pxa2xx_spi.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/delay.h>
  29. #include <linux/clk.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/hardware.h>
  33. #include <asm/delay.h>
  34. #include <asm/dma.h>
  35. #include <asm/arch/hardware.h>
  36. #include <asm/arch/pxa-regs.h>
  37. #include <asm/arch/regs-ssp.h>
  38. #include <asm/arch/ssp.h>
  39. #include <asm/arch/pxa2xx_spi.h>
  40. MODULE_AUTHOR("Stephen Street");
  41. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  42. MODULE_LICENSE("GPL");
  43. #define MAX_BUSES 3
  44. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  45. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  46. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  47. /*
  48. * for testing SSCR1 changes that require SSP restart, basically
  49. * everything except the service and interrupt enables, the pxa270 developer
  50. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  51. * list, but the PXA255 dev man says all bits without really meaning the
  52. * service and interrupt enables
  53. */
  54. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  55. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  56. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  57. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  58. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  59. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  60. #define DEFINE_SSP_REG(reg, off) \
  61. static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
  62. static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
  63. DEFINE_SSP_REG(SSCR0, 0x00)
  64. DEFINE_SSP_REG(SSCR1, 0x04)
  65. DEFINE_SSP_REG(SSSR, 0x08)
  66. DEFINE_SSP_REG(SSITR, 0x0c)
  67. DEFINE_SSP_REG(SSDR, 0x10)
  68. DEFINE_SSP_REG(SSTO, 0x28)
  69. DEFINE_SSP_REG(SSPSP, 0x2c)
  70. #define START_STATE ((void*)0)
  71. #define RUNNING_STATE ((void*)1)
  72. #define DONE_STATE ((void*)2)
  73. #define ERROR_STATE ((void*)-1)
  74. #define QUEUE_RUNNING 0
  75. #define QUEUE_STOPPED 1
  76. struct driver_data {
  77. /* Driver model hookup */
  78. struct platform_device *pdev;
  79. /* SSP Info */
  80. struct ssp_device *ssp;
  81. /* SPI framework hookup */
  82. enum pxa_ssp_type ssp_type;
  83. struct spi_master *master;
  84. /* PXA hookup */
  85. struct pxa2xx_spi_master *master_info;
  86. /* DMA setup stuff */
  87. int rx_channel;
  88. int tx_channel;
  89. u32 *null_dma_buf;
  90. /* SSP register addresses */
  91. void *ioaddr;
  92. u32 ssdr_physical;
  93. /* SSP masks*/
  94. u32 dma_cr1;
  95. u32 int_cr1;
  96. u32 clear_sr;
  97. u32 mask_sr;
  98. /* Driver message queue */
  99. struct workqueue_struct *workqueue;
  100. struct work_struct pump_messages;
  101. spinlock_t lock;
  102. struct list_head queue;
  103. int busy;
  104. int run;
  105. /* Message Transfer pump */
  106. struct tasklet_struct pump_transfers;
  107. /* Current message transfer state info */
  108. struct spi_message* cur_msg;
  109. struct spi_transfer* cur_transfer;
  110. struct chip_data *cur_chip;
  111. size_t len;
  112. void *tx;
  113. void *tx_end;
  114. void *rx;
  115. void *rx_end;
  116. int dma_mapped;
  117. dma_addr_t rx_dma;
  118. dma_addr_t tx_dma;
  119. size_t rx_map_len;
  120. size_t tx_map_len;
  121. u8 n_bytes;
  122. u32 dma_width;
  123. int cs_change;
  124. int (*write)(struct driver_data *drv_data);
  125. int (*read)(struct driver_data *drv_data);
  126. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  127. void (*cs_control)(u32 command);
  128. };
  129. struct chip_data {
  130. u32 cr0;
  131. u32 cr1;
  132. u32 psp;
  133. u32 timeout;
  134. u8 n_bytes;
  135. u32 dma_width;
  136. u32 dma_burst_size;
  137. u32 threshold;
  138. u32 dma_threshold;
  139. u8 enable_dma;
  140. u8 bits_per_word;
  141. u32 speed_hz;
  142. int (*write)(struct driver_data *drv_data);
  143. int (*read)(struct driver_data *drv_data);
  144. void (*cs_control)(u32 command);
  145. };
  146. static void pump_messages(struct work_struct *work);
  147. static int flush(struct driver_data *drv_data)
  148. {
  149. unsigned long limit = loops_per_jiffy << 1;
  150. void *reg = drv_data->ioaddr;
  151. do {
  152. while (read_SSSR(reg) & SSSR_RNE) {
  153. read_SSDR(reg);
  154. }
  155. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  156. write_SSSR(SSSR_ROR, reg);
  157. return limit;
  158. }
  159. static void null_cs_control(u32 command)
  160. {
  161. }
  162. static int null_writer(struct driver_data *drv_data)
  163. {
  164. void *reg = drv_data->ioaddr;
  165. u8 n_bytes = drv_data->n_bytes;
  166. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  167. || (drv_data->tx == drv_data->tx_end))
  168. return 0;
  169. write_SSDR(0, reg);
  170. drv_data->tx += n_bytes;
  171. return 1;
  172. }
  173. static int null_reader(struct driver_data *drv_data)
  174. {
  175. void *reg = drv_data->ioaddr;
  176. u8 n_bytes = drv_data->n_bytes;
  177. while ((read_SSSR(reg) & SSSR_RNE)
  178. && (drv_data->rx < drv_data->rx_end)) {
  179. read_SSDR(reg);
  180. drv_data->rx += n_bytes;
  181. }
  182. return drv_data->rx == drv_data->rx_end;
  183. }
  184. static int u8_writer(struct driver_data *drv_data)
  185. {
  186. void *reg = drv_data->ioaddr;
  187. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  188. || (drv_data->tx == drv_data->tx_end))
  189. return 0;
  190. write_SSDR(*(u8 *)(drv_data->tx), reg);
  191. ++drv_data->tx;
  192. return 1;
  193. }
  194. static int u8_reader(struct driver_data *drv_data)
  195. {
  196. void *reg = drv_data->ioaddr;
  197. while ((read_SSSR(reg) & SSSR_RNE)
  198. && (drv_data->rx < drv_data->rx_end)) {
  199. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  200. ++drv_data->rx;
  201. }
  202. return drv_data->rx == drv_data->rx_end;
  203. }
  204. static int u16_writer(struct driver_data *drv_data)
  205. {
  206. void *reg = drv_data->ioaddr;
  207. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  208. || (drv_data->tx == drv_data->tx_end))
