFIG_HAVE_HW_BREAKPOINT */
  702. *dst = *src;
  703. return 0;
  704. }
  705. /*
  706. * Copy a thread..
  707. */
  708. extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
  709. int copy_thread(unsigned long clone_flags, unsigned long usp,
  710. unsigned long arg, struct task_struct *p)
  711. {
  712. struct pt_regs *childregs, *kregs;
  713. extern void ret_from_fork(void);
  714. extern void ret_from_kernel_thread(void);
  715. void (*f)(void);
  716. unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  717. /* Copy registers */
  718. sp -= sizeof(struct pt_regs);
  719. childregs = (struct pt_regs *) sp;
  720. if (unlikely(p->flags & PF_KTHREAD)) {
  721. struct thread_info *ti = (void *)task_stack_page(p);
  722. memset(childregs, 0, sizeof(struct pt_regs));
  723. childregs->gpr[1] = sp + sizeof(struct pt_regs);
  724. childregs->gpr[14] = usp; /* function */
  725. #ifdef CONFIG_PPC64
  726. clear_tsk_thread_flag(p, TIF_32BIT);
  727. childregs->softe = 1;
  728. #endif
  729. childregs->gpr[15] = arg;
  730. p->thread.regs = NULL; /* no user register state */
  731. ti->flags |= _TIF_RESTOREALL;
  732. f = ret_from_kernel_thread;
  733. } else {
  734. struct pt_regs *regs = current_pt_regs();
  735. CHECK_FULL_REGS(regs);
  736. *childregs = *regs;
  737. if (usp)
  738. childregs->gpr[1] = usp;
  739. p->thread.regs = childregs;
  740. childregs->gpr[3] = 0; /* Result from fork() */
  741. if (clone_flags & CLONE_SETTLS) {
  742. #ifdef CONFIG_PPC64
  743. if (!is_32bit_task())
  744. childregs->gpr[13] = childregs->gpr[6];
  745. else
  746. #endif
  747. childregs->gpr[2] = childregs->gpr[6];
  748. }
  749. f = ret_from_fork;
  750. }
  751. sp -= STACK_FRAME_OVERHEAD;
  752. /*
  753. * The way this works is that at some point in the future
  754. * some task will call _switch to switch to the new task.
  755. * That will pop off the stack frame created below and start
  756. * the new task running at ret_from_fork. The new task will
  757. * do some house keeping and then return from the fork or clone
  758. * system call, using the stack frame created above.
  759. */
  760. sp -= sizeof(struct pt_regs);
  761. kregs = (struct pt_regs *) sp;
  762. sp -= STACK_FRAME_OVERHEAD;
  763. p->thread.ksp = sp;
  764. p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
  765. _ALIGN_UP(sizeof(struct thread_info), 16);
  766. #ifdef CONFIG_PPC_STD_MMU_64
  767. if (mmu_has_feature(MMU_FTR_SLB)) {
  768. unsigned long sp_vsid;
  769. unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
  770. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  771. sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
  772. << SLB_VSID_SHIFT_1T;
  773. else
  774. sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
  775. << SLB_VSID_SHIFT;
  776. sp_vsid |= SLB_VSID_KERNEL | llp;
  777. p->thread.ksp_vsid = sp_vsid;
  778. }
  779. #endif /* CONFIG_PPC_STD_MMU_64 */
  780. #ifdef CONFIG_PPC64
  781. if (cpu_has_feature(CPU_FTR_DSCR)) {
  782. p->thread.dscr_inherit = current->thread.dscr_inherit;
  783. p->thread.dscr = current->thread.dscr;
  784. }
  785. if (cpu_has_feature(CPU_FTR_HAS_PPR))
  786. p->thread.ppr = INIT_PPR;
  787. #endif
  788. /*
  789. * The PPC64 ABI makes use of a TOC to contain function
  790. * pointers. The function (ret_from_except) is actually a pointer
  791. * to the TOC entry. The first entry is a pointer to the actual
  792. * function.
  793. */
  794. #ifdef CONFIG_PPC64
  795. kregs->nip = *((unsigned long *)f);
  796. #else
  797. kregs->nip = (unsigned long)f;
  798. #endif
  799. return 0;
  800. }
  801. /*
  802. * Set up a thread for executing a new program
  803. */
  804. void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
  805. {
  806. #ifdef CONFIG_PPC64
  807. unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
  808. #endif
  809. /*
  810. * If we exec out of a kernel thread then thread.regs will not be
  811. * set. Do it now.
