page_alloc.c 115 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/bootmem.h>
  22. #include <linux/compiler.h>
  23. #include <linux/kernel.h>
  24. #include <linux/module.h>
  25. #include <linux/suspend.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/slab.h>
  29. #include <linux/notifier.h>
  30. #include <linux/topology.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/cpuset.h>
  34. #include <linux/memory_hotplug.h>
  35. #include <linux/nodemask.h>
  36. #include <linux/vmalloc.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/stop_machine.h>
  39. #include <linux/sort.h>
  40. #include <linux/pfn.h>
  41. #include <linux/backing-dev.h>
  42. #include <linux/fault-inject.h>
  43. #include <asm/tlbflush.h>
  44. #include <asm/div64.h>
  45. #include "internal.h"
  46. /*
  47. * Array of node states.
  48. */
  49. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  50. [N_POSSIBLE] = NODE_MASK_ALL,
  51. [N_ONLINE] = { { [0] = 1UL } },
  52. #ifndef CONFIG_NUMA
  53. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  54. #ifdef CONFIG_HIGHMEM
  55. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  56. #endif
  57. [N_CPU] = { { [0] = 1UL } },
  58. #endif /* NUMA */
  59. };
  60. EXPORT_SYMBOL(node_states);
  61. unsigned long totalram_pages __read_mostly;
  62. unsigned long totalreserve_pages __read_mostly;
  63. long nr_swap_pages;
  64. int percpu_pagelist_fraction;
  65. static void __free_pages_ok(struct page *page, unsigned int order);
  66. /*
  67. * results with 256, 32 in the lowmem_reserve sysctl:
  68. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  69. * 1G machine -> (16M dma, 784M normal, 224M high)
  70. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  71. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  72. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  73. *
  74. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  75. * don't need any ZONE_NORMAL reservation
  76. */
  77. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  78. #ifdef CONFIG_ZONE_DMA
  79. 256,
  80. #endif
  81. #ifdef CONFIG_ZONE_DMA32
  82. 256,
  83. #endif
  84. #ifdef CONFIG_HIGHMEM
  85. 32,
  86. #endif
  87. 32,
  88. };
  89. EXPORT_SYMBOL(totalram_pages);
  90. static char * const zone_names[MAX_NR_ZONES] = {
  91. #ifdef CONFIG_ZONE_DMA
  92. "DMA",
  93. #endif
  94. #ifdef CONFIG_ZONE_DMA32
  95. "DMA32",
  96. #endif
  97. "Normal",
  98. #ifdef CONFIG_HIGHMEM
  99. "HighMem",
  100. #endif
  101. "Movable",
  102. };
  103. int min_free_kbytes = 1024;
  104. unsigned long __meminitdata nr_kernel_pages;
  105. unsigned long __meminitdata nr_all_pages;
  106. static unsigned long __meminitdata dma_reserve;
  107. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  108. /*
  109. * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
  110. * ranges of memory (RAM) that may be registered with add_active_range().
  111. * Ranges passed to add_active_range() will be merged if possible
  112. * so the number of times add_active_range() can be called is
  113. * related to the number of nodes and the number of holes
  114. */
  115. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  116. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  117. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  118. #else
  119. #if MAX_NUMNODES >= 32
  120. /* If there can be many nodes, allow up to 50 holes per node */
  121. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  122. #else
  123. /* By default, allow up to 256 distinct regions */
  124. #define MAX_ACTIVE_REGIONS 256
  125. #endif
  126. #endif
  127. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  128. static int __meminitdata nr_nodemap_entries;
  129. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  130. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  131. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  132. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  133. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  134. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  135. unsigned long __initdata required_kernelcore;
  136. unsigned long __initdata required_movablecore;
  137. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  138. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  139. int movable_zone;
  140. EXPORT_SYMBOL(movable_zone);
  141. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  142. #if MAX_NUMNODES > 1
  143. int nr_node_ids __read_mostly = MAX_NUMNODES;
  144. EXPORT_SYMBOL(nr_node_ids);
  145. #endif
  146. #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
  147. static inline int get_pageblock_migratetype(struct page *page)
  148. {
  149. return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  150. }
  151. static void set_pageblock_migratetype(struct page *page, int migratetype)
  152. {
  153. set_pageblock_flags_group(page, (unsigned long)migratetype,
  154. PB_migrate, PB_migrate_end);
  155. }
  156. static inline int gfpflags_to_migratetype(gfp_t gfp_flags)
  157. {
  158. return ((gfp_flags & __GFP_MOVABLE) != 0);
  159. }
  160. #else
  161. static inline int get_pageblock_migratetype(struct page *page)
  162. {
  163. return MIGRATE_UNMOVABLE;
  164. }
  165. static void set_pageblock_migratetype(struct page *page, int migratetype)
  166. {
  167. }
  168. static inline int gfpflags_to_migratetype(gfp_t gfp_flags)
  169. {
  170. return MIGRATE_UNMOVABLE;
  171. }
  172. #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
  173. #ifdef CONFIG_DEBUG_VM
  174. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  175. {
  176. int ret = 0;
  177. unsigned seq;
  178. unsigned long pfn = page_to_pfn(page);
  179. do {
  180. seq = zone_span_seqbegin(zone);
  181. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  182. ret = 1;
  183. else if (pfn < zone->zone_start_pfn)
  184. ret = 1;
  185. } while (zone_span_seqretry(zone, seq));
  186. return ret;
  187. }
  188. static int page_is_consistent(struct zone *zone, struct page *page)
  189. {
  190. if (!pfn_valid_within(page_to_pfn(page)))
  191. return 0;
  192. if (zone != page_zone(page))
  193. return 0;
  194. return 1;
  195. }
  196. /*
  197. * Temporary debugging check for pages not lying within a given zone.
  198. */
  199. static int bad_range(struct zone *zone, struct page *page)
  200. {
  201. if (page_outside_zone_boundaries(zone, page))
  202. return 1;
  203. if (!page_is_consistent(zone, page))
  204. return 1;
  205. return 0;
  206. }
  207. #else
  208. static inline int bad_range(struct zone *zone, struct page *page)
  209. {
  210. return 0;
  211. }
  212. #endif
  213. static void bad_page(struct page *page)
  214. {
  215. printk(KERN_EMERG "Bad page state in process '%s'\n"
  216. KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
  217. KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  218. KERN_EMERG "Backtrace:\n",
  219. current->comm, page, (int)(2*sizeof(unsigned long)),
  220. (unsigned long)page->flags, page->mapping,
  221. page_mapcount(page), page_count(page));
  222. dump_stack();
  223. page->flags &= ~(1 << PG_lru |
  224. 1 << PG_private |
  225. 1 << PG_locked |
  226. 1 << PG_active |
  227. 1 << PG_dirty |
  228. 1 << PG_reclaim |
  229. 1 << PG_slab |
  230. 1 << PG_swapcache |
  231. 1 << PG_writeback |
  232. 1 << PG_buddy );
  233. set_page_count(page, 0);
  234. reset_page_mapcount(page);
  235. page->mapping = NULL;
  236. add_taint(TAINT_BAD_PAGE);
  237. }
  238. /*
  239. * Higher-order pages are called "compound pages". They are structured thusly:
  240. *
  241. * The first PAGE_SIZE page is called the "head page".
  242. *
  243. * The remaining PAGE_SIZE pages are called "tail pages".
  244. *
  245. * All pages have PG_compound set. All pages have their ->private pointing at
  246. * the head page (even the head page has this).
  247. *
  248. * The first tail page's ->lru.next holds the address of the compound page's
  249. * put_page() function. Its ->lru.prev holds the order of allocation.
  250. * This usage means that zero-order pages may not be compound.
  251. */
  252. static void free_compound_page(struct page *page)
  253. {
  254. __free_pages_ok(page, compound_order(page));
  255. }
  256. static void prep_compound_page(struct page *page, unsigned long order)
  257. {
  258. int i;
  259. int nr_pages = 1 << order;
  260. set_compound_page_dtor(page, free_compound_page);
  261. set_compound_order(page, order);
  262. __SetPageHead(page);
  263. for (i = 1; i < nr_pages; i++) {
  264. struct page *p = page + i;
  265. __SetPageTail(p);
  266. p->first_page = page;
  267. }
  268. }
  269. static void destroy_compound_page(struct page *page, unsigned long order)
  270. {
  271. int i;
  272. int nr_pages = 1 << order;
  273. if (unlikely(compound_order(page) != order))
  274. bad_page(page);
  275. if (unlikely(!PageHead(page)))
  276. bad_page(page);
  277. __ClearPageHead(page);
  278. for (i = 1; i < nr_pages; i++) {
  279. struct page *p = page + i;
  280. if (unlikely(!PageTail(p) |
  281. (p->first_page != page)))
  282. bad_page(page);
  283. __ClearPageTail(p);
  284. }
  285. }
  286. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  287. {
  288. int i;
  289. VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  290. /*
  291. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  292. * and __GFP_HIGHMEM from hard or soft interrupt context.
  293. */
  294. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  295. for (i = 0; i < (1 << order); i++)
  296. clear_highpage(page + i);
  297. }
  298. /*
  299. * function for dealing with page's order in buddy system.
  300. * zone->lock is already acquired when we use these.
  301. * So, we don't need atomic page->flags operations here.
  302. */
  303. static inline unsigned long page_order(struct page *page)
  304. {
  305. return page_private(page);
  306. }
  307. static inline void set_page_order(struct page *page, int order)
  308. {
  309. set_page_private(page, order);
  310. __SetPageBuddy(page);
  311. }
  312. static inline void rmv_page_order(struct page *page)
  313. {
  314. __ClearPageBuddy(page);
  315. set_page_private(page, 0);
  316. }
  317. /*
  318. * Locate the struct page for both the matching buddy in our
  319. * pair (buddy1) and the combined O(n+1) page they form (page).
  320. *
  321. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  322. * the following equation:
  323. * B2 = B1 ^ (1 << O)
  324. * For example, if the starting buddy (buddy2) is #8 its order
  325. * 1 buddy is #10:
  326. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  327. *
  328. * 2) Any buddy B will have an order O+1 parent P which
  329. * satisfies the following equation:
  330. * P = B & ~(1 << O)
  331. *
  332. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  333. */
  334. static inline struct page *
  335. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  336. {
  337. unsigned long buddy_idx = page_idx ^ (1 << order);
  338. return page + (buddy_idx - page_idx);
  339. }
  340. static inline unsigned long
  341. __find_combined_index(unsigned long page_idx, unsigned int order)
  342. {
  343. return (page_idx & ~(1 << order));
  344. }
  345. /*
  346. * This function checks whether a page is free && is the buddy
  347. * we can do coalesce a page and its buddy if
  348. * (a) the buddy is not in a hole &&
  349. * (b) the buddy is in the buddy system &&
  350. * (c) a page and its buddy have the same order &&
  351. * (d) a page and its buddy are in the same zone.
  352. *
  353. * For recording whether a page is in the buddy system, we use PG_buddy.
  354. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  355. *
  356. * For recording page's order, we use page_private(page).
  357. */
  358. static inline int page_is_buddy(struct page *page, struct page *buddy,
  359. int order)
  360. {
  361. if (!pfn_valid_within(page_to_pfn(buddy)))
  362. return 0;
  363. if (page_zone_id(page) != page_zone_id(buddy))
  364. return 0;
  365. if (PageBuddy(buddy) && page_order(buddy) == order) {
  366. BUG_ON(page_count(buddy) != 0);
  367. return 1;
  368. }
  369. return 0;
  370. }
  371. /*
  372. * Freeing function for a buddy system allocator.
  373. *
  374. * The concept of a buddy system is to maintain direct-mapped table
  375. * (containing bit values) for memory blocks of various "orders".
  376. * The bottom level table contains the map for the smallest allocatable
  377. * units of memory (here, pages), and each level above it describes
  378. * pairs of units from the levels below, hence, "buddies".
  379. * At a high level, all that happens here is marking the table entry
  380. * at the bottom level available, and propagating the changes upward
  381. * as necessary, plus some accounting needed to play nicely with other
  382. * parts of the VM system.
  383. * At each level, we keep a list of pages, which are heads of continuous
  384. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  385. * order is recorded in page_private(page) field.
  386. * So when we are allocating or freeing one, we can derive the state of the
  387. * other. That is, if we allocate a small block, and both were
  388. * free, the remainder of the region must be split into blocks.
  389. * If a block is freed, and its buddy is also free, then this
  390. * triggers coalescing into a block of larger size.
  391. *
  392. * -- wli
  393. */
  394. static inline void __free_one_page(struct page *page,
  395. struct zone *zone, unsigned int order)
  396. {
  397. unsigned long page_idx;
  398. int order_size = 1 << order;
  399. int migratetype = get_pageblock_migratetype(page);
  400. if (unlikely(PageCompound(page)))
  401. destroy_compound_page(page, order);
  402. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  403. VM_BUG_ON(page_idx & (order_size - 1));
  404. VM_BUG_ON(bad_range(zone, page));
  405. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  406. while (order < MAX_ORDER-1) {
  407. unsigned long combined_idx;
  408. struct page *buddy;
  409. buddy = __page_find_buddy(page, page_idx, order);
  410. if (!page_is_buddy(page, buddy, order))
  411. break; /* Move the buddy up one level. */
  412. list_del(&buddy->lru);
  413. zone->free_area[order].nr_free--;
  414. rmv_page_order(buddy);
  415. combined_idx = __find_combined_index(page_idx, order);
  416. page = page + (combined_idx - page_idx);
  417. page_idx = combined_idx;
  418. order++;
  419. }
  420. set_page_order(page, order);
  421. list_add(&page->lru,
  422. &zone->free_area[order].free_list[migratetype]);
  423. zone->free_area[order].nr_free++;
  424. }
  425. static inline int free_pages_check(struct page *page)
  426. {
  427. if (unlikely(page_mapcount(page) |
  428. (page->mapping != NULL) |
  429. (page_count(page) != 0) |
  430. (page->flags & (
  431. 1 << PG_lru |
  432. 1 << PG_private |
  433. 1 << PG_locked |
  434. 1 << PG_active |
  435. 1 << PG_slab |
  436. 1 << PG_swapcache |
  437. 1 << PG_writeback |
  438. 1 << PG_reserved |
  439. 1 << PG_buddy ))))
  440. bad_page(page);
  441. if (PageDirty(page))
  442. __ClearPageDirty(page);
  443. /*
  444. * For now, we report if PG_reserved was found set, but do not
  445. * clear it, and do not free the page. But we shall soon need
  446. * to do more, for when the ZERO_PAGE count wraps negative.