  209. return 0;
  210. write_SSDR(*(u16 *)(drv_data->tx), reg);
  211. drv_data->tx += 2;
  212. return 1;
  213. }
  214. static int u16_reader(struct driver_data *drv_data)
  215. {
  216. void *reg = drv_data->ioaddr;
  217. while ((read_SSSR(reg) & SSSR_RNE)
  218. && (drv_data->rx < drv_data->rx_end)) {
  219. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  220. drv_data->rx += 2;
  221. }
  222. return drv_data->rx == drv_data->rx_end;
  223. }
  224. static int u32_writer(struct driver_data *drv_data)
  225. {
  226. void *reg = drv_data->ioaddr;
  227. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  228. || (drv_data->tx == drv_data->tx_end))
  229. return 0;
  230. write_SSDR(*(u32 *)(drv_data->tx), reg);
  231. drv_data->tx += 4;
  232. return 1;
  233. }
  234. static int u32_reader(struct driver_data *drv_data)
  235. {
  236. void *reg = drv_data->ioaddr;
  237. while ((read_SSSR(reg) & SSSR_RNE)
  238. && (drv_data->rx < drv_data->rx_end)) {
  239. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  240. drv_data->rx += 4;
  241. }
  242. return drv_data->rx == drv_data->rx_end;
  243. }
  244. static void *next_transfer(struct driver_data *drv_data)
  245. {
  246. struct spi_message *msg = drv_data->cur_msg;
  247. struct spi_transfer *trans = drv_data->cur_transfer;
  248. /* Move to next transfer */
  249. if (trans->transfer_list.next != &msg->transfers) {
  250. drv_data->cur_transfer =
  251. list_entry(trans->transfer_list.next,
  252. struct spi_transfer,
  253. transfer_list);
  254. return RUNNING_STATE;
  255. } else
  256. return DONE_STATE;
  257. }
  258. static int map_dma_buffers(struct driver_data *drv_data)
  259. {
  260. struct spi_message *msg = drv_data->cur_msg;
  261. struct device *dev = &msg->spi->dev;
  262. if (!drv_data->cur_chip->enable_dma)
  263. return 0;
  264. if (msg->is_dma_mapped)
  265. return drv_data->rx_dma && drv_data->tx_dma;
  266. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  267. return 0;
  268. /* Modify setup if rx buffer is null */
  269. if (drv_data->rx == NULL) {
  270. *drv_data->null_dma_buf = 0;
  271. drv_data->rx = drv_data->null_dma_buf;
  272. drv_data->rx_map_len = 4;
  273. } else
  274. drv_data->rx_map_len = drv_data->len;
  275. /* Modify setup if tx buffer is null */
  276. if (drv_data->tx == NULL) {
  277. *drv_data->null_dma_buf = 0;
  278. drv_data->tx = drv_data->null_dma_buf;
  279. drv_data->tx_map_len = 4;
  280. } else
  281. drv_data->tx_map_len = drv_data->len;
  282. /* Stream map the rx buffer */
  283. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  284. drv_data->rx_map_len,
  285. DMA_FROM_DEVICE);
  286. if (dma_mapping_error(drv_data->rx_dma))
  287. return 0;
  288. /* Stream map the tx buffer */
  289. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  290. drv_data->tx_map_len,
  291. DMA_TO_DEVICE);
  292. if (dma_mapping_error(drv_data->tx_dma)) {
  293. dma_unmap_single(dev, drv_data->rx_dma,
  294. drv_data->rx_map_len, DMA_FROM_DEVICE);
  295. return 0;
  296. }
  297. return 1;
  298. }
  299. static void unmap_dma_buffers(struct driver_data *drv_data)
  300. {
  301. struct device *dev;
  302. if (!drv_data->dma_mapped)
  303. return;
  304. if (!drv_data->cur_msg->is_dma_mapped) {
  305. dev = &drv_data->cur_msg->spi->dev;
  306. dma_unmap_single(dev, drv_data->rx_dma,
  307. drv_data->rx_map_len, DMA_FROM_DEVICE);
  308. dma_unmap_single(dev, drv_data->tx_dma,
  309. drv_data->tx_map_len, DMA_TO_DEVICE);
  310. }
  311. drv_data->dma_mapped = 0;
  312. }
  313. /* caller already set message->status; dma and pio irqs are blocked */
  314. static void giveback(struct driver_data *drv_data)
  315. {
  316. struct spi_transfer* last_transfer;
  317. unsigned long flags;
  318. struct spi_message *msg;
  319. spin_lock_irqsave(&drv_data->lock, flags);
  320. msg = drv_data->cur_msg;
  321. drv_data->cur_msg = NULL;
  322. drv_data->cur_transfer = NULL;
  323. drv_data->cur_chip = NULL;
  324. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  325. spin_unlock_irqrestore(&drv_data->lock, flags);
  326. last_transfer = list_entry(msg->transfers.prev,
  327. struct spi_transfer,
  328. transfer_list);
  329. if (!last_transfer->cs_change)
  330. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  331. msg->state = NULL;
  332. if (msg->complete)
  333. msg->complete(msg->context);
  334. }
  335. static int wait_ssp_rx_stall(void *ioaddr)
  336. {
  337. unsigned long limit = loops_per_jiffy << 1;
  338. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  339. cpu_relax();
  340. return limit;
  341. }
  342. static int wait_dma_channel_stop(int channel)
  343. {
  344. unsigned long limit = loops_per_jiffy << 1;
  345. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  346. cpu_relax();
  347. return limit;
  348. }
  349. void dma_error_stop(struct driver_data *drv_data, const char *msg)
  350. {
  351. void *reg = drv_data->ioaddr;
  352. /* Stop and reset */
  353. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  354. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  355. write_SSSR(drv_data->clear_sr, reg);
  356. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  357. if (drv_data->ssp_type != PXA25x_SSP)
  358. write_SSTO(0, reg);
  359. flush(drv_data);
  360. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  361. unmap_dma_buffers(drv_data);
  362. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  363. drv_data->cur_msg->state = ERROR_STATE;
  364. tasklet_schedule(&drv_data->pump_transfers);
  365. }
  366. static void dma_transfer_complete(struct driver_data *drv_data)
  367. {
  368. void *reg = drv_data->ioaddr;
  369. struct spi_message *msg = drv_data->cur_msg;
  370. /* Clear and disable interrupts on SSP and DMA channels*/
  371. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  372. write_SSSR(drv_data->clear_sr, reg);