  812. */
  813. if (!current->thread.regs) {
  814. struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
  815. current->thread.regs = regs - 1;
  816. }
  817. memset(regs->gpr, 0, sizeof(regs->gpr));
  818. regs->ctr = 0;
  819. regs->link = 0;
  820. regs->xer = 0;
  821. regs->ccr = 0;
  822. regs->gpr[1] = sp;
  823. /*
  824. * We have just cleared all the nonvolatile GPRs, so make
  825. * FULL_REGS(regs) return true. This is necessary to allow
  826. * ptrace to examine the thread immediately after exec.
  827. */
  828. regs->trap &= ~1UL;
  829. #ifdef CONFIG_PPC32
  830. regs->mq = 0;
  831. regs->nip = start;
  832. regs->msr = MSR_USER;
  833. #else
  834. if (!is_32bit_task()) {
  835. unsigned long entry, toc;
  836. /* start is a relocated pointer to the function descriptor for
  837. * the elf _start routine. The first entry in the function
  838. * descriptor is the entry address of _start and the second
  839. * entry is the TOC value we need to use.
  840. */
  841. __get_user(entry, (unsigned long __user *)start);
  842. __get_user(toc, (unsigned long __user *)start+1);
  843. /* Check whether the e_entry function descriptor entries
  844. * need to be relocated before we can use them.
  845. */
  846. if (load_addr != 0) {
  847. entry += load_addr;
  848. toc += load_addr;
  849. }
  850. regs->nip = entry;
  851. regs->gpr[2] = toc;
  852. regs->msr = MSR_USER64;
  853. } else {
  854. regs->nip = start;
  855. regs->gpr[2] = 0;
  856. regs->msr = MSR_USER32;
  857. }
  858. #endif
  859. discard_lazy_cpu_state();
  860. #ifdef CONFIG_VSX
  861. current->thread.used_vsr = 0;
  862. #endif
  863. memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
  864. current->thread.fpscr.val = 0;
  865. #ifdef CONFIG_ALTIVEC
  866. memset(current->thread.vr, 0, sizeof(current->thread.vr));
  867. memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
  868. current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
  869. current->thread.vrsave = 0;
  870. current->thread.used_vr = 0;
  871. #endif /* CONFIG_ALTIVEC */
  872. #ifdef CONFIG_SPE
  873. memset(current->thread.evr, 0, sizeof(current->thread.evr));
  874. current->thread.acc = 0;
  875. current->thread.spefscr = 0;
  876. current->thread.used_spe = 0;
  877. #endif /* CONFIG_SPE */
  878. }
  879. #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
  880. | PR_FP_EXC_RES | PR_FP_EXC_INV)
  881. int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
  882. {
  883. struct pt_regs *regs = tsk->thread.regs;
  884. /* This is a bit hairy. If we are an SPE enabled processor
  885. * (have embedded fp) we store the IEEE exception enable flags in
  886. * fpexc_mode. fpexc_mode is also used for setting FP exception
  887. * mode (asyn, precise, disabled) for 'Classic' FP. */
  888. if (val & PR_FP_EXC_SW_ENABLE) {
  889. #ifdef CONFIG_SPE
  890. if (cpu_has_feature(CPU_FTR_SPE)) {
  891. tsk->thread.fpexc_mode = val &
  892. (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
  893. return 0;
  894. } else {
  895. return -EINVAL;
  896. }
  897. #else
  898. return -EINVAL;
  899. #endif
  900. }
  901. /* on a CONFIG_SPE this does not hurt us. The bits that
  902. * __pack_fe01 use do not overlap with bits used for
  903. * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
  904. * on CONFIG_SPE implementations are reserved so writing to
  905. * them does not change anything */
  906. if (val > PR_FP_EXC_PRECISE)
  907. return -EINVAL;
  908. tsk->thread.fpexc_mode = __pack_fe01(val);
  909. if (regs != NULL && (regs->msr & MSR_FP) != 0)
  910. regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
  911. | tsk->thread.fpexc_mode;
  912. return 0;
  913. }
  914. int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
  915. {
  916. unsigned int val;
  917. if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
  918. #ifdef CONFIG_SPE
  919. if (cpu_has_feature(CPU_FTR_SPE))
  920. val = tsk->thread.fpexc_mode;
  921. else
  922. return -EINVAL;
  923. #else
  924. return -EINVAL;
  925. #endif
  926. else
  927. val = __unpack_fe01(tsk->thread.fpexc_mode);
  928. return put_user(val, (unsigned int __user *) adr);
  929. }
  930. int set_endian(struct task_struct *tsk, unsigned int val)
  931. {
  932. struct pt_regs *regs = tsk->thread.regs;
  933. if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
  934. (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
  935. return -EINVAL;
  936. if (regs == NULL)
  937. return -EINVAL;
  938. if (val == PR_ENDIAN_BIG)
