e1000_main.c 130 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. #include "e1000.h"
  21. /* Change Log
  22. * 7.0.33 3-Feb-2006
  23. * o Added another fix for the pass false carrier bit
  24. * 7.0.32 24-Jan-2006
  25. * o Need to rebuild with noew version number for the pass false carrier
  26. * fix in e1000_hw.c
  27. * 7.0.30 18-Jan-2006
  28. * o fixup for tso workaround to disable it for pci-x
  29. * o fix mem leak on 82542
  30. * o fixes for 10 Mb/s connections and incorrect stats
  31. * 7.0.28 01/06/2006
  32. * o hardware workaround to only set "speed mode" bit for 1G link.
  33. * 7.0.26 12/23/2005
  34. * o wake on lan support modified for device ID 10B5
  35. * o fix dhcp + vlan issue not making it to the iAMT firmware
  36. * 7.0.24 12/9/2005
  37. * o New hardware support for the Gigabit NIC embedded in the south bridge
  38. * o Fixes to the recycling logic (skb->tail) from IBM LTC
  39. * 6.3.9 12/16/2005
  40. * o incorporate fix for recycled skbs from IBM LTC
  41. * 6.3.7 11/18/2005
  42. * o Honor eeprom setting for enabling/disabling Wake On Lan
  43. * 6.3.5 11/17/2005
  44. * o Fix memory leak in rx ring handling for PCI Express adapters
  45. * 6.3.4 11/8/05
  46. * o Patch from Jesper Juhl to remove redundant NULL checks for kfree
  47. * 6.3.2 9/20/05
  48. * o Render logic that sets/resets DRV_LOAD as inline functions to
  49. * avoid code replication. If f/w is AMT then set DRV_LOAD only when
  50. * network interface is open.
  51. * o Handle DRV_LOAD set/reset in cases where AMT uses VLANs.
  52. * o Adjust PBA partioning for Jumbo frames using MTU size and not
  53. * rx_buffer_len
  54. * 6.3.1 9/19/05
  55. * o Use adapter->tx_timeout_factor in Tx Hung Detect logic
  56. * (e1000_clean_tx_irq)
  57. * o Support for 8086:10B5 device (Quad Port)
  58. */
  59. char e1000_driver_name[] = "e1000";
  60. static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  61. #ifndef CONFIG_E1000_NAPI
  62. #define DRIVERNAPI
  63. #else
  64. #define DRIVERNAPI "-NAPI"
  65. #endif
  66. #define DRV_VERSION "7.0.33-k2"DRIVERNAPI
  67. char e1000_driver_version[] = DRV_VERSION;
  68. static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
  69. /* e1000_pci_tbl - PCI Device ID Table
  70. *
  71. * Last entry must be all 0s
  72. *
  73. * Macro expands to...
  74. * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  75. */
  76. static struct pci_device_id e1000_pci_tbl[] = {
  77. INTEL_E1000_ETHERNET_DEVICE(0x1000),
  78. INTEL_E1000_ETHERNET_DEVICE(0x1001),
  79. INTEL_E1000_ETHERNET_DEVICE(0x1004),
  80. INTEL_E1000_ETHERNET_DEVICE(0x1008),
  81. INTEL_E1000_ETHERNET_DEVICE(0x1009),
  82. INTEL_E1000_ETHERNET_DEVICE(0x100C),
  83. INTEL_E1000_ETHERNET_DEVICE(0x100D),
  84. INTEL_E1000_ETHERNET_DEVICE(0x100E),
  85. INTEL_E1000_ETHERNET_DEVICE(0x100F),
  86. INTEL_E1000_ETHERNET_DEVICE(0x1010),
  87. INTEL_E1000_ETHERNET_DEVICE(0x1011),
  88. INTEL_E1000_ETHERNET_DEVICE(0x1012),
  89. INTEL_E1000_ETHERNET_DEVICE(0x1013),
  90. INTEL_E1000_ETHERNET_DEVICE(0x1014),
  91. INTEL_E1000_ETHERNET_DEVICE(0x1015),
  92. INTEL_E1000_ETHERNET_DEVICE(0x1016),
  93. INTEL_E1000_ETHERNET_DEVICE(0x1017),
  94. INTEL_E1000_ETHERNET_DEVICE(0x1018),
  95. INTEL_E1000_ETHERNET_DEVICE(0x1019),
  96. INTEL_E1000_ETHERNET_DEVICE(0x101A),
  97. INTEL_E1000_ETHERNET_DEVICE(0x101D),
  98. INTEL_E1000_ETHERNET_DEVICE(0x101E),
  99. INTEL_E1000_ETHERNET_DEVICE(0x1026),
  100. INTEL_E1000_ETHERNET_DEVICE(0x1027),
  101. INTEL_E1000_ETHERNET_DEVICE(0x1028),
  102. INTEL_E1000_ETHERNET_DEVICE(0x105E),
  103. INTEL_E1000_ETHERNET_DEVICE(0x105F),
  104. INTEL_E1000_ETHERNET_DEVICE(0x1060),
  105. INTEL_E1000_ETHERNET_DEVICE(0x1075),
  106. INTEL_E1000_ETHERNET_DEVICE(0x1076),
  107. INTEL_E1000_ETHERNET_DEVICE(0x1077),
  108. INTEL_E1000_ETHERNET_DEVICE(0x1078),
  109. INTEL_E1000_ETHERNET_DEVICE(0x1079),
  110. INTEL_E1000_ETHERNET_DEVICE(0x107A),
  111. INTEL_E1000_ETHERNET_DEVICE(0x107B),
  112. INTEL_E1000_ETHERNET_DEVICE(0x107C),
  113. INTEL_E1000_ETHERNET_DEVICE(0x107D),
  114. INTEL_E1000_ETHERNET_DEVICE(0x107E),
  115. INTEL_E1000_ETHERNET_DEVICE(0x107F),
  116. INTEL_E1000_ETHERNET_DEVICE(0x108A),
  117. INTEL_E1000_ETHERNET_DEVICE(0x108B),
  118. INTEL_E1000_ETHERNET_DEVICE(0x108C),
  119. INTEL_E1000_ETHERNET_DEVICE(0x1096),
  120. INTEL_E1000_ETHERNET_DEVICE(0x1098),
  121. INTEL_E1000_ETHERNET_DEVICE(0x1099),
  122. INTEL_E1000_ETHERNET_DEVICE(0x109A),
  123. INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  124. INTEL_E1000_ETHERNET_DEVICE(0x10B9),
  125. /* required last entry */
  126. {0,}
  127. };
  128. MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  129. int e1000_up(struct e1000_adapter *adapter);
  130. void e1000_down(struct e1000_adapter *adapter);
  131. void e1000_reset(struct e1000_adapter *adapter);
  132. int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  133. int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  134. int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  135. void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  136. void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  137. static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  138. struct e1000_tx_ring *txdr);
  139. static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  140. struct e1000_rx_ring *rxdr);
  141. static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  142. struct e1000_tx_ring *tx_ring);
  143. static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  144. struct e1000_rx_ring *rx_ring);
  145. void e1000_update_stats(struct e1000_adapter *adapter);
  146. /* Local Function Prototypes */
  147. static int e1000_init_module(void);
  148. static void e1000_exit_module(void);
  149. static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  150. static void __devexit e1000_remove(struct pci_dev *pdev);
  151. static int e1000_alloc_queues(struct e1000_adapter *adapter);
  152. static int e1000_sw_init(struct e1000_adapter *adapter);
  153. static int e1000_open(struct net_device *netdev);
  154. static int e1000_close(struct net_device *netdev);
  155. static void e1000_configure_tx(struct e1000_adapter *adapter);
  156. static void e1000_configure_rx(struct e1000_adapter *adapter);
  157. static void e1000_setup_rctl(struct e1000_adapter *adapter);
  158. static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  159. static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  160. static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  161. struct e1000_tx_ring *tx_ring);
  162. static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
  163. struct e1000_rx_ring *rx_ring);
  164. static void e1000_set_multi(struct net_device *netdev);
  165. static void e1000_update_phy_info(unsigned long data);
  166. static void e1000_watchdog(unsigned long data);
  167. static void e1000_watchdog_task(struct e1000_adapter *adapter);
  168. static void e1000_82547_tx_fifo_stall(unsigned long data);
  169. static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  170. static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
  171. static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
  172. static int e1000_set_mac(struct net_device *netdev, void *p);
  173. static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
  174. static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
  175. struct e1000_tx_ring *tx_ring);
  176. #ifdef CONFIG_E1000_NAPI
  177. static int e1000_clean(struct net_device *poll_dev, int *budget);
  178. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  179. struct e1000_rx_ring *rx_ring,
  180. int *work_done, int work_to_do);
  181. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  182. struct e1000_rx_ring *rx_ring,
  183. int *work_done, int work_to_do);
  184. #else
  185. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  186. struct e1000_rx_ring *rx_ring);
  187. static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  188. struct e1000_rx_ring *rx_ring);
  189. #endif
  190. static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
  191. struct e1000_rx_ring *rx_ring,
  192. int cleaned_count);
  193. static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
  194. struct e1000_rx_ring *rx_ring,
  195. int cleaned_count);
  196. static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
  197. static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
  198. int cmd);
  199. void e1000_set_ethtool_ops(struct net_device *netdev);
  200. static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
  201. static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
  202. static void e1000_tx_timeout(struct net_device *dev);
  203. static void e1000_reset_task(struct net_device *dev);
  204. static void e1000_smartspeed(struct e1000_adapter *adapter);
  205. static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
  206. struct sk_buff *skb);
  207. static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
  208. static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
  209. static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
  210. static void e1000_restore_vlan(struct e1000_adapter *adapter);
  211. #ifdef CONFIG_PM
  212. static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
  213. static int e1000_resume(struct pci_dev *pdev);
  214. #endif
  215. #ifdef CONFIG_NET_POLL_CONTROLLER
  216. /* for netdump / net console */
  217. static void e1000_netpoll (struct net_device *netdev);
  218. #endif
  219. /* Exported from other modules */
  220. extern void e1000_check_options(struct e1000_adapter *adapter);
  221. static struct pci_driver e1000_driver = {
  222. .name = e1000_driver_name,
  223. .id_table = e1000_pci_tbl,
  224. .probe = e1000_probe,
  225. .remove = __devexit_p(e1000_remove),
  226. /* Power Managment Hooks */
  227. #ifdef CONFIG_PM
  228. .suspend = e1000_suspend,
  229. .resume = e1000_resume
  230. #endif
  231. };
  232. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  233. MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
  234. MODULE_LICENSE("GPL");
  235. MODULE_VERSION(DRV_VERSION);
  236. static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
  237. module_param(debug, int, 0);
  238. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  239. /**
  240. * e1000_init_module - Driver Registration Routine
  241. *
  242. * e1000_init_module is the first routine called when the driver is
  243. * loaded. All it does is register with the PCI subsystem.
  244. **/
  245. static int __init
  246. e1000_init_module(void)
  247. {
  248. int ret;
  249. printk(KERN_INFO "%s - version %s\n",
  250. e1000_driver_string, e1000_driver_version);
  251. printk(KERN_INFO "%s\n", e1000_copyright);
  252. ret = pci_module_init(&e1000_driver);
  253. return ret;
  254. }
  255. module_init(e1000_init_module);
  256. /**
  257. * e1000_exit_module - Driver Exit Cleanup Routine
  258. *
  259. * e1000_exit_module is called just before the driver is removed
  260. * from memory.
  261. **/
  262. static void __exit
  263. e1000_exit_module(void)
  264. {
  265. pci_unregister_driver(&e1000_driver);
  266. }
  267. module_exit(e1000_exit_module);
  268. /**
  269. * e1000_irq_disable - Mask off interrupt generation on the NIC
  270. * @adapter: board private structure
  271. **/
  272. static inline void
  273. e1000_irq_disable(struct e1000_adapter *adapter)
  274. {
  275. atomic_inc(&adapter->irq_sem);
  276. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  277. E1000_WRITE_FLUSH(&adapter->hw);
  278. synchronize_irq(adapter->pdev->irq);
  279. }
  280. /**
  281. * e1000_irq_enable - Enable default interrupt generation settings
  282. * @adapter: board private structure
  283. **/
  284. static inline void
  285. e1000_irq_enable(struct e1000_adapter *adapter)
  286. {
  287. if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
  288. E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
  289. E1000_WRITE_FLUSH(&adapter->hw);
  290. }
  291. }
  292. static void
  293. e1000_update_mng_vlan(struct e1000_adapter *adapter)
  294. {
  295. struct net_device *netdev = adapter->netdev;
  296. uint16_t vid = adapter->hw.mng_cookie.vlan_id;
  297. uint16_t old_vid = adapter->mng_vlan_id;
  298. if (adapter->vlgrp) {
  299. if (!adapter->vlgrp->vlan_devices[vid]) {
  300. if (adapter->hw.mng_cookie.status &
  301. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
  302. e1000_vlan_rx_add_vid(netdev, vid);
  303. adapter->mng_vlan_id = vid;
  304. } else
  305. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  306. if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
  307. (vid != old_vid) &&
  308. !adapter->vlgrp->vlan_devices[old_vid])
  309. e1000_vlan_rx_kill_vid(netdev, old_vid);
  310. } else
  311. adapter->mng_vlan_id = vid;
  312. }
  313. }
  314. /**
  315. * e1000_release_hw_control - release control of the h/w to f/w
  316. * @adapter: address of board private structure
  317. *
  318. * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
  319. * For ASF and Pass Through versions of f/w this means that the
  320. * driver is no longer loaded. For AMT version (only with 82573) i
  321. * of the f/w this means that the netowrk i/f is closed.
  322. *
  323. **/
  324. static inline void
  325. e1000_release_hw_control(struct e1000_adapter *adapter)
  326. {
  327. uint32_t ctrl_ext;
  328. uint32_t swsm;
  329. /* Let firmware taken over control of h/w */
  330. switch (adapter->hw.mac_type) {
  331. case e1000_82571:
  332. case e1000_82572:
  333. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  334. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  335. ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
  336. break;
  337. case e1000_82573:
  338. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  339. E1000_WRITE_REG(&adapter->hw, SWSM,
  340. swsm & ~E1000_SWSM_DRV_LOAD);
  341. default:
  342. break;
  343. }
  344. }
  345. /**
  346. * e1000_get_hw_control - get control of the h/w from f/w
  347. * @adapter: address of board private structure
  348. *
  349. * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
  350. * For ASF and Pass Through versions of f/w this means that
  351. * the driver is loaded. For AMT version (only with 82573)
  352. * of the f/w this means that the netowrk i/f is open.
  353. *
  354. **/
  355. static inline void
  356. e1000_get_hw_control(struct e1000_adapter *adapter)
  357. {
  358. uint32_t ctrl_ext;
  359. uint32_t swsm;
  360. /* Let firmware know the driver has taken over */
  361. switch (adapter->hw.mac_type) {
  362. case e1000_82571:
  363. case e1000_82572:
  364. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  365. E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
  366. ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
  367. break;
  368. case e1000_82573:
  369. swsm = E1000_READ_REG(&adapter->hw, SWSM);
  370. E1000_WRITE_REG(&adapter->hw, SWSM,
  371. swsm | E1000_SWSM_DRV_LOAD);
  372. break;
  373. default:
  374. break;
  375. }
  376. }
  377. int
  378. e1000_up(struct e1000_adapter *adapter)
  379. {
  380. struct net_device *netdev = adapter->netdev;
  381. int i, err;
  382. /* hardware has been reset, we need to reload some things */
  383. /* Reset the PHY if it was previously powered down */
  384. if (adapter->hw.media_type == e1000_media_type_copper) {
  385. uint16_t mii_reg;
  386. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  387. if (mii_reg & MII_CR_POWER_DOWN)
  388. e1000_phy_reset(&adapter->hw);
  389. }
  390. e1000_set_multi(netdev);
  391. e1000_restore_vlan(adapter);
  392. e1000_configure_tx(adapter);
  393. e1000_setup_rctl(adapter);
  394. e1000_configure_rx(adapter);
  395. /* call E1000_DESC_UNUSED which always leaves
  396. * at least 1 descriptor unused to make sure
  397. * next_to_use != next_to_clean */
  398. for (i = 0; i < adapter->num_rx_queues; i++) {
  399. struct e1000_rx_ring *ring = &adapter->rx_ring[i];
  400. adapter->alloc_rx_buf(adapter, ring,
  401. E1000_DESC_UNUSED(ring));
  402. }
  403. #ifdef CONFIG_PCI_MSI
  404. if (adapter->hw.mac_type > e1000_82547_rev_2) {
  405. adapter->have_msi = TRUE;
  406. if ((err = pci_enable_msi(adapter->pdev))) {
  407. DPRINTK(PROBE, ERR,
  408. "Unable to allocate MSI interrupt Error: %d\n", err);
  409. adapter->have_msi = FALSE;
  410. }
  411. }
  412. #endif
  413. if ((err = request_irq(adapter->pdev->irq, &e1000_intr,
  414. SA_SHIRQ | SA_SAMPLE_RANDOM,
  415. netdev->name, netdev))) {
  416. DPRINTK(PROBE, ERR,
  417. "Unable to allocate interrupt Error: %d\n", err);
  418. return err;
  419. }
  420. adapter->tx_queue_len = netdev->tx_queue_len;
  421. mod_timer(&adapter->watchdog_timer, jiffies);
  422. #ifdef CONFIG_E1000_NAPI
  423. netif_poll_enable(netdev);
  424. #endif
  425. e1000_irq_enable(adapter);
  426. return 0;
  427. }
  428. void
  429. e1000_down(struct e1000_adapter *adapter)
  430. {
  431. struct net_device *netdev = adapter->netdev;
  432. boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
  433. e1000_check_mng_mode(&adapter->hw);
  434. e1000_irq_disable(adapter);
  435. free_irq(adapter->pdev->irq, netdev);
  436. #ifdef CONFIG_PCI_MSI
  437. if (adapter->hw.mac_type > e1000_82547_rev_2 &&
  438. adapter->have_msi == TRUE)
  439. pci_disable_msi(adapter->pdev);
  440. #endif
  441. del_timer_sync(&adapter->tx_fifo_stall_timer);
  442. del_timer_sync(&adapter->watchdog_timer);
  443. del_timer_sync(&adapter->phy_info_timer);
  444. #ifdef CONFIG_E1000_NAPI
  445. netif_poll_disable(netdev);
  446. #endif
  447. netdev->tx_queue_len = adapter->tx_queue_len;
  448. adapter->link_speed = 0;
  449. adapter->link_duplex = 0;
  450. netif_carrier_off(netdev);
  451. netif_stop_queue(netdev);
  452. e1000_reset(adapter);
  453. e1000_clean_all_tx_rings(adapter);
  454. e1000_clean_all_rx_rings(adapter);
  455. /* Power down the PHY so no link is implied when interface is down *
  456. * The PHY cannot be powered down if any of the following is TRUE *
  457. * (a) WoL is enabled
  458. * (b) AMT is active
  459. * (c) SoL/IDER session is active */
  460. if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
  461. adapter->hw.media_type == e1000_media_type_copper &&
  462. !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
  463. !mng_mode_enabled &&
  464. !e1000_check_phy_reset_block(&adapter->hw)) {
  465. uint16_t mii_reg;
  466. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  467. mii_reg |= MII_CR_POWER_DOWN;
  468. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
  469. mdelay(1);
  470. }
  471. }
  472. void
  473. e1000_reset(struct e1000_adapter *adapter)
  474. {
  475. uint32_t pba, manc;
  476. uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
  477. /* Repartition Pba for greater than 9k mtu
  478. * To take effect CTRL.RST is required.
