sem.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417
  1. /*
  2. * linux/ipc/sem.c
  3. * Copyright (C) 1992 Krishna Balasubramanian
  4. * Copyright (C) 1995 Eric Schenk, Bruno Haible
  5. *
  6. * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
  7. * This code underwent a massive rewrite in order to solve some problems
  8. * with the original code. In particular the original code failed to
  9. * wake up processes that were waiting for semval to go to 0 if the
  10. * value went to 0 and was then incremented rapidly enough. In solving
  11. * this problem I have also modified the implementation so that it
  12. * processes pending operations in a FIFO manner, thus give a guarantee
  13. * that processes waiting for a lock on the semaphore won't starve
  14. * unless another locking process fails to unlock.
  15. * In addition the following two changes in behavior have been introduced:
  16. * - The original implementation of semop returned the value
  17. * last semaphore element examined on success. This does not
  18. * match the manual page specifications, and effectively
  19. * allows the user to read the semaphore even if they do not
  20. * have read permissions. The implementation now returns 0
  21. * on success as stated in the manual page.
  22. * - There is some confusion over whether the set of undo adjustments
  23. * to be performed at exit should be done in an atomic manner.
  24. * That is, if we are attempting to decrement the semval should we queue
  25. * up and wait until we can do so legally?
  26. * The original implementation attempted to do this.
  27. * The current implementation does not do so. This is because I don't
  28. * think it is the right thing (TM) to do, and because I couldn't
  29. * see a clean way to get the old behavior with the new design.
  30. * The POSIX standard and SVID should be consulted to determine
  31. * what behavior is mandated.
  32. *
  33. * Further notes on refinement (Christoph Rohland, December 1998):
  34. * - The POSIX standard says, that the undo adjustments simply should
  35. * redo. So the current implementation is o.K.
  36. * - The previous code had two flaws:
  37. * 1) It actively gave the semaphore to the next waiting process
  38. * sleeping on the semaphore. Since this process did not have the
  39. * cpu this led to many unnecessary context switches and bad
  40. * performance. Now we only check which process should be able to
  41. * get the semaphore and if this process wants to reduce some
  42. * semaphore value we simply wake it up without doing the
  43. * operation. So it has to try to get it later. Thus e.g. the
  44. * running process may reacquire the semaphore during the current
  45. * time slice. If it only waits for zero or increases the semaphore,
  46. * we do the operation in advance and wake it up.
  47. * 2) It did not wake up all zero waiting processes. We try to do
  48. * better but only get the semops right which only wait for zero or
  49. * increase. If there are decrement operations in the operations
  50. * array we do the same as before.
  51. *
  52. * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
  53. * check/retry algorithm for waking up blocked processes as the new scheduler
  54. * is better at handling thread switch than the old one.
  55. *
  56. * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
  57. *
  58. * SMP-threaded, sysctl's added
  59. * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
  60. * Enforced range limit on SEM_UNDO
  61. * (c) 2001 Red Hat Inc
  62. * Lockless wakeup
  63. * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
  64. *
  65. * support for audit of ipc object properties and permission changes
  66. * Dustin Kirkland <dustin.kirkland@us.ibm.com>
  67. *
  68. * namespaces support
  69. * OpenVZ, SWsoft Inc.
  70. * Pavel Emelianov <xemul@openvz.org>
  71. */
  72. #include <linux/slab.h>
  73. #include <linux/spinlock.h>
  74. #include <linux/init.h>
  75. #include <linux/proc_fs.h>
  76. #include <linux/time.h>
  77. #include <linux/security.h>
  78. #include <linux/syscalls.h>
  79. #include <linux/audit.h>
  80. #include <linux/capability.h>
  81. #include <linux/seq_file.h>
  82. #include <linux/rwsem.h>
  83. #include <linux/nsproxy.h>
  84. #include <linux/ipc_namespace.h>
  85. #include <asm/uaccess.h>
  86. #include "util.h"
  87. #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
  88. #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
  89. #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
  90. static int newary(struct ipc_namespace *, struct ipc_params *);
  91. static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
  92. #ifdef CONFIG_PROC_FS
  93. static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
  94. #endif
  95. #define SEMMSL_FAST 256 /* 512 bytes on stack */
  96. #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
  97. /*
  98. * linked list protection:
  99. * sem_undo.id_next,
  100. * sem_array.sem_pending{,last},
  101. * sem_array.sem_undo: sem_lock() for read/write
  102. * sem_undo.proc_next: only "current" is allowed to read/write that field.
  103. *
  104. */
  105. #define sc_semmsl sem_ctls[0]
  106. #define sc_semmns sem_ctls[1]
  107. #define sc_semopm sem_ctls[2]
  108. #define sc_semmni sem_ctls[3]
  109. void sem_init_ns(struct ipc_namespace *ns)
  110. {
  111. ns->sc_semmsl = SEMMSL;
  112. ns->sc_semmns = SEMMNS;
  113. ns->sc_semopm = SEMOPM;
  114. ns->sc_semmni = SEMMNI;
  115. ns->used_sems = 0;
  116. ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
  117. }
  118. #ifdef CONFIG_IPC_NS
  119. void sem_exit_ns(struct ipc_namespace *ns)
  120. {
  121. free_ipcs(ns, &sem_ids(ns), freeary);
  122. idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
  123. }
  124. #endif
  125. void __init sem_init (void)
  126. {
  127. sem_init_ns(&init_ipc_ns);
  128. ipc_init_proc_interface("sysvipc/sem",
  129. " key semid perms nsems uid gid cuid cgid otime ctime\n",
  130. IPC_SEM_IDS, sysvipc_sem_proc_show);
  131. }
  132. /*
  133. * sem_lock_(check_) routines are called in the paths where the rw_mutex
  134. * is not held.