  447. */
  448. return PageReserved(page);
  449. }
  450. /*
  451. * Frees a list of pages.
  452. * Assumes all pages on list are in same zone, and of same order.
  453. * count is the number of pages to free.
  454. *
  455. * If the zone was previously in an "all pages pinned" state then look to
  456. * see if this freeing clears that state.
  457. *
  458. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  459. * pinned" detection logic.
  460. */
  461. static void free_pages_bulk(struct zone *zone, int count,
  462. struct list_head *list, int order)
  463. {
  464. spin_lock(&zone->lock);
  465. zone->all_unreclaimable = 0;
  466. zone->pages_scanned = 0;
  467. while (count--) {
  468. struct page *page;
  469. VM_BUG_ON(list_empty(list));
  470. page = list_entry(list->prev, struct page, lru);
  471. /* have to delete it as __free_one_page list manipulates */
  472. list_del(&page->lru);
  473. __free_one_page(page, zone, order);
  474. }
  475. spin_unlock(&zone->lock);
  476. }
  477. static void free_one_page(struct zone *zone, struct page *page, int order)
  478. {
  479. spin_lock(&zone->lock);
  480. zone->all_unreclaimable = 0;
  481. zone->pages_scanned = 0;
  482. __free_one_page(page, zone, order);
  483. spin_unlock(&zone->lock);
  484. }
  485. static void __free_pages_ok(struct page *page, unsigned int order)
  486. {
  487. unsigned long flags;
  488. int i;
  489. int reserved = 0;
  490. for (i = 0 ; i < (1 << order) ; ++i)
  491. reserved += free_pages_check(page + i);
  492. if (reserved)
  493. return;
  494. if (!PageHighMem(page))
  495. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  496. arch_free_page(page, order);
  497. kernel_map_pages(page, 1 << order, 0);
  498. local_irq_save(flags);
  499. __count_vm_events(PGFREE, 1 << order);
  500. free_one_page(page_zone(page), page, order);
  501. local_irq_restore(flags);
  502. }
  503. /*
  504. * permit the bootmem allocator to evade page validation on high-order frees
  505. */
  506. void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
  507. {
  508. if (order == 0) {
  509. __ClearPageReserved(page);
  510. set_page_count(page, 0);
  511. set_page_refcounted(page);
  512. __free_page(page);
  513. } else {
  514. int loop;
  515. prefetchw(page);
  516. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  517. struct page *p = &page[loop];
  518. if (loop + 1 < BITS_PER_LONG)
  519. prefetchw(p + 1);
  520. __ClearPageReserved(p);
  521. set_page_count(p, 0);
  522. }
  523. set_page_refcounted(page);
  524. __free_pages(page, order);
  525. }
  526. }
  527. /*
  528. * The order of subdivision here is critical for the IO subsystem.
  529. * Please do not alter this order without good reasons and regression
  530. * testing. Specifically, as large blocks of memory are subdivided,
  531. * the order in which smaller blocks are delivered depends on the order
  532. * they're subdivided in this function. This is the primary factor
  533. * influencing the order in which pages are delivered to the IO
  534. * subsystem according to empirical testing, and this is also justified
  535. * by considering the behavior of a buddy system containing a single
  536. * large block of memory acted on by a series of small allocations.
  537. * This behavior is a critical factor in sglist merging's success.
  538. *
  539. * -- wli
  540. */
  541. static inline void expand(struct zone *zone, struct page *page,
  542. int low, int high, struct free_area *area,
  543. int migratetype)
  544. {
  545. unsigned long size = 1 << high;
  546. while (high > low) {
  547. area--;
  548. high--;
  549. size >>= 1;
  550. VM_BUG_ON(bad_range(zone, &page[size]));
  551. list_add(&page[size].lru, &area->free_list[migratetype]);
  552. area->nr_free++;
  553. set_page_order(&page[size], high);
  554. }
  555. }
  556. /*
  557. * This page is about to be returned from the page allocator
  558. */
  559. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  560. {
  561. if (unlikely(page_mapcount(page) |
  562. (page->mapping != NULL) |
  563. (page_count(page) != 0) |
  564. (page->flags & (
  565. 1 << PG_lru |
  566. 1 << PG_private |
  567. 1 << PG_locked |
  568. 1 << PG_active |
  569. 1 << PG_dirty |
  570. 1 << PG_slab |
  571. 1 << PG_swapcache |
  572. 1 << PG_writeback |
  573. 1 << PG_reserved |
  574. 1 << PG_buddy ))))
  575. bad_page(page);
  576. /*
  577. * For now, we report if PG_reserved was found set, but do not
  578. * clear it, and do not allocate the page: as a safety net.
  579. */
  580. if (PageReserved(page))
  581. return 1;
  582. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
  583. 1 << PG_referenced | 1 << PG_arch_1 |
  584. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  585. set_page_private(page, 0);
  586. set_page_refcounted(page);
  587. arch_alloc_page(page, order);
  588. kernel_map_pages(page, 1 << order, 1);
  589. if (gfp_flags & __GFP_ZERO)
  590. prep_zero_page(page, order, gfp_flags);
  591. if (order && (gfp_flags & __GFP_COMP))
  592. prep_compound_page(page, order);
  593. return 0;
  594. }
  595. #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
  596. /*
  597. * This array describes the order lists are fallen back to when
  598. * the free lists for the desirable migrate type are depleted
  599. */
  600. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  601. [MIGRATE_UNMOVABLE] = { MIGRATE_MOVABLE },
  602. [MIGRATE_MOVABLE] = { MIGRATE_UNMOVABLE },
  603. };
  604. /* Remove an element from the buddy allocator from the fallback list */
  605. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  606. int start_migratetype)
  607. {
  608. struct free_area * area;
  609. int current_order;
  610. struct page *page;
  611. int migratetype, i;
  612. /* Find the largest possible block of pages in the other list */
  613. for (current_order = MAX_ORDER-1; current_order >= order;
  614. --current_order) {
  615. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  616. migratetype = fallbacks[start_migratetype][i];
  617. area = &(zone->free_area[current_order]);
  618. if (list_empty(&area->free_list[migratetype]))
  619. continue;
  620. page = list_entry(area->free_list[migratetype].next,
  621. struct page, lru);
  622. area->nr_free--;
  623. /*
  624. * If breaking a large block of pages, place the buddies
  625. * on the preferred allocation list
  626. */
  627. if (unlikely(current_order >= MAX_ORDER / 2))
  628. migratetype = start_migratetype;
  629. /* Remove the page from the freelists */
  630. list_del(&page->lru);
  631. rmv_page_order(page);
  632. __mod_zone_page_state(zone, NR_FREE_PAGES,
  633. -(1UL << order));
  634. if (current_order == MAX_ORDER - 1)
  635. set_pageblock_migratetype(page,
  636. start_migratetype);
  637. expand(zone, page, order, current_order, area, migratetype);
  638. return page;
  639. }
  640. }
  641. return NULL;
  642. }
  643. #else
  644. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  645. int start_migratetype)
  646. {
  647. return NULL;
  648. }
  649. #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
  650. /*
  651. * Do the hard work of removing an element from the buddy allocator.
  652. * Call me with the zone->lock already held.
  653. */
  654. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  655. int migratetype)
  656. {
  657. struct free_area * area;
  658. unsigned int current_order;
  659. struct page *page;
  660. /* Find a page of the appropriate size in the preferred list */
  661. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  662. area = &(zone->free_area[current_order]);
  663. if (list_empty(&area->free_list[migratetype]))
  664. continue;
  665. page = list_entry(area->free_list[migratetype].next,
  666. struct page, lru);
  667. list_del(&page->lru);
  668. rmv_page_order(page);
  669. area->nr_free--;
  670. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  671. expand(zone, page, order, current_order, area, migratetype);
  672. goto got_page;
  673. }
  674. page = __rmqueue_fallback(zone, order, migratetype);
  675. got_page:
  676. return page;
  677. }
  678. /*
  679. * Obtain a specified number of elements from the buddy allocator, all under
  680. * a single hold of the lock, for efficiency. Add them to the supplied list.
  681. * Returns the number of new pages which were placed at *list.
  682. */
  683. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  684. unsigned long count, struct list_head *list,
  685. int migratetype)
  686. {
  687. int i;
  688. spin_lock(&zone->lock);
  689. for (i = 0; i < count; ++i) {
  690. struct page *page = __rmqueue(zone, order, migratetype);
  691. if (unlikely(page == NULL))
  692. break;
  693. list_add(&page->lru, list);
  694. set_page_private(page, migratetype);
  695. }
  696. spin_unlock(&zone->lock);
  697. return i;
  698. }
  699. #ifdef CONFIG_NUMA
  700. /*
  701. * Called from the vmstat counter updater to drain pagesets of this
  702. * currently executing processor on remote nodes after they have
  703. * expired.
  704. *
  705. * Note that this function must be called with the thread pinned to
  706. * a single processor.
  707. */
  708. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  709. {
  710. unsigned long flags;
  711. int to_drain;
  712. local_irq_save(flags);
  713. if (pcp->count >= pcp->batch)
  714. to_drain = pcp->batch;
  715. else
  716. to_drain = pcp->count;
  717. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  718. pcp->count -= to_drain;
  719. local_irq_restore(flags);
  720. }
  721. #endif
  722. static void __drain_pages(unsigned int cpu)
  723. {
  724. unsigned long flags;
  725. struct zone *zone;
  726. int i;
  727. for_each_zone(zone) {
  728. struct per_cpu_pageset *pset;
  729. if (!populated_zone(zone))
  730. continue;
  731. pset = zone_pcp(zone, cpu);
  732. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  733. struct per_cpu_pages *pcp;
  734. pcp = &pset->pcp[i];
  735. local_irq_save(flags);
  736. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  737. pcp->count = 0;
  738. local_irq_restore(flags);
  739. }
  740. }
  741. }
  742. #ifdef CONFIG_HIBERNATION
  743. void mark_free_pages(struct zone *zone)
  744. {
  745. unsigned long pfn, max_zone_pfn;
  746. unsigned long flags;
  747. int order, t;
  748. struct list_head *curr;
  749. if (!zone->spanned_pages)
  750. return;
  751. spin_lock_irqsave(&zone->lock, flags);
  752. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  753. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  754. if (pfn_valid(pfn)) {
  755. struct page *page = pfn_to_page(pfn);
  756. if (!swsusp_page_is_forbidden(page))
  757. swsusp_unset_page_free(page);
  758. }
  759. for_each_migratetype_order(order, t) {
  760. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  761. unsigned long i;
  762. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  763. for (i = 0; i < (1UL << order); i++)
  764. swsusp_set_page_free(pfn_to_page(pfn + i));
  765. }
  766. }
  767. spin_unlock_irqrestore(&zone->lock, flags);
  768. }
  769. /*
  770. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  771. */
  772. void drain_local_pages(void)
  773. {
  774. unsigned long flags;
  775. local_irq_save(flags);
  776. __drain_pages(smp_processor_id());
  777. local_irq_restore(flags);
  778. }
  779. #endif /* CONFIG_HIBERNATION */
  780. /*
  781. * Free a 0-order page
  782. */
  783. static void fastcall free_hot_cold_page(struct page *page, int cold)
  784. {
  785. struct zone *zone = page_zone(page);
  786. struct per_cpu_pages *pcp;
  787. unsigned long flags;
  788. if (PageAnon(page))
  789. page->mapping = NULL;
  790. if (free_pages_check(page))
  791. return;
  792. if (!PageHighMem(page))
  793. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  794. arch_free_page(page, 0);
  795. kernel_map_pages(page, 1, 0);
  796. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  797. local_irq_save(flags);
  798. __count_vm_event(PGFREE);
  799. list_add(&page->lru, &pcp->list);
  800. set_page_private(page, get_pageblock_migratetype(page));
  801. pcp->count++;
  802. if (pcp->count >= pcp->high) {
  803. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  804. pcp->count -= pcp->batch;
  805. }
  806. local_irq_restore(flags);
  807. put_cpu();
  808. }
  809. void fastcall free_hot_page(struct page *page)
  810. {
  811. free_hot_cold_page(page, 0);
  812. }
  813. void fastcall free_cold_page(struct page *page)
  814. {
  815. free_hot_cold_page(page, 1);
  816. }
  817. /*
  818. * split_page takes a non-compound higher-order page, and splits it into
  819. * n (1<<order) sub-pages: page[0..n]
  820. * Each sub-page must be freed individually.
  821. *
  822. * Note: this is probably too low level an operation for use in drivers.
  823. * Please consult with lkml before using this in your driver.
  824. */
  825. void split_page(struct page *page, unsigned int order)
  826. {
  827. int i;
  828. VM_BUG_ON(PageCompound(page));
  829. VM_BUG_ON(!page_count(page));
  830. for (i = 1; i < (1 << order); i++)
  831. set_page_refcounted(page + i);
  832. }
  833. /*
  834. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  835. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  836. * or two.