  479. */
  480. switch (adapter->hw.mac_type) {
  481. case e1000_82547:
  482. case e1000_82547_rev_2:
  483. pba = E1000_PBA_30K;
  484. break;
  485. case e1000_82571:
  486. case e1000_82572:
  487. case e1000_80003es2lan:
  488. pba = E1000_PBA_38K;
  489. break;
  490. case e1000_82573:
  491. pba = E1000_PBA_12K;
  492. break;
  493. default:
  494. pba = E1000_PBA_48K;
  495. break;
  496. }
  497. if ((adapter->hw.mac_type != e1000_82573) &&
  498. (adapter->netdev->mtu > E1000_RXBUFFER_8192))
  499. pba -= 8; /* allocate more FIFO for Tx */
  500. if (adapter->hw.mac_type == e1000_82547) {
  501. adapter->tx_fifo_head = 0;
  502. adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
  503. adapter->tx_fifo_size =
  504. (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
  505. atomic_set(&adapter->tx_fifo_stall, 0);
  506. }
  507. E1000_WRITE_REG(&adapter->hw, PBA, pba);
  508. /* flow control settings */
  509. /* Set the FC high water mark to 90% of the FIFO size.
  510. * Required to clear last 3 LSB */
  511. fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
  512. adapter->hw.fc_high_water = fc_high_water_mark;
  513. adapter->hw.fc_low_water = fc_high_water_mark - 8;
  514. if (adapter->hw.mac_type == e1000_80003es2lan)
  515. adapter->hw.fc_pause_time = 0xFFFF;
  516. else
  517. adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
  518. adapter->hw.fc_send_xon = 1;
  519. adapter->hw.fc = adapter->hw.original_fc;
  520. /* Allow time for pending master requests to run */
  521. e1000_reset_hw(&adapter->hw);
  522. if (adapter->hw.mac_type >= e1000_82544)
  523. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  524. if (e1000_init_hw(&adapter->hw))
  525. DPRINTK(PROBE, ERR, "Hardware Error\n");
  526. e1000_update_mng_vlan(adapter);
  527. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  528. E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
  529. e1000_reset_adaptive(&adapter->hw);
  530. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  531. if (adapter->en_mng_pt) {
  532. manc = E1000_READ_REG(&adapter->hw, MANC);
  533. manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
  534. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  535. }
  536. }
  537. /**
  538. * e1000_probe - Device Initialization Routine
  539. * @pdev: PCI device information struct
  540. * @ent: entry in e1000_pci_tbl
  541. *
  542. * Returns 0 on success, negative on failure
  543. *
  544. * e1000_probe initializes an adapter identified by a pci_dev structure.
  545. * The OS initialization, configuring of the adapter private structure,
  546. * and a hardware reset occur.
  547. **/
  548. static int __devinit
  549. e1000_probe(struct pci_dev *pdev,
  550. const struct pci_device_id *ent)
  551. {
  552. struct net_device *netdev;
  553. struct e1000_adapter *adapter;
  554. unsigned long mmio_start, mmio_len;
  555. static int cards_found = 0;
  556. static int e1000_ksp3_port_a = 0; /* global ksp3 port a indication */
  557. int i, err, pci_using_dac;
  558. uint16_t eeprom_data;
  559. uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
  560. if ((err = pci_enable_device(pdev)))
  561. return err;
  562. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  563. pci_using_dac = 1;
  564. } else {
  565. if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  566. E1000_ERR("No usable DMA configuration, aborting\n");
  567. return err;
  568. }
  569. pci_using_dac = 0;
  570. }
  571. if ((err = pci_request_regions(pdev, e1000_driver_name)))
  572. return err;
  573. pci_set_master(pdev);
  574. netdev = alloc_etherdev(sizeof(struct e1000_adapter));
  575. if (!netdev) {
  576. err = -ENOMEM;
  577. goto err_alloc_etherdev;
  578. }
  579. SET_MODULE_OWNER(netdev);
  580. SET_NETDEV_DEV(netdev, &pdev->dev);
  581. pci_set_drvdata(pdev, netdev);
  582. adapter = netdev_priv(netdev);
  583. adapter->netdev = netdev;
  584. adapter->pdev = pdev;
  585. adapter->hw.back = adapter;
  586. adapter->msg_enable = (1 << debug) - 1;
  587. mmio_start = pci_resource_start(pdev, BAR_0);
  588. mmio_len = pci_resource_len(pdev, BAR_0);
  589. adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
  590. if (!adapter->hw.hw_addr) {
  591. err = -EIO;
  592. goto err_ioremap;
  593. }
  594. for (i = BAR_1; i <= BAR_5; i++) {
  595. if (pci_resource_len(pdev, i) == 0)
  596. continue;
  597. if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
  598. adapter->hw.io_base = pci_resource_start(pdev, i);
  599. break;
  600. }
  601. }
  602. netdev->open = &e1000_open;
  603. netdev->stop = &e1000_close;
  604. netdev->hard_start_xmit = &e1000_xmit_frame;
  605. netdev->get_stats = &e1000_get_stats;
  606. netdev->set_multicast_list = &e1000_set_multi;
  607. netdev->set_mac_address = &e1000_set_mac;
  608. netdev->change_mtu = &e1000_change_mtu;
  609. netdev->do_ioctl = &e1000_ioctl;
  610. e1000_set_ethtool_ops(netdev);
  611. netdev->tx_timeout = &e1000_tx_timeout;
  612. netdev->watchdog_timeo = 5 * HZ;
  613. #ifdef CONFIG_E1000_NAPI
  614. netdev->poll = &e1000_clean;
  615. netdev->weight = 64;
  616. #endif
  617. netdev->vlan_rx_register = e1000_vlan_rx_register;
  618. netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
  619. netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
  620. #ifdef CONFIG_NET_POLL_CONTROLLER
  621. netdev->poll_controller = e1000_netpoll;
  622. #endif
  623. strcpy(netdev->name, pci_name(pdev));
  624. netdev->mem_start = mmio_start;
  625. netdev->mem_end = mmio_start + mmio_len;
  626. netdev->base_addr = adapter->hw.io_base;
  627. adapter->bd_number = cards_found;
  628. /* setup the private structure */
  629. if ((err = e1000_sw_init(adapter)))
  630. goto err_sw_init;
  631. if ((err = e1000_check_phy_reset_block(&adapter->hw)))
  632. DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
  633. /* if ksp3, indicate if it's port a being setup */
  634. if (pdev->device == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3 &&
  635. e1000_ksp3_port_a == 0)
  636. adapter->ksp3_port_a = 1;
  637. e1000_ksp3_port_a++;
  638. /* Reset for multiple KP3 adapters */
  639. if (e1000_ksp3_port_a == 4)
  640. e1000_ksp3_port_a = 0;
  641. if (adapter->hw.mac_type >= e1000_82543) {
  642. netdev->features = NETIF_F_SG |
  643. NETIF_F_HW_CSUM |
  644. NETIF_F_HW_VLAN_TX |
  645. NETIF_F_HW_VLAN_RX |
  646. NETIF_F_HW_VLAN_FILTER;
  647. }
  648. #ifdef NETIF_F_TSO
  649. if ((adapter->hw.mac_type >= e1000_82544) &&
  650. (adapter->hw.mac_type != e1000_82547))
  651. netdev->features |= NETIF_F_TSO;
  652. #ifdef NETIF_F_TSO_IPV6
  653. if (adapter->hw.mac_type > e1000_82547_rev_2)
  654. netdev->features |= NETIF_F_TSO_IPV6;
  655. #endif
  656. #endif
  657. if (pci_using_dac)
  658. netdev->features |= NETIF_F_HIGHDMA;
  659. /* hard_start_xmit is safe against parallel locking */
  660. netdev->features |= NETIF_F_LLTX;
  661. adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
  662. /* before reading the EEPROM, reset the controller to
  663. * put the device in a known good starting state */
  664. e1000_reset_hw(&adapter->hw);
  665. /* make sure the EEPROM is good */
  666. if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
  667. DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
  668. err = -EIO;
  669. goto err_eeprom;
  670. }
  671. /* copy the MAC address out of the EEPROM */
  672. if (e1000_read_mac_addr(&adapter->hw))
  673. DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
  674. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  675. memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
  676. if (!is_valid_ether_addr(netdev->perm_addr)) {
  677. DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
  678. err = -EIO;
  679. goto err_eeprom;
  680. }
  681. e1000_read_part_num(&adapter->hw, &(adapter->part_num));
  682. e1000_get_bus_info(&adapter->hw);
  683. init_timer(&adapter->tx_fifo_stall_timer);
  684. adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
  685. adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
  686. init_timer(&adapter->watchdog_timer);
  687. adapter->watchdog_timer.function = &e1000_watchdog;
  688. adapter->watchdog_timer.data = (unsigned long) adapter;
  689. INIT_WORK(&adapter->watchdog_task,
  690. (void (*)(void *))e1000_watchdog_task, adapter);
  691. init_timer(&adapter->phy_info_timer);
  692. adapter->phy_info_timer.function = &e1000_update_phy_info;
  693. adapter->phy_info_timer.data = (unsigned long) adapter;
  694. INIT_WORK(&adapter->reset_task,
  695. (void (*)(void *))e1000_reset_task, netdev);
  696. /* we're going to reset, so assume we have no link for now */
  697. netif_carrier_off(netdev);
  698. netif_stop_queue(netdev);
  699. e1000_check_options(adapter);
  700. /* Initial Wake on LAN setting
  701. * If APM wake is enabled in the EEPROM,
  702. * enable the ACPI Magic Packet filter
  703. */
  704. switch (adapter->hw.mac_type) {
  705. case e1000_82542_rev2_0:
  706. case e1000_82542_rev2_1:
  707. case e1000_82543:
  708. break;
  709. case e1000_82544:
  710. e1000_read_eeprom(&adapter->hw,
  711. EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
  712. eeprom_apme_mask = E1000_EEPROM_82544_APM;
  713. break;
  714. case e1000_82546:
  715. case e1000_82546_rev_3:
  716. case e1000_82571:
  717. case e1000_80003es2lan:
  718. if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
  719. e1000_read_eeprom(&adapter->hw,
  720. EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  721. break;
  722. }
  723. /* Fall Through */
  724. default:
  725. e1000_read_eeprom(&adapter->hw,
  726. EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
  727. break;
  728. }
  729. if (eeprom_data & eeprom_apme_mask)
  730. adapter->wol |= E1000_WUFC_MAG;
  731. /* print bus type/speed/width info */
  732. {
  733. struct e1000_hw *hw = &adapter->hw;
  734. DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
  735. ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
  736. (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
  737. ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
  738. (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
  739. (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
  740. (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
  741. (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
  742. ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
  743. (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
  744. (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
  745. "32-bit"));
  746. }
  747. for (i = 0; i < 6; i++)
  748. printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
  749. /* reset the hardware with the new settings */
  750. e1000_reset(adapter);
  751. /* If the controller is 82573 and f/w is AMT, do not set
  752. * DRV_LOAD until the interface is up. For all other cases,
  753. * let the f/w know that the h/w is now under the control
  754. * of the driver. */
  755. if (adapter->hw.mac_type != e1000_82573 ||
  756. !e1000_check_mng_mode(&adapter->hw))
  757. e1000_get_hw_control(adapter);
  758. strcpy(netdev->name, "eth%d");
  759. if ((err = register_netdev(netdev)))
  760. goto err_register;
  761. DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
  762. cards_found++;
  763. return 0;
  764. err_register:
  765. err_sw_init:
  766. err_eeprom:
  767. iounmap(adapter->hw.hw_addr);
  768. err_ioremap:
  769. free_netdev(netdev);
  770. err_alloc_etherdev:
  771. pci_release_regions(pdev);
  772. return err;
  773. }
  774. /**
  775. * e1000_remove - Device Removal Routine
  776. * @pdev: PCI device information struct
  777. *
  778. * e1000_remove is called by the PCI subsystem to alert the driver
  779. * that it should release a PCI device. The could be caused by a
  780. * Hot-Plug event, or because the driver is going to be removed from
  781. * memory.
  782. **/
  783. static void __devexit
  784. e1000_remove(struct pci_dev *pdev)
  785. {
  786. struct net_device *netdev = pci_get_drvdata(pdev);
  787. struct e1000_adapter *adapter = netdev_priv(netdev);
  788. uint32_t manc;
  789. #ifdef CONFIG_E1000_NAPI
  790. int i;
  791. #endif
  792. flush_scheduled_work();
  793. if (adapter->hw.mac_type >= e1000_82540 &&
  794. adapter->hw.media_type == e1000_media_type_copper) {
  795. manc = E1000_READ_REG(&adapter->hw, MANC);
  796. if (manc & E1000_MANC_SMBUS_EN) {
  797. manc |= E1000_MANC_ARP_EN;
  798. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  799. }
  800. }
  801. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  802. * would have already happened in close and is redundant. */
  803. e1000_release_hw_control(adapter);
  804. unregister_netdev(netdev);
  805. #ifdef CONFIG_E1000_NAPI
  806. for (i = 0; i < adapter->num_rx_queues; i++)
  807. __dev_put(&adapter->polling_netdev[i]);
  808. #endif
  809. if (!e1000_check_phy_reset_block(&adapter->hw))
  810. e1000_phy_hw_reset(&adapter->hw);
  811. kfree(adapter->tx_ring);
  812. kfree(adapter->rx_ring);
  813. #ifdef CONFIG_E1000_NAPI
  814. kfree(adapter->polling_netdev);
  815. #endif
  816. iounmap(adapter->hw.hw_addr);
  817. pci_release_regions(pdev);
  818. free_netdev(netdev);
  819. pci_disable_device(pdev);
  820. }
  821. /**
  822. * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
  823. * @adapter: board private structure to initialize
  824. *
  825. * e1000_sw_init initializes the Adapter private data structure.
  826. * Fields are initialized based on PCI device information and
  827. * OS network device settings (MTU size).
  828. **/
  829. static int __devinit
  830. e1000_sw_init(struct e1000_adapter *adapter)
  831. {
  832. struct e1000_hw *hw = &adapter->hw;
  833. struct net_device *netdev = adapter->netdev;
  834. struct pci_dev *pdev = adapter->pdev;
  835. #ifdef CONFIG_E1000_NAPI
  836. int i;
  837. #endif
  838. /* PCI config space info */
  839. hw->vendor_id = pdev->vendor;
  840. hw->device_id = pdev->device;
  841. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  842. hw->subsystem_id = pdev->subsystem_device;
  843. pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
  844. pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
  845. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  846. adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
  847. hw->max_frame_size = netdev->mtu +
  848. ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  849. hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
  850. /* identify the MAC */
  851. if (e1000_set_mac_type(hw)) {
  852. DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
  853. return -EIO;
  854. }
  855. /* initialize eeprom parameters */
  856. if (e1000_init_eeprom_params(hw)) {
  857. E1000_ERR("EEPROM initialization failed\n");
  858. return -EIO;
  859. }
  860. switch (hw->mac_type) {
  861. default:
  862. break;
  863. case e1000_82541:
  864. case e1000_82547:
  865. case e1000_82541_rev_2:
  866. case e1000_82547_rev_2:
  867. hw->phy_init_script = 1;
  868. break;
  869. }
  870. e1000_set_media_type(hw);
  871. hw->wait_autoneg_complete = FALSE;
  872. hw->tbi_compatibility_en = TRUE;
  873. hw->adaptive_ifs = TRUE;
  874. /* Copper options */
  875. if (hw->media_type == e1000_media_type_copper) {
  876. hw->mdix = AUTO_ALL_MODES;
  877. hw->disable_polarity_correction = FALSE;
  878. hw->master_slave = E1000_MASTER_SLAVE;
  879. }
  880. adapter->num_tx_queues = 1;
  881. adapter->num_rx_queues = 1;
  882. if (e1000_alloc_queues(adapter)) {
  883. DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
  884. return -ENOMEM;
  885. }
  886. #ifdef CONFIG_E1000_NAPI
  887. for (i = 0; i < adapter->num_rx_queues; i++) {
  888. adapter->polling_netdev[i].priv = adapter;
  889. adapter->polling_netdev[i].poll = &e1000_clean;
  890. adapter->polling_netdev[i].weight = 64;
  891. dev_hold(&adapter->polling_netdev[i]);
  892. set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
  893. }
  894. spin_lock_init(&adapter->tx_queue_lock);
  895. #endif
  896. atomic_set(&adapter->irq_sem, 1);
  897. spin_lock_init(&adapter->stats_lock);
  898. return 0;
  899. }
  900. /**
  901. * e1000_alloc_queues - Allocate memory for all rings
  902. * @adapter: board private structure to initialize
  903. *
  904. * We allocate one ring per queue at run-time since we don't know the
  905. * number of queues at compile-time. The polling_netdev array is
  906. * intended for Multiqueue, but should work fine with a single queue.
  907. **/
  908. static int __devinit
  909. e1000_alloc_queues(struct e1000_adapter *adapter)
  910. {
  911. int size;
  912. size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
  913. adapter->tx_ring = kmalloc(size, GFP_KERNEL);
  914. if (!adapter->tx_ring)
  915. return -ENOMEM;
  916. memset(adapter->tx_ring, 0, size);
  917. size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
  918. adapter->rx_ring = kmalloc(size, GFP_KERNEL);
  919. if (!adapter->rx_ring) {
  920. kfree(adapter->tx_ring);
  921. return -ENOMEM;
  922. }
  923. memset(adapter->rx_ring, 0, size);
  924. #ifdef CONFIG_E1000_NAPI
  925. size = sizeof(struct net_device) * adapter->num_rx_queues;
  926. adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
  927. if (!adapter->polling_netdev) {
  928. kfree(adapter->tx_ring);
  929. kfree(adapter->rx_ring);
  930. return -ENOMEM;
  931. }
  932. memset(adapter->polling_netdev, 0, size);
  933. #endif
  934. return E1000_SUCCESS;
  935. }
  936. /**
  937. * e1000_open - Called when a network interface is made active
  938. * @netdev: network interface device structure
  939. *
  940. * Returns 0 on success, negative value on failure
  941. *
  942. * The open entry point is called when a network interface is made
  943. * active by the system (IFF_UP). At this point all resources needed
  944. * for transmit and receive operations are allocated, the interrupt
  945. * handler is registered with the OS, the watchdog timer is started,
  946. * and the stack is notified that the interface is ready.
  947. **/
  948. static int
  949. e1000_open(struct net_device *netdev)
  950. {
  951. struct e1000_adapter *adapter = netdev_priv(netdev);
  952. int err;
  953. /* allocate transmit descriptors */
  954. if ((err = e1000_setup_all_tx_resources(adapter)))
  955. goto err_setup_tx;
  956. /* allocate receive descriptors */
  957. if ((err = e1000_setup_all_rx_resources(adapter)))
  958. goto err_setup_rx;
  959. if ((err = e1000_up(adapter)))
  960. goto err_up;
  961. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  962. if ((adapter->hw.mng_cookie.status &
  963. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  964. e1000_update_mng_vlan(adapter);
  965. }
  966. /* If AMT is enabled, let the firmware know that the network
  967. * interface is now open */
  968. if (adapter->hw.mac_type == e1000_82573 &&
  969. e1000_check_mng_mode(&adapter->hw))
  970. e1000_get_hw_control(adapter);
  971. return E1000_SUCCESS;
  972. err_up:
  973. e1000_free_all_rx_resources(adapter);
  974. err_setup_rx:
  975. e1000_free_all_tx_resources(adapter);
  976. err_setup_tx:
  977. e1000_reset(adapter);
  978. return err;
  979. }
  980. /**
  981. * e1000_close - Disables a network interface
  982. * @netdev: network interface device structure
  983. *
  984. * Returns 0, this is not allowed to fail
  985. *
  986. * The close entry point is called when an interface is de-activated
  987. * by the OS. The hardware is still under the drivers control, but
  988. * needs to be disabled. A global MAC reset is issued to stop the
  989. * hardware, and all transmit and receive resources are freed.