  135. */
  136. static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
  137. {
  138. struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
  139. if (IS_ERR(ipcp))
  140. return (struct sem_array *)ipcp;
  141. return container_of(ipcp, struct sem_array, sem_perm);
  142. }
  143. static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
  144. int id)
  145. {
  146. struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
  147. if (IS_ERR(ipcp))
  148. return (struct sem_array *)ipcp;
  149. return container_of(ipcp, struct sem_array, sem_perm);
  150. }
  151. static inline void sem_lock_and_putref(struct sem_array *sma)
  152. {
  153. ipc_lock_by_ptr(&sma->sem_perm);
  154. ipc_rcu_putref(sma);
  155. }
  156. static inline void sem_getref_and_unlock(struct sem_array *sma)
  157. {
  158. ipc_rcu_getref(sma);
  159. ipc_unlock(&(sma)->sem_perm);
  160. }
  161. static inline void sem_putref(struct sem_array *sma)
  162. {
  163. ipc_lock_by_ptr(&sma->sem_perm);
  164. ipc_rcu_putref(sma);
  165. ipc_unlock(&(sma)->sem_perm);
  166. }
  167. static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
  168. {
  169. ipc_rmid(&sem_ids(ns), &s->sem_perm);
  170. }
  171. /*
  172. * Lockless wakeup algorithm:
  173. * Without the check/retry algorithm a lockless wakeup is possible:
  174. * - queue.status is initialized to -EINTR before blocking.
  175. * - wakeup is performed by
  176. * * unlinking the queue entry from sma->sem_pending
  177. * * setting queue.status to IN_WAKEUP
  178. * This is the notification for the blocked thread that a
  179. * result value is imminent.
  180. * * call wake_up_process
  181. * * set queue.status to the final value.
  182. * - the previously blocked thread checks queue.status:
  183. * * if it's IN_WAKEUP, then it must wait until the value changes
  184. * * if it's not -EINTR, then the operation was completed by
  185. * update_queue. semtimedop can return queue.status without
  186. * performing any operation on the sem array.
  187. * * otherwise it must acquire the spinlock and check what's up.
  188. *
  189. * The two-stage algorithm is necessary to protect against the following
  190. * races:
  191. * - if queue.status is set after wake_up_process, then the woken up idle
  192. * thread could race forward and try (and fail) to acquire sma->lock
  193. * before update_queue had a chance to set queue.status
  194. * - if queue.status is written before wake_up_process and if the
  195. * blocked process is woken up by a signal between writing
  196. * queue.status and the wake_up_process, then the woken up
  197. * process could return from semtimedop and die by calling
  198. * sys_exit before wake_up_process is called. Then wake_up_process
  199. * will oops, because the task structure is already invalid.
  200. * (yes, this happened on s390 with sysv msg).
  201. *
  202. */
  203. #define IN_WAKEUP 1
  204. /**
  205. * newary - Create a new semaphore set
  206. * @ns: namespace
  207. * @params: ptr to the structure that contains key, semflg and nsems
  208. *
  209. * Called with sem_ids.rw_mutex held (as a writer)
  210. */
  211. static int newary(struct ipc_namespace *ns, struct ipc_params *params)
  212. {
  213. int id;
  214. int retval;
  215. struct sem_array *sma;
  216. int size;
  217. key_t key = params->key;
  218. int nsems = params->u.nsems;
  219. int semflg = params->flg;
  220. int i;
  221. if (!nsems)
  222. return -EINVAL;
  223. if (ns->used_sems + nsems > ns->sc_semmns)
  224. return -ENOSPC;
  225. size = sizeof (*sma) + nsems * sizeof (struct sem);
  226. sma = ipc_rcu_alloc(size);
  227. if (!sma) {
  228. return -ENOMEM;
  229. }
  230. memset (sma, 0, size);
  231. sma->sem_perm.mode = (semflg & S_IRWXUGO);
  232. sma->sem_perm.key = key;
  233. sma->sem_perm.security = NULL;
  234. retval = security_sem_alloc(sma);
  235. if (retval) {
  236. ipc_rcu_putref(sma);
  237. return retval;
  238. }
  239. id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
  240. if (id < 0) {
  241. security_sem_free(sma);
  242. ipc_rcu_putref(sma);
  243. return id;
  244. }
  245. ns->used_sems += nsems;
  246. sma->sem_base = (struct sem *) &sma[1];
  247. for (i = 0; i < nsems; i++)
  248. INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
  249. sma->complex_count = 0;
  250. INIT_LIST_HEAD(&sma->sem_pending);
  251. INIT_LIST_HEAD(&sma->list_id);
  252. sma->sem_nsems = nsems;
  253. sma->sem_ctime = get_seconds();
  254. sem_unlock(sma);
  255. return sma->sem_perm.id;
  256. }
  257. /*
  258. * Called with sem_ids.rw_mutex and ipcp locked.
  259. */
  260. static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
  261. {
  262. struct sem_array *sma;
  263. sma = container_of(ipcp, struct sem_array, sem_perm);
  264. return security_sem_associate(sma, semflg);
  265. }
  266. /*
  267. * Called with sem_ids.rw_mutex and ipcp locked.