  939. regs->msr &= ~MSR_LE;
  940. else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
  941. regs->msr |= MSR_LE;
  942. else
  943. return -EINVAL;
  944. return 0;
  945. }
  946. int get_endian(struct task_struct *tsk, unsigned long adr)
  947. {
  948. struct pt_regs *regs = tsk->thread.regs;
  949. unsigned int val;
  950. if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
  951. !cpu_has_feature(CPU_FTR_REAL_LE))
  952. return -EINVAL;
  953. if (regs == NULL)
  954. return -EINVAL;
  955. if (regs->msr & MSR_LE) {
  956. if (cpu_has_feature(CPU_FTR_REAL_LE))
  957. val = PR_ENDIAN_LITTLE;
  958. else
  959. val = PR_ENDIAN_PPC_LITTLE;
  960. } else
  961. val = PR_ENDIAN_BIG;
  962. return put_user(val, (unsigned int __user *)adr);
  963. }
  964. int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
  965. {
  966. tsk->thread.align_ctl = val;
  967. return 0;
  968. }
  969. int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
  970. {
  971. return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
  972. }
  973. static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
  974. unsigned long nbytes)
  975. {
  976. unsigned long stack_page;
  977. unsigned long cpu = task_cpu(p);
  978. /*
  979. * Avoid crashing if the stack has overflowed and corrupted
  980. * task_cpu(p), which is in the thread_info struct.
  981. */
  982. if (cpu < NR_CPUS && cpu_possible(cpu)) {
  983. stack_page = (unsigned long) hardirq_ctx[cpu];
  984. if (sp >= stack_page + sizeof(struct thread_struct)
  985. && sp <= stack_page + THREAD_SIZE - nbytes)
  986. return 1;
  987. stack_page = (unsigned long) softirq_ctx[cpu];
  988. if (sp >= stack_page + sizeof(struct thread_struct)
  989. && sp <= stack_page + THREAD_SIZE - nbytes)
  990. return 1;
  991. }
  992. return 0;
  993. }
  994. int validate_sp(unsigned long sp, struct task_struct *p,
  995. unsigned long nbytes)
  996. {
  997. unsigned long stack_page = (unsigned long)task_stack_page(p);
  998. if (sp >= stack_page + sizeof(struct thread_struct)
  999. && sp <= stack_page + THREAD_SIZE - nbytes)
  1000. return 1;
  1001. return valid_irq_stack(sp, p, nbytes);
  1002. }
  1003. EXPORT_SYMBOL(validate_sp);
  1004. unsigned long get_wchan(struct task_struct *p)
  1005. {
  1006. unsigned long ip, sp;
  1007. int count = 0;
  1008. if (!p || p == current || p->state == TASK_RUNNING)
  1009. return 0;
  1010. sp = p->thread.ksp;
  1011. if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
  1012. return 0;
  1013. do {
  1014. sp = *(unsigned long *)sp;
  1015. if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
  1016. return 0;
  1017. if (count > 0) {
  1018. ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
  1019. if (!in_sched_functions(ip))
  1020. return ip;
  1021. }
  1022. } while (count++ < 16);
  1023. return 0;
  1024. }
  1025. static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
  1026. void show_stack(struct task_struct *tsk, unsigned long *stack)
  1027. {
  1028. unsigned long sp, ip, lr, newsp;
  1029. int count = 0;
  1030. int firstframe = 1;
  1031. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  1032. int curr_frame = current->curr_ret_stack;
  1033. extern void return_to_handler(void);
  1034. unsigned long rth = (unsigned long)return_to_handler;
  1035. unsigned long mrth = -1;
  1036. #ifdef CONFIG_PPC64
  1037. extern void mod_return_to_handler(void);
  1038. rth = *(unsigned long *)rth;
  1039. mrth = (unsigned long)mod_return_to_handler;
  1040. mrth = *(unsigned long *)mrth;
  1041. #endif
  1042. #endif
  1043. sp = (unsigned long) stack;
  1044. if (tsk == NULL)
  1045. tsk = current;
  1046. if (sp == 0) {
  1047. if (tsk == current)
  1048. asm("mr %0,1" : "=r" (sp));
  1049. else
  1050. sp = tsk->thread.ksp;
  1051. }
  1052. lr = 0;
  1053. printk("Call Trace:\n");
  1054. do {
  1055. if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
  1056. return;
  1057. stack = (unsigned long *) sp;
  1058. newsp = stack[0];
  1059. ip = stack[STACK_FRAME_LR_SAVE];
  1060. if (!firstframe || ip != lr) {
  1061. printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
  1062. #ifdef CONFIG_FUNCTION_GRAPH_TRACER
  1063. if ((ip == rth || ip == mrth) && curr_frame >= 0) {
  1064. printk(" (%pS)",
  1065. (void *)current->ret_stack[curr_frame].ret);
  1066. curr_frame--;
  1067. }
  1068. #endif
  1069. if (firstframe)
  1070. printk(" (unreliable)");
  1071. printk("\n");
  1072. }
  1073. firstframe = 0;
  1074. /*
  1075. * See if this is an exception frame.