  990. **/
  991. static int
  992. e1000_close(struct net_device *netdev)
  993. {
  994. struct e1000_adapter *adapter = netdev_priv(netdev);
  995. e1000_down(adapter);
  996. e1000_free_all_tx_resources(adapter);
  997. e1000_free_all_rx_resources(adapter);
  998. if ((adapter->hw.mng_cookie.status &
  999. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
  1000. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  1001. }
  1002. /* If AMT is enabled, let the firmware know that the network
  1003. * interface is now closed */
  1004. if (adapter->hw.mac_type == e1000_82573 &&
  1005. e1000_check_mng_mode(&adapter->hw))
  1006. e1000_release_hw_control(adapter);
  1007. return 0;
  1008. }
  1009. /**
  1010. * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
  1011. * @adapter: address of board private structure
  1012. * @start: address of beginning of memory
  1013. * @len: length of memory
  1014. **/
  1015. static inline boolean_t
  1016. e1000_check_64k_bound(struct e1000_adapter *adapter,
  1017. void *start, unsigned long len)
  1018. {
  1019. unsigned long begin = (unsigned long) start;
  1020. unsigned long end = begin + len;
  1021. /* First rev 82545 and 82546 need to not allow any memory
  1022. * write location to cross 64k boundary due to errata 23 */
  1023. if (adapter->hw.mac_type == e1000_82545 ||
  1024. adapter->hw.mac_type == e1000_82546) {
  1025. return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
  1026. }
  1027. return TRUE;
  1028. }
  1029. /**
  1030. * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
  1031. * @adapter: board private structure
  1032. * @txdr: tx descriptor ring (for a specific queue) to setup
  1033. *
  1034. * Return 0 on success, negative on failure
  1035. **/
  1036. static int
  1037. e1000_setup_tx_resources(struct e1000_adapter *adapter,
  1038. struct e1000_tx_ring *txdr)
  1039. {
  1040. struct pci_dev *pdev = adapter->pdev;
  1041. int size;
  1042. size = sizeof(struct e1000_buffer) * txdr->count;
  1043. txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
  1044. if (!txdr->buffer_info) {
  1045. DPRINTK(PROBE, ERR,
  1046. "Unable to allocate memory for the transmit descriptor ring\n");
  1047. return -ENOMEM;
  1048. }
  1049. memset(txdr->buffer_info, 0, size);
  1050. /* round up to nearest 4K */
  1051. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  1052. E1000_ROUNDUP(txdr->size, 4096);
  1053. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  1054. if (!txdr->desc) {
  1055. setup_tx_desc_die:
  1056. vfree(txdr->buffer_info);
  1057. DPRINTK(PROBE, ERR,
  1058. "Unable to allocate memory for the transmit descriptor ring\n");
  1059. return -ENOMEM;
  1060. }
  1061. /* Fix for errata 23, can't cross 64kB boundary */
  1062. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  1063. void *olddesc = txdr->desc;
  1064. dma_addr_t olddma = txdr->dma;
  1065. DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
  1066. "at %p\n", txdr->size, txdr->desc);
  1067. /* Try again, without freeing the previous */
  1068. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  1069. /* Failed allocation, critical failure */
  1070. if (!txdr->desc) {
  1071. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1072. goto setup_tx_desc_die;
  1073. }
  1074. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  1075. /* give up */
  1076. pci_free_consistent(pdev, txdr->size, txdr->desc,
  1077. txdr->dma);
  1078. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1079. DPRINTK(PROBE, ERR,
  1080. "Unable to allocate aligned memory "
  1081. "for the transmit descriptor ring\n");
  1082. vfree(txdr->buffer_info);
  1083. return -ENOMEM;
  1084. } else {
  1085. /* Free old allocation, new allocation was successful */
  1086. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  1087. }
  1088. }
  1089. memset(txdr->desc, 0, txdr->size);
  1090. txdr->next_to_use = 0;
  1091. txdr->next_to_clean = 0;
  1092. spin_lock_init(&txdr->tx_lock);
  1093. return 0;
  1094. }
  1095. /**
  1096. * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
  1097. * (Descriptors) for all queues
  1098. * @adapter: board private structure
  1099. *
  1100. * If this function returns with an error, then it's possible one or
  1101. * more of the rings is populated (while the rest are not). It is the
  1102. * callers duty to clean those orphaned rings.
  1103. *
  1104. * Return 0 on success, negative on failure
  1105. **/
  1106. int
  1107. e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
  1108. {
  1109. int i, err = 0;
  1110. for (i = 0; i < adapter->num_tx_queues; i++) {
  1111. err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
  1112. if (err) {
  1113. DPRINTK(PROBE, ERR,
  1114. "Allocation for Tx Queue %u failed\n", i);
  1115. break;
  1116. }
  1117. }
  1118. return err;
  1119. }
  1120. /**
  1121. * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
  1122. * @adapter: board private structure
  1123. *
  1124. * Configure the Tx unit of the MAC after a reset.
  1125. **/
  1126. static void
  1127. e1000_configure_tx(struct e1000_adapter *adapter)
  1128. {
  1129. uint64_t tdba;
  1130. struct e1000_hw *hw = &adapter->hw;
  1131. uint32_t tdlen, tctl, tipg, tarc;
  1132. uint32_t ipgr1, ipgr2;
  1133. /* Setup the HW Tx Head and Tail descriptor pointers */
  1134. switch (adapter->num_tx_queues) {
  1135. case 1:
  1136. default:
  1137. tdba = adapter->tx_ring[0].dma;
  1138. tdlen = adapter->tx_ring[0].count *
  1139. sizeof(struct e1000_tx_desc);
  1140. E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
  1141. E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
  1142. E1000_WRITE_REG(hw, TDLEN, tdlen);
  1143. E1000_WRITE_REG(hw, TDH, 0);
  1144. E1000_WRITE_REG(hw, TDT, 0);
  1145. adapter->tx_ring[0].tdh = E1000_TDH;
  1146. adapter->tx_ring[0].tdt = E1000_TDT;
  1147. break;
  1148. }
  1149. /* Set the default values for the Tx Inter Packet Gap timer */
  1150. if (hw->media_type == e1000_media_type_fiber ||
  1151. hw->media_type == e1000_media_type_internal_serdes)
  1152. tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
  1153. else
  1154. tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
  1155. switch (hw->mac_type) {
  1156. case e1000_82542_rev2_0:
  1157. case e1000_82542_rev2_1:
  1158. tipg = DEFAULT_82542_TIPG_IPGT;
  1159. ipgr1 = DEFAULT_82542_TIPG_IPGR1;
  1160. ipgr2 = DEFAULT_82542_TIPG_IPGR2;
  1161. break;
  1162. case e1000_80003es2lan:
  1163. ipgr1 = DEFAULT_82543_TIPG_IPGR1;
  1164. ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
  1165. break;
  1166. default:
  1167. ipgr1 = DEFAULT_82543_TIPG_IPGR1;
  1168. ipgr2 = DEFAULT_82543_TIPG_IPGR2;
  1169. break;
  1170. }
  1171. tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
  1172. tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
  1173. E1000_WRITE_REG(hw, TIPG, tipg);
  1174. /* Set the Tx Interrupt Delay register */
  1175. E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
  1176. if (hw->mac_type >= e1000_82540)
  1177. E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
  1178. /* Program the Transmit Control Register */
  1179. tctl = E1000_READ_REG(hw, TCTL);
  1180. tctl &= ~E1000_TCTL_CT;
  1181. tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
  1182. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  1183. #ifdef DISABLE_MULR
  1184. /* disable Multiple Reads for debugging */
  1185. tctl &= ~E1000_TCTL_MULR;
  1186. #endif
  1187. if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
  1188. tarc = E1000_READ_REG(hw, TARC0);
  1189. tarc |= ((1 << 25) | (1 << 21));
  1190. E1000_WRITE_REG(hw, TARC0, tarc);
  1191. tarc = E1000_READ_REG(hw, TARC1);
  1192. tarc |= (1 << 25);
  1193. if (tctl & E1000_TCTL_MULR)
  1194. tarc &= ~(1 << 28);
  1195. else
  1196. tarc |= (1 << 28);
  1197. E1000_WRITE_REG(hw, TARC1, tarc);
  1198. } else if (hw->mac_type == e1000_80003es2lan) {
  1199. tarc = E1000_READ_REG(hw, TARC0);
  1200. tarc |= 1;
  1201. if (hw->media_type == e1000_media_type_internal_serdes)
  1202. tarc |= (1 << 20);
  1203. E1000_WRITE_REG(hw, TARC0, tarc);
  1204. tarc = E1000_READ_REG(hw, TARC1);
  1205. tarc |= 1;
  1206. E1000_WRITE_REG(hw, TARC1, tarc);
  1207. }
  1208. e1000_config_collision_dist(hw);
  1209. /* Setup Transmit Descriptor Settings for eop descriptor */
  1210. adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
  1211. E1000_TXD_CMD_IFCS;
  1212. if (hw->mac_type < e1000_82543)
  1213. adapter->txd_cmd |= E1000_TXD_CMD_RPS;
  1214. else
  1215. adapter->txd_cmd |= E1000_TXD_CMD_RS;
  1216. /* Cache if we're 82544 running in PCI-X because we'll
  1217. * need this to apply a workaround later in the send path. */
  1218. if (hw->mac_type == e1000_82544 &&
  1219. hw->bus_type == e1000_bus_type_pcix)
  1220. adapter->pcix_82544 = 1;
  1221. E1000_WRITE_REG(hw, TCTL, tctl);
  1222. }
  1223. /**
  1224. * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
  1225. * @adapter: board private structure
  1226. * @rxdr: rx descriptor ring (for a specific queue) to setup
  1227. *
  1228. * Returns 0 on success, negative on failure
  1229. **/
  1230. static int
  1231. e1000_setup_rx_resources(struct e1000_adapter *adapter,
  1232. struct e1000_rx_ring *rxdr)
  1233. {
  1234. struct pci_dev *pdev = adapter->pdev;
  1235. int size, desc_len;
  1236. size = sizeof(struct e1000_buffer) * rxdr->count;
  1237. rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
  1238. if (!rxdr->buffer_info) {
  1239. DPRINTK(PROBE, ERR,
  1240. "Unable to allocate memory for the receive descriptor ring\n");
  1241. return -ENOMEM;
  1242. }
  1243. memset(rxdr->buffer_info, 0, size);
  1244. size = sizeof(struct e1000_ps_page) * rxdr->count;
  1245. rxdr->ps_page = kmalloc(size, GFP_KERNEL);
  1246. if (!rxdr->ps_page) {
  1247. vfree(rxdr->buffer_info);
  1248. DPRINTK(PROBE, ERR,
  1249. "Unable to allocate memory for the receive descriptor ring\n");
  1250. return -ENOMEM;
  1251. }
  1252. memset(rxdr->ps_page, 0, size);
  1253. size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
  1254. rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
  1255. if (!rxdr->ps_page_dma) {
  1256. vfree(rxdr->buffer_info);
  1257. kfree(rxdr->ps_page);
  1258. DPRINTK(PROBE, ERR,
  1259. "Unable to allocate memory for the receive descriptor ring\n");
  1260. return -ENOMEM;
  1261. }
  1262. memset(rxdr->ps_page_dma, 0, size);
  1263. if (adapter->hw.mac_type <= e1000_82547_rev_2)
  1264. desc_len = sizeof(struct e1000_rx_desc);
  1265. else
  1266. desc_len = sizeof(union e1000_rx_desc_packet_split);
  1267. /* Round up to nearest 4K */
  1268. rxdr->size = rxdr->count * desc_len;
  1269. E1000_ROUNDUP(rxdr->size, 4096);
  1270. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  1271. if (!rxdr->desc) {
  1272. DPRINTK(PROBE, ERR,
  1273. "Unable to allocate memory for the receive descriptor ring\n");
  1274. setup_rx_desc_die:
  1275. vfree(rxdr->buffer_info);
  1276. kfree(rxdr->ps_page);
  1277. kfree(rxdr->ps_page_dma);
  1278. return -ENOMEM;
  1279. }
  1280. /* Fix for errata 23, can't cross 64kB boundary */
  1281. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  1282. void *olddesc = rxdr->desc;
  1283. dma_addr_t olddma = rxdr->dma;
  1284. DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
  1285. "at %p\n", rxdr->size, rxdr->desc);
  1286. /* Try again, without freeing the previous */
  1287. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  1288. /* Failed allocation, critical failure */
  1289. if (!rxdr->desc) {
  1290. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1291. DPRINTK(PROBE, ERR,
  1292. "Unable to allocate memory "
  1293. "for the receive descriptor ring\n");
  1294. goto setup_rx_desc_die;
  1295. }
  1296. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  1297. /* give up */
  1298. pci_free_consistent(pdev, rxdr->size, rxdr->desc,
  1299. rxdr->dma);
  1300. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1301. DPRINTK(PROBE, ERR,
  1302. "Unable to allocate aligned memory "
  1303. "for the receive descriptor ring\n");
  1304. goto setup_rx_desc_die;
  1305. } else {
  1306. /* Free old allocation, new allocation was successful */
  1307. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  1308. }
  1309. }
  1310. memset(rxdr->desc, 0, rxdr->size);
  1311. rxdr->next_to_clean = 0;
  1312. rxdr->next_to_use = 0;
  1313. return 0;
  1314. }
  1315. /**
  1316. * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
  1317. * (Descriptors) for all queues
  1318. * @adapter: board private structure
  1319. *
  1320. * If this function returns with an error, then it's possible one or
  1321. * more of the rings is populated (while the rest are not). It is the
  1322. * callers duty to clean those orphaned rings.
  1323. *
  1324. * Return 0 on success, negative on failure
  1325. **/
  1326. int
  1327. e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
  1328. {
  1329. int i, err = 0;
  1330. for (i = 0; i < adapter->num_rx_queues; i++) {
  1331. err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
  1332. if (err) {
  1333. DPRINTK(PROBE, ERR,
  1334. "Allocation for Rx Queue %u failed\n", i);
  1335. break;
  1336. }
  1337. }
  1338. return err;
  1339. }
  1340. /**
  1341. * e1000_setup_rctl - configure the receive control registers
  1342. * @adapter: Board private structure
  1343. **/
  1344. #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
  1345. (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
  1346. static void
  1347. e1000_setup_rctl(struct e1000_adapter *adapter)
  1348. {
  1349. uint32_t rctl, rfctl;
  1350. uint32_t psrctl = 0;
  1351. #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
  1352. uint32_t pages = 0;
  1353. #endif
  1354. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1355. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  1356. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
  1357. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  1358. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  1359. if (adapter->hw.mac_type > e1000_82543)
  1360. rctl |= E1000_RCTL_SECRC;
  1361. if (adapter->hw.tbi_compatibility_on == 1)
  1362. rctl |= E1000_RCTL_SBP;
  1363. else
  1364. rctl &= ~E1000_RCTL_SBP;
  1365. if (adapter->netdev->mtu <= ETH_DATA_LEN)
  1366. rctl &= ~E1000_RCTL_LPE;
  1367. else
  1368. rctl |= E1000_RCTL_LPE;
  1369. /* Setup buffer sizes */
  1370. if (adapter->hw.mac_type >= e1000_82571) {
  1371. /* We can now specify buffers in 1K increments.
  1372. * BSIZE and BSEX are ignored in this case. */
  1373. rctl |= adapter->rx_buffer_len << 0x11;
  1374. } else {
  1375. rctl &= ~E1000_RCTL_SZ_4096;
  1376. rctl |= E1000_RCTL_BSEX;
  1377. switch (adapter->rx_buffer_len) {
  1378. case E1000_RXBUFFER_2048:
  1379. default:
  1380. rctl |= E1000_RCTL_SZ_2048;
  1381. rctl &= ~E1000_RCTL_BSEX;
  1382. break;
  1383. case E1000_RXBUFFER_4096:
  1384. rctl |= E1000_RCTL_SZ_4096;
  1385. break;
  1386. case E1000_RXBUFFER_8192:
  1387. rctl |= E1000_RCTL_SZ_8192;
  1388. break;
  1389. case E1000_RXBUFFER_16384:
  1390. rctl |= E1000_RCTL_SZ_16384;
  1391. break;
  1392. }
  1393. }
  1394. #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
  1395. /* 82571 and greater support packet-split where the protocol
  1396. * header is placed in skb->data and the packet data is
  1397. * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
  1398. * In the case of a non-split, skb->data is linearly filled,
  1399. * followed by the page buffers. Therefore, skb->data is
  1400. * sized to hold the largest protocol header.
  1401. */
  1402. pages = PAGE_USE_COUNT(adapter->netdev->mtu);
  1403. if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
  1404. PAGE_SIZE <= 16384)
  1405. adapter->rx_ps_pages = pages;
  1406. else
  1407. adapter->rx_ps_pages = 0;
  1408. #endif
  1409. if (adapter->rx_ps_pages) {
  1410. /* Configure extra packet-split registers */
  1411. rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
  1412. rfctl |= E1000_RFCTL_EXTEN;
  1413. /* disable IPv6 packet split support */
  1414. rfctl |= E1000_RFCTL_IPV6_DIS;
  1415. E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
  1416. rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
  1417. psrctl |= adapter->rx_ps_bsize0 >>
  1418. E1000_PSRCTL_BSIZE0_SHIFT;
  1419. switch (adapter->rx_ps_pages) {
  1420. case 3:
  1421. psrctl |= PAGE_SIZE <<
  1422. E1000_PSRCTL_BSIZE3_SHIFT;
  1423. case 2:
  1424. psrctl |= PAGE_SIZE <<
  1425. E1000_PSRCTL_BSIZE2_SHIFT;
  1426. case 1:
  1427. psrctl |= PAGE_SIZE >>
  1428. E1000_PSRCTL_BSIZE1_SHIFT;
  1429. break;
  1430. }
  1431. E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
  1432. }
  1433. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1434. }
  1435. /**
  1436. * e1000_configure_rx - Configure 8254x Receive Unit after Reset
  1437. * @adapter: board private structure
  1438. *
  1439. * Configure the Rx unit of the MAC after a reset.