  268. */
  269. static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
  270. struct ipc_params *params)
  271. {
  272. struct sem_array *sma;
  273. sma = container_of(ipcp, struct sem_array, sem_perm);
  274. if (params->u.nsems > sma->sem_nsems)
  275. return -EINVAL;
  276. return 0;
  277. }
  278. SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
  279. {
  280. struct ipc_namespace *ns;
  281. struct ipc_ops sem_ops;
  282. struct ipc_params sem_params;
  283. ns = current->nsproxy->ipc_ns;
  284. if (nsems < 0 || nsems > ns->sc_semmsl)
  285. return -EINVAL;
  286. sem_ops.getnew = newary;
  287. sem_ops.associate = sem_security;
  288. sem_ops.more_checks = sem_more_checks;
  289. sem_params.key = key;
  290. sem_params.flg = semflg;
  291. sem_params.u.nsems = nsems;
  292. return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
  293. }
  294. /*
  295. * Determine whether a sequence of semaphore operations would succeed
  296. * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
  297. */
  298. static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
  299. int nsops, struct sem_undo *un, int pid)
  300. {
  301. int result, sem_op;
  302. struct sembuf *sop;
  303. struct sem * curr;
  304. for (sop = sops; sop < sops + nsops; sop++) {
  305. curr = sma->sem_base + sop->sem_num;
  306. sem_op = sop->sem_op;
  307. result = curr->semval;
  308. if (!sem_op && result)
  309. goto would_block;
  310. result += sem_op;
  311. if (result < 0)
  312. goto would_block;
  313. if (result > SEMVMX)
  314. goto out_of_range;
  315. if (sop->sem_flg & SEM_UNDO) {
  316. int undo = un->semadj[sop->sem_num] - sem_op;
  317. /*
  318. * Exceeding the undo range is an error.
  319. */
  320. if (undo < (-SEMAEM - 1) || undo > SEMAEM)
  321. goto out_of_range;
  322. }
  323. curr->semval = result;
  324. }
  325. sop--;
  326. while (sop >= sops) {
  327. sma->sem_base[sop->sem_num].sempid = pid;
  328. if (sop->sem_flg & SEM_UNDO)
  329. un->semadj[sop->sem_num] -= sop->sem_op;
  330. sop--;
  331. }
  332. sma->sem_otime = get_seconds();
  333. return 0;
  334. out_of_range:
  335. result = -ERANGE;
  336. goto undo;
  337. would_block:
  338. if (sop->sem_flg & IPC_NOWAIT)
  339. result = -EAGAIN;
  340. else
  341. result = 1;
  342. undo:
  343. sop--;
  344. while (sop >= sops) {
  345. sma->sem_base[sop->sem_num].semval -= sop->sem_op;
  346. sop--;
  347. }
  348. return result;
  349. }
  350. /*
  351. * Wake up a process waiting on the sem queue with a given error.
  352. * The queue is invalid (may not be accessed) after the function returns.
  353. */
  354. static void wake_up_sem_queue(struct sem_queue *q, int error)
  355. {
  356. /*
  357. * Hold preempt off so that we don't get preempted and have the
  358. * wakee busy-wait until we're scheduled back on. We're holding
  359. * locks here so it may not strictly be needed, however if the
  360. * locks become preemptible then this prevents such a problem.
  361. */
  362. preempt_disable();
  363. q->status = IN_WAKEUP;
  364. wake_up_process(q->sleeper);
  365. /* hands-off: q can disappear immediately after writing q->status. */
  366. smp_wmb();
  367. q->status = error;
  368. preempt_enable();
  369. }
  370. static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
  371. {
  372. list_del(&q->list);
  373. if (q->nsops == 1)
  374. list_del(&q->simple_list);
  375. else
  376. sma->complex_count--;
  377. }
  378. /* Go through the pending queue for the indicated semaphore
  379. * looking for tasks that can be completed.
  380. */
  381. static void update_queue (struct sem_array * sma)
  382. {
  383. struct sem_queue *q, *tq;
  384. again:
  385. list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
  386. int error;
  387. int alter;
  388. error = try_atomic_semop(sma, q->sops, q->nsops,
  389. q->undo, q->pid);
  390. /* Does q->sleeper still need to sleep? */
  391. if (error > 0)
  392. continue;
  393. unlink_queue(sma, q);
  394. /*
  395. * The next operation that must be checked depends on the type
  396. * of the completed operation:
  397. * - if the operation modified the array, then restart from the
  398. * head of the queue and check for threads that might be
  399. * waiting for the new semaphore values.
  400. * - if the operation didn't modify the array, then just
  401. * continue.
  402. */
  403. alter = q->alter;
  404. wake_up_sem_queue(q, error);
  405. if (alter && !error)
  406. goto again;
  407. }
  408. }
  409. /* The following counts are associated to each semaphore:
  410. * semncnt number of tasks waiting on semval being nonzero
  411. * semzcnt number of tasks waiting on semval being zero
  412. * This model assumes that a task waits on exactly one semaphore.
  413. * Since semaphore operations are to be performed atomically, tasks actually
  414. * wait on a whole sequence of semaphores simultaneously.
  415. * The counts we return here are a rough approximation, but still
  416. * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
  417. */
  418. static int count_semncnt (struct sem_array * sma, ushort semnum)
  419. {
  420. int semncnt;
  421. struct sem_queue * q;
  422. semncnt = 0;
  423. list_for_each_entry(q, &sma->sem_pending, list) {
  424. struct sembuf * sops = q->sops;
  425. int nsops = q->nsops;
  426. int i;
  427. for (i = 0; i < nsops; i++)
  428. if (sops[i].sem_num == semnum
  429. && (sops[i].sem_op < 0)
  430. && !(sops[i].sem_flg & IPC_NOWAIT))
  431. semncnt++;
  432. }
  433. return semncnt;
  434. }
  435. static int count_semzcnt (struct sem_array * sma, ushort semnum)
  436. {
  437. int semzcnt;
  438. struct sem_queue * q;
  439. semzcnt = 0;
  440. list_for_each_entry(q, &sma->sem_pending, list) {
  441. struct sembuf * sops = q->sops;
  442. int nsops = q->nsops;
  443. int i;
  444. for (i = 0; i < nsops; i++)
  445. if (sops[i].sem_num == semnum
  446. && (sops[i].sem_op == 0)
  447. && !(sops[i].sem_flg & IPC_NOWAIT))
  448. semzcnt++;
  449. }
  450. return semzcnt;
  451. }
  452. static void free_un(struct rcu_head *head)
  453. {
  454. struct sem_undo *un = container_of(head, struct sem_undo, rcu);
  455. kfree(un);
  456. }
  457. /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
  458. * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
  459. * remains locked on exit.