  837. */
  838. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  839. struct zone *zone, int order, gfp_t gfp_flags)
  840. {
  841. unsigned long flags;
  842. struct page *page;
  843. int cold = !!(gfp_flags & __GFP_COLD);
  844. int cpu;
  845. int migratetype = gfpflags_to_migratetype(gfp_flags);
  846. again:
  847. cpu = get_cpu();
  848. if (likely(order == 0)) {
  849. struct per_cpu_pages *pcp;
  850. pcp = &zone_pcp(zone, cpu)->pcp[cold];
  851. local_irq_save(flags);
  852. if (!pcp->count) {
  853. pcp->count = rmqueue_bulk(zone, 0,
  854. pcp->batch, &pcp->list, migratetype);
  855. if (unlikely(!pcp->count))
  856. goto failed;
  857. }
  858. #ifdef CONFIG_PAGE_GROUP_BY_MOBILITY
  859. /* Find a page of the appropriate migrate type */
  860. list_for_each_entry(page, &pcp->list, lru)
  861. if (page_private(page) == migratetype)
  862. break;
  863. /* Allocate more to the pcp list if necessary */
  864. if (unlikely(&page->lru == &pcp->list)) {
  865. pcp->count += rmqueue_bulk(zone, 0,
  866. pcp->batch, &pcp->list, migratetype);
  867. page = list_entry(pcp->list.next, struct page, lru);
  868. }
  869. #else
  870. page = list_entry(pcp->list.next, struct page, lru);
  871. #endif /* CONFIG_PAGE_GROUP_BY_MOBILITY */
  872. list_del(&page->lru);
  873. pcp->count--;
  874. } else {
  875. spin_lock_irqsave(&zone->lock, flags);
  876. page = __rmqueue(zone, order, migratetype);
  877. spin_unlock(&zone->lock);
  878. if (!page)
  879. goto failed;
  880. }
  881. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  882. zone_statistics(zonelist, zone);
  883. local_irq_restore(flags);
  884. put_cpu();
  885. VM_BUG_ON(bad_range(zone, page));
  886. if (prep_new_page(page, order, gfp_flags))
  887. goto again;
  888. return page;
  889. failed:
  890. local_irq_restore(flags);
  891. put_cpu();
  892. return NULL;
  893. }
  894. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  895. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  896. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  897. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  898. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  899. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  900. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  901. #ifdef CONFIG_FAIL_PAGE_ALLOC
  902. static struct fail_page_alloc_attr {
  903. struct fault_attr attr;
  904. u32 ignore_gfp_highmem;
  905. u32 ignore_gfp_wait;
  906. u32 min_order;
  907. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  908. struct dentry *ignore_gfp_highmem_file;
  909. struct dentry *ignore_gfp_wait_file;
  910. struct dentry *min_order_file;
  911. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  912. } fail_page_alloc = {
  913. .attr = FAULT_ATTR_INITIALIZER,
  914. .ignore_gfp_wait = 1,
  915. .ignore_gfp_highmem = 1,
  916. .min_order = 1,
  917. };
  918. static int __init setup_fail_page_alloc(char *str)
  919. {
  920. return setup_fault_attr(&fail_page_alloc.attr, str);
  921. }
  922. __setup("fail_page_alloc=", setup_fail_page_alloc);
  923. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  924. {
  925. if (order < fail_page_alloc.min_order)
  926. return 0;
  927. if (gfp_mask & __GFP_NOFAIL)
  928. return 0;
  929. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  930. return 0;
  931. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  932. return 0;
  933. return should_fail(&fail_page_alloc.attr, 1 << order);
  934. }
  935. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  936. static int __init fail_page_alloc_debugfs(void)
  937. {
  938. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  939. struct dentry *dir;
  940. int err;
  941. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  942. "fail_page_alloc");
  943. if (err)
  944. return err;
  945. dir = fail_page_alloc.attr.dentries.dir;
  946. fail_page_alloc.ignore_gfp_wait_file =
  947. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  948. &fail_page_alloc.ignore_gfp_wait);
  949. fail_page_alloc.ignore_gfp_highmem_file =
  950. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  951. &fail_page_alloc.ignore_gfp_highmem);
  952. fail_page_alloc.min_order_file =
  953. debugfs_create_u32("min-order", mode, dir,
  954. &fail_page_alloc.min_order);
  955. if (!fail_page_alloc.ignore_gfp_wait_file ||
  956. !fail_page_alloc.ignore_gfp_highmem_file ||
  957. !fail_page_alloc.min_order_file) {
  958. err = -ENOMEM;
  959. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  960. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  961. debugfs_remove(fail_page_alloc.min_order_file);
  962. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  963. }
  964. return err;
  965. }
  966. late_initcall(fail_page_alloc_debugfs);
  967. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  968. #else /* CONFIG_FAIL_PAGE_ALLOC */
  969. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  970. {
  971. return 0;
  972. }
  973. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  974. /*
  975. * Return 1 if free pages are above 'mark'. This takes into account the order
  976. * of the allocation.
  977. */
  978. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  979. int classzone_idx, int alloc_flags)
  980. {
  981. /* free_pages my go negative - that's OK */
  982. long min = mark;
  983. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  984. int o;
  985. if (alloc_flags & ALLOC_HIGH)
  986. min -= min / 2;
  987. if (alloc_flags & ALLOC_HARDER)
  988. min -= min / 4;
  989. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  990. return 0;
  991. for (o = 0; o < order; o++) {
  992. /* At the next order, this order's pages become unavailable */
  993. free_pages -= z->free_area[o].nr_free << o;
  994. /* Require fewer higher order pages to be free */
  995. min >>= 1;
  996. if (free_pages <= min)
  997. return 0;
  998. }
  999. return 1;
  1000. }
  1001. #ifdef CONFIG_NUMA
  1002. /*
  1003. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1004. * skip over zones that are not allowed by the cpuset, or that have
  1005. * been recently (in last second) found to be nearly full. See further
  1006. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1007. * that have to skip over alot of full or unallowed zones.
  1008. *
  1009. * If the zonelist cache is present in the passed in zonelist, then
  1010. * returns a pointer to the allowed node mask (either the current
  1011. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1012. *
  1013. * If the zonelist cache is not available for this zonelist, does
  1014. * nothing and returns NULL.
  1015. *
  1016. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1017. * a second since last zap'd) then we zap it out (clear its bits.)
  1018. *
  1019. * We hold off even calling zlc_setup, until after we've checked the
  1020. * first zone in the zonelist, on the theory that most allocations will
  1021. * be satisfied from that first zone, so best to examine that zone as
  1022. * quickly as we can.
  1023. */
  1024. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1025. {
  1026. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1027. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1028. zlc = zonelist->zlcache_ptr;
  1029. if (!zlc)
  1030. return NULL;
  1031. if (jiffies - zlc->last_full_zap > 1 * HZ) {
  1032. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1033. zlc->last_full_zap = jiffies;
  1034. }
  1035. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1036. &cpuset_current_mems_allowed :
  1037. &node_states[N_HIGH_MEMORY];
  1038. return allowednodes;
  1039. }
  1040. /*
  1041. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1042. * if it is worth looking at further for free memory:
  1043. * 1) Check that the zone isn't thought to be full (doesn't have its
  1044. * bit set in the zonelist_cache fullzones BITMAP).
  1045. * 2) Check that the zones node (obtained from the zonelist_cache
  1046. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1047. * Return true (non-zero) if zone is worth looking at further, or
  1048. * else return false (zero) if it is not.
  1049. *
  1050. * This check -ignores- the distinction between various watermarks,
  1051. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1052. * found to be full for any variation of these watermarks, it will
  1053. * be considered full for up to one second by all requests, unless
  1054. * we are so low on memory on all allowed nodes that we are forced
  1055. * into the second scan of the zonelist.
  1056. *
  1057. * In the second scan we ignore this zonelist cache and exactly
  1058. * apply the watermarks to all zones, even it is slower to do so.
  1059. * We are low on memory in the second scan, and should leave no stone
  1060. * unturned looking for a free page.
  1061. */
  1062. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1063. nodemask_t *allowednodes)
  1064. {
  1065. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1066. int i; /* index of *z in zonelist zones */
  1067. int n; /* node that zone *z is on */
  1068. zlc = zonelist->zlcache_ptr;
  1069. if (!zlc)
  1070. return 1;
  1071. i = z - zonelist->zones;
  1072. n = zlc->z_to_n[i];
  1073. /* This zone is worth trying if it is allowed but not full */
  1074. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1075. }
  1076. /*
  1077. * Given 'z' scanning a zonelist, set the corresponding bit in
  1078. * zlc->fullzones, so that subsequent attempts to allocate a page
  1079. * from that zone don't waste time re-examining it.
  1080. */
  1081. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1082. {
  1083. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1084. int i; /* index of *z in zonelist zones */
  1085. zlc = zonelist->zlcache_ptr;
  1086. if (!zlc)
  1087. return;
  1088. i = z - zonelist->zones;
  1089. set_bit(i, zlc->fullzones);
  1090. }
  1091. #else /* CONFIG_NUMA */
  1092. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1093. {
  1094. return NULL;
  1095. }
  1096. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1097. nodemask_t *allowednodes)
  1098. {
  1099. return 1;
  1100. }
  1101. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1102. {
  1103. }
  1104. #endif /* CONFIG_NUMA */
  1105. /*
  1106. * get_page_from_freelist goes through the zonelist trying to allocate
  1107. * a page.
  1108. */
  1109. static struct page *
  1110. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  1111. struct zonelist *zonelist, int alloc_flags)
  1112. {
  1113. struct zone **z;
  1114. struct page *page = NULL;
  1115. int classzone_idx = zone_idx(zonelist->zones[0]);
  1116. struct zone *zone;
  1117. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1118. int zlc_active = 0; /* set if using zonelist_cache */
  1119. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1120. enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
  1121. zonelist_scan:
  1122. /*
  1123. * Scan zonelist, looking for a zone with enough free.
  1124. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1125. */
  1126. z = zonelist->zones;
  1127. do {
  1128. /*
  1129. * In NUMA, this could be a policy zonelist which contains
  1130. * zones that may not be allowed by the current gfp_mask.
  1131. * Check the zone is allowed by the current flags
  1132. */
  1133. if (unlikely(alloc_should_filter_zonelist(zonelist))) {
  1134. if (highest_zoneidx == -1)
  1135. highest_zoneidx = gfp_zone(gfp_mask);
  1136. if (zone_idx(*z) > highest_zoneidx)
  1137. continue;
  1138. }
  1139. if (NUMA_BUILD && zlc_active &&
  1140. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1141. continue;
  1142. zone = *z;
  1143. if ((alloc_flags & ALLOC_CPUSET) &&
  1144. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1145. goto try_next_zone;
  1146. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1147. unsigned long mark;
  1148. if (alloc_flags & ALLOC_WMARK_MIN)
  1149. mark = zone->pages_min;
  1150. else if (alloc_flags & ALLOC_WMARK_LOW)
  1151. mark = zone->pages_low;
  1152. else
  1153. mark = zone->pages_high;
  1154. if (!zone_watermark_ok(zone, order, mark,
  1155. classzone_idx, alloc_flags)) {
  1156. if (!zone_reclaim_mode ||
  1157. !zone_reclaim(zone, gfp_mask, order))
  1158. goto this_zone_full;
  1159. }
  1160. }
  1161. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  1162. if (page)
  1163. break;
  1164. this_zone_full:
  1165. if (NUMA_BUILD)
  1166. zlc_mark_zone_full(zonelist, z);
  1167. try_next_zone:
  1168. if (NUMA_BUILD && !did_zlc_setup) {
  1169. /* we do zlc_setup after the first zone is tried */
  1170. allowednodes = zlc_setup(zonelist, alloc_flags);
  1171. zlc_active = 1;
  1172. did_zlc_setup = 1;
  1173. }
  1174. } while (*(++z) != NULL);
  1175. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1176. /* Disable zlc cache for second zonelist scan */
  1177. zlc_active = 0;
  1178. goto zonelist_scan;
  1179. }
  1180. return page;
  1181. }
  1182. /*
  1183. * This is the 'heart' of the zoned buddy allocator.
  1184. */
  1185. struct page * fastcall
  1186. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1187. struct zonelist *zonelist)
  1188. {
  1189. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1190. struct zone **z;
  1191. struct page *page;
  1192. struct reclaim_state reclaim_state;
  1193. struct task_struct *p = current;
  1194. int do_retry;
  1195. int alloc_flags;
  1196. int did_some_progress;
  1197. might_sleep_if(wait);
  1198. if (should_fail_alloc_page(gfp_mask, order))
  1199. return NULL;
  1200. restart:
  1201. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  1202. if (unlikely(*z == NULL)) {
  1203. /*
  1204. * Happens if we have an empty zonelist as a result of
  1205. * GFP_THISNODE being used on a memoryless node
  1206. */
  1207. return NULL;
  1208. }
  1209. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1210. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1211. if (page)
  1212. goto got_pg;
  1213. /*
  1214. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1215. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1216. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1217. * using a larger set of nodes after it has established that the
  1218. * allowed per node queues are empty and that nodes are
  1219. * over allocated.
  1220. */
  1221. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1222. goto nopage;
  1223. for (z = zonelist->zones; *z; z++)
  1224. wakeup_kswapd(*z, order);
  1225. /*
  1226. * OK, we're below the kswapd watermark and have kicked background
  1227. * reclaim. Now things get more complex, so set up alloc_flags according
  1228. * to how we want to proceed.
  1229. *
  1230. * The caller may dip into page reserves a bit more if the caller
  1231. * cannot run direct reclaim, or if the caller has realtime scheduling
  1232. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1233. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1234. */
  1235. alloc_flags = ALLOC_WMARK_MIN;
  1236. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1237. alloc_flags |= ALLOC_HARDER;
  1238. if (gfp_mask & __GFP_HIGH)
  1239. alloc_flags |= ALLOC_HIGH;
  1240. if (wait)
  1241. alloc_flags |= ALLOC_CPUSET;
  1242. /*
  1243. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1244. * coming from realtime tasks go deeper into reserves.
  1245. *
  1246. * This is the last chance, in general, before the goto nopage.