  373. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  374. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  375. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  376. dev_err(&drv_data->pdev->dev,
  377. "dma_handler: dma rx channel stop failed\n");
  378. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  379. dev_err(&drv_data->pdev->dev,
  380. "dma_transfer: ssp rx stall failed\n");
  381. unmap_dma_buffers(drv_data);
  382. /* update the buffer pointer for the amount completed in dma */
  383. drv_data->rx += drv_data->len -
  384. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  385. /* read trailing data from fifo, it does not matter how many
  386. * bytes are in the fifo just read until buffer is full
  387. * or fifo is empty, which ever occurs first */
  388. drv_data->read(drv_data);
  389. /* return count of what was actually read */
  390. msg->actual_length += drv_data->len -
  391. (drv_data->rx_end - drv_data->rx);
  392. /* Release chip select if requested, transfer delays are
  393. * handled in pump_transfers */
  394. if (drv_data->cs_change)
  395. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  396. /* Move to next transfer */
  397. msg->state = next_transfer(drv_data);
  398. /* Schedule transfer tasklet */
  399. tasklet_schedule(&drv_data->pump_transfers);
  400. }
  401. static void dma_handler(int channel, void *data)
  402. {
  403. struct driver_data *drv_data = data;
  404. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  405. if (irq_status & DCSR_BUSERR) {
  406. if (channel == drv_data->tx_channel)
  407. dma_error_stop(drv_data,
  408. "dma_handler: "
  409. "bad bus address on tx channel");
  410. else
  411. dma_error_stop(drv_data,
  412. "dma_handler: "
  413. "bad bus address on rx channel");
  414. return;
  415. }
  416. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  417. if ((channel == drv_data->tx_channel)
  418. && (irq_status & DCSR_ENDINTR)
  419. && (drv_data->ssp_type == PXA25x_SSP)) {
  420. /* Wait for rx to stall */
  421. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  422. dev_err(&drv_data->pdev->dev,
  423. "dma_handler: ssp rx stall failed\n");
  424. /* finish this transfer, start the next */
  425. dma_transfer_complete(drv_data);
  426. }
  427. }
  428. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  429. {
  430. u32 irq_status;
  431. void *reg = drv_data->ioaddr;
  432. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  433. if (irq_status & SSSR_ROR) {
  434. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  435. return IRQ_HANDLED;
  436. }
  437. /* Check for false positive timeout */
  438. if ((irq_status & SSSR_TINT)
  439. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  440. write_SSSR(SSSR_TINT, reg);
  441. return IRQ_HANDLED;
  442. }
  443. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  444. /* Clear and disable timeout interrupt, do the rest in
  445. * dma_transfer_complete */
  446. if (drv_data->ssp_type != PXA25x_SSP)
  447. write_SSTO(0, reg);
  448. /* finish this transfer, start the next */
  449. dma_transfer_complete(drv_data);
  450. return IRQ_HANDLED;
  451. }
  452. /* Opps problem detected */
  453. return IRQ_NONE;
  454. }
  455. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  456. {
  457. void *reg = drv_data->ioaddr;
  458. /* Stop and reset SSP */
  459. write_SSSR(drv_data->clear_sr, reg);
  460. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  461. if (drv_data->ssp_type != PXA25x_SSP)
  462. write_SSTO(0, reg);
  463. flush(drv_data);
  464. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  465. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  466. drv_data->cur_msg->state = ERROR_STATE;
  467. tasklet_schedule(&drv_data->pump_transfers);
  468. }
  469. static void int_transfer_complete(struct driver_data *drv_data)
  470. {
  471. void *reg = drv_data->ioaddr;
  472. /* Stop SSP */
  473. write_SSSR(drv_data->clear_sr, reg);
  474. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  475. if (drv_data->ssp_type != PXA25x_SSP)
  476. write_SSTO(0, reg);
  477. /* Update total byte transfered return count actual bytes read */
  478. drv_data->cur_msg->actual_length += drv_data->len -
  479. (drv_data->rx_end - drv_data->rx);
  480. /* Release chip select if requested, transfer delays are
  481. * handled in pump_transfers */
  482. if (drv_data->cs_change)
  483. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  484. /* Move to next transfer */
  485. drv_data->cur_msg->state = next_transfer(drv_data);
  486. /* Schedule transfer tasklet */
  487. tasklet_schedule(&drv_data->pump_transfers);
  488. }
  489. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  490. {
  491. void *reg = drv_data->ioaddr;
  492. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  493. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  494. u32 irq_status = read_SSSR(reg) & irq_mask;
  495. if (irq_status & SSSR_ROR) {
  496. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  497. return IRQ_HANDLED;
  498. }
  499. if (irq_status & SSSR_TINT) {
  500. write_SSSR(SSSR_TINT, reg);
  501. if (drv_data->read(drv_data)) {
  502. int_transfer_complete(drv_data);
  503. return IRQ_HANDLED;
  504. }
  505. }
  506. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  507. do {
  508. if (drv_data->read(drv_data)) {
  509. int_transfer_complete(drv_data);
  510. return IRQ_HANDLED;
  511. }
  512. } while (drv_data->write(drv_data));
  513. if (drv_data->read(drv_data)) {
  514. int_transfer_complete(drv_data);
  515. return IRQ_HANDLED;
  516. }
  517. if (drv_data->tx == drv_data->tx_end) {
  518. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  519. /* PXA25x_SSP has no timeout, read trailing bytes */
  520. if (drv_data->ssp_type == PXA25x_SSP) {
  521. if (!wait_ssp_rx_stall(reg))
  522. {
  523. int_error_stop(drv_data, "interrupt_transfer: "
  524. "rx stall failed");
  525. return IRQ_HANDLED;
  526. }
  527. if (!drv_data->read(drv_data))
  528. {
  529. int_error_stop(drv_data,