  460. */
  461. static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
  462. {
  463. struct sem_undo *un, *tu;
  464. struct sem_queue *q, *tq;
  465. struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
  466. /* Free the existing undo structures for this semaphore set. */
  467. assert_spin_locked(&sma->sem_perm.lock);
  468. list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
  469. list_del(&un->list_id);
  470. spin_lock(&un->ulp->lock);
  471. un->semid = -1;
  472. list_del_rcu(&un->list_proc);
  473. spin_unlock(&un->ulp->lock);
  474. call_rcu(&un->rcu, free_un);
  475. }
  476. /* Wake up all pending processes and let them fail with EIDRM. */
  477. list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
  478. unlink_queue(sma, q);
  479. wake_up_sem_queue(q, -EIDRM);
  480. }
  481. /* Remove the semaphore set from the IDR */
  482. sem_rmid(ns, sma);
  483. sem_unlock(sma);
  484. ns->used_sems -= sma->sem_nsems;
  485. security_sem_free(sma);
  486. ipc_rcu_putref(sma);
  487. }
  488. static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
  489. {
  490. switch(version) {
  491. case IPC_64:
  492. return copy_to_user(buf, in, sizeof(*in));
  493. case IPC_OLD:
  494. {
  495. struct semid_ds out;
  496. ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
  497. out.sem_otime = in->sem_otime;
  498. out.sem_ctime = in->sem_ctime;
  499. out.sem_nsems = in->sem_nsems;
  500. return copy_to_user(buf, &out, sizeof(out));
  501. }
  502. default:
  503. return -EINVAL;
  504. }
  505. }
  506. static int semctl_nolock(struct ipc_namespace *ns, int semid,
  507. int cmd, int version, union semun arg)
  508. {
  509. int err = -EINVAL;
  510. struct sem_array *sma;
  511. switch(cmd) {
  512. case IPC_INFO:
  513. case SEM_INFO:
  514. {
  515. struct seminfo seminfo;
  516. int max_id;
  517. err = security_sem_semctl(NULL, cmd);
  518. if (err)
  519. return err;
  520. memset(&seminfo,0,sizeof(seminfo));
  521. seminfo.semmni = ns->sc_semmni;
  522. seminfo.semmns = ns->sc_semmns;
  523. seminfo.semmsl = ns->sc_semmsl;
  524. seminfo.semopm = ns->sc_semopm;
  525. seminfo.semvmx = SEMVMX;
  526. seminfo.semmnu = SEMMNU;
  527. seminfo.semmap = SEMMAP;
  528. seminfo.semume = SEMUME;
  529. down_read(&sem_ids(ns).rw_mutex);
  530. if (cmd == SEM_INFO) {
  531. seminfo.semusz = sem_ids(ns).in_use;
  532. seminfo.semaem = ns->used_sems;
  533. } else {
  534. seminfo.semusz = SEMUSZ;
  535. seminfo.semaem = SEMAEM;
  536. }
  537. max_id = ipc_get_maxid(&sem_ids(ns));
  538. up_read(&sem_ids(ns).rw_mutex);
  539. if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
  540. return -EFAULT;
  541. return (max_id < 0) ? 0: max_id;
  542. }
  543. case IPC_STAT:
  544. case SEM_STAT:
  545. {
  546. struct semid64_ds tbuf;
  547. int id;
  548. if (cmd == SEM_STAT) {
  549. sma = sem_lock(ns, semid);
  550. if (IS_ERR(sma))
  551. return PTR_ERR(sma);
  552. id = sma->sem_perm.id;
  553. } else {
  554. sma = sem_lock_check(ns, semid);
  555. if (IS_ERR(sma))
  556. return PTR_ERR(sma);
  557. id = 0;
  558. }
  559. err = -EACCES;
  560. if (ipcperms (&sma->sem_perm, S_IRUGO))
  561. goto out_unlock;
  562. err = security_sem_semctl(sma, cmd);
  563. if (err)
  564. goto out_unlock;
  565. memset(&tbuf, 0, sizeof(tbuf));
  566. kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
  567. tbuf.sem_otime = sma->sem_otime;
  568. tbuf.sem_ctime = sma->sem_ctime;
  569. tbuf.sem_nsems = sma->sem_nsems;
  570. sem_unlock(sma);
  571. if (copy_semid_to_user (arg.buf, &tbuf, version))
  572. return -EFAULT;
  573. return id;
  574. }
  575. default:
  576. return -EINVAL;
  577. }
  578. return err;
  579. out_unlock:
  580. sem_unlock(sma);
  581. return err;
  582. }
  583. static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
  584. int cmd, int version, union semun arg)
  585. {
  586. struct sem_array *sma;
  587. struct sem* curr;
  588. int err;
  589. ushort fast_sem_io[SEMMSL_FAST];
  590. ushort* sem_io = fast_sem_io;
  591. int nsems;
  592. sma = sem_lock_check(ns, semid);
  593. if (IS_ERR(sma))
  594. return PTR_ERR(sma);
  595. nsems = sma->sem_nsems;