  1440. **/
  1441. static void
  1442. e1000_configure_rx(struct e1000_adapter *adapter)
  1443. {
  1444. uint64_t rdba;
  1445. struct e1000_hw *hw = &adapter->hw;
  1446. uint32_t rdlen, rctl, rxcsum, ctrl_ext;
  1447. if (adapter->rx_ps_pages) {
  1448. /* this is a 32 byte descriptor */
  1449. rdlen = adapter->rx_ring[0].count *
  1450. sizeof(union e1000_rx_desc_packet_split);
  1451. adapter->clean_rx = e1000_clean_rx_irq_ps;
  1452. adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
  1453. } else {
  1454. rdlen = adapter->rx_ring[0].count *
  1455. sizeof(struct e1000_rx_desc);
  1456. adapter->clean_rx = e1000_clean_rx_irq;
  1457. adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
  1458. }
  1459. /* disable receives while setting up the descriptors */
  1460. rctl = E1000_READ_REG(hw, RCTL);
  1461. E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
  1462. /* set the Receive Delay Timer Register */
  1463. E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
  1464. if (hw->mac_type >= e1000_82540) {
  1465. E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
  1466. if (adapter->itr > 1)
  1467. E1000_WRITE_REG(hw, ITR,
  1468. 1000000000 / (adapter->itr * 256));
  1469. }
  1470. if (hw->mac_type >= e1000_82571) {
  1471. ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
  1472. /* Reset delay timers after every interrupt */
  1473. ctrl_ext |= E1000_CTRL_EXT_CANC;
  1474. #ifdef CONFIG_E1000_NAPI
  1475. /* Auto-Mask interrupts upon ICR read. */
  1476. ctrl_ext |= E1000_CTRL_EXT_IAME;
  1477. #endif
  1478. E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
  1479. E1000_WRITE_REG(hw, IAM, ~0);
  1480. E1000_WRITE_FLUSH(hw);
  1481. }
  1482. /* Setup the HW Rx Head and Tail Descriptor Pointers and
  1483. * the Base and Length of the Rx Descriptor Ring */
  1484. switch (adapter->num_rx_queues) {
  1485. case 1:
  1486. default:
  1487. rdba = adapter->rx_ring[0].dma;
  1488. E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
  1489. E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
  1490. E1000_WRITE_REG(hw, RDLEN, rdlen);
  1491. E1000_WRITE_REG(hw, RDH, 0);
  1492. E1000_WRITE_REG(hw, RDT, 0);
  1493. adapter->rx_ring[0].rdh = E1000_RDH;
  1494. adapter->rx_ring[0].rdt = E1000_RDT;
  1495. break;
  1496. }
  1497. /* Enable 82543 Receive Checksum Offload for TCP and UDP */
  1498. if (hw->mac_type >= e1000_82543) {
  1499. rxcsum = E1000_READ_REG(hw, RXCSUM);
  1500. if (adapter->rx_csum == TRUE) {
  1501. rxcsum |= E1000_RXCSUM_TUOFL;
  1502. /* Enable 82571 IPv4 payload checksum for UDP fragments
  1503. * Must be used in conjunction with packet-split. */
  1504. if ((hw->mac_type >= e1000_82571) &&
  1505. (adapter->rx_ps_pages)) {
  1506. rxcsum |= E1000_RXCSUM_IPPCSE;
  1507. }
  1508. } else {
  1509. rxcsum &= ~E1000_RXCSUM_TUOFL;
  1510. /* don't need to clear IPPCSE as it defaults to 0 */
  1511. }
  1512. E1000_WRITE_REG(hw, RXCSUM, rxcsum);
  1513. }
  1514. if (hw->mac_type == e1000_82573)
  1515. E1000_WRITE_REG(hw, ERT, 0x0100);
  1516. /* Enable Receives */
  1517. E1000_WRITE_REG(hw, RCTL, rctl);
  1518. }
  1519. /**
  1520. * e1000_free_tx_resources - Free Tx Resources per Queue
  1521. * @adapter: board private structure
  1522. * @tx_ring: Tx descriptor ring for a specific queue
  1523. *
  1524. * Free all transmit software resources
  1525. **/
  1526. static void
  1527. e1000_free_tx_resources(struct e1000_adapter *adapter,
  1528. struct e1000_tx_ring *tx_ring)
  1529. {
  1530. struct pci_dev *pdev = adapter->pdev;
  1531. e1000_clean_tx_ring(adapter, tx_ring);
  1532. vfree(tx_ring->buffer_info);
  1533. tx_ring->buffer_info = NULL;
  1534. pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
  1535. tx_ring->desc = NULL;
  1536. }
  1537. /**
  1538. * e1000_free_all_tx_resources - Free Tx Resources for All Queues
  1539. * @adapter: board private structure
  1540. *
  1541. * Free all transmit software resources
  1542. **/
  1543. void
  1544. e1000_free_all_tx_resources(struct e1000_adapter *adapter)
  1545. {
  1546. int i;
  1547. for (i = 0; i < adapter->num_tx_queues; i++)
  1548. e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
  1549. }
  1550. static inline void
  1551. e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
  1552. struct e1000_buffer *buffer_info)
  1553. {
  1554. if (buffer_info->dma) {
  1555. pci_unmap_page(adapter->pdev,
  1556. buffer_info->dma,
  1557. buffer_info->length,
  1558. PCI_DMA_TODEVICE);
  1559. }
  1560. if (buffer_info->skb)
  1561. dev_kfree_skb_any(buffer_info->skb);
  1562. memset(buffer_info, 0, sizeof(struct e1000_buffer));
  1563. }
  1564. /**
  1565. * e1000_clean_tx_ring - Free Tx Buffers
  1566. * @adapter: board private structure
  1567. * @tx_ring: ring to be cleaned
  1568. **/
  1569. static void
  1570. e1000_clean_tx_ring(struct e1000_adapter *adapter,
  1571. struct e1000_tx_ring *tx_ring)
  1572. {
  1573. struct e1000_buffer *buffer_info;
  1574. unsigned long size;
  1575. unsigned int i;
  1576. /* Free all the Tx ring sk_buffs */
  1577. for (i = 0; i < tx_ring->count; i++) {
  1578. buffer_info = &tx_ring->buffer_info[i];
  1579. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  1580. }
  1581. size = sizeof(struct e1000_buffer) * tx_ring->count;
  1582. memset(tx_ring->buffer_info, 0, size);
  1583. /* Zero out the descriptor ring */
  1584. memset(tx_ring->desc, 0, tx_ring->size);
  1585. tx_ring->next_to_use = 0;
  1586. tx_ring->next_to_clean = 0;
  1587. tx_ring->last_tx_tso = 0;
  1588. writel(0, adapter->hw.hw_addr + tx_ring->tdh);
  1589. writel(0, adapter->hw.hw_addr + tx_ring->tdt);
  1590. }
  1591. /**
  1592. * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
  1593. * @adapter: board private structure
  1594. **/
  1595. static void
  1596. e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
  1597. {
  1598. int i;
  1599. for (i = 0; i < adapter->num_tx_queues; i++)
  1600. e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
  1601. }
  1602. /**
  1603. * e1000_free_rx_resources - Free Rx Resources
  1604. * @adapter: board private structure
  1605. * @rx_ring: ring to clean the resources from
  1606. *
  1607. * Free all receive software resources
  1608. **/
  1609. static void
  1610. e1000_free_rx_resources(struct e1000_adapter *adapter,
  1611. struct e1000_rx_ring *rx_ring)
  1612. {
  1613. struct pci_dev *pdev = adapter->pdev;
  1614. e1000_clean_rx_ring(adapter, rx_ring);
  1615. vfree(rx_ring->buffer_info);
  1616. rx_ring->buffer_info = NULL;
  1617. kfree(rx_ring->ps_page);
  1618. rx_ring->ps_page = NULL;
  1619. kfree(rx_ring->ps_page_dma);
  1620. rx_ring->ps_page_dma = NULL;
  1621. pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
  1622. rx_ring->desc = NULL;
  1623. }
  1624. /**
  1625. * e1000_free_all_rx_resources - Free Rx Resources for All Queues
  1626. * @adapter: board private structure
  1627. *
  1628. * Free all receive software resources
  1629. **/
  1630. void
  1631. e1000_free_all_rx_resources(struct e1000_adapter *adapter)
  1632. {
  1633. int i;
  1634. for (i = 0; i < adapter->num_rx_queues; i++)
  1635. e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
  1636. }
  1637. /**
  1638. * e1000_clean_rx_ring - Free Rx Buffers per Queue
  1639. * @adapter: board private structure
  1640. * @rx_ring: ring to free buffers from
  1641. **/
  1642. static void
  1643. e1000_clean_rx_ring(struct e1000_adapter *adapter,
  1644. struct e1000_rx_ring *rx_ring)
  1645. {
  1646. struct e1000_buffer *buffer_info;
  1647. struct e1000_ps_page *ps_page;
  1648. struct e1000_ps_page_dma *ps_page_dma;
  1649. struct pci_dev *pdev = adapter->pdev;
  1650. unsigned long size;
  1651. unsigned int i, j;
  1652. /* Free all the Rx ring sk_buffs */
  1653. for (i = 0; i < rx_ring->count; i++) {
  1654. buffer_info = &rx_ring->buffer_info[i];
  1655. if (buffer_info->skb) {
  1656. pci_unmap_single(pdev,
  1657. buffer_info->dma,
  1658. buffer_info->length,
  1659. PCI_DMA_FROMDEVICE);
  1660. dev_kfree_skb(buffer_info->skb);
  1661. buffer_info->skb = NULL;
  1662. }
  1663. ps_page = &rx_ring->ps_page[i];
  1664. ps_page_dma = &rx_ring->ps_page_dma[i];
  1665. for (j = 0; j < adapter->rx_ps_pages; j++) {
  1666. if (!ps_page->ps_page[j]) break;
  1667. pci_unmap_page(pdev,
  1668. ps_page_dma->ps_page_dma[j],
  1669. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1670. ps_page_dma->ps_page_dma[j] = 0;
  1671. put_page(ps_page->ps_page[j]);
  1672. ps_page->ps_page[j] = NULL;
  1673. }
  1674. }
  1675. size = sizeof(struct e1000_buffer) * rx_ring->count;
  1676. memset(rx_ring->buffer_info, 0, size);
  1677. size = sizeof(struct e1000_ps_page) * rx_ring->count;
  1678. memset(rx_ring->ps_page, 0, size);
  1679. size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
  1680. memset(rx_ring->ps_page_dma, 0, size);
  1681. /* Zero out the descriptor ring */
  1682. memset(rx_ring->desc, 0, rx_ring->size);
  1683. rx_ring->next_to_clean = 0;
  1684. rx_ring->next_to_use = 0;
  1685. writel(0, adapter->hw.hw_addr + rx_ring->rdh);
  1686. writel(0, adapter->hw.hw_addr + rx_ring->rdt);
  1687. }
  1688. /**
  1689. * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
  1690. * @adapter: board private structure
  1691. **/
  1692. static void
  1693. e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
  1694. {
  1695. int i;
  1696. for (i = 0; i < adapter->num_rx_queues; i++)
  1697. e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
  1698. }
  1699. /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
  1700. * and memory write and invalidate disabled for certain operations
  1701. */
  1702. static void
  1703. e1000_enter_82542_rst(struct e1000_adapter *adapter)
  1704. {
  1705. struct net_device *netdev = adapter->netdev;
  1706. uint32_t rctl;
  1707. e1000_pci_clear_mwi(&adapter->hw);
  1708. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1709. rctl |= E1000_RCTL_RST;
  1710. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1711. E1000_WRITE_FLUSH(&adapter->hw);
  1712. mdelay(5);
  1713. if (netif_running(netdev))
  1714. e1000_clean_all_rx_rings(adapter);
  1715. }
  1716. static void
  1717. e1000_leave_82542_rst(struct e1000_adapter *adapter)
  1718. {
  1719. struct net_device *netdev = adapter->netdev;
  1720. uint32_t rctl;
  1721. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1722. rctl &= ~E1000_RCTL_RST;
  1723. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1724. E1000_WRITE_FLUSH(&adapter->hw);
  1725. mdelay(5);
  1726. if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
  1727. e1000_pci_set_mwi(&adapter->hw);
  1728. if (netif_running(netdev)) {
  1729. /* No need to loop, because 82542 supports only 1 queue */
  1730. struct e1000_rx_ring *ring = &adapter->rx_ring[0];
  1731. e1000_configure_rx(adapter);
  1732. adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
  1733. }
  1734. }
  1735. /**
  1736. * e1000_set_mac - Change the Ethernet Address of the NIC
  1737. * @netdev: network interface device structure
  1738. * @p: pointer to an address structure
  1739. *
  1740. * Returns 0 on success, negative on failure
  1741. **/
  1742. static int
  1743. e1000_set_mac(struct net_device *netdev, void *p)
  1744. {
  1745. struct e1000_adapter *adapter = netdev_priv(netdev);
  1746. struct sockaddr *addr = p;
  1747. if (!is_valid_ether_addr(addr->sa_data))
  1748. return -EADDRNOTAVAIL;
  1749. /* 82542 2.0 needs to be in reset to write receive address registers */
  1750. if (adapter->hw.mac_type == e1000_82542_rev2_0)
  1751. e1000_enter_82542_rst(adapter);
  1752. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  1753. memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
  1754. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  1755. /* With 82571 controllers, LAA may be overwritten (with the default)
  1756. * due to controller reset from the other port. */
  1757. if (adapter->hw.mac_type == e1000_82571) {
  1758. /* activate the work around */
  1759. adapter->hw.laa_is_present = 1;
  1760. /* Hold a copy of the LAA in RAR[14] This is done so that
  1761. * between the time RAR[0] gets clobbered and the time it
  1762. * gets fixed (in e1000_watchdog), the actual LAA is in one
  1763. * of the RARs and no incoming packets directed to this port
  1764. * are dropped. Eventaully the LAA will be in RAR[0] and
  1765. * RAR[14] */
  1766. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
  1767. E1000_RAR_ENTRIES - 1);
  1768. }
  1769. if (adapter->hw.mac_type == e1000_82542_rev2_0)
  1770. e1000_leave_82542_rst(adapter);
  1771. return 0;
  1772. }
  1773. /**
  1774. * e1000_set_multi - Multicast and Promiscuous mode set
  1775. * @netdev: network interface device structure
  1776. *
  1777. * The set_multi entry point is called whenever the multicast address
  1778. * list or the network interface flags are updated. This routine is
  1779. * responsible for configuring the hardware for proper multicast,
  1780. * promiscuous mode, and all-multi behavior.
  1781. **/
  1782. static void
  1783. e1000_set_multi(struct net_device *netdev)
  1784. {
  1785. struct e1000_adapter *adapter = netdev_priv(netdev);
  1786. struct e1000_hw *hw = &adapter->hw;
  1787. struct dev_mc_list *mc_ptr;
  1788. uint32_t rctl;
  1789. uint32_t hash_value;
  1790. int i, rar_entries = E1000_RAR_ENTRIES;
  1791. /* reserve RAR[14] for LAA over-write work-around */
  1792. if (adapter->hw.mac_type == e1000_82571)
  1793. rar_entries--;
  1794. /* Check for Promiscuous and All Multicast modes */
  1795. rctl = E1000_READ_REG(hw, RCTL);
  1796. if (netdev->flags & IFF_PROMISC) {
  1797. rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
  1798. } else if (netdev->flags & IFF_ALLMULTI) {
  1799. rctl |= E1000_RCTL_MPE;
  1800. rctl &= ~E1000_RCTL_UPE;
  1801. } else {
  1802. rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
  1803. }
  1804. E1000_WRITE_REG(hw, RCTL, rctl);
  1805. /* 82542 2.0 needs to be in reset to write receive address registers */
  1806. if (hw->mac_type == e1000_82542_rev2_0)
  1807. e1000_enter_82542_rst(adapter);
  1808. /* load the first 14 multicast address into the exact filters 1-14
  1809. * RAR 0 is used for the station MAC adddress
  1810. * if there are not 14 addresses, go ahead and clear the filters
  1811. * -- with 82571 controllers only 0-13 entries are filled here
  1812. */
  1813. mc_ptr = netdev->mc_list;
  1814. for (i = 1; i < rar_entries; i++) {
  1815. if (mc_ptr) {
  1816. e1000_rar_set(hw, mc_ptr->dmi_addr, i);
  1817. mc_ptr = mc_ptr->next;
  1818. } else {
  1819. E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
  1820. E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
  1821. }
  1822. }
  1823. /* clear the old settings from the multicast hash table */
  1824. for (i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
  1825. E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
  1826. /* load any remaining addresses into the hash table */
  1827. for (; mc_ptr; mc_ptr = mc_ptr->next) {
  1828. hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
  1829. e1000_mta_set(hw, hash_value);
  1830. }
  1831. if (hw->mac_type == e1000_82542_rev2_0)
  1832. e1000_leave_82542_rst(adapter);
  1833. }
  1834. /* Need to wait a few seconds after link up to get diagnostic information from
  1835. * the phy */
  1836. static void
  1837. e1000_update_phy_info(unsigned long data)
  1838. {
  1839. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1840. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  1841. }
  1842. /**
  1843. * e1000_82547_tx_fifo_stall - Timer Call-back
  1844. * @data: pointer to adapter cast into an unsigned long
  1845. **/
  1846. static void
  1847. e1000_82547_tx_fifo_stall(unsigned long data)
  1848. {
  1849. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1850. struct net_device *netdev = adapter->netdev;
  1851. uint32_t tctl;
  1852. if (atomic_read(&adapter->tx_fifo_stall)) {
  1853. if ((E1000_READ_REG(&adapter->hw, TDT) ==
  1854. E1000_READ_REG(&adapter->hw, TDH)) &&
  1855. (E1000_READ_REG(&adapter->hw, TDFT) ==
  1856. E1000_READ_REG(&adapter->hw, TDFH)) &&
  1857. (E1000_READ_REG(&adapter->hw, TDFTS) ==
  1858. E1000_READ_REG(&adapter->hw, TDFHS))) {
  1859. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1860. E1000_WRITE_REG(&adapter->hw, TCTL,
  1861. tctl & ~E1000_TCTL_EN);
  1862. E1000_WRITE_REG(&adapter->hw, TDFT,
  1863. adapter->tx_head_addr);
  1864. E1000_WRITE_REG(&adapter->hw, TDFH,
  1865. adapter->tx_head_addr);
  1866. E1000_WRITE_REG(&adapter->hw, TDFTS,
  1867. adapter->tx_head_addr);
  1868. E1000_WRITE_REG(&adapter->hw, TDFHS,
  1869. adapter->tx_head_addr);
  1870. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1871. E1000_WRITE_FLUSH(&adapter->hw);
  1872. adapter->tx_fifo_head = 0;
  1873. atomic_set(&adapter->tx_fifo_stall, 0);
  1874. netif_wake_queue(netdev);
  1875. } else {
  1876. mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
  1877. }
  1878. }
  1879. }
  1880. /**
  1881. * e1000_watchdog - Timer Call-back
  1882. * @data: pointer to adapter cast into an unsigned long
  1883. **/
  1884. static void
  1885. e1000_watchdog(unsigned long data)
  1886. {
  1887. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1888. /* Do the rest outside of interrupt context */
  1889. schedule_work(&adapter->watchdog_task);
  1890. }
  1891. static void
  1892. e1000_watchdog_task(struct e1000_adapter *adapter)
  1893. {
  1894. struct net_device *netdev = adapter->netdev;
  1895. struct e1000_tx_ring *txdr = adapter->tx_ring;
  1896. uint32_t link, tctl;
  1897. e1000_check_for_link(&adapter->hw);
  1898. if (adapter->hw.mac_type == e1000_82573) {
  1899. e1000_enable_tx_pkt_filtering(&adapter->hw);
  1900. if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
  1901. e1000_update_mng_vlan(adapter);
  1902. }
  1903. if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1904. !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
  1905. link = !adapter->hw.serdes_link_down;
  1906. else
  1907. link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
  1908. if (link) {
  1909. if (!netif_carrier_ok(netdev)) {
  1910. e1000_get_speed_and_duplex(&adapter->hw,
  1911. &adapter->link_speed,
  1912. &adapter->link_duplex);
  1913. DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
  1914. adapter->link_speed,
  1915. adapter->link_duplex == FULL_DUPLEX ?
  1916. "Full Duplex" : "Half Duplex");
  1917. /* tweak tx_queue_len according to speed/duplex
  1918. * and adjust the timeout factor */
  1919. netdev->tx_queue_len = adapter->tx_queue_len;
  1920. adapter->tx_timeout_factor = 1;
  1921. adapter->txb2b = 1;
  1922. switch (adapter->link_speed) {
  1923. case SPEED_10:
  1924. adapter->txb2b = 0;
  1925. netdev->tx_queue_len = 10;
  1926. adapter->tx_timeout_factor = 8;
  1927. break;
  1928. case SPEED_100:
  1929. adapter->txb2b = 0;
  1930. netdev->tx_queue_len = 100;
  1931. /* maybe add some timeout factor ? */
  1932. break;
  1933. }
  1934. if ((adapter->hw.mac_type == e1000_82571 ||
  1935. adapter->hw.mac_type == e1000_82572) &&
  1936. adapter->txb2b == 0) {
  1937. #define SPEED_MODE_BIT (1 << 21)
  1938. uint32_t tarc0;
  1939. tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
  1940. tarc0 &= ~SPEED_MODE_BIT;
  1941. E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
  1942. }
  1943. #ifdef NETIF_F_TSO
  1944. /* disable TSO for pcie and 10/100 speeds, to avoid
  1945. * some hardware issues */
  1946. if (!adapter->tso_force &&
  1947. adapter->hw.bus_type == e1000_bus_type_pci_express){
  1948. switch (adapter->link_speed) {
  1949. case SPEED_10:
  1950. case SPEED_100:
  1951. DPRINTK(PROBE,INFO,
  1952. "10/100 speed: disabling TSO\n");
  1953. netdev->features &= ~NETIF_F_TSO;
  1954. break;
  1955. case SPEED_1000:
  1956. netdev->features |= NETIF_F_TSO;
  1957. break;
  1958. default:
  1959. /* oops */
  1960. break;
  1961. }
  1962. }
  1963. #endif
  1964. /* enable transmits in the hardware, need to do this
  1965. * after setting TARC0 */
  1966. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1967. tctl |= E1000_TCTL_EN;
  1968. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1969. netif_carrier_on(netdev);
  1970. netif_wake_queue(netdev);
  1971. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1972. adapter->smartspeed = 0;
  1973. }
  1974. } else {
  1975. if (netif_carrier_ok(netdev)) {
  1976. adapter->link_speed = 0;
  1977. adapter->link_duplex = 0;
  1978. DPRINTK(LINK, INFO, "NIC Link is Down\n");
  1979. netif_carrier_off(netdev);
  1980. netif_stop_queue(netdev);
  1981. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1982. /* 80003ES2LAN workaround--
  1983. * For packet buffer work-around on link down event;
  1984. * disable receives in the ISR and
  1985. * reset device here in the watchdog
  1986. */
  1987. if (adapter->hw.mac_type == e1000_80003es2lan) {
  1988. /* reset device */
  1989. schedule_work(&adapter->reset_task);
  1990. }
  1991. }
  1992. e1000_smartspeed(adapter);
  1993. }
  1994. e1000_update_stats(adapter);
  1995. adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
  1996. adapter->tpt_old = adapter->stats.tpt;
  1997. adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
  1998. adapter->colc_old = adapter->stats.colc;
  1999. adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
  2000. adapter->gorcl_old = adapter->stats.gorcl;
  2001. adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
  2002. adapter->gotcl_old = adapter->stats.gotcl;
  2003. e1000_update_adaptive(&adapter->hw);
  2004. if (!netif_carrier_ok(netdev)) {
  2005. if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
  2006. /* We've lost link, so the controller stops DMA,
  2007. * but we've got queued Tx work that's never going
  2008. * to get done, so reset controller to flush Tx.