  530. "interrupt_transfer: "
  531. "trailing byte read failed");
  532. return IRQ_HANDLED;
  533. }
  534. int_transfer_complete(drv_data);
  535. }
  536. }
  537. /* We did something */
  538. return IRQ_HANDLED;
  539. }
  540. static irqreturn_t ssp_int(int irq, void *dev_id)
  541. {
  542. struct driver_data *drv_data = dev_id;
  543. void *reg = drv_data->ioaddr;
  544. if (!drv_data->cur_msg) {
  545. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  546. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  547. if (drv_data->ssp_type != PXA25x_SSP)
  548. write_SSTO(0, reg);
  549. write_SSSR(drv_data->clear_sr, reg);
  550. dev_err(&drv_data->pdev->dev, "bad message state "
  551. "in interrupt handler\n");
  552. /* Never fail */
  553. return IRQ_HANDLED;
  554. }
  555. return drv_data->transfer_handler(drv_data);
  556. }
  557. int set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi,
  558. u8 bits_per_word, u32 *burst_code,
  559. u32 *threshold)
  560. {
  561. struct pxa2xx_spi_chip *chip_info =
  562. (struct pxa2xx_spi_chip *)spi->controller_data;
  563. int bytes_per_word;
  564. int burst_bytes;
  565. int thresh_words;
  566. int req_burst_size;
  567. int retval = 0;
  568. /* Set the threshold (in registers) to equal the same amount of data
  569. * as represented by burst size (in bytes). The computation below
  570. * is (burst_size rounded up to nearest 8 byte, word or long word)
  571. * divided by (bytes/register); the tx threshold is the inverse of
  572. * the rx, so that there will always be enough data in the rx fifo
  573. * to satisfy a burst, and there will always be enough space in the
  574. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  575. * there is not enough space), there must always remain enough empty
  576. * space in the rx fifo for any data loaded to the tx fifo.
  577. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  578. * will be 8, or half the fifo;
  579. * The threshold can only be set to 2, 4 or 8, but not 16, because
  580. * to burst 16 to the tx fifo, the fifo would have to be empty;
  581. * however, the minimum fifo trigger level is 1, and the tx will
  582. * request service when the fifo is at this level, with only 15 spaces.
  583. */
  584. /* find bytes/word */
  585. if (bits_per_word <= 8)
  586. bytes_per_word = 1;
  587. else if (bits_per_word <= 16)
  588. bytes_per_word = 2;
  589. else
  590. bytes_per_word = 4;
  591. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  592. if (chip_info)
  593. req_burst_size = chip_info->dma_burst_size;
  594. else {
  595. switch (chip->dma_burst_size) {
  596. default:
  597. /* if the default burst size is not set,
  598. * do it now */
  599. chip->dma_burst_size = DCMD_BURST8;
  600. case DCMD_BURST8:
  601. req_burst_size = 8;
  602. break;
  603. case DCMD_BURST16:
  604. req_burst_size = 16;
  605. break;
  606. case DCMD_BURST32:
  607. req_burst_size = 32;
  608. break;
  609. }
  610. }
  611. if (req_burst_size <= 8) {
  612. *burst_code = DCMD_BURST8;
  613. burst_bytes = 8;
  614. } else if (req_burst_size <= 16) {
  615. if (bytes_per_word == 1) {
  616. /* don't burst more than 1/2 the fifo */
  617. *burst_code = DCMD_BURST8;
  618. burst_bytes = 8;
  619. retval = 1;
  620. } else {
  621. *burst_code = DCMD_BURST16;
  622. burst_bytes = 16;
  623. }
  624. } else {
  625. if (bytes_per_word == 1) {
  626. /* don't burst more than 1/2 the fifo */
  627. *burst_code = DCMD_BURST8;
  628. burst_bytes = 8;
  629. retval = 1;
  630. } else if (bytes_per_word == 2) {
  631. /* don't burst more than 1/2 the fifo */
  632. *burst_code = DCMD_BURST16;
  633. burst_bytes = 16;
  634. retval = 1;
  635. } else {
  636. *burst_code = DCMD_BURST32;
  637. burst_bytes = 32;
  638. }
  639. }
  640. thresh_words = burst_bytes / bytes_per_word;
  641. /* thresh_words will be between 2 and 8 */
  642. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  643. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  644. return retval;
  645. }
  646. static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
  647. {
  648. unsigned long ssp_clk = clk_get_rate(ssp->clk);
  649. if (ssp->type == PXA25x_SSP)
  650. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  651. else
  652. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  653. }
  654. static void pump_transfers(unsigned long data)
  655. {
  656. struct driver_data *drv_data = (struct driver_data *)data;
  657. struct spi_message *message = NULL;
  658. struct spi_transfer *transfer = NULL;
  659. struct spi_transfer *previous = NULL;
  660. struct chip_data *chip = NULL;
  661. struct ssp_device *ssp = drv_data->ssp;
  662. void *reg = drv_data->ioaddr;
  663. u32 clk_div = 0;
  664. u8 bits = 0;
  665. u32 speed = 0;
  666. u32 cr0;
  667. u32 cr1;
  668. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  669. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  670. /* Get current state information */
  671. message = drv_data->cur_msg;
  672. transfer = drv_data->cur_transfer;
  673. chip = drv_data->cur_chip;
  674. /* Handle for abort */
  675. if (message->state == ERROR_STATE) {
  676. message->status = -EIO;
  677. giveback(drv_data);
  678. return;
  679. }
  680. /* Handle end of message */
  681. if (message->state == DONE_STATE) {
  682. message->status = 0;
  683. giveback(drv_data);
  684. return;
  685. }
  686. /* Delay if requested at end of transfer*/
  687. if (message->state == RUNNING_STATE) {
  688. previous = list_entry(transfer->transfer_list.prev,
  689. struct spi_transfer,
  690. transfer_list);
  691. if (previous->delay_usecs)
  692. udelay(previous->delay_usecs);
  693. }
  694. /* Check transfer length */
  695. if (transfer->len > 8191)
  696. {
  697. dev_warn(&drv_data->pdev->dev, "pump_transfers: transfer "
  698. "length greater than 8191\n");
  699. message->status = -EINVAL;
  700. giveback(drv_data);
  701. return;
  702. }