  596. err = -EACCES;
  597. if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
  598. goto out_unlock;
  599. err = security_sem_semctl(sma, cmd);
  600. if (err)
  601. goto out_unlock;
  602. err = -EACCES;
  603. switch (cmd) {
  604. case GETALL:
  605. {
  606. ushort __user *array = arg.array;
  607. int i;
  608. if(nsems > SEMMSL_FAST) {
  609. sem_getref_and_unlock(sma);
  610. sem_io = ipc_alloc(sizeof(ushort)*nsems);
  611. if(sem_io == NULL) {
  612. sem_putref(sma);
  613. return -ENOMEM;
  614. }
  615. sem_lock_and_putref(sma);
  616. if (sma->sem_perm.deleted) {
  617. sem_unlock(sma);
  618. err = -EIDRM;
  619. goto out_free;
  620. }
  621. }
  622. for (i = 0; i < sma->sem_nsems; i++)
  623. sem_io[i] = sma->sem_base[i].semval;
  624. sem_unlock(sma);
  625. err = 0;
  626. if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
  627. err = -EFAULT;
  628. goto out_free;
  629. }
  630. case SETALL:
  631. {
  632. int i;
  633. struct sem_undo *un;
  634. sem_getref_and_unlock(sma);
  635. if(nsems > SEMMSL_FAST) {
  636. sem_io = ipc_alloc(sizeof(ushort)*nsems);
  637. if(sem_io == NULL) {
  638. sem_putref(sma);
  639. return -ENOMEM;
  640. }
  641. }
  642. if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
  643. sem_putref(sma);
  644. err = -EFAULT;
  645. goto out_free;
  646. }
  647. for (i = 0; i < nsems; i++) {
  648. if (sem_io[i] > SEMVMX) {
  649. sem_putref(sma);
  650. err = -ERANGE;
  651. goto out_free;
  652. }
  653. }
  654. sem_lock_and_putref(sma);
  655. if (sma->sem_perm.deleted) {
  656. sem_unlock(sma);
  657. err = -EIDRM;
  658. goto out_free;
  659. }
  660. for (i = 0; i < nsems; i++)
  661. sma->sem_base[i].semval = sem_io[i];
  662. assert_spin_locked(&sma->sem_perm.lock);
  663. list_for_each_entry(un, &sma->list_id, list_id) {
  664. for (i = 0; i < nsems; i++)
  665. un->semadj[i] = 0;
  666. }
  667. sma->sem_ctime = get_seconds();
  668. /* maybe some queued-up processes were waiting for this */
  669. update_queue(sma);
  670. err = 0;
  671. goto out_unlock;
  672. }
  673. /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
  674. }
  675. err = -EINVAL;
  676. if(semnum < 0 || semnum >= nsems)
  677. goto out_unlock;
  678. curr = &sma->sem_base[semnum];
  679. switch (cmd) {
  680. case GETVAL:
  681. err = curr->semval;
  682. goto out_unlock;
  683. case GETPID:
  684. err = curr->sempid;
  685. goto out_unlock;
  686. case GETNCNT:
  687. err = count_semncnt(sma,semnum);
  688. goto out_unlock;
  689. case GETZCNT:
  690. err = count_semzcnt(sma,semnum);
  691. goto out_unlock;
  692. case SETVAL:
  693. {
  694. int val = arg.val;
  695. struct sem_undo *un;
  696. err = -ERANGE;
  697. if (val > SEMVMX || val < 0)
  698. goto out_unlock;
  699. assert_spin_locked(&sma->sem_perm.lock);
  700. list_for_each_entry(un, &sma->list_id, list_id)
  701. un->semadj[semnum] = 0;
  702. curr->semval = val;
  703. curr->sempid = task_tgid_vnr(current);
  704. sma->sem_ctime = get_seconds();
  705. /* maybe some queued-up processes were waiting for this */
  706. update_queue(sma);
  707. err = 0;
  708. goto out_unlock;
  709. }
  710. }
  711. out_unlock:
  712. sem_unlock(sma);
  713. out_free:
  714. if(sem_io != fast_sem_io)
  715. ipc_free(sem_io, sizeof(ushort)*nsems);
  716. return err;
  717. }
  718. static inline unsigned long
  719. copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
  720. {
  721. switch(version) {
  722. case IPC_64:
  723. if (copy_from_user(out, buf, sizeof(*out)))
  724. return -EFAULT;
  725. return 0;
  726. case IPC_OLD:
  727. {
  728. struct semid_ds tbuf_old;
  729. if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
  730. return -EFAULT;
  731. out->sem_perm.uid = tbuf_old.sem_perm.uid;
  732. out->sem_perm.gid = tbuf_old.sem_perm.gid;
  733. out->sem_perm.mode = tbuf_old.sem_perm.mode;
  734. return 0;
  735. }
  736. default:
  737. return -EINVAL;
  738. }
  739. }
  740. /*
  741. * This function handles some semctl commands which require the rw_mutex
  742. * to be held in write mode.
  743. * NOTE: no locks must be held, the rw_mutex is taken inside this function.