  1247. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1248. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1249. */
  1250. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  1251. if (page)
  1252. goto got_pg;
  1253. /* This allocation should allow future memory freeing. */
  1254. rebalance:
  1255. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1256. && !in_interrupt()) {
  1257. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1258. nofail_alloc:
  1259. /* go through the zonelist yet again, ignoring mins */
  1260. page = get_page_from_freelist(gfp_mask, order,
  1261. zonelist, ALLOC_NO_WATERMARKS);
  1262. if (page)
  1263. goto got_pg;
  1264. if (gfp_mask & __GFP_NOFAIL) {
  1265. congestion_wait(WRITE, HZ/50);
  1266. goto nofail_alloc;
  1267. }
  1268. }
  1269. goto nopage;
  1270. }
  1271. /* Atomic allocations - we can't balance anything */
  1272. if (!wait)
  1273. goto nopage;
  1274. cond_resched();
  1275. /* We now go into synchronous reclaim */
  1276. cpuset_memory_pressure_bump();
  1277. p->flags |= PF_MEMALLOC;
  1278. reclaim_state.reclaimed_slab = 0;
  1279. p->reclaim_state = &reclaim_state;
  1280. did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
  1281. p->reclaim_state = NULL;
  1282. p->flags &= ~PF_MEMALLOC;
  1283. cond_resched();
  1284. if (likely(did_some_progress)) {
  1285. page = get_page_from_freelist(gfp_mask, order,
  1286. zonelist, alloc_flags);
  1287. if (page)
  1288. goto got_pg;
  1289. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1290. /*
  1291. * Go through the zonelist yet one more time, keep
  1292. * very high watermark here, this is only to catch
  1293. * a parallel oom killing, we must fail if we're still
  1294. * under heavy pressure.
  1295. */
  1296. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1297. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1298. if (page)
  1299. goto got_pg;
  1300. /* The OOM killer will not help higher order allocs so fail */
  1301. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1302. goto nopage;
  1303. out_of_memory(zonelist, gfp_mask, order);
  1304. goto restart;
  1305. }
  1306. /*
  1307. * Don't let big-order allocations loop unless the caller explicitly
  1308. * requests that. Wait for some write requests to complete then retry.
  1309. *
  1310. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1311. * <= 3, but that may not be true in other implementations.
  1312. */
  1313. do_retry = 0;
  1314. if (!(gfp_mask & __GFP_NORETRY)) {
  1315. if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
  1316. (gfp_mask & __GFP_REPEAT))
  1317. do_retry = 1;
  1318. if (gfp_mask & __GFP_NOFAIL)
  1319. do_retry = 1;
  1320. }
  1321. if (do_retry) {
  1322. congestion_wait(WRITE, HZ/50);
  1323. goto rebalance;
  1324. }
  1325. nopage:
  1326. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1327. printk(KERN_WARNING "%s: page allocation failure."
  1328. " order:%d, mode:0x%x\n",
  1329. p->comm, order, gfp_mask);
  1330. dump_stack();
  1331. show_mem();
  1332. }
  1333. got_pg:
  1334. return page;
  1335. }
  1336. EXPORT_SYMBOL(__alloc_pages);
  1337. /*
  1338. * Common helper functions.
  1339. */
  1340. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1341. {
  1342. struct page * page;
  1343. page = alloc_pages(gfp_mask, order);
  1344. if (!page)
  1345. return 0;
  1346. return (unsigned long) page_address(page);
  1347. }
  1348. EXPORT_SYMBOL(__get_free_pages);
  1349. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  1350. {
  1351. struct page * page;
  1352. /*
  1353. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1354. * a highmem page
  1355. */
  1356. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1357. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1358. if (page)
  1359. return (unsigned long) page_address(page);
  1360. return 0;
  1361. }
  1362. EXPORT_SYMBOL(get_zeroed_page);
  1363. void __pagevec_free(struct pagevec *pvec)
  1364. {
  1365. int i = pagevec_count(pvec);
  1366. while (--i >= 0)
  1367. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1368. }
  1369. fastcall void __free_pages(struct page *page, unsigned int order)
  1370. {
  1371. if (put_page_testzero(page)) {
  1372. if (order == 0)
  1373. free_hot_page(page);
  1374. else
  1375. __free_pages_ok(page, order);
  1376. }
  1377. }
  1378. EXPORT_SYMBOL(__free_pages);
  1379. fastcall void free_pages(unsigned long addr, unsigned int order)
  1380. {
  1381. if (addr != 0) {
  1382. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1383. __free_pages(virt_to_page((void *)addr), order);
  1384. }
  1385. }
  1386. EXPORT_SYMBOL(free_pages);
  1387. static unsigned int nr_free_zone_pages(int offset)
  1388. {
  1389. /* Just pick one node, since fallback list is circular */
  1390. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1391. unsigned int sum = 0;
  1392. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1393. struct zone **zonep = zonelist->zones;
  1394. struct zone *zone;
  1395. for (zone = *zonep++; zone; zone = *zonep++) {
  1396. unsigned long size = zone->present_pages;
  1397. unsigned long high = zone->pages_high;
  1398. if (size > high)
  1399. sum += size - high;
  1400. }
  1401. return sum;
  1402. }
  1403. /*
  1404. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1405. */
  1406. unsigned int nr_free_buffer_pages(void)
  1407. {
  1408. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1409. }
  1410. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1411. /*
  1412. * Amount of free RAM allocatable within all zones
  1413. */
  1414. unsigned int nr_free_pagecache_pages(void)
  1415. {
  1416. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1417. }
  1418. static inline void show_node(struct zone *zone)
  1419. {
  1420. if (NUMA_BUILD)
  1421. printk("Node %d ", zone_to_nid(zone));
  1422. }
  1423. void si_meminfo(struct sysinfo *val)
  1424. {
  1425. val->totalram = totalram_pages;
  1426. val->sharedram = 0;
  1427. val->freeram = global_page_state(NR_FREE_PAGES);
  1428. val->bufferram = nr_blockdev_pages();
  1429. val->totalhigh = totalhigh_pages;
  1430. val->freehigh = nr_free_highpages();
  1431. val->mem_unit = PAGE_SIZE;
  1432. }
  1433. EXPORT_SYMBOL(si_meminfo);
  1434. #ifdef CONFIG_NUMA
  1435. void si_meminfo_node(struct sysinfo *val, int nid)
  1436. {
  1437. pg_data_t *pgdat = NODE_DATA(nid);
  1438. val->totalram = pgdat->node_present_pages;
  1439. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1440. #ifdef CONFIG_HIGHMEM
  1441. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1442. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1443. NR_FREE_PAGES);
  1444. #else
  1445. val->totalhigh = 0;
  1446. val->freehigh = 0;
  1447. #endif
  1448. val->mem_unit = PAGE_SIZE;
  1449. }
  1450. #endif
  1451. #define K(x) ((x) << (PAGE_SHIFT-10))
  1452. /*
  1453. * Show free area list (used inside shift_scroll-lock stuff)
  1454. * We also calculate the percentage fragmentation. We do this by counting the
  1455. * memory on each free list with the exception of the first item on the list.
  1456. */
  1457. void show_free_areas(void)
  1458. {
  1459. int cpu;
  1460. struct zone *zone;
  1461. for_each_zone(zone) {
  1462. if (!populated_zone(zone))
  1463. continue;
  1464. show_node(zone);
  1465. printk("%s per-cpu:\n", zone->name);
  1466. for_each_online_cpu(cpu) {
  1467. struct per_cpu_pageset *pageset;
  1468. pageset = zone_pcp(zone, cpu);
  1469. printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
  1470. "Cold: hi:%5d, btch:%4d usd:%4d\n",
  1471. cpu, pageset->pcp[0].high,
  1472. pageset->pcp[0].batch, pageset->pcp[0].count,
  1473. pageset->pcp[1].high, pageset->pcp[1].batch,
  1474. pageset->pcp[1].count);
  1475. }
  1476. }
  1477. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1478. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1479. global_page_state(NR_ACTIVE),
  1480. global_page_state(NR_INACTIVE),
  1481. global_page_state(NR_FILE_DIRTY),
  1482. global_page_state(NR_WRITEBACK),
  1483. global_page_state(NR_UNSTABLE_NFS),
  1484. global_page_state(NR_FREE_PAGES),
  1485. global_page_state(NR_SLAB_RECLAIMABLE) +
  1486. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1487. global_page_state(NR_FILE_MAPPED),
  1488. global_page_state(NR_PAGETABLE),
  1489. global_page_state(NR_BOUNCE));
  1490. for_each_zone(zone) {
  1491. int i;
  1492. if (!populated_zone(zone))
  1493. continue;
  1494. show_node(zone);
  1495. printk("%s"
  1496. " free:%lukB"
  1497. " min:%lukB"
  1498. " low:%lukB"
  1499. " high:%lukB"
  1500. " active:%lukB"
  1501. " inactive:%lukB"
  1502. " present:%lukB"
  1503. " pages_scanned:%lu"
  1504. " all_unreclaimable? %s"
  1505. "\n",
  1506. zone->name,
  1507. K(zone_page_state(zone, NR_FREE_PAGES)),
  1508. K(zone->pages_min),
  1509. K(zone->pages_low),
  1510. K(zone->pages_high),
  1511. K(zone_page_state(zone, NR_ACTIVE)),
  1512. K(zone_page_state(zone, NR_INACTIVE)),
  1513. K(zone->present_pages),
  1514. zone->pages_scanned,
  1515. (zone->all_unreclaimable ? "yes" : "no")
  1516. );
  1517. printk("lowmem_reserve[]:");
  1518. for (i = 0; i < MAX_NR_ZONES; i++)
  1519. printk(" %lu", zone->lowmem_reserve[i]);
  1520. printk("\n");
  1521. }
  1522. for_each_zone(zone) {
  1523. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1524. if (!populated_zone(zone))
  1525. continue;
  1526. show_node(zone);
  1527. printk("%s: ", zone->name);
  1528. spin_lock_irqsave(&zone->lock, flags);
  1529. for (order = 0; order < MAX_ORDER; order++) {
  1530. nr[order] = zone->free_area[order].nr_free;
  1531. total += nr[order] << order;
  1532. }
  1533. spin_unlock_irqrestore(&zone->lock, flags);
  1534. for (order = 0; order < MAX_ORDER; order++)
  1535. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1536. printk("= %lukB\n", K(total));
  1537. }
  1538. show_swap_cache_info();
  1539. }
  1540. /*
  1541. * Builds allocation fallback zone lists.
  1542. *
  1543. * Add all populated zones of a node to the zonelist.
  1544. */
  1545. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1546. int nr_zones, enum zone_type zone_type)
  1547. {
  1548. struct zone *zone;
  1549. BUG_ON(zone_type >= MAX_NR_ZONES);
  1550. zone_type++;
  1551. do {
  1552. zone_type--;
  1553. zone = pgdat->node_zones + zone_type;
  1554. if (populated_zone(zone)) {
  1555. zonelist->zones[nr_zones++] = zone;
  1556. check_highest_zone(zone_type);
  1557. }
  1558. } while (zone_type);
  1559. return nr_zones;
  1560. }
  1561. /*
  1562. * zonelist_order:
  1563. * 0 = automatic detection of better ordering.
  1564. * 1 = order by ([node] distance, -zonetype)
  1565. * 2 = order by (-zonetype, [node] distance)
  1566. *
  1567. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1568. * the same zonelist. So only NUMA can configure this param.
  1569. */
  1570. #define ZONELIST_ORDER_DEFAULT 0
  1571. #define ZONELIST_ORDER_NODE 1
  1572. #define ZONELIST_ORDER_ZONE 2
  1573. /* zonelist order in the kernel.
  1574. * set_zonelist_order() will set this to NODE or ZONE.
  1575. */
  1576. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1577. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1578. #ifdef CONFIG_NUMA
  1579. /* The value user specified ....changed by config */
  1580. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1581. /* string for sysctl */
  1582. #define NUMA_ZONELIST_ORDER_LEN 16
  1583. char numa_zonelist_order[16] = "default";
  1584. /*
  1585. * interface for configure zonelist ordering.
  1586. * command line option "numa_zonelist_order"
  1587. * = "[dD]efault - default, automatic configuration.
  1588. * = "[nN]ode - order by node locality, then by zone within node
  1589. * = "[zZ]one - order by zone, then by locality within zone
  1590. */
  1591. static int __parse_numa_zonelist_order(char *s)
  1592. {
  1593. if (*s == 'd' || *s == 'D') {
  1594. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1595. } else if (*s == 'n' || *s == 'N') {
  1596. user_zonelist_order = ZONELIST_ORDER_NODE;
  1597. } else if (*s == 'z' || *s == 'Z') {
  1598. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1599. } else {
  1600. printk(KERN_WARNING
  1601. "Ignoring invalid numa_zonelist_order value: "
  1602. "%s\n", s);
  1603. return -EINVAL;
  1604. }
  1605. return 0;
  1606. }
  1607. static __init int setup_numa_zonelist_order(char *s)
  1608. {
  1609. if (s)
  1610. return __parse_numa_zonelist_order(s);
  1611. return 0;
  1612. }
  1613. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1614. /*
  1615. * sysctl handler for numa_zonelist_order
  1616. */
  1617. int numa_zonelist_order_handler(ctl_table *table, int write,
  1618. struct file *file, void __user *buffer, size_t *length,
  1619. loff_t *ppos)
  1620. {
  1621. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1622. int ret;
  1623. if (write)
  1624. strncpy(saved_string, (char*)table->data,
  1625. NUMA_ZONELIST_ORDER_LEN);
  1626. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1627. if (ret)
  1628. return ret;
  1629. if (write) {
  1630. int oldval = user_zonelist_order;
  1631. if (__parse_numa_zonelist_order((char*)table->data)) {
  1632. /*
  1633. * bogus value. restore saved string
  1634. */
  1635. strncpy((char*)table->data, saved_string,
  1636. NUMA_ZONELIST_ORDER_LEN);
  1637. user_zonelist_order = oldval;
  1638. } else if (oldval != user_zonelist_order)
  1639. build_all_zonelists();
  1640. }
  1641. return 0;
  1642. }
  1643. #define MAX_NODE_LOAD (num_online_nodes())
  1644. static int node_load[MAX_NUMNODES];
  1645. /**
  1646. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1647. * @node: node whose fallback list we're appending
  1648. * @used_node_mask: nodemask_t of already used nodes
  1649. *
  1650. * We use a number of factors to determine which is the next node that should
  1651. * appear on a given node's fallback list. The node should not have appeared
  1652. * already in @node's fallback list, and it should be the next closest node
  1653. * according to the distance array (which contains arbitrary distance values
  1654. * from each node to each node in the system), and should also prefer nodes
  1655. * with no CPUs, since presumably they'll have very little allocation pressure
  1656. * on them otherwise.