  703. /* Setup the transfer state based on the type of transfer */
  704. if (flush(drv_data) == 0) {
  705. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  706. message->status = -EIO;
  707. giveback(drv_data);
  708. return;
  709. }
  710. drv_data->n_bytes = chip->n_bytes;
  711. drv_data->dma_width = chip->dma_width;
  712. drv_data->cs_control = chip->cs_control;
  713. drv_data->tx = (void *)transfer->tx_buf;
  714. drv_data->tx_end = drv_data->tx + transfer->len;
  715. drv_data->rx = transfer->rx_buf;
  716. drv_data->rx_end = drv_data->rx + transfer->len;
  717. drv_data->rx_dma = transfer->rx_dma;
  718. drv_data->tx_dma = transfer->tx_dma;
  719. drv_data->len = transfer->len & DCMD_LENGTH;
  720. drv_data->write = drv_data->tx ? chip->write : null_writer;
  721. drv_data->read = drv_data->rx ? chip->read : null_reader;
  722. drv_data->cs_change = transfer->cs_change;
  723. /* Change speed and bit per word on a per transfer */
  724. cr0 = chip->cr0;
  725. if (transfer->speed_hz || transfer->bits_per_word) {
  726. bits = chip->bits_per_word;
  727. speed = chip->speed_hz;
  728. if (transfer->speed_hz)
  729. speed = transfer->speed_hz;
  730. if (transfer->bits_per_word)
  731. bits = transfer->bits_per_word;
  732. clk_div = ssp_get_clk_div(ssp, speed);
  733. if (bits <= 8) {
  734. drv_data->n_bytes = 1;
  735. drv_data->dma_width = DCMD_WIDTH1;
  736. drv_data->read = drv_data->read != null_reader ?
  737. u8_reader : null_reader;
  738. drv_data->write = drv_data->write != null_writer ?
  739. u8_writer : null_writer;
  740. } else if (bits <= 16) {
  741. drv_data->n_bytes = 2;
  742. drv_data->dma_width = DCMD_WIDTH2;
  743. drv_data->read = drv_data->read != null_reader ?
  744. u16_reader : null_reader;
  745. drv_data->write = drv_data->write != null_writer ?
  746. u16_writer : null_writer;
  747. } else if (bits <= 32) {
  748. drv_data->n_bytes = 4;
  749. drv_data->dma_width = DCMD_WIDTH4;
  750. drv_data->read = drv_data->read != null_reader ?
  751. u32_reader : null_reader;
  752. drv_data->write = drv_data->write != null_writer ?
  753. u32_writer : null_writer;
  754. }
  755. /* if bits/word is changed in dma mode, then must check the
  756. * thresholds and burst also */
  757. if (chip->enable_dma) {
  758. if (set_dma_burst_and_threshold(chip, message->spi,
  759. bits, &dma_burst,
  760. &dma_thresh))
  761. if (printk_ratelimit())
  762. dev_warn(&message->spi->dev,
  763. "pump_transfer: "
  764. "DMA burst size reduced to "
  765. "match bits_per_word\n");
  766. }
  767. cr0 = clk_div
  768. | SSCR0_Motorola
  769. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  770. | SSCR0_SSE
  771. | (bits > 16 ? SSCR0_EDSS : 0);
  772. }
  773. message->state = RUNNING_STATE;
  774. /* Try to map dma buffer and do a dma transfer if successful */
  775. if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
  776. /* Ensure we have the correct interrupt handler */
  777. drv_data->transfer_handler = dma_transfer;
  778. /* Setup rx DMA Channel */
  779. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  780. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  781. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  782. if (drv_data->rx == drv_data->null_dma_buf)
  783. /* No target address increment */
  784. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  785. | drv_data->dma_width
  786. | dma_burst
  787. | drv_data->len;
  788. else
  789. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  790. | DCMD_FLOWSRC
  791. | drv_data->dma_width
  792. | dma_burst
  793. | drv_data->len;
  794. /* Setup tx DMA Channel */
  795. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  796. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  797. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  798. if (drv_data->tx == drv_data->null_dma_buf)
  799. /* No source address increment */
  800. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  801. | drv_data->dma_width
  802. | dma_burst
  803. | drv_data->len;
  804. else
  805. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  806. | DCMD_FLOWTRG
  807. | drv_data->dma_width
  808. | dma_burst
  809. | drv_data->len;
  810. /* Enable dma end irqs on SSP to detect end of transfer */
  811. if (drv_data->ssp_type == PXA25x_SSP)
  812. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  813. /* Clear status and start DMA engine */
  814. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  815. write_SSSR(drv_data->clear_sr, reg);
  816. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  817. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  818. } else {
  819. /* Ensure we have the correct interrupt handler */
  820. drv_data->transfer_handler = interrupt_transfer;
  821. /* Clear status */
  822. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  823. write_SSSR(drv_data->clear_sr, reg);
  824. }
  825. /* see if we need to reload the config registers */
  826. if ((read_SSCR0(reg) != cr0)
  827. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  828. (cr1 & SSCR1_CHANGE_MASK)) {
  829. /* stop the SSP, and update the other bits */
  830. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  831. if (drv_data->ssp_type != PXA25x_SSP)
  832. write_SSTO(chip->timeout, reg);
  833. /* first set CR1 without interrupt and service enables */
  834. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  835. /* restart the SSP */
  836. write_SSCR0(cr0, reg);
  837. } else {
  838. if (drv_data->ssp_type != PXA25x_SSP)
  839. write_SSTO(chip->timeout, reg);
  840. }
  841. /* FIXME, need to handle cs polarity,
  842. * this driver uses struct pxa2xx_spi_chip.cs_control to
  843. * specify a CS handling function, and it ignores most
  844. * struct spi_device.mode[s], including SPI_CS_HIGH */
  845. drv_data->cs_control(PXA2XX_CS_ASSERT);
  846. /* after chip select, release the data by enabling service
  847. * requests and interrupts, without changing any mode bits */
  848. write_SSCR1(cr1, reg);