  2009. * (Do the reset outside of interrupt context). */
  2010. adapter->tx_timeout_count++;
  2011. schedule_work(&adapter->reset_task);
  2012. }
  2013. }
  2014. /* Dynamic mode for Interrupt Throttle Rate (ITR) */
  2015. if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
  2016. /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
  2017. * asymmetrical Tx or Rx gets ITR=8000; everyone
  2018. * else is between 2000-8000. */
  2019. uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
  2020. uint32_t dif = (adapter->gotcl > adapter->gorcl ?
  2021. adapter->gotcl - adapter->gorcl :
  2022. adapter->gorcl - adapter->gotcl) / 10000;
  2023. uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
  2024. E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
  2025. }
  2026. /* Cause software interrupt to ensure rx ring is cleaned */
  2027. E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
  2028. /* Force detection of hung controller every watchdog period */
  2029. adapter->detect_tx_hung = TRUE;
  2030. /* With 82571 controllers, LAA may be overwritten due to controller
  2031. * reset from the other port. Set the appropriate LAA in RAR[0] */
  2032. if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
  2033. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  2034. /* Reset the timer */
  2035. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  2036. }
  2037. #define E1000_TX_FLAGS_CSUM 0x00000001
  2038. #define E1000_TX_FLAGS_VLAN 0x00000002
  2039. #define E1000_TX_FLAGS_TSO 0x00000004
  2040. #define E1000_TX_FLAGS_IPV4 0x00000008
  2041. #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
  2042. #define E1000_TX_FLAGS_VLAN_SHIFT 16
  2043. static inline int
  2044. e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2045. struct sk_buff *skb)
  2046. {
  2047. #ifdef NETIF_F_TSO
  2048. struct e1000_context_desc *context_desc;
  2049. struct e1000_buffer *buffer_info;
  2050. unsigned int i;
  2051. uint32_t cmd_length = 0;
  2052. uint16_t ipcse = 0, tucse, mss;
  2053. uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
  2054. int err;
  2055. if (skb_shinfo(skb)->tso_size) {
  2056. if (skb_header_cloned(skb)) {
  2057. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2058. if (err)
  2059. return err;
  2060. }
  2061. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  2062. mss = skb_shinfo(skb)->tso_size;
  2063. if (skb->protocol == ntohs(ETH_P_IP)) {
  2064. skb->nh.iph->tot_len = 0;
  2065. skb->nh.iph->check = 0;
  2066. skb->h.th->check =
  2067. ~csum_tcpudp_magic(skb->nh.iph->saddr,
  2068. skb->nh.iph->daddr,
  2069. 0,
  2070. IPPROTO_TCP,
  2071. 0);
  2072. cmd_length = E1000_TXD_CMD_IP;
  2073. ipcse = skb->h.raw - skb->data - 1;
  2074. #ifdef NETIF_F_TSO_IPV6
  2075. } else if (skb->protocol == ntohs(ETH_P_IPV6)) {
  2076. skb->nh.ipv6h->payload_len = 0;
  2077. skb->h.th->check =
  2078. ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
  2079. &skb->nh.ipv6h->daddr,
  2080. 0,
  2081. IPPROTO_TCP,
  2082. 0);
  2083. ipcse = 0;
  2084. #endif
  2085. }
  2086. ipcss = skb->nh.raw - skb->data;
  2087. ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
  2088. tucss = skb->h.raw - skb->data;
  2089. tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
  2090. tucse = 0;
  2091. cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
  2092. E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
  2093. i = tx_ring->next_to_use;
  2094. context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
  2095. buffer_info = &tx_ring->buffer_info[i];
  2096. context_desc->lower_setup.ip_fields.ipcss = ipcss;
  2097. context_desc->lower_setup.ip_fields.ipcso = ipcso;
  2098. context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
  2099. context_desc->upper_setup.tcp_fields.tucss = tucss;
  2100. context_desc->upper_setup.tcp_fields.tucso = tucso;
  2101. context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
  2102. context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
  2103. context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
  2104. context_desc->cmd_and_length = cpu_to_le32(cmd_length);
  2105. buffer_info->time_stamp = jiffies;
  2106. if (++i == tx_ring->count) i = 0;
  2107. tx_ring->next_to_use = i;
  2108. return TRUE;
  2109. }
  2110. #endif
  2111. return FALSE;
  2112. }
  2113. static inline boolean_t
  2114. e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2115. struct sk_buff *skb)
  2116. {
  2117. struct e1000_context_desc *context_desc;
  2118. struct e1000_buffer *buffer_info;
  2119. unsigned int i;
  2120. uint8_t css;
  2121. if (likely(skb->ip_summed == CHECKSUM_HW)) {
  2122. css = skb->h.raw - skb->data;
  2123. i = tx_ring->next_to_use;
  2124. buffer_info = &tx_ring->buffer_info[i];
  2125. context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
  2126. context_desc->upper_setup.tcp_fields.tucss = css;
  2127. context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
  2128. context_desc->upper_setup.tcp_fields.tucse = 0;
  2129. context_desc->tcp_seg_setup.data = 0;
  2130. context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
  2131. buffer_info->time_stamp = jiffies;
  2132. if (unlikely(++i == tx_ring->count)) i = 0;
  2133. tx_ring->next_to_use = i;
  2134. return TRUE;
  2135. }
  2136. return FALSE;
  2137. }
  2138. #define E1000_MAX_TXD_PWR 12
  2139. #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
  2140. static inline int
  2141. e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2142. struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
  2143. unsigned int nr_frags, unsigned int mss)
  2144. {
  2145. struct e1000_buffer *buffer_info;
  2146. unsigned int len = skb->len;
  2147. unsigned int offset = 0, size, count = 0, i;
  2148. unsigned int f;
  2149. len -= skb->data_len;
  2150. i = tx_ring->next_to_use;
  2151. while (len) {
  2152. buffer_info = &tx_ring->buffer_info[i];
  2153. size = min(len, max_per_txd);
  2154. #ifdef NETIF_F_TSO
  2155. /* Workaround for Controller erratum --
  2156. * descriptor for non-tso packet in a linear SKB that follows a
  2157. * tso gets written back prematurely before the data is fully
  2158. * DMA'd to the controller */
  2159. if (!skb->data_len && tx_ring->last_tx_tso &&
  2160. !skb_shinfo(skb)->tso_size) {
  2161. tx_ring->last_tx_tso = 0;
  2162. size -= 4;
  2163. }
  2164. /* Workaround for premature desc write-backs
  2165. * in TSO mode. Append 4-byte sentinel desc */
  2166. if (unlikely(mss && !nr_frags && size == len && size > 8))
  2167. size -= 4;
  2168. #endif
  2169. /* work-around for errata 10 and it applies
  2170. * to all controllers in PCI-X mode
  2171. * The fix is to make sure that the first descriptor of a
  2172. * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
  2173. */
  2174. if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  2175. (size > 2015) && count == 0))
  2176. size = 2015;
  2177. /* Workaround for potential 82544 hang in PCI-X. Avoid
  2178. * terminating buffers within evenly-aligned dwords. */
  2179. if (unlikely(adapter->pcix_82544 &&
  2180. !((unsigned long)(skb->data + offset + size - 1) & 4) &&
  2181. size > 4))
  2182. size -= 4;
  2183. buffer_info->length = size;
  2184. buffer_info->dma =
  2185. pci_map_single(adapter->pdev,
  2186. skb->data + offset,
  2187. size,
  2188. PCI_DMA_TODEVICE);
  2189. buffer_info->time_stamp = jiffies;
  2190. len -= size;
  2191. offset += size;
  2192. count++;
  2193. if (unlikely(++i == tx_ring->count)) i = 0;
  2194. }
  2195. for (f = 0; f < nr_frags; f++) {
  2196. struct skb_frag_struct *frag;
  2197. frag = &skb_shinfo(skb)->frags[f];
  2198. len = frag->size;
  2199. offset = frag->page_offset;
  2200. while (len) {
  2201. buffer_info = &tx_ring->buffer_info[i];
  2202. size = min(len, max_per_txd);
  2203. #ifdef NETIF_F_TSO
  2204. /* Workaround for premature desc write-backs
  2205. * in TSO mode. Append 4-byte sentinel desc */
  2206. if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
  2207. size -= 4;
  2208. #endif
  2209. /* Workaround for potential 82544 hang in PCI-X.
  2210. * Avoid terminating buffers within evenly-aligned
  2211. * dwords. */
  2212. if (unlikely(adapter->pcix_82544 &&
  2213. !((unsigned long)(frag->page+offset+size-1) & 4) &&
  2214. size > 4))
  2215. size -= 4;
  2216. buffer_info->length = size;
  2217. buffer_info->dma =
  2218. pci_map_page(adapter->pdev,
  2219. frag->page,
  2220. offset,
  2221. size,
  2222. PCI_DMA_TODEVICE);
  2223. buffer_info->time_stamp = jiffies;
  2224. len -= size;
  2225. offset += size;
  2226. count++;
  2227. if (unlikely(++i == tx_ring->count)) i = 0;
  2228. }
  2229. }
  2230. i = (i == 0) ? tx_ring->count - 1 : i - 1;
  2231. tx_ring->buffer_info[i].skb = skb;
  2232. tx_ring->buffer_info[first].next_to_watch = i;
  2233. return count;
  2234. }
  2235. static inline void
  2236. e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
  2237. int tx_flags, int count)
  2238. {
  2239. struct e1000_tx_desc *tx_desc = NULL;
  2240. struct e1000_buffer *buffer_info;
  2241. uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
  2242. unsigned int i;
  2243. if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
  2244. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
  2245. E1000_TXD_CMD_TSE;
  2246. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  2247. if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
  2248. txd_upper |= E1000_TXD_POPTS_IXSM << 8;
  2249. }
  2250. if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
  2251. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
  2252. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  2253. }
  2254. if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
  2255. txd_lower |= E1000_TXD_CMD_VLE;
  2256. txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
  2257. }
  2258. i = tx_ring->next_to_use;
  2259. while (count--) {
  2260. buffer_info = &tx_ring->buffer_info[i];
  2261. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2262. tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  2263. tx_desc->lower.data =
  2264. cpu_to_le32(txd_lower | buffer_info->length);
  2265. tx_desc->upper.data = cpu_to_le32(txd_upper);
  2266. if (unlikely(++i == tx_ring->count)) i = 0;
  2267. }
  2268. tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
  2269. /* Force memory writes to complete before letting h/w
  2270. * know there are new descriptors to fetch. (Only
  2271. * applicable for weak-ordered memory model archs,
  2272. * such as IA-64). */
  2273. wmb();
  2274. tx_ring->next_to_use = i;
  2275. writel(i, adapter->hw.hw_addr + tx_ring->tdt);
  2276. }
  2277. /**
  2278. * 82547 workaround to avoid controller hang in half-duplex environment.
  2279. * The workaround is to avoid queuing a large packet that would span
  2280. * the internal Tx FIFO ring boundary by notifying the stack to resend
  2281. * the packet at a later time. This gives the Tx FIFO an opportunity to
  2282. * flush all packets. When that occurs, we reset the Tx FIFO pointers
  2283. * to the beginning of the Tx FIFO.
  2284. **/
  2285. #define E1000_FIFO_HDR 0x10
  2286. #define E1000_82547_PAD_LEN 0x3E0
  2287. static inline int
  2288. e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
  2289. {
  2290. uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
  2291. uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
  2292. E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
  2293. if (adapter->link_duplex != HALF_DUPLEX)
  2294. goto no_fifo_stall_required;
  2295. if (atomic_read(&adapter->tx_fifo_stall))
  2296. return 1;
  2297. if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
  2298. atomic_set(&adapter->tx_fifo_stall, 1);
  2299. return 1;
  2300. }
  2301. no_fifo_stall_required:
  2302. adapter->tx_fifo_head += skb_fifo_len;
  2303. if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
  2304. adapter->tx_fifo_head -= adapter->tx_fifo_size;
  2305. return 0;
  2306. }
  2307. #define MINIMUM_DHCP_PACKET_SIZE 282
  2308. static inline int
  2309. e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
  2310. {
  2311. struct e1000_hw *hw = &adapter->hw;
  2312. uint16_t length, offset;
  2313. if (vlan_tx_tag_present(skb)) {
  2314. if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
  2315. ( adapter->hw.mng_cookie.status &
  2316. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
  2317. return 0;
  2318. }
  2319. if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
  2320. struct ethhdr *eth = (struct ethhdr *) skb->data;
  2321. if ((htons(ETH_P_IP) == eth->h_proto)) {
  2322. const struct iphdr *ip =
  2323. (struct iphdr *)((uint8_t *)skb->data+14);
  2324. if (IPPROTO_UDP == ip->protocol) {
  2325. struct udphdr *udp =
  2326. (struct udphdr *)((uint8_t *)ip +
  2327. (ip->ihl << 2));
  2328. if (ntohs(udp->dest) == 67) {
  2329. offset = (uint8_t *)udp + 8 - skb->data;
  2330. length = skb->len - offset;
  2331. return e1000_mng_write_dhcp_info(hw,
  2332. (uint8_t *)udp + 8,
  2333. length);
  2334. }
  2335. }
  2336. }
  2337. }
  2338. return 0;
  2339. }
  2340. #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
  2341. static int
  2342. e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  2343. {
  2344. struct e1000_adapter *adapter = netdev_priv(netdev);
  2345. struct e1000_tx_ring *tx_ring;
  2346. unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
  2347. unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
  2348. unsigned int tx_flags = 0;
  2349. unsigned int len = skb->len;
  2350. unsigned long flags;
  2351. unsigned int nr_frags = 0;
  2352. unsigned int mss = 0;
  2353. int count = 0;
  2354. int tso;
  2355. unsigned int f;
  2356. len -= skb->data_len;
  2357. tx_ring = adapter->tx_ring;
  2358. if (unlikely(skb->len <= 0)) {
  2359. dev_kfree_skb_any(skb);
  2360. return NETDEV_TX_OK;
  2361. }
  2362. #ifdef NETIF_F_TSO
  2363. mss = skb_shinfo(skb)->tso_size;
  2364. /* The controller does a simple calculation to
  2365. * make sure there is enough room in the FIFO before
  2366. * initiating the DMA for each buffer. The calc is:
  2367. * 4 = ceil(buffer len/mss). To make sure we don't
  2368. * overrun the FIFO, adjust the max buffer len if mss
  2369. * drops. */
  2370. if (mss) {
  2371. uint8_t hdr_len;
  2372. max_per_txd = min(mss << 2, max_per_txd);
  2373. max_txd_pwr = fls(max_per_txd) - 1;
  2374. /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
  2375. * points to just header, pull a few bytes of payload from
  2376. * frags into skb->data */
  2377. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  2378. if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
  2379. switch (adapter->hw.mac_type) {
  2380. unsigned int pull_size;
  2381. case e1000_82571:
  2382. case e1000_82572:
  2383. case e1000_82573:
  2384. pull_size = min((unsigned int)4, skb->data_len);
  2385. if (!__pskb_pull_tail(skb, pull_size)) {
  2386. printk(KERN_ERR
  2387. "__pskb_pull_tail failed.\n");
  2388. dev_kfree_skb_any(skb);
  2389. return NETDEV_TX_OK;
  2390. }
  2391. len = skb->len - skb->data_len;
  2392. break;
  2393. default:
  2394. /* do nothing */
  2395. break;
  2396. }
  2397. }
  2398. }
  2399. /* reserve a descriptor for the offload context */
  2400. if ((mss) || (skb->ip_summed == CHECKSUM_HW))
  2401. count++;
  2402. count++;
  2403. #else
  2404. if (skb->ip_summed == CHECKSUM_HW)
  2405. count++;
  2406. #endif
  2407. #ifdef NETIF_F_TSO
  2408. /* Controller Erratum workaround */
  2409. if (!skb->data_len && tx_ring->last_tx_tso &&
  2410. !skb_shinfo(skb)->tso_size)
  2411. count++;
  2412. #endif
  2413. count += TXD_USE_COUNT(len, max_txd_pwr);
  2414. if (adapter->pcix_82544)
  2415. count++;
  2416. /* work-around for errata 10 and it applies to all controllers
  2417. * in PCI-X mode, so add one more descriptor to the count
  2418. */
  2419. if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
  2420. (len > 2015)))
  2421. count++;
  2422. nr_frags = skb_shinfo(skb)->nr_frags;
  2423. for (f = 0; f < nr_frags; f++)
  2424. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
  2425. max_txd_pwr);
  2426. if (adapter->pcix_82544)
  2427. count += nr_frags;
  2428. if (adapter->hw.tx_pkt_filtering &&
  2429. (adapter->hw.mac_type == e1000_82573))
  2430. e1000_transfer_dhcp_info(adapter, skb);
  2431. local_irq_save(flags);
  2432. if (!spin_trylock(&tx_ring->tx_lock)) {
  2433. /* Collision - tell upper layer to requeue */
  2434. local_irq_restore(flags);
  2435. return NETDEV_TX_LOCKED;
  2436. }
  2437. /* need: count + 2 desc gap to keep tail from touching
  2438. * head, otherwise try next time */
  2439. if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
  2440. netif_stop_queue(netdev);
  2441. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2442. return NETDEV_TX_BUSY;
  2443. }
  2444. if (unlikely(adapter->hw.mac_type == e1000_82547)) {
  2445. if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
  2446. netif_stop_queue(netdev);
  2447. mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
  2448. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2449. return NETDEV_TX_BUSY;
  2450. }
  2451. }
  2452. if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
  2453. tx_flags |= E1000_TX_FLAGS_VLAN;
  2454. tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
  2455. }
  2456. first = tx_ring->next_to_use;
  2457. tso = e1000_tso(adapter, tx_ring, skb);
  2458. if (tso < 0) {
  2459. dev_kfree_skb_any(skb);
  2460. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2461. return NETDEV_TX_OK;
  2462. }
  2463. if (likely(tso)) {
  2464. tx_ring->last_tx_tso = 1;
  2465. tx_flags |= E1000_TX_FLAGS_TSO;
  2466. } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
  2467. tx_flags |= E1000_TX_FLAGS_CSUM;
  2468. /* Old method was to assume IPv4 packet by default if TSO was enabled.
  2469. * 82571 hardware supports TSO capabilities for IPv6 as well...