  1657. * It returns -1 if no node is found.
  1658. */
  1659. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1660. {
  1661. int n, val;
  1662. int min_val = INT_MAX;
  1663. int best_node = -1;
  1664. /* Use the local node if we haven't already */
  1665. if (!node_isset(node, *used_node_mask)) {
  1666. node_set(node, *used_node_mask);
  1667. return node;
  1668. }
  1669. for_each_node_state(n, N_HIGH_MEMORY) {
  1670. cpumask_t tmp;
  1671. /* Don't want a node to appear more than once */
  1672. if (node_isset(n, *used_node_mask))
  1673. continue;
  1674. /* Use the distance array to find the distance */
  1675. val = node_distance(node, n);
  1676. /* Penalize nodes under us ("prefer the next node") */
  1677. val += (n < node);
  1678. /* Give preference to headless and unused nodes */
  1679. tmp = node_to_cpumask(n);
  1680. if (!cpus_empty(tmp))
  1681. val += PENALTY_FOR_NODE_WITH_CPUS;
  1682. /* Slight preference for less loaded node */
  1683. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1684. val += node_load[n];
  1685. if (val < min_val) {
  1686. min_val = val;
  1687. best_node = n;
  1688. }
  1689. }
  1690. if (best_node >= 0)
  1691. node_set(best_node, *used_node_mask);
  1692. return best_node;
  1693. }
  1694. /*
  1695. * Build zonelists ordered by node and zones within node.
  1696. * This results in maximum locality--normal zone overflows into local
  1697. * DMA zone, if any--but risks exhausting DMA zone.
  1698. */
  1699. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1700. {
  1701. enum zone_type i;
  1702. int j;
  1703. struct zonelist *zonelist;
  1704. for (i = 0; i < MAX_NR_ZONES; i++) {
  1705. zonelist = pgdat->node_zonelists + i;
  1706. for (j = 0; zonelist->zones[j] != NULL; j++)
  1707. ;
  1708. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1709. zonelist->zones[j] = NULL;
  1710. }
  1711. }
  1712. /*
  1713. * Build gfp_thisnode zonelists
  1714. */
  1715. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1716. {
  1717. enum zone_type i;
  1718. int j;
  1719. struct zonelist *zonelist;
  1720. for (i = 0; i < MAX_NR_ZONES; i++) {
  1721. zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
  1722. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1723. zonelist->zones[j] = NULL;
  1724. }
  1725. }
  1726. /*
  1727. * Build zonelists ordered by zone and nodes within zones.
  1728. * This results in conserving DMA zone[s] until all Normal memory is
  1729. * exhausted, but results in overflowing to remote node while memory
  1730. * may still exist in local DMA zone.
  1731. */
  1732. static int node_order[MAX_NUMNODES];
  1733. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1734. {
  1735. enum zone_type i;
  1736. int pos, j, node;
  1737. int zone_type; /* needs to be signed */
  1738. struct zone *z;
  1739. struct zonelist *zonelist;
  1740. for (i = 0; i < MAX_NR_ZONES; i++) {
  1741. zonelist = pgdat->node_zonelists + i;
  1742. pos = 0;
  1743. for (zone_type = i; zone_type >= 0; zone_type--) {
  1744. for (j = 0; j < nr_nodes; j++) {
  1745. node = node_order[j];
  1746. z = &NODE_DATA(node)->node_zones[zone_type];
  1747. if (populated_zone(z)) {
  1748. zonelist->zones[pos++] = z;
  1749. check_highest_zone(zone_type);
  1750. }
  1751. }
  1752. }
  1753. zonelist->zones[pos] = NULL;
  1754. }
  1755. }
  1756. static int default_zonelist_order(void)
  1757. {
  1758. int nid, zone_type;
  1759. unsigned long low_kmem_size,total_size;
  1760. struct zone *z;
  1761. int average_size;
  1762. /*
  1763. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1764. * If they are really small and used heavily, the system can fall
  1765. * into OOM very easily.
  1766. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1767. */
  1768. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1769. low_kmem_size = 0;
  1770. total_size = 0;
  1771. for_each_online_node(nid) {
  1772. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1773. z = &NODE_DATA(nid)->node_zones[zone_type];
  1774. if (populated_zone(z)) {
  1775. if (zone_type < ZONE_NORMAL)
  1776. low_kmem_size += z->present_pages;
  1777. total_size += z->present_pages;
  1778. }
  1779. }
  1780. }
  1781. if (!low_kmem_size || /* there are no DMA area. */
  1782. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1783. return ZONELIST_ORDER_NODE;
  1784. /*
  1785. * look into each node's config.
  1786. * If there is a node whose DMA/DMA32 memory is very big area on
  1787. * local memory, NODE_ORDER may be suitable.
  1788. */
  1789. average_size = total_size /
  1790. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1791. for_each_online_node(nid) {
  1792. low_kmem_size = 0;
  1793. total_size = 0;
  1794. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1795. z = &NODE_DATA(nid)->node_zones[zone_type];
  1796. if (populated_zone(z)) {
  1797. if (zone_type < ZONE_NORMAL)
  1798. low_kmem_size += z->present_pages;
  1799. total_size += z->present_pages;
  1800. }
  1801. }
  1802. if (low_kmem_size &&
  1803. total_size > average_size && /* ignore small node */
  1804. low_kmem_size > total_size * 70/100)
  1805. return ZONELIST_ORDER_NODE;
  1806. }
  1807. return ZONELIST_ORDER_ZONE;
  1808. }
  1809. static void set_zonelist_order(void)
  1810. {
  1811. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1812. current_zonelist_order = default_zonelist_order();
  1813. else
  1814. current_zonelist_order = user_zonelist_order;
  1815. }
  1816. static void build_zonelists(pg_data_t *pgdat)
  1817. {
  1818. int j, node, load;
  1819. enum zone_type i;
  1820. nodemask_t used_mask;
  1821. int local_node, prev_node;
  1822. struct zonelist *zonelist;
  1823. int order = current_zonelist_order;
  1824. /* initialize zonelists */
  1825. for (i = 0; i < MAX_ZONELISTS; i++) {
  1826. zonelist = pgdat->node_zonelists + i;
  1827. zonelist->zones[0] = NULL;
  1828. }
  1829. /* NUMA-aware ordering of nodes */
  1830. local_node = pgdat->node_id;
  1831. load = num_online_nodes();
  1832. prev_node = local_node;
  1833. nodes_clear(used_mask);
  1834. memset(node_load, 0, sizeof(node_load));
  1835. memset(node_order, 0, sizeof(node_order));
  1836. j = 0;
  1837. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1838. int distance = node_distance(local_node, node);
  1839. /*
  1840. * If another node is sufficiently far away then it is better
  1841. * to reclaim pages in a zone before going off node.
  1842. */
  1843. if (distance > RECLAIM_DISTANCE)
  1844. zone_reclaim_mode = 1;
  1845. /*
  1846. * We don't want to pressure a particular node.
  1847. * So adding penalty to the first node in same
  1848. * distance group to make it round-robin.
  1849. */
  1850. if (distance != node_distance(local_node, prev_node))
  1851. node_load[node] = load;
  1852. prev_node = node;
  1853. load--;
  1854. if (order == ZONELIST_ORDER_NODE)
  1855. build_zonelists_in_node_order(pgdat, node);
  1856. else
  1857. node_order[j++] = node; /* remember order */
  1858. }
  1859. if (order == ZONELIST_ORDER_ZONE) {
  1860. /* calculate node order -- i.e., DMA last! */
  1861. build_zonelists_in_zone_order(pgdat, j);
  1862. }
  1863. build_thisnode_zonelists(pgdat);
  1864. }
  1865. /* Construct the zonelist performance cache - see further mmzone.h */
  1866. static void build_zonelist_cache(pg_data_t *pgdat)
  1867. {
  1868. int i;
  1869. for (i = 0; i < MAX_NR_ZONES; i++) {
  1870. struct zonelist *zonelist;
  1871. struct zonelist_cache *zlc;
  1872. struct zone **z;
  1873. zonelist = pgdat->node_zonelists + i;
  1874. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1875. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1876. for (z = zonelist->zones; *z; z++)
  1877. zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
  1878. }
  1879. }
  1880. #else /* CONFIG_NUMA */
  1881. static void set_zonelist_order(void)
  1882. {
  1883. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1884. }
  1885. static void build_zonelists(pg_data_t *pgdat)
  1886. {
  1887. int node, local_node;
  1888. enum zone_type i,j;
  1889. local_node = pgdat->node_id;
  1890. for (i = 0; i < MAX_NR_ZONES; i++) {
  1891. struct zonelist *zonelist;
  1892. zonelist = pgdat->node_zonelists + i;
  1893. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1894. /*
  1895. * Now we build the zonelist so that it contains the zones
  1896. * of all the other nodes.
  1897. * We don't want to pressure a particular node, so when
  1898. * building the zones for node N, we make sure that the
  1899. * zones coming right after the local ones are those from
  1900. * node N+1 (modulo N)
  1901. */
  1902. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1903. if (!node_online(node))
  1904. continue;
  1905. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1906. }
  1907. for (node = 0; node < local_node; node++) {
  1908. if (!node_online(node))
  1909. continue;
  1910. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1911. }
  1912. zonelist->zones[j] = NULL;
  1913. }
  1914. }
  1915. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  1916. static void build_zonelist_cache(pg_data_t *pgdat)
  1917. {
  1918. int i;
  1919. for (i = 0; i < MAX_NR_ZONES; i++)
  1920. pgdat->node_zonelists[i].zlcache_ptr = NULL;
  1921. }
  1922. #endif /* CONFIG_NUMA */
  1923. /* return values int ....just for stop_machine_run() */
  1924. static int __build_all_zonelists(void *dummy)
  1925. {
  1926. int nid;
  1927. for_each_online_node(nid) {
  1928. pg_data_t *pgdat = NODE_DATA(nid);
  1929. build_zonelists(pgdat);
  1930. build_zonelist_cache(pgdat);
  1931. }
  1932. return 0;
  1933. }
  1934. void build_all_zonelists(void)
  1935. {
  1936. set_zonelist_order();
  1937. if (system_state == SYSTEM_BOOTING) {
  1938. __build_all_zonelists(NULL);
  1939. cpuset_init_current_mems_allowed();
  1940. } else {
  1941. /* we have to stop all cpus to guaranntee there is no user
  1942. of zonelist */
  1943. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  1944. /* cpuset refresh routine should be here */
  1945. }
  1946. vm_total_pages = nr_free_pagecache_pages();
  1947. printk("Built %i zonelists in %s order. Total pages: %ld\n",
  1948. num_online_nodes(),
  1949. zonelist_order_name[current_zonelist_order],
  1950. vm_total_pages);
  1951. #ifdef CONFIG_NUMA
  1952. printk("Policy zone: %s\n", zone_names[policy_zone]);
  1953. #endif
  1954. }
  1955. /*
  1956. * Helper functions to size the waitqueue hash table.
  1957. * Essentially these want to choose hash table sizes sufficiently
  1958. * large so that collisions trying to wait on pages are rare.
  1959. * But in fact, the number of active page waitqueues on typical
  1960. * systems is ridiculously low, less than 200. So this is even
  1961. * conservative, even though it seems large.
  1962. *
  1963. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1964. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1965. */
  1966. #define PAGES_PER_WAITQUEUE 256
  1967. #ifndef CONFIG_MEMORY_HOTPLUG
  1968. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  1969. {
  1970. unsigned long size = 1;
  1971. pages /= PAGES_PER_WAITQUEUE;
  1972. while (size < pages)
  1973. size <<= 1;
  1974. /*
  1975. * Once we have dozens or even hundreds of threads sleeping
  1976. * on IO we've got bigger problems than wait queue collision.
  1977. * Limit the size of the wait table to a reasonable size.
  1978. */
  1979. size = min(size, 4096UL);
  1980. return max(size, 4UL);
  1981. }
  1982. #else
  1983. /*
  1984. * A zone's size might be changed by hot-add, so it is not possible to determine
  1985. * a suitable size for its wait_table. So we use the maximum size now.
  1986. *
  1987. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  1988. *
  1989. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  1990. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  1991. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  1992. *
  1993. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  1994. * or more by the traditional way. (See above). It equals:
  1995. *
  1996. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  1997. * ia64(16K page size) : = ( 8G + 4M)byte.
  1998. * powerpc (64K page size) : = (32G +16M)byte.
  1999. */
  2000. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2001. {
  2002. return 4096UL;
  2003. }
  2004. #endif
  2005. /*
  2006. * This is an integer logarithm so that shifts can be used later
  2007. * to extract the more random high bits from the multiplicative
  2008. * hash function before the remainder is taken.
  2009. */
  2010. static inline unsigned long wait_table_bits(unsigned long size)
  2011. {
  2012. return ffz(~size);
  2013. }
  2014. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2015. /*
  2016. * Initially all pages are reserved - free ones are freed
  2017. * up by free_all_bootmem() once the early boot process is
  2018. * done. Non-atomic initialization, single-pass.
  2019. */
  2020. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2021. unsigned long start_pfn, enum memmap_context context)
  2022. {
  2023. struct page *page;
  2024. unsigned long end_pfn = start_pfn + size;
  2025. unsigned long pfn;
  2026. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2027. /*
  2028. * There can be holes in boot-time mem_map[]s
  2029. * handed to this function. They do not
  2030. * exist on hotplugged memory.