  849. }
  850. static void pump_messages(struct work_struct *work)
  851. {
  852. struct driver_data *drv_data =
  853. container_of(work, struct driver_data, pump_messages);
  854. unsigned long flags;
  855. /* Lock queue and check for queue work */
  856. spin_lock_irqsave(&drv_data->lock, flags);
  857. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  858. drv_data->busy = 0;
  859. spin_unlock_irqrestore(&drv_data->lock, flags);
  860. return;
  861. }
  862. /* Make sure we are not already running a message */
  863. if (drv_data->cur_msg) {
  864. spin_unlock_irqrestore(&drv_data->lock, flags);
  865. return;
  866. }
  867. /* Extract head of queue */
  868. drv_data->cur_msg = list_entry(drv_data->queue.next,
  869. struct spi_message, queue);
  870. list_del_init(&drv_data->cur_msg->queue);
  871. /* Initial message state*/
  872. drv_data->cur_msg->state = START_STATE;
  873. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  874. struct spi_transfer,
  875. transfer_list);
  876. /* prepare to setup the SSP, in pump_transfers, using the per
  877. * chip configuration */
  878. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  879. /* Mark as busy and launch transfers */
  880. tasklet_schedule(&drv_data->pump_transfers);
  881. drv_data->busy = 1;
  882. spin_unlock_irqrestore(&drv_data->lock, flags);
  883. }
  884. static int transfer(struct spi_device *spi, struct spi_message *msg)
  885. {
  886. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  887. unsigned long flags;
  888. spin_lock_irqsave(&drv_data->lock, flags);
  889. if (drv_data->run == QUEUE_STOPPED) {
  890. spin_unlock_irqrestore(&drv_data->lock, flags);
  891. return -ESHUTDOWN;
  892. }
  893. msg->actual_length = 0;
  894. msg->status = -EINPROGRESS;
  895. msg->state = START_STATE;
  896. list_add_tail(&msg->queue, &drv_data->queue);
  897. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  898. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  899. spin_unlock_irqrestore(&drv_data->lock, flags);
  900. return 0;
  901. }
  902. /* the spi->mode bits understood by this driver: */
  903. #define MODEBITS (SPI_CPOL | SPI_CPHA)
  904. static int setup(struct spi_device *spi)
  905. {
  906. struct pxa2xx_spi_chip *chip_info = NULL;
  907. struct chip_data *chip;
  908. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  909. struct ssp_device *ssp = drv_data->ssp;
  910. unsigned int clk_div;
  911. if (!spi->bits_per_word)
  912. spi->bits_per_word = 8;
  913. if (drv_data->ssp_type != PXA25x_SSP
  914. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  915. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  916. "b/w not 4-32 for type non-PXA25x_SSP\n",
  917. drv_data->ssp_type, spi->bits_per_word);
  918. return -EINVAL;
  919. }
  920. else if (drv_data->ssp_type == PXA25x_SSP
  921. && (spi->bits_per_word < 4
  922. || spi->bits_per_word > 16)) {
  923. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  924. "b/w not 4-16 for type PXA25x_SSP\n",
  925. drv_data->ssp_type, spi->bits_per_word);
  926. return -EINVAL;
  927. }
  928. if (spi->mode & ~MODEBITS) {
  929. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  930. spi->mode & ~MODEBITS);
  931. return -EINVAL;
  932. }
  933. /* Only alloc on first setup */
  934. chip = spi_get_ctldata(spi);
  935. if (!chip) {
  936. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  937. if (!chip) {
  938. dev_err(&spi->dev,
  939. "failed setup: can't allocate chip data\n");
  940. return -ENOMEM;
  941. }
  942. chip->cs_control = null_cs_control;
  943. chip->enable_dma = 0;
  944. chip->timeout = 1000;
  945. chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
  946. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  947. DCMD_BURST8 : 0;
  948. }
  949. /* protocol drivers may change the chip settings, so...
  950. * if chip_info exists, use it */
  951. chip_info = spi->controller_data;
  952. /* chip_info isn't always needed */
  953. chip->cr1 = 0;
  954. if (chip_info) {
  955. if (chip_info->cs_control)
  956. chip->cs_control = chip_info->cs_control;
  957. chip->timeout = chip_info->timeout;
  958. chip->threshold = (SSCR1_RxTresh(chip_info->rx_threshold) &
  959. SSCR1_RFT) |
  960. (SSCR1_TxTresh(chip_info->tx_threshold) &
  961. SSCR1_TFT);
  962. chip->enable_dma = chip_info->dma_burst_size != 0
  963. && drv_data->master_info->enable_dma;
  964. chip->dma_threshold = 0;
  965. if (chip_info->enable_loopback)
  966. chip->cr1 = SSCR1_LBM;
  967. }
  968. /* set dma burst and threshold outside of chip_info path so that if
  969. * chip_info goes away after setting chip->enable_dma, the
  970. * burst and threshold can still respond to changes in bits_per_word */
  971. if (chip->enable_dma) {
  972. /* set up legal burst and threshold for dma */
  973. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  974. &chip->dma_burst_size,
  975. &chip->dma_threshold)) {
  976. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  977. "to match bits_per_word\n");
  978. }
  979. }
  980. clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
  981. chip->speed_hz = spi->max_speed_hz;
  982. chip->cr0 = clk_div
  983. | SSCR0_Motorola
  984. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  985. spi->bits_per_word - 16 : spi->bits_per_word)
  986. | SSCR0_SSE
  987. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  988. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  989. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  990. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  991. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  992. if (drv_data->ssp_type != PXA25x_SSP)
  993. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
  994. spi->bits_per_word,
  995. clk_get_rate(ssp->clk)
  996. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  997. spi->mode & 0x3);
  998. else
  999. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
  1000. spi->bits_per_word,
  1001. clk_get_rate(ssp->clk)