  744. */
  745. static int semctl_down(struct ipc_namespace *ns, int semid,
  746. int cmd, int version, union semun arg)
  747. {
  748. struct sem_array *sma;
  749. int err;
  750. struct semid64_ds semid64;
  751. struct kern_ipc_perm *ipcp;
  752. if(cmd == IPC_SET) {
  753. if (copy_semid_from_user(&semid64, arg.buf, version))
  754. return -EFAULT;
  755. }
  756. ipcp = ipcctl_pre_down(&sem_ids(ns), semid, cmd, &semid64.sem_perm, 0);
  757. if (IS_ERR(ipcp))
  758. return PTR_ERR(ipcp);
  759. sma = container_of(ipcp, struct sem_array, sem_perm);
  760. err = security_sem_semctl(sma, cmd);
  761. if (err)
  762. goto out_unlock;
  763. switch(cmd){
  764. case IPC_RMID:
  765. freeary(ns, ipcp);
  766. goto out_up;
  767. case IPC_SET:
  768. ipc_update_perm(&semid64.sem_perm, ipcp);
  769. sma->sem_ctime = get_seconds();
  770. break;
  771. default:
  772. err = -EINVAL;
  773. }
  774. out_unlock:
  775. sem_unlock(sma);
  776. out_up:
  777. up_write(&sem_ids(ns).rw_mutex);
  778. return err;
  779. }
  780. SYSCALL_DEFINE(semctl)(int semid, int semnum, int cmd, union semun arg)
  781. {
  782. int err = -EINVAL;
  783. int version;
  784. struct ipc_namespace *ns;
  785. if (semid < 0)
  786. return -EINVAL;
  787. version = ipc_parse_version(&cmd);
  788. ns = current->nsproxy->ipc_ns;
  789. switch(cmd) {
  790. case IPC_INFO:
  791. case SEM_INFO:
  792. case IPC_STAT:
  793. case SEM_STAT:
  794. err = semctl_nolock(ns, semid, cmd, version, arg);
  795. return err;
  796. case GETALL:
  797. case GETVAL:
  798. case GETPID:
  799. case GETNCNT:
  800. case GETZCNT:
  801. case SETVAL:
  802. case SETALL:
  803. err = semctl_main(ns,semid,semnum,cmd,version,arg);
  804. return err;
  805. case IPC_RMID:
  806. case IPC_SET:
  807. err = semctl_down(ns, semid, cmd, version, arg);
  808. return err;
  809. default:
  810. return -EINVAL;
  811. }
  812. }
  813. #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
  814. asmlinkage long SyS_semctl(int semid, int semnum, int cmd, union semun arg)
  815. {
  816. return SYSC_semctl((int) semid, (int) semnum, (int) cmd, arg);
  817. }
  818. SYSCALL_ALIAS(sys_semctl, SyS_semctl);
  819. #endif
  820. /* If the task doesn't already have a undo_list, then allocate one
  821. * here. We guarantee there is only one thread using this undo list,
  822. * and current is THE ONE
  823. *
  824. * If this allocation and assignment succeeds, but later
  825. * portions of this code fail, there is no need to free the sem_undo_list.
  826. * Just let it stay associated with the task, and it'll be freed later
  827. * at exit time.
  828. *
  829. * This can block, so callers must hold no locks.
  830. */
  831. static inline int get_undo_list(struct sem_undo_list **undo_listp)
  832. {
  833. struct sem_undo_list *undo_list;
  834. undo_list = current->sysvsem.undo_list;
  835. if (!undo_list) {
  836. undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
  837. if (undo_list == NULL)
  838. return -ENOMEM;
  839. spin_lock_init(&undo_list->lock);
  840. atomic_set(&undo_list->refcnt, 1);
  841. INIT_LIST_HEAD(&undo_list->list_proc);
  842. current->sysvsem.undo_list = undo_list;
  843. }
  844. *undo_listp = undo_list;
  845. return 0;
  846. }
  847. static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
  848. {
  849. struct sem_undo *un;
  850. list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
  851. if (un->semid == semid)
  852. return un;
  853. }
  854. return NULL;
  855. }
  856. static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
  857. {
  858. struct sem_undo *un;
  859. assert_spin_locked(&ulp->lock);
  860. un = __lookup_undo(ulp, semid);
  861. if (un) {
  862. list_del_rcu(&un->list_proc);
  863. list_add_rcu(&un->list_proc, &ulp->list_proc);
  864. }
  865. return un;
  866. }
  867. /**
  868. * find_alloc_undo - Lookup (and if not present create) undo array
  869. * @ns: namespace
  870. * @semid: semaphore array id
  871. *
  872. * The function looks up (and if not present creates) the undo structure.
  873. * The size of the undo structure depends on the size of the semaphore
  874. * array, thus the alloc path is not that straightforward.
  875. * Lifetime-rules: sem_undo is rcu-protected, on success, the function
  876. * performs a rcu_read_lock().
  877. */
  878. static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
  879. {
  880. struct sem_array *sma;
  881. struct sem_undo_list *ulp;
  882. struct sem_undo *un, *new;
  883. int nsems;
  884. int error;
  885. error = get_undo_list(&ulp);
  886. if (error)
  887. return ERR_PTR(error);
  888. rcu_read_lock();
  889. spin_lock(&ulp->lock);
  890. un = lookup_undo(ulp, semid);
  891. spin_unlock(&ulp->lock);
  892. if (likely(un!=NULL))
  893. goto out;
  894. rcu_read_unlock();
  895. /* no undo structure around - allocate one. */
  896. /* step 1: figure out the size of the semaphore array */
  897. sma = sem_lock_check(ns, semid);
  898. if (IS_ERR(sma))
  899. return ERR_PTR(PTR_ERR(sma));
  900. nsems = sma->sem_nsems;
  901. sem_getref_and_unlock(sma);
  902. /* step 2: allocate new undo structure */
  903. new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
  904. if (!new) {
  905. sem_putref(sma);
  906. return ERR_PTR(-ENOMEM);
  907. }
  908. /* step 3: Acquire the lock on semaphore array */
  909. sem_lock_and_putref(sma);
  910. if (sma->sem_perm.deleted) {
  911. sem_unlock(sma);
  912. kfree(new);
  913. un = ERR_PTR(-EIDRM);
  914. goto out;
  915. }
  916. spin_lock(&ulp->lock);
  917. /*
  918. * step 4: check for races: did someone else allocate the undo struct?