  1076. * We look for the "regshere" marker in the current frame.
  1077. */
  1078. if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
  1079. && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
  1080. struct pt_regs *regs = (struct pt_regs *)
  1081. (sp + STACK_FRAME_OVERHEAD);
  1082. lr = regs->link;
  1083. printk("--- Exception: %lx at %pS\n LR = %pS\n",
  1084. regs->trap, (void *)regs->nip, (void *)lr);
  1085. firstframe = 1;
  1086. }
  1087. sp = newsp;
  1088. } while (count++ < kstack_depth_to_print);
  1089. }
  1090. void dump_stack(void)
  1091. {
  1092. show_stack(current, NULL);
  1093. }
  1094. EXPORT_SYMBOL(dump_stack);
  1095. #ifdef CONFIG_PPC64
  1096. /* Called with hard IRQs off */
  1097. void __ppc64_runlatch_on(void)
  1098. {
  1099. struct thread_info *ti = current_thread_info();
  1100. unsigned long ctrl;
  1101. ctrl = mfspr(SPRN_CTRLF);
  1102. ctrl |= CTRL_RUNLATCH;
  1103. mtspr(SPRN_CTRLT, ctrl);
  1104. ti->local_flags |= _TLF_RUNLATCH;
  1105. }
  1106. /* Called with hard IRQs off */
  1107. void __ppc64_runlatch_off(void)
  1108. {
  1109. struct thread_info *ti = current_thread_info();
  1110. unsigned long ctrl;
  1111. ti->local_flags &= ~_TLF_RUNLATCH;
  1112. ctrl = mfspr(SPRN_CTRLF);
  1113. ctrl &= ~CTRL_RUNLATCH;
  1114. mtspr(SPRN_CTRLT, ctrl);
  1115. }
  1116. #endif /* CONFIG_PPC64 */
  1117. unsigned long arch_align_stack(unsigned long sp)
  1118. {
  1119. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  1120. sp -= get_random_int() & ~PAGE_MASK;
  1121. return sp & ~0xf;
  1122. }
  1123. static inline unsigned long brk_rnd(void)
  1124. {
  1125. unsigned long rnd = 0;
  1126. /* 8MB for 32bit, 1GB for 64bit */
  1127. if (is_32bit_task())
  1128. rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
  1129. else
  1130. rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
  1131. return rnd << PAGE_SHIFT;
  1132. }
  1133. unsigned long arch_randomize_brk(struct mm_struct *mm)
  1134. {
  1135. unsigned long base = mm->brk;
  1136. unsigned long ret;
  1137. #ifdef CONFIG_PPC_STD_MMU_64
  1138. /*
  1139. * If we are using 1TB segments and we are allowed to randomise
  1140. * the heap, we can put it above 1TB so it is backed by a 1TB
  1141. * segment. Otherwise the heap will be in the bottom 1TB
  1142. * which always uses 256MB segments and this may result in a
  1143. * performance penalty.
  1144. */
  1145. if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
  1146. base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
  1147. #endif
  1148. ret = PAGE_ALIGN(base + brk_rnd());
  1149. if (ret < mm->brk)
  1150. return mm->brk;
  1151. return ret;
  1152. }
  1153. unsigned long randomize_et_dyn(unsigned long base)
  1154. {
  1155. unsigned long ret = PAGE_ALIGN(base + brk_rnd());
  1156. if (ret < base)
  1157. return base;
  1158. return ret;
  1159. }