  1002. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1003. spi->mode & 0x3);
  1004. if (spi->bits_per_word <= 8) {
  1005. chip->n_bytes = 1;
  1006. chip->dma_width = DCMD_WIDTH1;
  1007. chip->read = u8_reader;
  1008. chip->write = u8_writer;
  1009. } else if (spi->bits_per_word <= 16) {
  1010. chip->n_bytes = 2;
  1011. chip->dma_width = DCMD_WIDTH2;
  1012. chip->read = u16_reader;
  1013. chip->write = u16_writer;
  1014. } else if (spi->bits_per_word <= 32) {
  1015. chip->cr0 |= SSCR0_EDSS;
  1016. chip->n_bytes = 4;
  1017. chip->dma_width = DCMD_WIDTH4;
  1018. chip->read = u32_reader;
  1019. chip->write = u32_writer;
  1020. } else {
  1021. dev_err(&spi->dev, "invalid wordsize\n");
  1022. return -ENODEV;
  1023. }
  1024. chip->bits_per_word = spi->bits_per_word;
  1025. spi_set_ctldata(spi, chip);
  1026. return 0;
  1027. }
  1028. static void cleanup(struct spi_device *spi)
  1029. {
  1030. struct chip_data *chip = spi_get_ctldata(spi);
  1031. kfree(chip);
  1032. }
  1033. static int __init init_queue(struct driver_data *drv_data)
  1034. {
  1035. INIT_LIST_HEAD(&drv_data->queue);
  1036. spin_lock_init(&drv_data->lock);
  1037. drv_data->run = QUEUE_STOPPED;
  1038. drv_data->busy = 0;
  1039. tasklet_init(&drv_data->pump_transfers,
  1040. pump_transfers, (unsigned long)drv_data);
  1041. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1042. drv_data->workqueue = create_singlethread_workqueue(
  1043. drv_data->master->dev.parent->bus_id);
  1044. if (drv_data->workqueue == NULL)
  1045. return -EBUSY;
  1046. return 0;
  1047. }
  1048. static int start_queue(struct driver_data *drv_data)
  1049. {
  1050. unsigned long flags;
  1051. spin_lock_irqsave(&drv_data->lock, flags);
  1052. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1053. spin_unlock_irqrestore(&drv_data->lock, flags);
  1054. return -EBUSY;
  1055. }
  1056. drv_data->run = QUEUE_RUNNING;
  1057. drv_data->cur_msg = NULL;
  1058. drv_data->cur_transfer = NULL;
  1059. drv_data->cur_chip = NULL;
  1060. spin_unlock_irqrestore(&drv_data->lock, flags);
  1061. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1062. return 0;
  1063. }
  1064. static int stop_queue(struct driver_data *drv_data)
  1065. {
  1066. unsigned long flags;
  1067. unsigned limit = 500;
  1068. int status = 0;
  1069. spin_lock_irqsave(&drv_data->lock, flags);
  1070. /* This is a bit lame, but is optimized for the common execution path.
  1071. * A wait_queue on the drv_data->busy could be used, but then the common
  1072. * execution path (pump_messages) would be required to call wake_up or
  1073. * friends on every SPI message. Do this instead */
  1074. drv_data->run = QUEUE_STOPPED;
  1075. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1076. spin_unlock_irqrestore(&drv_data->lock, flags);
  1077. msleep(10);
  1078. spin_lock_irqsave(&drv_data->lock, flags);
  1079. }
  1080. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1081. status = -EBUSY;
  1082. spin_unlock_irqrestore(&drv_data->lock, flags);
  1083. return status;
  1084. }
  1085. static int destroy_queue(struct driver_data *drv_data)
  1086. {
  1087. int status;
  1088. status = stop_queue(drv_data);
  1089. /* we are unloading the module or failing to load (only two calls
  1090. * to this routine), and neither call can handle a return value.
  1091. * However, destroy_workqueue calls flush_workqueue, and that will
  1092. * block until all work is done. If the reason that stop_queue
  1093. * timed out is that the work will never finish, then it does no
  1094. * good to call destroy_workqueue, so return anyway. */
  1095. if (status != 0)
  1096. return status;
  1097. destroy_workqueue(drv_data->workqueue);
  1098. return 0;
  1099. }
  1100. static int __init pxa2xx_spi_probe(struct platform_device *pdev)
  1101. {
  1102. struct device *dev = &pdev->dev;
  1103. struct pxa2xx_spi_master *platform_info;
  1104. struct spi_master *master;
  1105. struct driver_data *drv_data = 0;
  1106. struct ssp_device *ssp;
  1107. int status = 0;
  1108. platform_info = dev->platform_data;
  1109. ssp = ssp_request(pdev->id, pdev->name);
  1110. if (ssp == NULL) {
  1111. dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
  1112. return -ENODEV;
  1113. }
  1114. /* Allocate master with space for drv_data and null dma buffer */
  1115. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1116. if (!master) {
  1117. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1118. ssp_free(ssp);
  1119. return -ENOMEM;
  1120. }
  1121. drv_data = spi_master_get_devdata(master);
  1122. drv_data->master = master;
  1123. drv_data->master_info = platform_info;
  1124. drv_data->pdev = pdev;
  1125. drv_data->ssp = ssp;
  1126. master->bus_num = pdev->id;
  1127. master->num_chipselect = platform_info->num_chipselect;
  1128. master->cleanup = cleanup;
  1129. master->setup = setup;
  1130. master->transfer = transfer;
  1131. drv_data->ssp_type = ssp->type;
  1132. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1133. sizeof(struct driver_data)), 8);
  1134. drv_data->ioaddr = ssp->mmio_base;
  1135. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1136. if (ssp->type == PXA25x_SSP) {
  1137. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1138. drv_data->dma_cr1 = 0;
  1139. drv_data->clear_sr = SSSR_ROR;
  1140. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1141. } else {
  1142. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1143. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1144. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1145. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1146. }
  1147. status = request_irq(ssp->irq, ssp_int, 0, dev->bus_id, drv_data);
  1148. if (status < 0) {
  1149. dev_err(&pdev->dev, "can not get IRQ\n");
  1150. goto out_error_master_alloc;
  1151. }
  1152. /* Setup DMA if requested */
  1153. drv_data->tx_channel = -1;
  1154. drv_data->rx_channel = -1;
  1155. if (platform_info->enable_dma) {