  919. */
  920. un = lookup_undo(ulp, semid);
  921. if (un) {
  922. kfree(new);
  923. goto success;
  924. }
  925. /* step 5: initialize & link new undo structure */
  926. new->semadj = (short *) &new[1];
  927. new->ulp = ulp;
  928. new->semid = semid;
  929. assert_spin_locked(&ulp->lock);
  930. list_add_rcu(&new->list_proc, &ulp->list_proc);
  931. assert_spin_locked(&sma->sem_perm.lock);
  932. list_add(&new->list_id, &sma->list_id);
  933. un = new;
  934. success:
  935. spin_unlock(&ulp->lock);
  936. rcu_read_lock();
  937. sem_unlock(sma);
  938. out:
  939. return un;
  940. }
  941. SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
  942. unsigned, nsops, const struct timespec __user *, timeout)
  943. {
  944. int error = -EINVAL;
  945. struct sem_array *sma;
  946. struct sembuf fast_sops[SEMOPM_FAST];
  947. struct sembuf* sops = fast_sops, *sop;
  948. struct sem_undo *un;
  949. int undos = 0, alter = 0, max;
  950. struct sem_queue queue;
  951. unsigned long jiffies_left = 0;
  952. struct ipc_namespace *ns;
  953. ns = current->nsproxy->ipc_ns;
  954. if (nsops < 1 || semid < 0)
  955. return -EINVAL;
  956. if (nsops > ns->sc_semopm)
  957. return -E2BIG;
  958. if(nsops > SEMOPM_FAST) {
  959. sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
  960. if(sops==NULL)
  961. return -ENOMEM;
  962. }
  963. if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
  964. error=-EFAULT;
  965. goto out_free;
  966. }
  967. if (timeout) {
  968. struct timespec _timeout;
  969. if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
  970. error = -EFAULT;
  971. goto out_free;
  972. }
  973. if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
  974. _timeout.tv_nsec >= 1000000000L) {
  975. error = -EINVAL;
  976. goto out_free;
  977. }
  978. jiffies_left = timespec_to_jiffies(&_timeout);
  979. }
  980. max = 0;
  981. for (sop = sops; sop < sops + nsops; sop++) {
  982. if (sop->sem_num >= max)
  983. max = sop->sem_num;
  984. if (sop->sem_flg & SEM_UNDO)
  985. undos = 1;
  986. if (sop->sem_op != 0)
  987. alter = 1;
  988. }
  989. if (undos) {
  990. un = find_alloc_undo(ns, semid);
  991. if (IS_ERR(un)) {
  992. error = PTR_ERR(un);
  993. goto out_free;
  994. }
  995. } else
  996. un = NULL;
  997. sma = sem_lock_check(ns, semid);
  998. if (IS_ERR(sma)) {
  999. if (un)
  1000. rcu_read_unlock();
  1001. error = PTR_ERR(sma);
  1002. goto out_free;
  1003. }
  1004. /*
  1005. * semid identifiers are not unique - find_alloc_undo may have
  1006. * allocated an undo structure, it was invalidated by an RMID
  1007. * and now a new array with received the same id. Check and fail.
  1008. * This case can be detected checking un->semid. The existance of
  1009. * "un" itself is guaranteed by rcu.
  1010. */
  1011. error = -EIDRM;
  1012. if (un) {
  1013. if (un->semid == -1) {
  1014. rcu_read_unlock();
  1015. goto out_unlock_free;
  1016. } else {
  1017. /*
  1018. * rcu lock can be released, "un" cannot disappear:
  1019. * - sem_lock is acquired, thus IPC_RMID is
  1020. * impossible.
  1021. * - exit_sem is impossible, it always operates on
  1022. * current (or a dead task).
  1023. */
  1024. rcu_read_unlock();
  1025. }
  1026. }
  1027. error = -EFBIG;
  1028. if (max >= sma->sem_nsems)
  1029. goto out_unlock_free;
  1030. error = -EACCES;
  1031. if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
  1032. goto out_unlock_free;
  1033. error = security_sem_semop(sma, sops, nsops, alter);
  1034. if (error)
  1035. goto out_unlock_free;
  1036. error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
  1037. if (error <= 0) {
  1038. if (alter && error == 0)
  1039. update_queue (sma);
  1040. goto out_unlock_free;
  1041. }
  1042. /* We need to sleep on this operation, so we put the current
  1043. * task into the pending queue and go to sleep.
  1044. */
  1045. queue.sops = sops;
  1046. queue.nsops = nsops;
  1047. queue.undo = un;
  1048. queue.pid = task_tgid_vnr(current);
  1049. queue.alter = alter;
  1050. if (alter)
  1051. list_add_tail(&queue.list, &sma->sem_pending);
  1052. else
  1053. list_add(&queue.list, &sma->sem_pending);
  1054. if (nsops == 1) {
  1055. struct sem *curr;
  1056. curr = &sma->sem_base[sops->sem_num];
  1057. if (alter)
  1058. list_add_tail(&queue.simple_list, &curr->sem_pending);
  1059. else
  1060. list_add(&queue.simple_list, &curr->sem_pending);
  1061. } else {
  1062. INIT_LIST_HEAD(&queue.simple_list);
  1063. sma->complex_count++;
  1064. }
  1065. queue.status = -EINTR;
  1066. queue.sleeper = current;
  1067. current->state = TASK_INTERRUPTIBLE;
  1068. sem_unlock(sma);
  1069. if (timeout)
  1070. jiffies_left = schedule_timeout(jiffies_left);
  1071. else
  1072. schedule();
  1073. error = queue.status;
  1074. while(unlikely(error == IN_WAKEUP)) {
  1075. cpu_relax();
  1076. error = queue.status;
  1077. }
  1078. if (error != -EINTR) {
  1079. /* fast path: update_queue already obtained all requested
  1080. * resources */
  1081. goto out_free;
  1082. }
  1083. sma = sem_lock(ns, semid);
  1084. if (IS_ERR(sma)) {
  1085. error = -EIDRM;
  1086. goto out_free;
  1087. }
  1088. /*
  1089. * If queue.status != -EINTR we are woken up by another process
  1090. */
  1091. error = queue.status;
  1092. if (error != -EINTR) {
  1093. goto out_unlock_free;
  1094. }
  1095. /*
  1096. * If an interrupt occurred we have to clean up the queue
  1097. */
  1098. if (timeout && jiffies_left == 0)
  1099. error = -EAGAIN;
  1100. unlink_queue(sma, &queue);
  1101. out_unlock_free:
  1102. sem_unlock(sma);
  1103. out_free:
  1104. if(sops != fast_sops)
  1105. kfree(sops);
  1106. return error;
  1107. }
  1108. SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
  1109. unsigned, nsops)
  1110. {
  1111. return sys_semtimedop(semid, tsops, nsops, NULL);
  1112. }
  1113. /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
  1114. * parent and child tasks.