  2031. */
  2032. if (context == MEMMAP_EARLY) {
  2033. if (!early_pfn_valid(pfn))
  2034. continue;
  2035. if (!early_pfn_in_nid(pfn, nid))
  2036. continue;
  2037. }
  2038. page = pfn_to_page(pfn);
  2039. set_page_links(page, zone, nid, pfn);
  2040. init_page_count(page);
  2041. reset_page_mapcount(page);
  2042. SetPageReserved(page);
  2043. /*
  2044. * Mark the block movable so that blocks are reserved for
  2045. * movable at startup. This will force kernel allocations
  2046. * to reserve their blocks rather than leaking throughout
  2047. * the address space during boot when many long-lived
  2048. * kernel allocations are made
  2049. */
  2050. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2051. INIT_LIST_HEAD(&page->lru);
  2052. #ifdef WANT_PAGE_VIRTUAL
  2053. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2054. if (!is_highmem_idx(zone))
  2055. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2056. #endif
  2057. }
  2058. }
  2059. static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
  2060. struct zone *zone, unsigned long size)
  2061. {
  2062. int order, t;
  2063. for_each_migratetype_order(order, t) {
  2064. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2065. zone->free_area[order].nr_free = 0;
  2066. }
  2067. }
  2068. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2069. #define memmap_init(size, nid, zone, start_pfn) \
  2070. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2071. #endif
  2072. static int __devinit zone_batchsize(struct zone *zone)
  2073. {
  2074. int batch;
  2075. /*
  2076. * The per-cpu-pages pools are set to around 1000th of the
  2077. * size of the zone. But no more than 1/2 of a meg.
  2078. *
  2079. * OK, so we don't know how big the cache is. So guess.
  2080. */
  2081. batch = zone->present_pages / 1024;
  2082. if (batch * PAGE_SIZE > 512 * 1024)
  2083. batch = (512 * 1024) / PAGE_SIZE;
  2084. batch /= 4; /* We effectively *= 4 below */
  2085. if (batch < 1)
  2086. batch = 1;
  2087. /*
  2088. * Clamp the batch to a 2^n - 1 value. Having a power
  2089. * of 2 value was found to be more likely to have
  2090. * suboptimal cache aliasing properties in some cases.
  2091. *
  2092. * For example if 2 tasks are alternately allocating
  2093. * batches of pages, one task can end up with a lot
  2094. * of pages of one half of the possible page colors
  2095. * and the other with pages of the other colors.
  2096. */
  2097. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2098. return batch;
  2099. }
  2100. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2101. {
  2102. struct per_cpu_pages *pcp;
  2103. memset(p, 0, sizeof(*p));
  2104. pcp = &p->pcp[0]; /* hot */
  2105. pcp->count = 0;
  2106. pcp->high = 6 * batch;
  2107. pcp->batch = max(1UL, 1 * batch);
  2108. INIT_LIST_HEAD(&pcp->list);
  2109. pcp = &p->pcp[1]; /* cold*/
  2110. pcp->count = 0;
  2111. pcp->high = 2 * batch;
  2112. pcp->batch = max(1UL, batch/2);
  2113. INIT_LIST_HEAD(&pcp->list);
  2114. }
  2115. /*
  2116. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2117. * to the value high for the pageset p.
  2118. */
  2119. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2120. unsigned long high)
  2121. {
  2122. struct per_cpu_pages *pcp;
  2123. pcp = &p->pcp[0]; /* hot list */
  2124. pcp->high = high;
  2125. pcp->batch = max(1UL, high/4);
  2126. if ((high/4) > (PAGE_SHIFT * 8))
  2127. pcp->batch = PAGE_SHIFT * 8;
  2128. }
  2129. #ifdef CONFIG_NUMA
  2130. /*
  2131. * Boot pageset table. One per cpu which is going to be used for all
  2132. * zones and all nodes. The parameters will be set in such a way
  2133. * that an item put on a list will immediately be handed over to
  2134. * the buddy list. This is safe since pageset manipulation is done
  2135. * with interrupts disabled.
  2136. *
  2137. * Some NUMA counter updates may also be caught by the boot pagesets.
  2138. *
  2139. * The boot_pagesets must be kept even after bootup is complete for
  2140. * unused processors and/or zones. They do play a role for bootstrapping
  2141. * hotplugged processors.
  2142. *
  2143. * zoneinfo_show() and maybe other functions do
  2144. * not check if the processor is online before following the pageset pointer.
  2145. * Other parts of the kernel may not check if the zone is available.
  2146. */
  2147. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2148. /*
  2149. * Dynamically allocate memory for the
  2150. * per cpu pageset array in struct zone.
  2151. */
  2152. static int __cpuinit process_zones(int cpu)
  2153. {
  2154. struct zone *zone, *dzone;
  2155. int node = cpu_to_node(cpu);
  2156. node_set_state(node, N_CPU); /* this node has a cpu */
  2157. for_each_zone(zone) {
  2158. if (!populated_zone(zone))
  2159. continue;
  2160. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2161. GFP_KERNEL, node);
  2162. if (!zone_pcp(zone, cpu))
  2163. goto bad;
  2164. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2165. if (percpu_pagelist_fraction)
  2166. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2167. (zone->present_pages / percpu_pagelist_fraction));
  2168. }
  2169. return 0;
  2170. bad:
  2171. for_each_zone(dzone) {
  2172. if (!populated_zone(dzone))
  2173. continue;
  2174. if (dzone == zone)
  2175. break;
  2176. kfree(zone_pcp(dzone, cpu));
  2177. zone_pcp(dzone, cpu) = NULL;
  2178. }
  2179. return -ENOMEM;
  2180. }
  2181. static inline void free_zone_pagesets(int cpu)
  2182. {
  2183. struct zone *zone;
  2184. for_each_zone(zone) {
  2185. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2186. /* Free per_cpu_pageset if it is slab allocated */
  2187. if (pset != &boot_pageset[cpu])
  2188. kfree(pset);
  2189. zone_pcp(zone, cpu) = NULL;
  2190. }
  2191. }
  2192. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2193. unsigned long action,
  2194. void *hcpu)
  2195. {
  2196. int cpu = (long)hcpu;
  2197. int ret = NOTIFY_OK;
  2198. switch (action) {
  2199. case CPU_UP_PREPARE:
  2200. case CPU_UP_PREPARE_FROZEN:
  2201. if (process_zones(cpu))
  2202. ret = NOTIFY_BAD;
  2203. break;
  2204. case CPU_UP_CANCELED:
  2205. case CPU_UP_CANCELED_FROZEN:
  2206. case CPU_DEAD:
  2207. case CPU_DEAD_FROZEN:
  2208. free_zone_pagesets(cpu);
  2209. break;
  2210. default:
  2211. break;
  2212. }
  2213. return ret;
  2214. }
  2215. static struct notifier_block __cpuinitdata pageset_notifier =
  2216. { &pageset_cpuup_callback, NULL, 0 };
  2217. void __init setup_per_cpu_pageset(void)
  2218. {
  2219. int err;
  2220. /* Initialize per_cpu_pageset for cpu 0.
  2221. * A cpuup callback will do this for every cpu
  2222. * as it comes online
  2223. */
  2224. err = process_zones(smp_processor_id());
  2225. BUG_ON(err);
  2226. register_cpu_notifier(&pageset_notifier);
  2227. }
  2228. #endif
  2229. static noinline __init_refok
  2230. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2231. {
  2232. int i;
  2233. struct pglist_data *pgdat = zone->zone_pgdat;
  2234. size_t alloc_size;
  2235. /*
  2236. * The per-page waitqueue mechanism uses hashed waitqueues
  2237. * per zone.
  2238. */
  2239. zone->wait_table_hash_nr_entries =
  2240. wait_table_hash_nr_entries(zone_size_pages);
  2241. zone->wait_table_bits =
  2242. wait_table_bits(zone->wait_table_hash_nr_entries);
  2243. alloc_size = zone->wait_table_hash_nr_entries
  2244. * sizeof(wait_queue_head_t);
  2245. if (system_state == SYSTEM_BOOTING) {
  2246. zone->wait_table = (wait_queue_head_t *)
  2247. alloc_bootmem_node(pgdat, alloc_size);
  2248. } else {
  2249. /*
  2250. * This case means that a zone whose size was 0 gets new memory
  2251. * via memory hot-add.
  2252. * But it may be the case that a new node was hot-added. In
  2253. * this case vmalloc() will not be able to use this new node's
  2254. * memory - this wait_table must be initialized to use this new
  2255. * node itself as well.
  2256. * To use this new node's memory, further consideration will be
  2257. * necessary.
  2258. */
  2259. zone->wait_table = vmalloc(alloc_size);
  2260. }
  2261. if (!zone->wait_table)
  2262. return -ENOMEM;
  2263. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2264. init_waitqueue_head(zone->wait_table + i);
  2265. return 0;
  2266. }
  2267. static __meminit void zone_pcp_init(struct zone *zone)
  2268. {
  2269. int cpu;
  2270. unsigned long batch = zone_batchsize(zone);
  2271. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2272. #ifdef CONFIG_NUMA
  2273. /* Early boot. Slab allocator not functional yet */
  2274. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2275. setup_pageset(&boot_pageset[cpu],0);
  2276. #else
  2277. setup_pageset(zone_pcp(zone,cpu), batch);
  2278. #endif
  2279. }
  2280. if (zone->present_pages)
  2281. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2282. zone->name, zone->present_pages, batch);
  2283. }
  2284. __meminit int init_currently_empty_zone(struct zone *zone,
  2285. unsigned long zone_start_pfn,
  2286. unsigned long size,
  2287. enum memmap_context context)
  2288. {
  2289. struct pglist_data *pgdat = zone->zone_pgdat;
  2290. int ret;
  2291. ret = zone_wait_table_init(zone, size);
  2292. if (ret)
  2293. return ret;
  2294. pgdat->nr_zones = zone_idx(zone) + 1;
  2295. zone->zone_start_pfn = zone_start_pfn;
  2296. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  2297. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  2298. return 0;
  2299. }
  2300. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2301. /*
  2302. * Basic iterator support. Return the first range of PFNs for a node
  2303. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2304. */
  2305. static int __meminit first_active_region_index_in_nid(int nid)
  2306. {
  2307. int i;
  2308. for (i = 0; i < nr_nodemap_entries; i++)
  2309. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2310. return i;
  2311. return -1;
  2312. }
  2313. /*
  2314. * Basic iterator support. Return the next active range of PFNs for a node
  2315. * Note: nid == MAX_NUMNODES returns next region regardles of node
  2316. */
  2317. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2318. {
  2319. for (index = index + 1; index < nr_nodemap_entries; index++)
  2320. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2321. return index;
  2322. return -1;
  2323. }
  2324. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2325. /*
  2326. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2327. * Architectures may implement their own version but if add_active_range()
  2328. * was used and there are no special requirements, this is a convenient
  2329. * alternative
  2330. */
  2331. int __meminit early_pfn_to_nid(unsigned long pfn)
  2332. {
  2333. int i;
  2334. for (i = 0; i < nr_nodemap_entries; i++) {
  2335. unsigned long start_pfn = early_node_map[i].start_pfn;
  2336. unsigned long end_pfn = early_node_map[i].end_pfn;
  2337. if (start_pfn <= pfn && pfn < end_pfn)
  2338. return early_node_map[i].nid;
  2339. }
  2340. return 0;
  2341. }
  2342. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2343. /* Basic iterator support to walk early_node_map[] */
  2344. #define for_each_active_range_index_in_nid(i, nid) \
  2345. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2346. i = next_active_region_index_in_nid(i, nid))
  2347. /**
  2348. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2349. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2350. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2351. *
  2352. * If an architecture guarantees that all ranges registered with
  2353. * add_active_ranges() contain no holes and may be freed, this
  2354. * this function may be used instead of calling free_bootmem() manually.
  2355. */
  2356. void __init free_bootmem_with_active_regions(int nid,
  2357. unsigned long max_low_pfn)
  2358. {
  2359. int i;
  2360. for_each_active_range_index_in_nid(i, nid) {
  2361. unsigned long size_pages = 0;
  2362. unsigned long end_pfn = early_node_map[i].end_pfn;
  2363. if (early_node_map[i].start_pfn >= max_low_pfn)
  2364. continue;
  2365. if (end_pfn > max_low_pfn)
  2366. end_pfn = max_low_pfn;
  2367. size_pages = end_pfn - early_node_map[i].start_pfn;
  2368. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2369. PFN_PHYS(early_node_map[i].start_pfn),
  2370. size_pages << PAGE_SHIFT);
  2371. }
  2372. }
  2373. /**
  2374. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2375. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2376. *
  2377. * If an architecture guarantees that all ranges registered with
  2378. * add_active_ranges() contain no holes and may be freed, this
  2379. * function may be used instead of calling memory_present() manually.
  2380. */
  2381. void __init sparse_memory_present_with_active_regions(int nid)
  2382. {
  2383. int i;
  2384. for_each_active_range_index_in_nid(i, nid)
  2385. memory_present(early_node_map[i].nid,
  2386. early_node_map[i].start_pfn,
  2387. early_node_map[i].end_pfn);
  2388. }
  2389. /**
  2390. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2391. * @nid: The nid of the node to push the boundary for
  2392. * @start_pfn: The start pfn of the node
  2393. * @end_pfn: The end pfn of the node
  2394. *
  2395. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2396. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2397. * be hotplugged even though no physical memory exists. This function allows
  2398. * an arch to push out the node boundaries so mem_map is allocated that can
  2399. * be used later.