  2470. * no longer assume, we must. */
  2471. if (likely(skb->protocol == ntohs(ETH_P_IP)))
  2472. tx_flags |= E1000_TX_FLAGS_IPV4;
  2473. e1000_tx_queue(adapter, tx_ring, tx_flags,
  2474. e1000_tx_map(adapter, tx_ring, skb, first,
  2475. max_per_txd, nr_frags, mss));
  2476. netdev->trans_start = jiffies;
  2477. /* Make sure there is space in the ring for the next send. */
  2478. if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
  2479. netif_stop_queue(netdev);
  2480. spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
  2481. return NETDEV_TX_OK;
  2482. }
  2483. /**
  2484. * e1000_tx_timeout - Respond to a Tx Hang
  2485. * @netdev: network interface device structure
  2486. **/
  2487. static void
  2488. e1000_tx_timeout(struct net_device *netdev)
  2489. {
  2490. struct e1000_adapter *adapter = netdev_priv(netdev);
  2491. /* Do the reset outside of interrupt context */
  2492. adapter->tx_timeout_count++;
  2493. schedule_work(&adapter->reset_task);
  2494. }
  2495. static void
  2496. e1000_reset_task(struct net_device *netdev)
  2497. {
  2498. struct e1000_adapter *adapter = netdev_priv(netdev);
  2499. e1000_down(adapter);
  2500. e1000_up(adapter);
  2501. }
  2502. /**
  2503. * e1000_get_stats - Get System Network Statistics
  2504. * @netdev: network interface device structure
  2505. *
  2506. * Returns the address of the device statistics structure.
  2507. * The statistics are actually updated from the timer callback.
  2508. **/
  2509. static struct net_device_stats *
  2510. e1000_get_stats(struct net_device *netdev)
  2511. {
  2512. struct e1000_adapter *adapter = netdev_priv(netdev);
  2513. /* only return the current stats */
  2514. return &adapter->net_stats;
  2515. }
  2516. /**
  2517. * e1000_change_mtu - Change the Maximum Transfer Unit
  2518. * @netdev: network interface device structure
  2519. * @new_mtu: new value for maximum frame size
  2520. *
  2521. * Returns 0 on success, negative on failure
  2522. **/
  2523. static int
  2524. e1000_change_mtu(struct net_device *netdev, int new_mtu)
  2525. {
  2526. struct e1000_adapter *adapter = netdev_priv(netdev);
  2527. int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  2528. uint16_t eeprom_data = 0;
  2529. if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
  2530. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  2531. DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
  2532. return -EINVAL;
  2533. }
  2534. /* Adapter-specific max frame size limits. */
  2535. switch (adapter->hw.mac_type) {
  2536. case e1000_82542_rev2_0:
  2537. case e1000_82542_rev2_1:
  2538. if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
  2539. DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
  2540. return -EINVAL;
  2541. }
  2542. break;
  2543. case e1000_82573:
  2544. /* only enable jumbo frames if ASPM is disabled completely
  2545. * this means both bits must be zero in 0x1A bits 3:2 */
  2546. e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
  2547. &eeprom_data);
  2548. if (eeprom_data & EEPROM_WORD1A_ASPM_MASK) {
  2549. if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
  2550. DPRINTK(PROBE, ERR,
  2551. "Jumbo Frames not supported.\n");
  2552. return -EINVAL;
  2553. }
  2554. break;
  2555. }
  2556. /* fall through to get support */
  2557. case e1000_82571:
  2558. case e1000_82572:
  2559. case e1000_80003es2lan:
  2560. #define MAX_STD_JUMBO_FRAME_SIZE 9234
  2561. if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
  2562. DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
  2563. return -EINVAL;
  2564. }
  2565. break;
  2566. default:
  2567. /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
  2568. break;
  2569. }
  2570. if (adapter->hw.mac_type > e1000_82547_rev_2) {
  2571. adapter->rx_buffer_len = max_frame;
  2572. E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
  2573. } else {
  2574. if(unlikely((adapter->hw.mac_type < e1000_82543) &&
  2575. (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) {
  2576. DPRINTK(PROBE, ERR, "Jumbo Frames not supported "
  2577. "on 82542\n");
  2578. return -EINVAL;
  2579. } else {
  2580. if(max_frame <= E1000_RXBUFFER_2048)
  2581. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  2582. else if(max_frame <= E1000_RXBUFFER_4096)
  2583. adapter->rx_buffer_len = E1000_RXBUFFER_4096;
  2584. else if(max_frame <= E1000_RXBUFFER_8192)
  2585. adapter->rx_buffer_len = E1000_RXBUFFER_8192;
  2586. else if(max_frame <= E1000_RXBUFFER_16384)
  2587. adapter->rx_buffer_len = E1000_RXBUFFER_16384;
  2588. }
  2589. }
  2590. netdev->mtu = new_mtu;
  2591. if (netif_running(netdev)) {
  2592. e1000_down(adapter);
  2593. e1000_up(adapter);
  2594. }
  2595. adapter->hw.max_frame_size = max_frame;
  2596. return 0;
  2597. }
  2598. /**
  2599. * e1000_update_stats - Update the board statistics counters
  2600. * @adapter: board private structure
  2601. **/
  2602. void
  2603. e1000_update_stats(struct e1000_adapter *adapter)
  2604. {
  2605. struct e1000_hw *hw = &adapter->hw;
  2606. unsigned long flags;
  2607. uint16_t phy_tmp;
  2608. #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
  2609. spin_lock_irqsave(&adapter->stats_lock, flags);
  2610. /* these counters are modified from e1000_adjust_tbi_stats,
  2611. * called from the interrupt context, so they must only
  2612. * be written while holding adapter->stats_lock
  2613. */
  2614. adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
  2615. adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
  2616. adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
  2617. adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
  2618. adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
  2619. adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
  2620. adapter->stats.roc += E1000_READ_REG(hw, ROC);
  2621. adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
  2622. adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
  2623. adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
  2624. adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
  2625. adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
  2626. adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
  2627. adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
  2628. adapter->stats.mpc += E1000_READ_REG(hw, MPC);
  2629. adapter->stats.scc += E1000_READ_REG(hw, SCC);
  2630. adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
  2631. adapter->stats.mcc += E1000_READ_REG(hw, MCC);
  2632. adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
  2633. adapter->stats.dc += E1000_READ_REG(hw, DC);
  2634. adapter->stats.sec += E1000_READ_REG(hw, SEC);
  2635. adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
  2636. adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
  2637. adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
  2638. adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
  2639. adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
  2640. adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
  2641. adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
  2642. adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
  2643. adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
  2644. adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
  2645. adapter->stats.ruc += E1000_READ_REG(hw, RUC);
  2646. adapter->stats.rfc += E1000_READ_REG(hw, RFC);
  2647. adapter->stats.rjc += E1000_READ_REG(hw, RJC);
  2648. adapter->stats.torl += E1000_READ_REG(hw, TORL);
  2649. adapter->stats.torh += E1000_READ_REG(hw, TORH);
  2650. adapter->stats.totl += E1000_READ_REG(hw, TOTL);
  2651. adapter->stats.toth += E1000_READ_REG(hw, TOTH);
  2652. adapter->stats.tpr += E1000_READ_REG(hw, TPR);
  2653. adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
  2654. adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
  2655. adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
  2656. adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
  2657. adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
  2658. adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
  2659. adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
  2660. adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
  2661. /* used for adaptive IFS */
  2662. hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
  2663. adapter->stats.tpt += hw->tx_packet_delta;
  2664. hw->collision_delta = E1000_READ_REG(hw, COLC);
  2665. adapter->stats.colc += hw->collision_delta;
  2666. if (hw->mac_type >= e1000_82543) {
  2667. adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
  2668. adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
  2669. adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
  2670. adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
  2671. adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
  2672. adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
  2673. }
  2674. if (hw->mac_type > e1000_82547_rev_2) {
  2675. adapter->stats.iac += E1000_READ_REG(hw, IAC);
  2676. adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
  2677. adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
  2678. adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
  2679. adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
  2680. adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
  2681. adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
  2682. adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
  2683. adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
  2684. }
  2685. /* Fill out the OS statistics structure */
  2686. adapter->net_stats.rx_packets = adapter->stats.gprc;
  2687. adapter->net_stats.tx_packets = adapter->stats.gptc;
  2688. adapter->net_stats.rx_bytes = adapter->stats.gorcl;
  2689. adapter->net_stats.tx_bytes = adapter->stats.gotcl;
  2690. adapter->net_stats.multicast = adapter->stats.mprc;
  2691. adapter->net_stats.collisions = adapter->stats.colc;
  2692. /* Rx Errors */
  2693. /* RLEC on some newer hardware can be incorrect so build
  2694. * our own version based on RUC and ROC */
  2695. adapter->net_stats.rx_errors = adapter->stats.rxerrc +
  2696. adapter->stats.crcerrs + adapter->stats.algnerrc +
  2697. adapter->stats.ruc + adapter->stats.roc +
  2698. adapter->stats.cexterr;
  2699. adapter->net_stats.rx_dropped = 0;
  2700. adapter->net_stats.rx_length_errors = adapter->stats.ruc +
  2701. adapter->stats.roc;
  2702. adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
  2703. adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
  2704. adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
  2705. /* Tx Errors */
  2706. adapter->net_stats.tx_errors = adapter->stats.ecol +
  2707. adapter->stats.latecol;
  2708. adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
  2709. adapter->net_stats.tx_window_errors = adapter->stats.latecol;
  2710. adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
  2711. /* Tx Dropped needs to be maintained elsewhere */
  2712. /* Phy Stats */
  2713. if (hw->media_type == e1000_media_type_copper) {
  2714. if ((adapter->link_speed == SPEED_1000) &&
  2715. (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
  2716. phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
  2717. adapter->phy_stats.idle_errors += phy_tmp;
  2718. }
  2719. if ((hw->mac_type <= e1000_82546) &&
  2720. (hw->phy_type == e1000_phy_m88) &&
  2721. !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
  2722. adapter->phy_stats.receive_errors += phy_tmp;
  2723. }
  2724. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  2725. }
  2726. /**
  2727. * e1000_intr - Interrupt Handler
  2728. * @irq: interrupt number
  2729. * @data: pointer to a network interface device structure
  2730. * @pt_regs: CPU registers structure
  2731. **/
  2732. static irqreturn_t
  2733. e1000_intr(int irq, void *data, struct pt_regs *regs)
  2734. {
  2735. struct net_device *netdev = data;
  2736. struct e1000_adapter *adapter = netdev_priv(netdev);
  2737. struct e1000_hw *hw = &adapter->hw;
  2738. uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
  2739. #ifndef CONFIG_E1000_NAPI
  2740. int i;
  2741. #else
  2742. /* Interrupt Auto-Mask...upon reading ICR,
  2743. * interrupts are masked. No need for the
  2744. * IMC write, but it does mean we should
  2745. * account for it ASAP. */
  2746. if (likely(hw->mac_type >= e1000_82571))
  2747. atomic_inc(&adapter->irq_sem);
  2748. #endif
  2749. if (unlikely(!icr)) {
  2750. #ifdef CONFIG_E1000_NAPI
  2751. if (hw->mac_type >= e1000_82571)
  2752. e1000_irq_enable(adapter);
  2753. #endif
  2754. return IRQ_NONE; /* Not our interrupt */
  2755. }
  2756. if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
  2757. hw->get_link_status = 1;
  2758. /* 80003ES2LAN workaround--
  2759. * For packet buffer work-around on link down event;
  2760. * disable receives here in the ISR and
  2761. * reset adapter in watchdog
  2762. */
  2763. if (netif_carrier_ok(netdev) &&
  2764. (adapter->hw.mac_type == e1000_80003es2lan)) {
  2765. /* disable receives */
  2766. rctl = E1000_READ_REG(hw, RCTL);
  2767. E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
  2768. }
  2769. mod_timer(&adapter->watchdog_timer, jiffies);
  2770. }
  2771. #ifdef CONFIG_E1000_NAPI
  2772. if (unlikely(hw->mac_type < e1000_82571)) {
  2773. atomic_inc(&adapter->irq_sem);
  2774. E1000_WRITE_REG(hw, IMC, ~0);
  2775. E1000_WRITE_FLUSH(hw);
  2776. }
  2777. if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
  2778. __netif_rx_schedule(&adapter->polling_netdev[0]);
  2779. else
  2780. e1000_irq_enable(adapter);
  2781. #else
  2782. /* Writing IMC and IMS is needed for 82547.
  2783. * Due to Hub Link bus being occupied, an interrupt
  2784. * de-assertion message is not able to be sent.
  2785. * When an interrupt assertion message is generated later,
  2786. * two messages are re-ordered and sent out.
  2787. * That causes APIC to think 82547 is in de-assertion
  2788. * state, while 82547 is in assertion state, resulting
  2789. * in dead lock. Writing IMC forces 82547 into
  2790. * de-assertion state.
  2791. */
  2792. if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
  2793. atomic_inc(&adapter->irq_sem);
  2794. E1000_WRITE_REG(hw, IMC, ~0);
  2795. }
  2796. for (i = 0; i < E1000_MAX_INTR; i++)
  2797. if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
  2798. !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
  2799. break;
  2800. if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
  2801. e1000_irq_enable(adapter);
  2802. #endif
  2803. return IRQ_HANDLED;
  2804. }
  2805. #ifdef CONFIG_E1000_NAPI
  2806. /**
  2807. * e1000_clean - NAPI Rx polling callback
  2808. * @adapter: board private structure
  2809. **/
  2810. static int
  2811. e1000_clean(struct net_device *poll_dev, int *budget)
  2812. {
  2813. struct e1000_adapter *adapter;
  2814. int work_to_do = min(*budget, poll_dev->quota);
  2815. int tx_cleaned = 0, i = 0, work_done = 0;
  2816. /* Must NOT use netdev_priv macro here. */
  2817. adapter = poll_dev->priv;
  2818. /* Keep link state information with original netdev */
  2819. if (!netif_carrier_ok(adapter->netdev))
  2820. goto quit_polling;
  2821. while (poll_dev != &adapter->polling_netdev[i]) {
  2822. i++;
  2823. if (unlikely(i == adapter->num_rx_queues))
  2824. BUG();
  2825. }
  2826. if (likely(adapter->num_tx_queues == 1)) {
  2827. /* e1000_clean is called per-cpu. This lock protects
  2828. * tx_ring[0] from being cleaned by multiple cpus
  2829. * simultaneously. A failure obtaining the lock means
  2830. * tx_ring[0] is currently being cleaned anyway. */
  2831. if (spin_trylock(&adapter->tx_queue_lock)) {
  2832. tx_cleaned = e1000_clean_tx_irq(adapter,
  2833. &adapter->tx_ring[0]);
  2834. spin_unlock(&adapter->tx_queue_lock);
  2835. }
  2836. } else
  2837. tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
  2838. adapter->clean_rx(adapter, &adapter->rx_ring[i],
  2839. &work_done, work_to_do);
  2840. *budget -= work_done;
  2841. poll_dev->quota -= work_done;
  2842. /* If no Tx and not enough Rx work done, exit the polling mode */
  2843. if ((!tx_cleaned && (work_done == 0)) ||
  2844. !netif_running(adapter->netdev)) {
  2845. quit_polling:
  2846. netif_rx_complete(poll_dev);
  2847. e1000_irq_enable(adapter);
  2848. return 0;
  2849. }
  2850. return 1;
  2851. }
  2852. #endif
  2853. /**
  2854. * e1000_clean_tx_irq - Reclaim resources after transmit completes
  2855. * @adapter: board private structure
  2856. **/
  2857. static boolean_t
  2858. e1000_clean_tx_irq(struct e1000_adapter *adapter,
  2859. struct e1000_tx_ring *tx_ring)
  2860. {
  2861. struct net_device *netdev = adapter->netdev;
  2862. struct e1000_tx_desc *tx_desc, *eop_desc;
  2863. struct e1000_buffer *buffer_info;
  2864. unsigned int i, eop;
  2865. #ifdef CONFIG_E1000_NAPI
  2866. unsigned int count = 0;
  2867. #endif
  2868. boolean_t cleaned = FALSE;
  2869. i = tx_ring->next_to_clean;
  2870. eop = tx_ring->buffer_info[i].next_to_watch;
  2871. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2872. while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
  2873. for (cleaned = FALSE; !cleaned; ) {
  2874. tx_desc = E1000_TX_DESC(*tx_ring, i);
  2875. buffer_info = &tx_ring->buffer_info[i];
  2876. cleaned = (i == eop);
  2877. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  2878. memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
  2879. if (unlikely(++i == tx_ring->count)) i = 0;
  2880. }
  2881. eop = tx_ring->buffer_info[i].next_to_watch;
  2882. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  2883. #ifdef CONFIG_E1000_NAPI
  2884. #define E1000_TX_WEIGHT 64
  2885. /* weight of a sort for tx, to avoid endless transmit cleanup */
  2886. if (count++ == E1000_TX_WEIGHT) break;
  2887. #endif
  2888. }
  2889. tx_ring->next_to_clean = i;
  2890. spin_lock(&tx_ring->tx_lock);
  2891. if (unlikely(cleaned && netif_queue_stopped(netdev) &&
  2892. netif_carrier_ok(netdev)))
  2893. netif_wake_queue(netdev);
  2894. spin_unlock(&tx_ring->tx_lock);
  2895. if (adapter->detect_tx_hung) {
  2896. /* Detect a transmit hang in hardware, this serializes the
  2897. * check with the clearing of time_stamp and movement of i */
  2898. adapter->detect_tx_hung = FALSE;
  2899. if (tx_ring->buffer_info[eop].dma &&
  2900. time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
  2901. (adapter->tx_timeout_factor * HZ))
  2902. && !(E1000_READ_REG(&adapter->hw, STATUS) &
  2903. E1000_STATUS_TXOFF)) {
  2904. /* detected Tx unit hang */
  2905. DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
  2906. " Tx Queue <%lu>\n"
  2907. " TDH <%x>\n"
  2908. " TDT <%x>\n"
  2909. " next_to_use <%x>\n"
  2910. " next_to_clean <%x>\n"
  2911. "buffer_info[next_to_clean]\n"
  2912. " time_stamp <%lx>\n"
  2913. " next_to_watch <%x>\n"
  2914. " jiffies <%lx>\n"
  2915. " next_to_watch.status <%x>\n",
  2916. (unsigned long)((tx_ring - adapter->tx_ring) /
  2917. sizeof(struct e1000_tx_ring)),
  2918. readl(adapter->hw.hw_addr + tx_ring->tdh),
  2919. readl(adapter->hw.hw_addr + tx_ring->tdt),
  2920. tx_ring->next_to_use,
  2921. tx_ring->next_to_clean,
  2922. tx_ring->buffer_info[eop].time_stamp,
  2923. eop,
  2924. jiffies,
  2925. eop_desc->upper.fields.status);
  2926. netif_stop_queue(netdev);
  2927. }
  2928. }
  2929. return cleaned;
  2930. }
  2931. /**
  2932. * e1000_rx_checksum - Receive Checksum Offload for 82543
  2933. * @adapter: board private structure
  2934. * @status_err: receive descriptor status and error fields
  2935. * @csum: receive descriptor csum field
  2936. * @sk_buff: socket buffer with received data
  2937. **/
  2938. static inline void
  2939. e1000_rx_checksum(struct e1000_adapter *adapter,
  2940. uint32_t status_err, uint32_t csum,
  2941. struct sk_buff *skb)
  2942. {
  2943. uint16_t status = (uint16_t)status_err;
  2944. uint8_t errors = (uint8_t)(status_err >> 24);
  2945. skb->ip_summed = CHECKSUM_NONE;
  2946. /* 82543 or newer only */
  2947. if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
  2948. /* Ignore Checksum bit is set */
  2949. if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
  2950. /* TCP/UDP checksum error bit is set */
  2951. if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
  2952. /* let the stack verify checksum errors */
  2953. adapter->hw_csum_err++;
  2954. return;
  2955. }
  2956. /* TCP/UDP Checksum has not been calculated */
  2957. if (adapter->hw.mac_type <= e1000_82547_rev_2) {
  2958. if (!(status & E1000_RXD_STAT_TCPCS))
  2959. return;
  2960. } else {
  2961. if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
  2962. return;
  2963. }
  2964. /* It must be a TCP or UDP packet with a valid checksum */
  2965. if (likely(status & E1000_RXD_STAT_TCPCS)) {
  2966. /* TCP checksum is good */
  2967. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2968. } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
  2969. /* IP fragment with UDP payload */
  2970. /* Hardware complements the payload checksum, so we undo it
  2971. * and then put the value in host order for further stack use.