  1115. */
  1116. int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
  1117. {
  1118. struct sem_undo_list *undo_list;
  1119. int error;
  1120. if (clone_flags & CLONE_SYSVSEM) {
  1121. error = get_undo_list(&undo_list);
  1122. if (error)
  1123. return error;
  1124. atomic_inc(&undo_list->refcnt);
  1125. tsk->sysvsem.undo_list = undo_list;
  1126. } else
  1127. tsk->sysvsem.undo_list = NULL;
  1128. return 0;
  1129. }
  1130. /*
  1131. * add semadj values to semaphores, free undo structures.
  1132. * undo structures are not freed when semaphore arrays are destroyed
  1133. * so some of them may be out of date.
  1134. * IMPLEMENTATION NOTE: There is some confusion over whether the
  1135. * set of adjustments that needs to be done should be done in an atomic
  1136. * manner or not. That is, if we are attempting to decrement the semval
  1137. * should we queue up and wait until we can do so legally?
  1138. * The original implementation attempted to do this (queue and wait).
  1139. * The current implementation does not do so. The POSIX standard
  1140. * and SVID should be consulted to determine what behavior is mandated.
  1141. */
  1142. void exit_sem(struct task_struct *tsk)
  1143. {
  1144. struct sem_undo_list *ulp;
  1145. ulp = tsk->sysvsem.undo_list;
  1146. if (!ulp)
  1147. return;
  1148. tsk->sysvsem.undo_list = NULL;
  1149. if (!atomic_dec_and_test(&ulp->refcnt))
  1150. return;
  1151. for (;;) {
  1152. struct sem_array *sma;
  1153. struct sem_undo *un;
  1154. int semid;
  1155. int i;
  1156. rcu_read_lock();
  1157. un = list_entry_rcu(ulp->list_proc.next,
  1158. struct sem_undo, list_proc);
  1159. if (&un->list_proc == &ulp->list_proc)
  1160. semid = -1;
  1161. else
  1162. semid = un->semid;
  1163. rcu_read_unlock();
  1164. if (semid == -1)
  1165. break;
  1166. sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid);
  1167. /* exit_sem raced with IPC_RMID, nothing to do */
  1168. if (IS_ERR(sma))
  1169. continue;
  1170. un = __lookup_undo(ulp, semid);
  1171. if (un == NULL) {
  1172. /* exit_sem raced with IPC_RMID+semget() that created
  1173. * exactly the same semid. Nothing to do.
  1174. */
  1175. sem_unlock(sma);
  1176. continue;
  1177. }
  1178. /* remove un from the linked lists */
  1179. assert_spin_locked(&sma->sem_perm.lock);
  1180. list_del(&un->list_id);
  1181. spin_lock(&ulp->lock);
  1182. list_del_rcu(&un->list_proc);
  1183. spin_unlock(&ulp->lock);
  1184. /* perform adjustments registered in un */
  1185. for (i = 0; i < sma->sem_nsems; i++) {
  1186. struct sem * semaphore = &sma->sem_base[i];
  1187. if (un->semadj[i]) {
  1188. semaphore->semval += un->semadj[i];
  1189. /*
  1190. * Range checks of the new semaphore value,
  1191. * not defined by sus:
  1192. * - Some unices ignore the undo entirely
  1193. * (e.g. HP UX 11i 11.22, Tru64 V5.1)
  1194. * - some cap the value (e.g. FreeBSD caps
  1195. * at 0, but doesn't enforce SEMVMX)
  1196. *
  1197. * Linux caps the semaphore value, both at 0
  1198. * and at SEMVMX.
  1199. *
  1200. * Manfred <manfred@colorfullife.com>
  1201. */
  1202. if (semaphore->semval < 0)
  1203. semaphore->semval = 0;
  1204. if (semaphore->semval > SEMVMX)
  1205. semaphore->semval = SEMVMX;
  1206. semaphore->sempid = task_tgid_vnr(current);
  1207. }
  1208. }
  1209. sma->sem_otime = get_seconds();
  1210. /* maybe some queued-up processes were waiting for this */
  1211. update_queue(sma);
  1212. sem_unlock(sma);
  1213. call_rcu(&un->rcu, free_un);
  1214. }
  1215. kfree(ulp);
  1216. }
  1217. #ifdef CONFIG_PROC_FS
  1218. static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
  1219. {
  1220. struct sem_array *sma = it;
  1221. return seq_printf(s,
  1222. "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
  1223. sma->sem_perm.key,
  1224. sma->sem_perm.id,
  1225. sma->sem_perm.mode,
  1226. sma->sem_nsems,
  1227. sma->sem_perm.uid,
  1228. sma->sem_perm.gid,
  1229. sma->sem_perm.cuid,
  1230. sma->sem_perm.cgid,
  1231. sma->sem_otime,
  1232. sma->sem_ctime);
  1233. }
  1234. #endif