  2400. */
  2401. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2402. void __init push_node_boundaries(unsigned int nid,
  2403. unsigned long start_pfn, unsigned long end_pfn)
  2404. {
  2405. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2406. nid, start_pfn, end_pfn);
  2407. /* Initialise the boundary for this node if necessary */
  2408. if (node_boundary_end_pfn[nid] == 0)
  2409. node_boundary_start_pfn[nid] = -1UL;
  2410. /* Update the boundaries */
  2411. if (node_boundary_start_pfn[nid] > start_pfn)
  2412. node_boundary_start_pfn[nid] = start_pfn;
  2413. if (node_boundary_end_pfn[nid] < end_pfn)
  2414. node_boundary_end_pfn[nid] = end_pfn;
  2415. }
  2416. /* If necessary, push the node boundary out for reserve hotadd */
  2417. static void __meminit account_node_boundary(unsigned int nid,
  2418. unsigned long *start_pfn, unsigned long *end_pfn)
  2419. {
  2420. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2421. nid, *start_pfn, *end_pfn);
  2422. /* Return if boundary information has not been provided */
  2423. if (node_boundary_end_pfn[nid] == 0)
  2424. return;
  2425. /* Check the boundaries and update if necessary */
  2426. if (node_boundary_start_pfn[nid] < *start_pfn)
  2427. *start_pfn = node_boundary_start_pfn[nid];
  2428. if (node_boundary_end_pfn[nid] > *end_pfn)
  2429. *end_pfn = node_boundary_end_pfn[nid];
  2430. }
  2431. #else
  2432. void __init push_node_boundaries(unsigned int nid,
  2433. unsigned long start_pfn, unsigned long end_pfn) {}
  2434. static void __meminit account_node_boundary(unsigned int nid,
  2435. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2436. #endif
  2437. /**
  2438. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2439. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2440. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2441. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2442. *
  2443. * It returns the start and end page frame of a node based on information
  2444. * provided by an arch calling add_active_range(). If called for a node
  2445. * with no available memory, a warning is printed and the start and end
  2446. * PFNs will be 0.
  2447. */
  2448. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2449. unsigned long *start_pfn, unsigned long *end_pfn)
  2450. {
  2451. int i;
  2452. *start_pfn = -1UL;
  2453. *end_pfn = 0;
  2454. for_each_active_range_index_in_nid(i, nid) {
  2455. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2456. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2457. }
  2458. if (*start_pfn == -1UL)
  2459. *start_pfn = 0;
  2460. /* Push the node boundaries out if requested */
  2461. account_node_boundary(nid, start_pfn, end_pfn);
  2462. }
  2463. /*
  2464. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2465. * assumption is made that zones within a node are ordered in monotonic
  2466. * increasing memory addresses so that the "highest" populated zone is used
  2467. */
  2468. void __init find_usable_zone_for_movable(void)
  2469. {
  2470. int zone_index;
  2471. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2472. if (zone_index == ZONE_MOVABLE)
  2473. continue;
  2474. if (arch_zone_highest_possible_pfn[zone_index] >
  2475. arch_zone_lowest_possible_pfn[zone_index])
  2476. break;
  2477. }
  2478. VM_BUG_ON(zone_index == -1);
  2479. movable_zone = zone_index;
  2480. }
  2481. /*
  2482. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2483. * because it is sized independant of architecture. Unlike the other zones,
  2484. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2485. * in each node depending on the size of each node and how evenly kernelcore
  2486. * is distributed. This helper function adjusts the zone ranges
  2487. * provided by the architecture for a given node by using the end of the
  2488. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2489. * zones within a node are in order of monotonic increases memory addresses
  2490. */
  2491. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2492. unsigned long zone_type,
  2493. unsigned long node_start_pfn,
  2494. unsigned long node_end_pfn,
  2495. unsigned long *zone_start_pfn,
  2496. unsigned long *zone_end_pfn)
  2497. {
  2498. /* Only adjust if ZONE_MOVABLE is on this node */
  2499. if (zone_movable_pfn[nid]) {
  2500. /* Size ZONE_MOVABLE */
  2501. if (zone_type == ZONE_MOVABLE) {
  2502. *zone_start_pfn = zone_movable_pfn[nid];
  2503. *zone_end_pfn = min(node_end_pfn,
  2504. arch_zone_highest_possible_pfn[movable_zone]);
  2505. /* Adjust for ZONE_MOVABLE starting within this range */
  2506. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2507. *zone_end_pfn > zone_movable_pfn[nid]) {
  2508. *zone_end_pfn = zone_movable_pfn[nid];
  2509. /* Check if this whole range is within ZONE_MOVABLE */
  2510. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2511. *zone_start_pfn = *zone_end_pfn;
  2512. }
  2513. }
  2514. /*
  2515. * Return the number of pages a zone spans in a node, including holes
  2516. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2517. */
  2518. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2519. unsigned long zone_type,
  2520. unsigned long *ignored)
  2521. {
  2522. unsigned long node_start_pfn, node_end_pfn;
  2523. unsigned long zone_start_pfn, zone_end_pfn;
  2524. /* Get the start and end of the node and zone */
  2525. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2526. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2527. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2528. adjust_zone_range_for_zone_movable(nid, zone_type,
  2529. node_start_pfn, node_end_pfn,
  2530. &zone_start_pfn, &zone_end_pfn);
  2531. /* Check that this node has pages within the zone's required range */
  2532. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2533. return 0;
  2534. /* Move the zone boundaries inside the node if necessary */
  2535. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2536. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2537. /* Return the spanned pages */
  2538. return zone_end_pfn - zone_start_pfn;
  2539. }
  2540. /*
  2541. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2542. * then all holes in the requested range will be accounted for.
  2543. */
  2544. unsigned long __meminit __absent_pages_in_range(int nid,
  2545. unsigned long range_start_pfn,
  2546. unsigned long range_end_pfn)
  2547. {
  2548. int i = 0;
  2549. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2550. unsigned long start_pfn;
  2551. /* Find the end_pfn of the first active range of pfns in the node */
  2552. i = first_active_region_index_in_nid(nid);
  2553. if (i == -1)
  2554. return 0;
  2555. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2556. /* Account for ranges before physical memory on this node */
  2557. if (early_node_map[i].start_pfn > range_start_pfn)
  2558. hole_pages = prev_end_pfn - range_start_pfn;
  2559. /* Find all holes for the zone within the node */
  2560. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2561. /* No need to continue if prev_end_pfn is outside the zone */
  2562. if (prev_end_pfn >= range_end_pfn)
  2563. break;
  2564. /* Make sure the end of the zone is not within the hole */
  2565. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2566. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2567. /* Update the hole size cound and move on */
  2568. if (start_pfn > range_start_pfn) {
  2569. BUG_ON(prev_end_pfn > start_pfn);
  2570. hole_pages += start_pfn - prev_end_pfn;
  2571. }
  2572. prev_end_pfn = early_node_map[i].end_pfn;
  2573. }
  2574. /* Account for ranges past physical memory on this node */
  2575. if (range_end_pfn > prev_end_pfn)
  2576. hole_pages += range_end_pfn -
  2577. max(range_start_pfn, prev_end_pfn);
  2578. return hole_pages;
  2579. }
  2580. /**
  2581. * absent_pages_in_range - Return number of page frames in holes within a range
  2582. * @start_pfn: The start PFN to start searching for holes
  2583. * @end_pfn: The end PFN to stop searching for holes
  2584. *
  2585. * It returns the number of pages frames in memory holes within a range.
  2586. */
  2587. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2588. unsigned long end_pfn)
  2589. {
  2590. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2591. }
  2592. /* Return the number of page frames in holes in a zone on a node */
  2593. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2594. unsigned long zone_type,
  2595. unsigned long *ignored)
  2596. {
  2597. unsigned long node_start_pfn, node_end_pfn;
  2598. unsigned long zone_start_pfn, zone_end_pfn;
  2599. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2600. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2601. node_start_pfn);
  2602. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2603. node_end_pfn);
  2604. adjust_zone_range_for_zone_movable(nid, zone_type,
  2605. node_start_pfn, node_end_pfn,
  2606. &zone_start_pfn, &zone_end_pfn);
  2607. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2608. }
  2609. #else
  2610. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2611. unsigned long zone_type,
  2612. unsigned long *zones_size)
  2613. {
  2614. return zones_size[zone_type];
  2615. }
  2616. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2617. unsigned long zone_type,
  2618. unsigned long *zholes_size)
  2619. {
  2620. if (!zholes_size)
  2621. return 0;
  2622. return zholes_size[zone_type];
  2623. }
  2624. #endif
  2625. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2626. unsigned long *zones_size, unsigned long *zholes_size)
  2627. {
  2628. unsigned long realtotalpages, totalpages = 0;
  2629. enum zone_type i;
  2630. for (i = 0; i < MAX_NR_ZONES; i++)
  2631. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2632. zones_size);
  2633. pgdat->node_spanned_pages = totalpages;
  2634. realtotalpages = totalpages;
  2635. for (i = 0; i < MAX_NR_ZONES; i++)
  2636. realtotalpages -=
  2637. zone_absent_pages_in_node(pgdat->node_id, i,
  2638. zholes_size);
  2639. pgdat->node_present_pages = realtotalpages;
  2640. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2641. realtotalpages);
  2642. }
  2643. #ifndef CONFIG_SPARSEMEM
  2644. /*
  2645. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2646. * Start by making sure zonesize is a multiple of MAX_ORDER-1 by rounding up
  2647. * Then figure 1 NR_PAGEBLOCK_BITS worth of bits per MAX_ORDER-1, finally
  2648. * round what is now in bits to nearest long in bits, then return it in
  2649. * bytes.
  2650. */
  2651. static unsigned long __init usemap_size(unsigned long zonesize)
  2652. {
  2653. unsigned long usemapsize;
  2654. usemapsize = roundup(zonesize, MAX_ORDER_NR_PAGES);
  2655. usemapsize = usemapsize >> (MAX_ORDER-1);
  2656. usemapsize *= NR_PAGEBLOCK_BITS;
  2657. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2658. return usemapsize / 8;
  2659. }
  2660. static void __init setup_usemap(struct pglist_data *pgdat,
  2661. struct zone *zone, unsigned long zonesize)
  2662. {
  2663. unsigned long usemapsize = usemap_size(zonesize);
  2664. zone->pageblock_flags = NULL;
  2665. if (usemapsize) {
  2666. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2667. memset(zone->pageblock_flags, 0, usemapsize);
  2668. }
  2669. }
  2670. #else
  2671. static void inline setup_usemap(struct pglist_data *pgdat,
  2672. struct zone *zone, unsigned long zonesize) {}
  2673. #endif /* CONFIG_SPARSEMEM */
  2674. /*
  2675. * Set up the zone data structures:
  2676. * - mark all pages reserved
  2677. * - mark all memory queues empty
  2678. * - clear the memory bitmaps
  2679. */
  2680. static void __meminit free_area_init_core(struct pglist_data *pgdat,
  2681. unsigned long *zones_size, unsigned long *zholes_size)
  2682. {
  2683. enum zone_type j;
  2684. int nid = pgdat->node_id;
  2685. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2686. int ret;
  2687. pgdat_resize_init(pgdat);
  2688. pgdat->nr_zones = 0;
  2689. init_waitqueue_head(&pgdat->kswapd_wait);
  2690. pgdat->kswapd_max_order = 0;
  2691. for (j = 0; j < MAX_NR_ZONES; j++) {
  2692. struct zone *zone = pgdat->node_zones + j;
  2693. unsigned long size, realsize, memmap_pages;
  2694. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2695. realsize = size - zone_absent_pages_in_node(nid, j,
  2696. zholes_size);
  2697. /*
  2698. * Adjust realsize so that it accounts for how much memory
  2699. * is used by this zone for memmap. This affects the watermark
  2700. * and per-cpu initialisations
  2701. */
  2702. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2703. if (realsize >= memmap_pages) {
  2704. realsize -= memmap_pages;
  2705. printk(KERN_DEBUG
  2706. " %s zone: %lu pages used for memmap\n",
  2707. zone_names[j], memmap_pages);
  2708. } else
  2709. printk(KERN_WARNING
  2710. " %s zone: %lu pages exceeds realsize %lu\n",
  2711. zone_names[j], memmap_pages, realsize);
  2712. /* Account for reserved pages */
  2713. if (j == 0 && realsize > dma_reserve) {
  2714. realsize -= dma_reserve;
  2715. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2716. zone_names[0], dma_reserve);
  2717. }
  2718. if (!is_highmem_idx(j))
  2719. nr_kernel_pages += realsize;
  2720. nr_all_pages += realsize;
  2721. zone->spanned_pages = size;
  2722. zone->present_pages = realsize;
  2723. #ifdef CONFIG_NUMA
  2724. zone->node = nid;
  2725. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2726. / 100;
  2727. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2728. #endif
  2729. zone->name = zone_names[j];
  2730. spin_lock_init(&zone->lock);
  2731. spin_lock_init(&zone->lru_lock);
  2732. zone_seqlock_init(zone);
  2733. zone->zone_pgdat = pgdat;
  2734. zone->prev_priority = DEF_PRIORITY;
  2735. zone_pcp_init(zone);
  2736. INIT_LIST_HEAD(&zone->active_list);
  2737. INIT_LIST_HEAD(&zone->inactive_list);
  2738. zone->nr_scan_active = 0;
  2739. zone->nr_scan_inactive = 0;
  2740. zap_zone_vm_stats(zone);
  2741. atomic_set(&zone->reclaim_in_progress, 0);
  2742. if (!size)
  2743. continue;
  2744. setup_usemap(pgdat, zone, size);
  2745. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2746. size, MEMMAP_EARLY);
  2747. BUG_ON(ret);
  2748. zone_start_pfn += size;
  2749. }
  2750. }
  2751. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2752. {
  2753. /* Skip empty nodes */
  2754. if (!pgdat->node_spanned_pages)
  2755. return;
  2756. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2757. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2758. if (!pgdat->node_mem_map) {
  2759. unsigned long size, start, end;
  2760. struct page *map;
  2761. /*
  2762. * The zone's endpoints aren't required to be MAX_ORDER
  2763. * aligned but the node_mem_map endpoints must be in order
  2764. * for the buddy allocator to function correctly.