  2972. */
  2973. csum = ntohl(csum ^ 0xFFFF);
  2974. skb->csum = csum;
  2975. skb->ip_summed = CHECKSUM_HW;
  2976. }
  2977. adapter->hw_csum_good++;
  2978. }
  2979. /**
  2980. * e1000_clean_rx_irq - Send received data up the network stack; legacy
  2981. * @adapter: board private structure
  2982. **/
  2983. static boolean_t
  2984. #ifdef CONFIG_E1000_NAPI
  2985. e1000_clean_rx_irq(struct e1000_adapter *adapter,
  2986. struct e1000_rx_ring *rx_ring,
  2987. int *work_done, int work_to_do)
  2988. #else
  2989. e1000_clean_rx_irq(struct e1000_adapter *adapter,
  2990. struct e1000_rx_ring *rx_ring)
  2991. #endif
  2992. {
  2993. struct net_device *netdev = adapter->netdev;
  2994. struct pci_dev *pdev = adapter->pdev;
  2995. struct e1000_rx_desc *rx_desc, *next_rxd;
  2996. struct e1000_buffer *buffer_info, *next_buffer;
  2997. unsigned long flags;
  2998. uint32_t length;
  2999. uint8_t last_byte;
  3000. unsigned int i;
  3001. int cleaned_count = 0;
  3002. boolean_t cleaned = FALSE;
  3003. i = rx_ring->next_to_clean;
  3004. rx_desc = E1000_RX_DESC(*rx_ring, i);
  3005. buffer_info = &rx_ring->buffer_info[i];
  3006. while (rx_desc->status & E1000_RXD_STAT_DD) {
  3007. struct sk_buff *skb, *next_skb;
  3008. u8 status;
  3009. #ifdef CONFIG_E1000_NAPI
  3010. if (*work_done >= work_to_do)
  3011. break;
  3012. (*work_done)++;
  3013. #endif
  3014. status = rx_desc->status;
  3015. skb = buffer_info->skb;
  3016. buffer_info->skb = NULL;
  3017. prefetch(skb->data - NET_IP_ALIGN);
  3018. if (++i == rx_ring->count) i = 0;
  3019. next_rxd = E1000_RX_DESC(*rx_ring, i);
  3020. prefetch(next_rxd);
  3021. next_buffer = &rx_ring->buffer_info[i];
  3022. next_skb = next_buffer->skb;
  3023. prefetch(next_skb->data - NET_IP_ALIGN);
  3024. cleaned = TRUE;
  3025. cleaned_count++;
  3026. pci_unmap_single(pdev,
  3027. buffer_info->dma,
  3028. buffer_info->length,
  3029. PCI_DMA_FROMDEVICE);
  3030. length = le16_to_cpu(rx_desc->length);
  3031. if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
  3032. /* All receives must fit into a single buffer */
  3033. E1000_DBG("%s: Receive packet consumed multiple"
  3034. " buffers\n", netdev->name);
  3035. dev_kfree_skb_irq(skb);
  3036. goto next_desc;
  3037. }
  3038. if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
  3039. last_byte = *(skb->data + length - 1);
  3040. if (TBI_ACCEPT(&adapter->hw, status,
  3041. rx_desc->errors, length, last_byte)) {
  3042. spin_lock_irqsave(&adapter->stats_lock, flags);
  3043. e1000_tbi_adjust_stats(&adapter->hw,
  3044. &adapter->stats,
  3045. length, skb->data);
  3046. spin_unlock_irqrestore(&adapter->stats_lock,
  3047. flags);
  3048. length--;
  3049. } else {
  3050. dev_kfree_skb_irq(skb);
  3051. goto next_desc;
  3052. }
  3053. }
  3054. /* code added for copybreak, this should improve
  3055. * performance for small packets with large amounts
  3056. * of reassembly being done in the stack */
  3057. #define E1000_CB_LENGTH 256
  3058. if (length < E1000_CB_LENGTH) {
  3059. struct sk_buff *new_skb =
  3060. dev_alloc_skb(length + NET_IP_ALIGN);
  3061. if (new_skb) {
  3062. skb_reserve(new_skb, NET_IP_ALIGN);
  3063. new_skb->dev = netdev;
  3064. memcpy(new_skb->data - NET_IP_ALIGN,
  3065. skb->data - NET_IP_ALIGN,
  3066. length + NET_IP_ALIGN);
  3067. /* save the skb in buffer_info as good */
  3068. buffer_info->skb = skb;
  3069. skb = new_skb;
  3070. skb_put(skb, length);
  3071. }
  3072. } else
  3073. skb_put(skb, length);
  3074. /* end copybreak code */
  3075. /* Receive Checksum Offload */
  3076. e1000_rx_checksum(adapter,
  3077. (uint32_t)(status) |
  3078. ((uint32_t)(rx_desc->errors) << 24),
  3079. rx_desc->csum, skb);
  3080. skb->protocol = eth_type_trans(skb, netdev);
  3081. #ifdef CONFIG_E1000_NAPI
  3082. if (unlikely(adapter->vlgrp &&
  3083. (status & E1000_RXD_STAT_VP))) {
  3084. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  3085. le16_to_cpu(rx_desc->special) &
  3086. E1000_RXD_SPC_VLAN_MASK);
  3087. } else {
  3088. netif_receive_skb(skb);
  3089. }
  3090. #else /* CONFIG_E1000_NAPI */
  3091. if (unlikely(adapter->vlgrp &&
  3092. (status & E1000_RXD_STAT_VP))) {
  3093. vlan_hwaccel_rx(skb, adapter->vlgrp,
  3094. le16_to_cpu(rx_desc->special) &
  3095. E1000_RXD_SPC_VLAN_MASK);
  3096. } else {
  3097. netif_rx(skb);
  3098. }
  3099. #endif /* CONFIG_E1000_NAPI */
  3100. netdev->last_rx = jiffies;
  3101. next_desc:
  3102. rx_desc->status = 0;
  3103. /* return some buffers to hardware, one at a time is too slow */
  3104. if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
  3105. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3106. cleaned_count = 0;
  3107. }
  3108. /* use prefetched values */
  3109. rx_desc = next_rxd;
  3110. buffer_info = next_buffer;
  3111. }
  3112. rx_ring->next_to_clean = i;
  3113. cleaned_count = E1000_DESC_UNUSED(rx_ring);
  3114. if (cleaned_count)
  3115. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3116. return cleaned;
  3117. }
  3118. /**
  3119. * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
  3120. * @adapter: board private structure
  3121. **/
  3122. static boolean_t
  3123. #ifdef CONFIG_E1000_NAPI
  3124. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  3125. struct e1000_rx_ring *rx_ring,
  3126. int *work_done, int work_to_do)
  3127. #else
  3128. e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
  3129. struct e1000_rx_ring *rx_ring)
  3130. #endif
  3131. {
  3132. union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
  3133. struct net_device *netdev = adapter->netdev;
  3134. struct pci_dev *pdev = adapter->pdev;
  3135. struct e1000_buffer *buffer_info, *next_buffer;
  3136. struct e1000_ps_page *ps_page;
  3137. struct e1000_ps_page_dma *ps_page_dma;
  3138. struct sk_buff *skb, *next_skb;
  3139. unsigned int i, j;
  3140. uint32_t length, staterr;
  3141. int cleaned_count = 0;
  3142. boolean_t cleaned = FALSE;
  3143. i = rx_ring->next_to_clean;
  3144. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  3145. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  3146. while (staterr & E1000_RXD_STAT_DD) {
  3147. buffer_info = &rx_ring->buffer_info[i];
  3148. ps_page = &rx_ring->ps_page[i];
  3149. ps_page_dma = &rx_ring->ps_page_dma[i];
  3150. #ifdef CONFIG_E1000_NAPI
  3151. if (unlikely(*work_done >= work_to_do))
  3152. break;
  3153. (*work_done)++;
  3154. #endif
  3155. skb = buffer_info->skb;
  3156. /* in the packet split case this is header only */
  3157. prefetch(skb->data - NET_IP_ALIGN);
  3158. if (++i == rx_ring->count) i = 0;
  3159. next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
  3160. prefetch(next_rxd);
  3161. next_buffer = &rx_ring->buffer_info[i];
  3162. next_skb = next_buffer->skb;
  3163. prefetch(next_skb->data - NET_IP_ALIGN);
  3164. cleaned = TRUE;
  3165. cleaned_count++;
  3166. pci_unmap_single(pdev, buffer_info->dma,
  3167. buffer_info->length,
  3168. PCI_DMA_FROMDEVICE);
  3169. if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
  3170. E1000_DBG("%s: Packet Split buffers didn't pick up"
  3171. " the full packet\n", netdev->name);
  3172. dev_kfree_skb_irq(skb);
  3173. goto next_desc;
  3174. }
  3175. if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
  3176. dev_kfree_skb_irq(skb);
  3177. goto next_desc;
  3178. }
  3179. length = le16_to_cpu(rx_desc->wb.middle.length0);
  3180. if (unlikely(!length)) {
  3181. E1000_DBG("%s: Last part of the packet spanning"
  3182. " multiple descriptors\n", netdev->name);
  3183. dev_kfree_skb_irq(skb);
  3184. goto next_desc;
  3185. }
  3186. /* Good Receive */
  3187. skb_put(skb, length);
  3188. {
  3189. /* this looks ugly, but it seems compiler issues make it
  3190. more efficient than reusing j */
  3191. int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
  3192. /* page alloc/put takes too long and effects small packet
  3193. * throughput, so unsplit small packets and save the alloc/put*/
  3194. if (l1 && ((length + l1) < E1000_CB_LENGTH)) {
  3195. u8 *vaddr;
  3196. /* there is no documentation about how to call
  3197. * kmap_atomic, so we can't hold the mapping
  3198. * very long */
  3199. pci_dma_sync_single_for_cpu(pdev,
  3200. ps_page_dma->ps_page_dma[0],
  3201. PAGE_SIZE,
  3202. PCI_DMA_FROMDEVICE);
  3203. vaddr = kmap_atomic(ps_page->ps_page[0],
  3204. KM_SKB_DATA_SOFTIRQ);
  3205. memcpy(skb->tail, vaddr, l1);
  3206. kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
  3207. pci_dma_sync_single_for_device(pdev,
  3208. ps_page_dma->ps_page_dma[0],
  3209. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  3210. skb_put(skb, l1);
  3211. length += l1;
  3212. goto copydone;
  3213. } /* if */
  3214. }
  3215. for (j = 0; j < adapter->rx_ps_pages; j++) {
  3216. if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
  3217. break;
  3218. pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
  3219. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  3220. ps_page_dma->ps_page_dma[j] = 0;
  3221. skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
  3222. length);
  3223. ps_page->ps_page[j] = NULL;
  3224. skb->len += length;
  3225. skb->data_len += length;
  3226. }
  3227. copydone:
  3228. e1000_rx_checksum(adapter, staterr,
  3229. rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
  3230. skb->protocol = eth_type_trans(skb, netdev);
  3231. if (likely(rx_desc->wb.upper.header_status &
  3232. E1000_RXDPS_HDRSTAT_HDRSP))
  3233. adapter->rx_hdr_split++;
  3234. #ifdef CONFIG_E1000_NAPI
  3235. if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  3236. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  3237. le16_to_cpu(rx_desc->wb.middle.vlan) &
  3238. E1000_RXD_SPC_VLAN_MASK);
  3239. } else {
  3240. netif_receive_skb(skb);
  3241. }
  3242. #else /* CONFIG_E1000_NAPI */
  3243. if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
  3244. vlan_hwaccel_rx(skb, adapter->vlgrp,
  3245. le16_to_cpu(rx_desc->wb.middle.vlan) &
  3246. E1000_RXD_SPC_VLAN_MASK);
  3247. } else {
  3248. netif_rx(skb);
  3249. }
  3250. #endif /* CONFIG_E1000_NAPI */
  3251. netdev->last_rx = jiffies;
  3252. next_desc:
  3253. rx_desc->wb.middle.status_error &= ~0xFF;
  3254. buffer_info->skb = NULL;
  3255. /* return some buffers to hardware, one at a time is too slow */
  3256. if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
  3257. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3258. cleaned_count = 0;
  3259. }
  3260. /* use prefetched values */
  3261. rx_desc = next_rxd;
  3262. buffer_info = next_buffer;
  3263. staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
  3264. }
  3265. rx_ring->next_to_clean = i;
  3266. cleaned_count = E1000_DESC_UNUSED(rx_ring);
  3267. if (cleaned_count)
  3268. adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
  3269. return cleaned;
  3270. }
  3271. /**
  3272. * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
  3273. * @adapter: address of board private structure
  3274. **/
  3275. static void
  3276. e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
  3277. struct e1000_rx_ring *rx_ring,
  3278. int cleaned_count)
  3279. {
  3280. struct net_device *netdev = adapter->netdev;
  3281. struct pci_dev *pdev = adapter->pdev;
  3282. struct e1000_rx_desc *rx_desc;
  3283. struct e1000_buffer *buffer_info;
  3284. struct sk_buff *skb;
  3285. unsigned int i;
  3286. unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
  3287. i = rx_ring->next_to_use;
  3288. buffer_info = &rx_ring->buffer_info[i];
  3289. while (cleaned_count--) {
  3290. if (!(skb = buffer_info->skb))
  3291. skb = dev_alloc_skb(bufsz);
  3292. else {
  3293. skb_trim(skb, 0);
  3294. goto map_skb;
  3295. }
  3296. if (unlikely(!skb)) {
  3297. /* Better luck next round */
  3298. adapter->alloc_rx_buff_failed++;
  3299. break;
  3300. }
  3301. /* Fix for errata 23, can't cross 64kB boundary */
  3302. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  3303. struct sk_buff *oldskb = skb;
  3304. DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
  3305. "at %p\n", bufsz, skb->data);
  3306. /* Try again, without freeing the previous */
  3307. skb = dev_alloc_skb(bufsz);
  3308. /* Failed allocation, critical failure */
  3309. if (!skb) {
  3310. dev_kfree_skb(oldskb);
  3311. break;
  3312. }
  3313. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  3314. /* give up */
  3315. dev_kfree_skb(skb);
  3316. dev_kfree_skb(oldskb);
  3317. break; /* while !buffer_info->skb */
  3318. } else {
  3319. /* Use new allocation */
  3320. dev_kfree_skb(oldskb);
  3321. }
  3322. }
  3323. /* Make buffer alignment 2 beyond a 16 byte boundary
  3324. * this will result in a 16 byte aligned IP header after
  3325. * the 14 byte MAC header is removed
  3326. */
  3327. skb_reserve(skb, NET_IP_ALIGN);
  3328. skb->dev = netdev;
  3329. buffer_info->skb = skb;
  3330. buffer_info->length = adapter->rx_buffer_len;
  3331. map_skb:
  3332. buffer_info->dma = pci_map_single(pdev,
  3333. skb->data,
  3334. adapter->rx_buffer_len,
  3335. PCI_DMA_FROMDEVICE);
  3336. /* Fix for errata 23, can't cross 64kB boundary */
  3337. if (!e1000_check_64k_bound(adapter,
  3338. (void *)(unsigned long)buffer_info->dma,
  3339. adapter->rx_buffer_len)) {
  3340. DPRINTK(RX_ERR, ERR,
  3341. "dma align check failed: %u bytes at %p\n",
  3342. adapter->rx_buffer_len,
  3343. (void *)(unsigned long)buffer_info->dma);
  3344. dev_kfree_skb(skb);
  3345. buffer_info->skb = NULL;
  3346. pci_unmap_single(pdev, buffer_info->dma,
  3347. adapter->rx_buffer_len,
  3348. PCI_DMA_FROMDEVICE);
  3349. break; /* while !buffer_info->skb */
  3350. }
  3351. rx_desc = E1000_RX_DESC(*rx_ring, i);
  3352. rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  3353. if (unlikely(++i == rx_ring->count))
  3354. i = 0;
  3355. buffer_info = &rx_ring->buffer_info[i];
  3356. }
  3357. if (likely(rx_ring->next_to_use != i)) {
  3358. rx_ring->next_to_use = i;
  3359. if (unlikely(i-- == 0))
  3360. i = (rx_ring->count - 1);
  3361. /* Force memory writes to complete before letting h/w
  3362. * know there are new descriptors to fetch. (Only
  3363. * applicable for weak-ordered memory model archs,
  3364. * such as IA-64). */
  3365. wmb();
  3366. writel(i, adapter->hw.hw_addr + rx_ring->rdt);
  3367. }
  3368. }
  3369. /**
  3370. * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
  3371. * @adapter: address of board private structure
  3372. **/
  3373. static void
  3374. e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
  3375. struct e1000_rx_ring *rx_ring,
  3376. int cleaned_count)
  3377. {
  3378. struct net_device *netdev = adapter->netdev;
  3379. struct pci_dev *pdev = adapter->pdev;
  3380. union e1000_rx_desc_packet_split *rx_desc;
  3381. struct e1000_buffer *buffer_info;
  3382. struct e1000_ps_page *ps_page;
  3383. struct e1000_ps_page_dma *ps_page_dma;
  3384. struct sk_buff *skb;
  3385. unsigned int i, j;
  3386. i = rx_ring->next_to_use;
  3387. buffer_info = &rx_ring->buffer_info[i];
  3388. ps_page = &rx_ring->ps_page[i];
  3389. ps_page_dma = &rx_ring->ps_page_dma[i];
  3390. while (cleaned_count--) {
  3391. rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
  3392. for (j = 0; j < PS_PAGE_BUFFERS; j++) {
  3393. if (j < adapter->rx_ps_pages) {
  3394. if (likely(!ps_page->ps_page[j])) {
  3395. ps_page->ps_page[j] =
  3396. alloc_page(GFP_ATOMIC);
  3397. if (unlikely(!ps_page->ps_page[j])) {
  3398. adapter->alloc_rx_buff_failed++;
  3399. goto no_buffers;
  3400. }
  3401. ps_page_dma->ps_page_dma[j] =
  3402. pci_map_page(pdev,
  3403. ps_page->ps_page[j],
  3404. 0, PAGE_SIZE,
  3405. PCI_DMA_FROMDEVICE);
  3406. }
  3407. /* Refresh the desc even if buffer_addrs didn't
  3408. * change because each write-back erases
  3409. * this info.
  3410. */
  3411. rx_desc->read.buffer_addr[j+1] =
  3412. cpu_to_le64(ps_page_dma->ps_page_dma[j]);
  3413. } else
  3414. rx_desc->read.buffer_addr[j+1] = ~0;
  3415. }
  3416. skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
  3417. if (unlikely(!skb)) {
  3418. adapter->alloc_rx_buff_failed++;
  3419. break;
  3420. }
  3421. /* Make buffer alignment 2 beyond a 16 byte boundary
  3422. * this will result in a 16 byte aligned IP header after
  3423. * the 14 byte MAC header is removed
  3424. */
  3425. skb_reserve(skb, NET_IP_ALIGN);
  3426. skb->dev = netdev;
  3427. buffer_info->skb = skb;
  3428. buffer_info->length = adapter->rx_ps_bsize0;
  3429. buffer_info->dma = pci_map_single(pdev, skb->data,
  3430. adapter->rx_ps_bsize0,
  3431. PCI_DMA_FROMDEVICE);
  3432. rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
  3433. if (unlikely(++i == rx_ring->count)) i = 0;
  3434. buffer_info = &rx_ring->buffer_info[i];
  3435. ps_page = &rx_ring->ps_page[i];
  3436. ps_page_dma = &rx_ring->ps_page_dma[i];
  3437. }
  3438. no_buffers:
  3439. if (likely(rx_ring->next_to_use != i)) {
  3440. rx_ring->next_to_use = i;
  3441. if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
  3442. /* Force memory writes to complete before letting h/w
  3443. * know there are new descriptors to fetch. (Only
  3444. * applicable for weak-ordered memory model archs,
  3445. * such as IA-64). */
  3446. wmb();
  3447. /* Hardware increments by 16 bytes, but packet split
  3448. * descriptors are 32 bytes...so we increment tail
  3449. * twice as much.