  1156. /* Get two DMA channels (rx and tx) */
  1157. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1158. DMA_PRIO_HIGH,
  1159. dma_handler,
  1160. drv_data);
  1161. if (drv_data->rx_channel < 0) {
  1162. dev_err(dev, "problem (%d) requesting rx channel\n",
  1163. drv_data->rx_channel);
  1164. status = -ENODEV;
  1165. goto out_error_irq_alloc;
  1166. }
  1167. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1168. DMA_PRIO_MEDIUM,
  1169. dma_handler,
  1170. drv_data);
  1171. if (drv_data->tx_channel < 0) {
  1172. dev_err(dev, "problem (%d) requesting tx channel\n",
  1173. drv_data->tx_channel);
  1174. status = -ENODEV;
  1175. goto out_error_dma_alloc;
  1176. }
  1177. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1178. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1179. }
  1180. /* Enable SOC clock */
  1181. clk_enable(ssp->clk);
  1182. /* Load default SSP configuration */
  1183. write_SSCR0(0, drv_data->ioaddr);
  1184. write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
  1185. write_SSCR0(SSCR0_SerClkDiv(2)
  1186. | SSCR0_Motorola
  1187. | SSCR0_DataSize(8),
  1188. drv_data->ioaddr);
  1189. if (drv_data->ssp_type != PXA25x_SSP)
  1190. write_SSTO(0, drv_data->ioaddr);
  1191. write_SSPSP(0, drv_data->ioaddr);
  1192. /* Initial and start queue */
  1193. status = init_queue(drv_data);
  1194. if (status != 0) {
  1195. dev_err(&pdev->dev, "problem initializing queue\n");
  1196. goto out_error_clock_enabled;
  1197. }
  1198. status = start_queue(drv_data);
  1199. if (status != 0) {
  1200. dev_err(&pdev->dev, "problem starting queue\n");
  1201. goto out_error_clock_enabled;
  1202. }
  1203. /* Register with the SPI framework */
  1204. platform_set_drvdata(pdev, drv_data);
  1205. status = spi_register_master(master);
  1206. if (status != 0) {
  1207. dev_err(&pdev->dev, "problem registering spi master\n");
  1208. goto out_error_queue_alloc;
  1209. }
  1210. return status;
  1211. out_error_queue_alloc:
  1212. destroy_queue(drv_data);
  1213. out_error_clock_enabled:
  1214. clk_disable(ssp->clk);
  1215. out_error_dma_alloc:
  1216. if (drv_data->tx_channel != -1)
  1217. pxa_free_dma(drv_data->tx_channel);
  1218. if (drv_data->rx_channel != -1)
  1219. pxa_free_dma(drv_data->rx_channel);
  1220. out_error_irq_alloc:
  1221. free_irq(ssp->irq, drv_data);
  1222. out_error_master_alloc:
  1223. spi_master_put(master);
  1224. ssp_free(ssp);
  1225. return status;
  1226. }
  1227. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1228. {
  1229. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1230. struct ssp_device *ssp = drv_data->ssp;
  1231. int status = 0;
  1232. if (!drv_data)
  1233. return 0;
  1234. /* Remove the queue */
  1235. status = destroy_queue(drv_data);
  1236. if (status != 0)
  1237. /* the kernel does not check the return status of this
  1238. * this routine (mod->exit, within the kernel). Therefore
  1239. * nothing is gained by returning from here, the module is
  1240. * going away regardless, and we should not leave any more
  1241. * resources allocated than necessary. We cannot free the
  1242. * message memory in drv_data->queue, but we can release the
  1243. * resources below. I think the kernel should honor -EBUSY
  1244. * returns but... */
  1245. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1246. "complete, message memory not freed\n");
  1247. /* Disable the SSP at the peripheral and SOC level */
  1248. write_SSCR0(0, drv_data->ioaddr);
  1249. clk_disable(ssp->clk);
  1250. /* Release DMA */
  1251. if (drv_data->master_info->enable_dma) {
  1252. DRCMR(ssp->drcmr_rx) = 0;
  1253. DRCMR(ssp->drcmr_tx) = 0;
  1254. pxa_free_dma(drv_data->tx_channel);
  1255. pxa_free_dma(drv_data->rx_channel);
  1256. }
  1257. /* Release IRQ */
  1258. free_irq(ssp->irq, drv_data);
  1259. /* Release SSP */
  1260. ssp_free(ssp);
  1261. /* Disconnect from the SPI framework */
  1262. spi_unregister_master(drv_data->master);
  1263. /* Prevent double remove */
  1264. platform_set_drvdata(pdev, NULL);
  1265. return 0;
  1266. }
  1267. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1268. {
  1269. int status = 0;
  1270. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1271. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1272. }
  1273. #ifdef CONFIG_PM
  1274. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1275. {
  1276. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1277. struct ssp_device *ssp = drv_data->ssp;
  1278. int status = 0;
  1279. status = stop_queue(drv_data);
  1280. if (status != 0)
  1281. return status;
  1282. write_SSCR0(0, drv_data->ioaddr);
  1283. clk_disable(ssp->clk);
  1284. return 0;
  1285. }
  1286. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1287. {
  1288. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1289. struct ssp_device *ssp = drv_data->ssp;
  1290. int status = 0;
  1291. /* Enable the SSP clock */
  1292. clk_disable(ssp->clk);
  1293. /* Start the queue running */
  1294. status = start_queue(drv_data);
  1295. if (status != 0) {
  1296. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1297. return status;
  1298. }
  1299. return 0;
  1300. }
  1301. #else
  1302. #define pxa2xx_spi_suspend NULL
  1303. #define pxa2xx_spi_resume NULL
  1304. #endif /* CONFIG_PM */
  1305. static struct platform_driver driver = {
  1306. .driver = {
  1307. .name = "pxa2xx-spi",
  1308. .bus = &platform_bus_type,
  1309. .owner = THIS_MODULE,
  1310. },
  1311. .remove = pxa2xx_spi_remove,
  1312. .shutdown = pxa2xx_spi_shutdown,
  1313. .suspend = pxa2xx_spi_suspend,
  1314. .resume = pxa2xx_spi_resume,
  1315. };
  1316. static int __init pxa2xx_spi_init(void)
  1317. {
  1318. return platform_driver_probe(&driver, pxa2xx_spi_probe);
  1319. }
  1320. module_init(pxa2xx_spi_init);
  1321. static void __exit pxa2xx_spi_exit(void)
  1322. {
  1323. platform_driver_unregister(&driver);
  1324. }
  1325. module_exit(pxa2xx_spi_exit);