  3450. */
  3451. writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
  3452. }
  3453. }
  3454. /**
  3455. * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
  3456. * @adapter:
  3457. **/
  3458. static void
  3459. e1000_smartspeed(struct e1000_adapter *adapter)
  3460. {
  3461. uint16_t phy_status;
  3462. uint16_t phy_ctrl;
  3463. if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
  3464. !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
  3465. return;
  3466. if (adapter->smartspeed == 0) {
  3467. /* If Master/Slave config fault is asserted twice,
  3468. * we assume back-to-back */
  3469. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  3470. if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  3471. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  3472. if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  3473. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  3474. if (phy_ctrl & CR_1000T_MS_ENABLE) {
  3475. phy_ctrl &= ~CR_1000T_MS_ENABLE;
  3476. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
  3477. phy_ctrl);
  3478. adapter->smartspeed++;
  3479. if (!e1000_phy_setup_autoneg(&adapter->hw) &&
  3480. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
  3481. &phy_ctrl)) {
  3482. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  3483. MII_CR_RESTART_AUTO_NEG);
  3484. e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
  3485. phy_ctrl);
  3486. }
  3487. }
  3488. return;
  3489. } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
  3490. /* If still no link, perhaps using 2/3 pair cable */
  3491. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  3492. phy_ctrl |= CR_1000T_MS_ENABLE;
  3493. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
  3494. if (!e1000_phy_setup_autoneg(&adapter->hw) &&
  3495. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
  3496. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  3497. MII_CR_RESTART_AUTO_NEG);
  3498. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
  3499. }
  3500. }
  3501. /* Restart process after E1000_SMARTSPEED_MAX iterations */
  3502. if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
  3503. adapter->smartspeed = 0;
  3504. }
  3505. /**
  3506. * e1000_ioctl -
  3507. * @netdev:
  3508. * @ifreq:
  3509. * @cmd:
  3510. **/
  3511. static int
  3512. e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  3513. {
  3514. switch (cmd) {
  3515. case SIOCGMIIPHY:
  3516. case SIOCGMIIREG:
  3517. case SIOCSMIIREG:
  3518. return e1000_mii_ioctl(netdev, ifr, cmd);
  3519. default:
  3520. return -EOPNOTSUPP;
  3521. }
  3522. }
  3523. /**
  3524. * e1000_mii_ioctl -
  3525. * @netdev:
  3526. * @ifreq:
  3527. * @cmd:
  3528. **/
  3529. static int
  3530. e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  3531. {
  3532. struct e1000_adapter *adapter = netdev_priv(netdev);
  3533. struct mii_ioctl_data *data = if_mii(ifr);
  3534. int retval;
  3535. uint16_t mii_reg;
  3536. uint16_t spddplx;
  3537. unsigned long flags;
  3538. if (adapter->hw.media_type != e1000_media_type_copper)
  3539. return -EOPNOTSUPP;
  3540. switch (cmd) {
  3541. case SIOCGMIIPHY:
  3542. data->phy_id = adapter->hw.phy_addr;
  3543. break;
  3544. case SIOCGMIIREG:
  3545. if (!capable(CAP_NET_ADMIN))
  3546. return -EPERM;
  3547. spin_lock_irqsave(&adapter->stats_lock, flags);
  3548. if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  3549. &data->val_out)) {
  3550. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3551. return -EIO;
  3552. }
  3553. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3554. break;
  3555. case SIOCSMIIREG:
  3556. if (!capable(CAP_NET_ADMIN))
  3557. return -EPERM;
  3558. if (data->reg_num & ~(0x1F))
  3559. return -EFAULT;
  3560. mii_reg = data->val_in;
  3561. spin_lock_irqsave(&adapter->stats_lock, flags);
  3562. if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
  3563. mii_reg)) {
  3564. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3565. return -EIO;
  3566. }
  3567. if (adapter->hw.phy_type == e1000_media_type_copper) {
  3568. switch (data->reg_num) {
  3569. case PHY_CTRL:
  3570. if (mii_reg & MII_CR_POWER_DOWN)
  3571. break;
  3572. if (mii_reg & MII_CR_AUTO_NEG_EN) {
  3573. adapter->hw.autoneg = 1;
  3574. adapter->hw.autoneg_advertised = 0x2F;
  3575. } else {
  3576. if (mii_reg & 0x40)
  3577. spddplx = SPEED_1000;
  3578. else if (mii_reg & 0x2000)
  3579. spddplx = SPEED_100;
  3580. else
  3581. spddplx = SPEED_10;
  3582. spddplx += (mii_reg & 0x100)
  3583. ? DUPLEX_FULL :
  3584. DUPLEX_HALF;
  3585. retval = e1000_set_spd_dplx(adapter,
  3586. spddplx);
  3587. if (retval) {
  3588. spin_unlock_irqrestore(
  3589. &adapter->stats_lock,
  3590. flags);
  3591. return retval;
  3592. }
  3593. }
  3594. if (netif_running(adapter->netdev)) {
  3595. e1000_down(adapter);
  3596. e1000_up(adapter);
  3597. } else
  3598. e1000_reset(adapter);
  3599. break;
  3600. case M88E1000_PHY_SPEC_CTRL:
  3601. case M88E1000_EXT_PHY_SPEC_CTRL:
  3602. if (e1000_phy_reset(&adapter->hw)) {
  3603. spin_unlock_irqrestore(
  3604. &adapter->stats_lock, flags);
  3605. return -EIO;
  3606. }
  3607. break;
  3608. }
  3609. } else {
  3610. switch (data->reg_num) {
  3611. case PHY_CTRL:
  3612. if (mii_reg & MII_CR_POWER_DOWN)
  3613. break;
  3614. if (netif_running(adapter->netdev)) {
  3615. e1000_down(adapter);
  3616. e1000_up(adapter);
  3617. } else
  3618. e1000_reset(adapter);
  3619. break;
  3620. }
  3621. }
  3622. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  3623. break;
  3624. default:
  3625. return -EOPNOTSUPP;
  3626. }
  3627. return E1000_SUCCESS;
  3628. }
  3629. void
  3630. e1000_pci_set_mwi(struct e1000_hw *hw)
  3631. {
  3632. struct e1000_adapter *adapter = hw->back;
  3633. int ret_val = pci_set_mwi(adapter->pdev);
  3634. if (ret_val)
  3635. DPRINTK(PROBE, ERR, "Error in setting MWI\n");
  3636. }
  3637. void
  3638. e1000_pci_clear_mwi(struct e1000_hw *hw)
  3639. {
  3640. struct e1000_adapter *adapter = hw->back;
  3641. pci_clear_mwi(adapter->pdev);
  3642. }
  3643. void
  3644. e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  3645. {
  3646. struct e1000_adapter *adapter = hw->back;
  3647. pci_read_config_word(adapter->pdev, reg, value);
  3648. }
  3649. void
  3650. e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  3651. {
  3652. struct e1000_adapter *adapter = hw->back;
  3653. pci_write_config_word(adapter->pdev, reg, *value);
  3654. }
  3655. uint32_t
  3656. e1000_io_read(struct e1000_hw *hw, unsigned long port)
  3657. {
  3658. return inl(port);
  3659. }
  3660. void
  3661. e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
  3662. {
  3663. outl(value, port);
  3664. }
  3665. static void
  3666. e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
  3667. {
  3668. struct e1000_adapter *adapter = netdev_priv(netdev);
  3669. uint32_t ctrl, rctl;
  3670. e1000_irq_disable(adapter);
  3671. adapter->vlgrp = grp;
  3672. if (grp) {
  3673. /* enable VLAN tag insert/strip */
  3674. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3675. ctrl |= E1000_CTRL_VME;
  3676. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3677. /* enable VLAN receive filtering */
  3678. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3679. rctl |= E1000_RCTL_VFE;
  3680. rctl &= ~E1000_RCTL_CFIEN;
  3681. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3682. e1000_update_mng_vlan(adapter);
  3683. } else {
  3684. /* disable VLAN tag insert/strip */
  3685. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3686. ctrl &= ~E1000_CTRL_VME;
  3687. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3688. /* disable VLAN filtering */
  3689. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3690. rctl &= ~E1000_RCTL_VFE;
  3691. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3692. if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
  3693. e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
  3694. adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
  3695. }
  3696. }
  3697. e1000_irq_enable(adapter);
  3698. }
  3699. static void
  3700. e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
  3701. {
  3702. struct e1000_adapter *adapter = netdev_priv(netdev);
  3703. uint32_t vfta, index;
  3704. if ((adapter->hw.mng_cookie.status &
  3705. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3706. (vid == adapter->mng_vlan_id))
  3707. return;
  3708. /* add VID to filter table */
  3709. index = (vid >> 5) & 0x7F;
  3710. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3711. vfta |= (1 << (vid & 0x1F));
  3712. e1000_write_vfta(&adapter->hw, index, vfta);
  3713. }
  3714. static void
  3715. e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
  3716. {
  3717. struct e1000_adapter *adapter = netdev_priv(netdev);
  3718. uint32_t vfta, index;
  3719. e1000_irq_disable(adapter);
  3720. if (adapter->vlgrp)
  3721. adapter->vlgrp->vlan_devices[vid] = NULL;
  3722. e1000_irq_enable(adapter);
  3723. if ((adapter->hw.mng_cookie.status &
  3724. E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
  3725. (vid == adapter->mng_vlan_id)) {
  3726. /* release control to f/w */
  3727. e1000_release_hw_control(adapter);
  3728. return;
  3729. }
  3730. /* remove VID from filter table */
  3731. index = (vid >> 5) & 0x7F;
  3732. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  3733. vfta &= ~(1 << (vid & 0x1F));
  3734. e1000_write_vfta(&adapter->hw, index, vfta);
  3735. }
  3736. static void
  3737. e1000_restore_vlan(struct e1000_adapter *adapter)
  3738. {
  3739. e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  3740. if (adapter->vlgrp) {
  3741. uint16_t vid;
  3742. for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
  3743. if (!adapter->vlgrp->vlan_devices[vid])
  3744. continue;
  3745. e1000_vlan_rx_add_vid(adapter->netdev, vid);
  3746. }
  3747. }
  3748. }
  3749. int
  3750. e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
  3751. {
  3752. adapter->hw.autoneg = 0;
  3753. /* Fiber NICs only allow 1000 gbps Full duplex */
  3754. if ((adapter->hw.media_type == e1000_media_type_fiber) &&
  3755. spddplx != (SPEED_1000 + DUPLEX_FULL)) {
  3756. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3757. return -EINVAL;
  3758. }
  3759. switch (spddplx) {
  3760. case SPEED_10 + DUPLEX_HALF:
  3761. adapter->hw.forced_speed_duplex = e1000_10_half;
  3762. break;
  3763. case SPEED_10 + DUPLEX_FULL:
  3764. adapter->hw.forced_speed_duplex = e1000_10_full;
  3765. break;
  3766. case SPEED_100 + DUPLEX_HALF:
  3767. adapter->hw.forced_speed_duplex = e1000_100_half;
  3768. break;
  3769. case SPEED_100 + DUPLEX_FULL:
  3770. adapter->hw.forced_speed_duplex = e1000_100_full;
  3771. break;
  3772. case SPEED_1000 + DUPLEX_FULL:
  3773. adapter->hw.autoneg = 1;
  3774. adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
  3775. break;
  3776. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  3777. default:
  3778. DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
  3779. return -EINVAL;
  3780. }
  3781. return 0;
  3782. }
  3783. #ifdef CONFIG_PM
  3784. /* Save/restore 16 or 64 dwords of PCI config space depending on which
  3785. * bus we're on (PCI(X) vs. PCI-E)
  3786. */
  3787. #define PCIE_CONFIG_SPACE_LEN 256
  3788. #define PCI_CONFIG_SPACE_LEN 64
  3789. static int
  3790. e1000_pci_save_state(struct e1000_adapter *adapter)
  3791. {
  3792. struct pci_dev *dev = adapter->pdev;
  3793. int size;
  3794. int i;
  3795. if (adapter->hw.mac_type >= e1000_82571)
  3796. size = PCIE_CONFIG_SPACE_LEN;
  3797. else
  3798. size = PCI_CONFIG_SPACE_LEN;
  3799. WARN_ON(adapter->config_space != NULL);
  3800. adapter->config_space = kmalloc(size, GFP_KERNEL);
  3801. if (!adapter->config_space) {
  3802. DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
  3803. return -ENOMEM;
  3804. }
  3805. for (i = 0; i < (size / 4); i++)
  3806. pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
  3807. return 0;
  3808. }
  3809. static void
  3810. e1000_pci_restore_state(struct e1000_adapter *adapter)
  3811. {
  3812. struct pci_dev *dev = adapter->pdev;
  3813. int size;
  3814. int i;
  3815. if (adapter->config_space == NULL)
  3816. return;
  3817. if (adapter->hw.mac_type >= e1000_82571)
  3818. size = PCIE_CONFIG_SPACE_LEN;
  3819. else
  3820. size = PCI_CONFIG_SPACE_LEN;
  3821. for (i = 0; i < (size / 4); i++)
  3822. pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
  3823. kfree(adapter->config_space);
  3824. adapter->config_space = NULL;
  3825. return;
  3826. }
  3827. #endif /* CONFIG_PM */
  3828. static int
  3829. e1000_suspend(struct pci_dev *pdev, pm_message_t state)
  3830. {
  3831. struct net_device *netdev = pci_get_drvdata(pdev);
  3832. struct e1000_adapter *adapter = netdev_priv(netdev);
  3833. uint32_t ctrl, ctrl_ext, rctl, manc, status;
  3834. uint32_t wufc = adapter->wol;
  3835. int retval = 0;
  3836. netif_device_detach(netdev);
  3837. if (netif_running(netdev))
  3838. e1000_down(adapter);
  3839. #ifdef CONFIG_PM
  3840. /* Implement our own version of pci_save_state(pdev) because pci-
  3841. * express adapters have 256-byte config spaces. */
  3842. retval = e1000_pci_save_state(adapter);
  3843. if (retval)
  3844. return retval;
  3845. #endif
  3846. status = E1000_READ_REG(&adapter->hw, STATUS);
  3847. if (status & E1000_STATUS_LU)
  3848. wufc &= ~E1000_WUFC_LNKC;
  3849. if (wufc) {
  3850. e1000_setup_rctl(adapter);
  3851. e1000_set_multi(netdev);
  3852. /* turn on all-multi mode if wake on multicast is enabled */
  3853. if (adapter->wol & E1000_WUFC_MC) {
  3854. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  3855. rctl |= E1000_RCTL_MPE;
  3856. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  3857. }
  3858. if (adapter->hw.mac_type >= e1000_82540) {
  3859. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  3860. /* advertise wake from D3Cold */
  3861. #define E1000_CTRL_ADVD3WUC 0x00100000
  3862. /* phy power management enable */
  3863. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  3864. ctrl |= E1000_CTRL_ADVD3WUC |
  3865. E1000_CTRL_EN_PHY_PWR_MGMT;
  3866. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  3867. }
  3868. if (adapter->hw.media_type == e1000_media_type_fiber ||
  3869. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  3870. /* keep the laser running in D3 */
  3871. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  3872. ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
  3873. E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
  3874. }
  3875. /* Allow time for pending master requests to run */
  3876. e1000_disable_pciex_master(&adapter->hw);
  3877. E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
  3878. E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
  3879. retval = pci_enable_wake(pdev, PCI_D3hot, 1);
  3880. if (retval)
  3881. DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
  3882. retval = pci_enable_wake(pdev, PCI_D3cold, 1);
  3883. if (retval)
  3884. DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
  3885. } else {
  3886. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  3887. E1000_WRITE_REG(&adapter->hw, WUFC, 0);
  3888. retval = pci_enable_wake(pdev, PCI_D3hot, 0);
  3889. if (retval)
  3890. DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
  3891. retval = pci_enable_wake(pdev, PCI_D3cold, 0);
  3892. if (retval)
  3893. DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
  3894. }
  3895. if (adapter->hw.mac_type >= e1000_82540 &&
  3896. adapter->hw.media_type == e1000_media_type_copper) {
  3897. manc = E1000_READ_REG(&adapter->hw, MANC);
  3898. if (manc & E1000_MANC_SMBUS_EN) {
  3899. manc |= E1000_MANC_ARP_EN;
  3900. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3901. retval = pci_enable_wake(pdev, PCI_D3hot, 1);
  3902. if (retval)
  3903. DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
  3904. retval = pci_enable_wake(pdev, PCI_D3cold, 1);
  3905. if (retval)
  3906. DPRINTK(PROBE, ERR,
  3907. "Error enabling D3 cold wake\n");
  3908. }
  3909. }
  3910. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  3911. * would have already happened in close and is redundant. */
  3912. e1000_release_hw_control(adapter);
  3913. pci_disable_device(pdev);
  3914. retval = pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3915. if (retval)
  3916. DPRINTK(PROBE, ERR, "Error in setting power state\n");
  3917. return 0;
  3918. }
  3919. #ifdef CONFIG_PM
  3920. static int
  3921. e1000_resume(struct pci_dev *pdev)
  3922. {
  3923. struct net_device *netdev = pci_get_drvdata(pdev);
  3924. struct e1000_adapter *adapter = netdev_priv(netdev);
  3925. int retval;
  3926. uint32_t manc, ret_val;
  3927. retval = pci_set_power_state(pdev, PCI_D0);
  3928. if (retval)
  3929. DPRINTK(PROBE, ERR, "Error in setting power state\n");
  3930. e1000_pci_restore_state(adapter);
  3931. ret_val = pci_enable_device(pdev);
  3932. pci_set_master(pdev);
  3933. retval = pci_enable_wake(pdev, PCI_D3hot, 0);
  3934. if (retval)
  3935. DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
  3936. retval = pci_enable_wake(pdev, PCI_D3cold, 0);
  3937. if (retval)
  3938. DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
  3939. e1000_reset(adapter);
  3940. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  3941. if (netif_running(netdev))
  3942. e1000_up(adapter);
  3943. netif_device_attach(netdev);
  3944. if (adapter->hw.mac_type >= e1000_82540 &&
  3945. adapter->hw.media_type == e1000_media_type_copper) {
  3946. manc = E1000_READ_REG(&adapter->hw, MANC);
  3947. manc &= ~(E1000_MANC_ARP_EN);
  3948. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  3949. }
  3950. /* If the controller is 82573 and f/w is AMT, do not set
  3951. * DRV_LOAD until the interface is up. For all other cases,
  3952. * let the f/w know that the h/w is now under the control
  3953. * of the driver. */
  3954. if (adapter->hw.mac_type != e1000_82573 ||
  3955. !e1000_check_mng_mode(&adapter->hw))
  3956. e1000_get_hw_control(adapter);
  3957. return 0;
  3958. }
  3959. #endif
  3960. #ifdef CONFIG_NET_POLL_CONTROLLER
  3961. /*
  3962. * Polling 'interrupt' - used by things like netconsole to send skbs
  3963. * without having to re-enable interrupts. It's not called while
  3964. * the interrupt routine is executing.
  3965. */
  3966. static void
  3967. e1000_netpoll(struct net_device *netdev)
  3968. {
  3969. struct e1000_adapter *adapter = netdev_priv(netdev);
  3970. disable_irq(adapter->pdev->irq);
  3971. e1000_intr(adapter->pdev->irq, netdev, NULL);
  3972. e1000_clean_tx_irq(adapter, adapter->tx_ring);
  3973. #ifndef CONFIG_E1000_NAPI
  3974. adapter->clean_rx(adapter, adapter->rx_ring);
  3975. #endif
  3976. enable_irq(adapter->pdev->irq);
  3977. }
  3978. #endif
  3979. /* e1000_main.c */