  2765. */
  2766. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2767. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2768. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2769. size = (end - start) * sizeof(struct page);
  2770. map = alloc_remap(pgdat->node_id, size);
  2771. if (!map)
  2772. map = alloc_bootmem_node(pgdat, size);
  2773. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2774. }
  2775. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2776. /*
  2777. * With no DISCONTIG, the global mem_map is just set as node 0's
  2778. */
  2779. if (pgdat == NODE_DATA(0)) {
  2780. mem_map = NODE_DATA(0)->node_mem_map;
  2781. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2782. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2783. mem_map -= pgdat->node_start_pfn;
  2784. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2785. }
  2786. #endif
  2787. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2788. }
  2789. void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
  2790. unsigned long *zones_size, unsigned long node_start_pfn,
  2791. unsigned long *zholes_size)
  2792. {
  2793. pgdat->node_id = nid;
  2794. pgdat->node_start_pfn = node_start_pfn;
  2795. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2796. alloc_node_mem_map(pgdat);
  2797. free_area_init_core(pgdat, zones_size, zholes_size);
  2798. }
  2799. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2800. #if MAX_NUMNODES > 1
  2801. /*
  2802. * Figure out the number of possible node ids.
  2803. */
  2804. static void __init setup_nr_node_ids(void)
  2805. {
  2806. unsigned int node;
  2807. unsigned int highest = 0;
  2808. for_each_node_mask(node, node_possible_map)
  2809. highest = node;
  2810. nr_node_ids = highest + 1;
  2811. }
  2812. #else
  2813. static inline void setup_nr_node_ids(void)
  2814. {
  2815. }
  2816. #endif
  2817. /**
  2818. * add_active_range - Register a range of PFNs backed by physical memory
  2819. * @nid: The node ID the range resides on
  2820. * @start_pfn: The start PFN of the available physical memory
  2821. * @end_pfn: The end PFN of the available physical memory
  2822. *
  2823. * These ranges are stored in an early_node_map[] and later used by
  2824. * free_area_init_nodes() to calculate zone sizes and holes. If the
  2825. * range spans a memory hole, it is up to the architecture to ensure
  2826. * the memory is not freed by the bootmem allocator. If possible
  2827. * the range being registered will be merged with existing ranges.
  2828. */
  2829. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  2830. unsigned long end_pfn)
  2831. {
  2832. int i;
  2833. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  2834. "%d entries of %d used\n",
  2835. nid, start_pfn, end_pfn,
  2836. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  2837. /* Merge with existing active regions if possible */
  2838. for (i = 0; i < nr_nodemap_entries; i++) {
  2839. if (early_node_map[i].nid != nid)
  2840. continue;
  2841. /* Skip if an existing region covers this new one */
  2842. if (start_pfn >= early_node_map[i].start_pfn &&
  2843. end_pfn <= early_node_map[i].end_pfn)
  2844. return;
  2845. /* Merge forward if suitable */
  2846. if (start_pfn <= early_node_map[i].end_pfn &&
  2847. end_pfn > early_node_map[i].end_pfn) {
  2848. early_node_map[i].end_pfn = end_pfn;
  2849. return;
  2850. }
  2851. /* Merge backward if suitable */
  2852. if (start_pfn < early_node_map[i].end_pfn &&
  2853. end_pfn >= early_node_map[i].start_pfn) {
  2854. early_node_map[i].start_pfn = start_pfn;
  2855. return;
  2856. }
  2857. }
  2858. /* Check that early_node_map is large enough */
  2859. if (i >= MAX_ACTIVE_REGIONS) {
  2860. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  2861. MAX_ACTIVE_REGIONS);
  2862. return;
  2863. }
  2864. early_node_map[i].nid = nid;
  2865. early_node_map[i].start_pfn = start_pfn;
  2866. early_node_map[i].end_pfn = end_pfn;
  2867. nr_nodemap_entries = i + 1;
  2868. }
  2869. /**
  2870. * shrink_active_range - Shrink an existing registered range of PFNs
  2871. * @nid: The node id the range is on that should be shrunk
  2872. * @old_end_pfn: The old end PFN of the range
  2873. * @new_end_pfn: The new PFN of the range
  2874. *
  2875. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  2876. * The map is kept at the end physical page range that has already been
  2877. * registered with add_active_range(). This function allows an arch to shrink
  2878. * an existing registered range.
  2879. */
  2880. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  2881. unsigned long new_end_pfn)
  2882. {
  2883. int i;
  2884. /* Find the old active region end and shrink */
  2885. for_each_active_range_index_in_nid(i, nid)
  2886. if (early_node_map[i].end_pfn == old_end_pfn) {
  2887. early_node_map[i].end_pfn = new_end_pfn;
  2888. break;
  2889. }
  2890. }
  2891. /**
  2892. * remove_all_active_ranges - Remove all currently registered regions
  2893. *
  2894. * During discovery, it may be found that a table like SRAT is invalid
  2895. * and an alternative discovery method must be used. This function removes
  2896. * all currently registered regions.
  2897. */
  2898. void __init remove_all_active_ranges(void)
  2899. {
  2900. memset(early_node_map, 0, sizeof(early_node_map));
  2901. nr_nodemap_entries = 0;
  2902. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2903. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  2904. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  2905. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  2906. }
  2907. /* Compare two active node_active_regions */
  2908. static int __init cmp_node_active_region(const void *a, const void *b)
  2909. {
  2910. struct node_active_region *arange = (struct node_active_region *)a;
  2911. struct node_active_region *brange = (struct node_active_region *)b;
  2912. /* Done this way to avoid overflows */
  2913. if (arange->start_pfn > brange->start_pfn)
  2914. return 1;
  2915. if (arange->start_pfn < brange->start_pfn)
  2916. return -1;
  2917. return 0;
  2918. }
  2919. /* sort the node_map by start_pfn */
  2920. static void __init sort_node_map(void)
  2921. {
  2922. sort(early_node_map, (size_t)nr_nodemap_entries,
  2923. sizeof(struct node_active_region),
  2924. cmp_node_active_region, NULL);
  2925. }
  2926. /* Find the lowest pfn for a node */
  2927. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  2928. {
  2929. int i;
  2930. unsigned long min_pfn = ULONG_MAX;
  2931. /* Assuming a sorted map, the first range found has the starting pfn */
  2932. for_each_active_range_index_in_nid(i, nid)
  2933. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  2934. if (min_pfn == ULONG_MAX) {
  2935. printk(KERN_WARNING
  2936. "Could not find start_pfn for node %lu\n", nid);
  2937. return 0;
  2938. }
  2939. return min_pfn;
  2940. }
  2941. /**
  2942. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  2943. *
  2944. * It returns the minimum PFN based on information provided via
  2945. * add_active_range().
  2946. */
  2947. unsigned long __init find_min_pfn_with_active_regions(void)
  2948. {
  2949. return find_min_pfn_for_node(MAX_NUMNODES);
  2950. }
  2951. /**
  2952. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  2953. *
  2954. * It returns the maximum PFN based on information provided via
  2955. * add_active_range().
  2956. */
  2957. unsigned long __init find_max_pfn_with_active_regions(void)
  2958. {
  2959. int i;
  2960. unsigned long max_pfn = 0;
  2961. for (i = 0; i < nr_nodemap_entries; i++)
  2962. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  2963. return max_pfn;
  2964. }
  2965. /*
  2966. * early_calculate_totalpages()
  2967. * Sum pages in active regions for movable zone.
  2968. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  2969. */
  2970. unsigned long __init early_calculate_totalpages(void)
  2971. {
  2972. int i;
  2973. unsigned long totalpages = 0;
  2974. for (i = 0; i < nr_nodemap_entries; i++) {
  2975. unsigned long pages = early_node_map[i].end_pfn -
  2976. early_node_map[i].start_pfn;
  2977. totalpages += pages;
  2978. if (pages)
  2979. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  2980. }
  2981. return totalpages;
  2982. }
  2983. /*
  2984. * Find the PFN the Movable zone begins in each node. Kernel memory
  2985. * is spread evenly between nodes as long as the nodes have enough
  2986. * memory. When they don't, some nodes will have more kernelcore than
  2987. * others
  2988. */
  2989. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  2990. {
  2991. int i, nid;
  2992. unsigned long usable_startpfn;
  2993. unsigned long kernelcore_node, kernelcore_remaining;
  2994. unsigned long totalpages = early_calculate_totalpages();
  2995. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  2996. /*
  2997. * If movablecore was specified, calculate what size of
  2998. * kernelcore that corresponds so that memory usable for
  2999. * any allocation type is evenly spread. If both kernelcore
  3000. * and movablecore are specified, then the value of kernelcore
  3001. * will be used for required_kernelcore if it's greater than
  3002. * what movablecore would have allowed.
  3003. */
  3004. if (required_movablecore) {
  3005. unsigned long corepages;
  3006. /*
  3007. * Round-up so that ZONE_MOVABLE is at least as large as what
  3008. * was requested by the user
  3009. */
  3010. required_movablecore =
  3011. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3012. corepages = totalpages - required_movablecore;
  3013. required_kernelcore = max(required_kernelcore, corepages);
  3014. }
  3015. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3016. if (!required_kernelcore)
  3017. return;
  3018. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3019. find_usable_zone_for_movable();
  3020. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3021. restart:
  3022. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3023. kernelcore_node = required_kernelcore / usable_nodes;
  3024. for_each_node_state(nid, N_HIGH_MEMORY) {
  3025. /*
  3026. * Recalculate kernelcore_node if the division per node
  3027. * now exceeds what is necessary to satisfy the requested
  3028. * amount of memory for the kernel
  3029. */
  3030. if (required_kernelcore < kernelcore_node)
  3031. kernelcore_node = required_kernelcore / usable_nodes;
  3032. /*
  3033. * As the map is walked, we track how much memory is usable
  3034. * by the kernel using kernelcore_remaining. When it is
  3035. * 0, the rest of the node is usable by ZONE_MOVABLE
  3036. */
  3037. kernelcore_remaining = kernelcore_node;
  3038. /* Go through each range of PFNs within this node */
  3039. for_each_active_range_index_in_nid(i, nid) {
  3040. unsigned long start_pfn, end_pfn;
  3041. unsigned long size_pages;
  3042. start_pfn = max(early_node_map[i].start_pfn,
  3043. zone_movable_pfn[nid]);
  3044. end_pfn = early_node_map[i].end_pfn;
  3045. if (start_pfn >= end_pfn)
  3046. continue;
  3047. /* Account for what is only usable for kernelcore */
  3048. if (start_pfn < usable_startpfn) {
  3049. unsigned long kernel_pages;
  3050. kernel_pages = min(end_pfn, usable_startpfn)
  3051. - start_pfn;
  3052. kernelcore_remaining -= min(kernel_pages,
  3053. kernelcore_remaining);
  3054. required_kernelcore -= min(kernel_pages,
  3055. required_kernelcore);
  3056. /* Continue if range is now fully accounted */
  3057. if (end_pfn <= usable_startpfn) {
  3058. /*
  3059. * Push zone_movable_pfn to the end so
  3060. * that if we have to rebalance
  3061. * kernelcore across nodes, we will
  3062. * not double account here
  3063. */
  3064. zone_movable_pfn[nid] = end_pfn;
  3065. continue;
  3066. }
  3067. start_pfn = usable_startpfn;
  3068. }
  3069. /*
  3070. * The usable PFN range for ZONE_MOVABLE is from
  3071. * start_pfn->end_pfn. Calculate size_pages as the
  3072. * number of pages used as kernelcore
  3073. */
  3074. size_pages = end_pfn - start_pfn;
  3075. if (size_pages > kernelcore_remaining)
  3076. size_pages = kernelcore_remaining;
  3077. zone_movable_pfn[nid] = start_pfn + size_pages;
  3078. /*
  3079. * Some kernelcore has been met, update counts and
  3080. * break if the kernelcore for this node has been
  3081. * satisified
  3082. */
  3083. required_kernelcore -= min(required_kernelcore,
  3084. size_pages);
  3085. kernelcore_remaining -= size_pages;
  3086. if (!kernelcore_remaining)
  3087. break;
  3088. }
  3089. }
  3090. /*
  3091. * If there is still required_kernelcore, we do another pass with one
  3092. * less node in the count. This will push zone_movable_pfn[nid] further
  3093. * along on the nodes that still have memory until kernelcore is
  3094. * satisified
  3095. */
  3096. usable_nodes--;
  3097. if (usable_nodes && required_kernelcore > usable_nodes)
  3098. goto restart;
  3099. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3100. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3101. zone_movable_pfn[nid] =
  3102. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3103. }
  3104. /* Any regular memory on that node ? */
  3105. static void check_for_regular_memory(pg_data_t *pgdat)
  3106. {
  3107. #ifdef CONFIG_HIGHMEM
  3108. enum zone_type zone_type;
  3109. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3110. struct zone *zone = &pgdat->node_zones[zone_type];
  3111. if (zone->present_pages)
  3112. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3113. }
  3114. #endif
  3115. }
  3116. /**
  3117. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3118. * @max_zone_pfn: an array of max PFNs for each zone
  3119. *
  3120. * This will call free_area_init_node() for each active node in the system.
  3121. * Using the page ranges provided by add_active_range(), the size of each
  3122. * zone in each node and their holes is calculated. If the maximum PFN
  3123. * between two adjacent zones match, it is assumed that the zone is empty.
  3124. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3125. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3126. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3127. * at arch_max_dma_pfn.
  3128. */
  3129. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3130. {
  3131. unsigned long nid;
  3132. enum zone_type i;
  3133. /* Sort early_node_map as initialisation assumes it is sorted */
  3134. sort_node_map();
  3135. /* Record where the zone boundaries are */
  3136. memset(arch_zone_lowest_possible_pfn, 0,
  3137. sizeof(arch_zone_lowest_possible_pfn));
  3138. memset(arch_zone_highest_possible_pfn, 0,
  3139. sizeof(arch_zone_highest_possible_pfn));
  3140. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3141. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3142. for (i = 1; i < MAX_NR_ZONES; i++) {
  3143. if (i == ZONE_MOVABLE)
  3144. continue;
  3145. arch_zone_lowest_possible_pfn[i] =
  3146. arch_zone_highest_possible_pfn[i-1];
  3147. arch_zone_highest_possible_pfn[i] =
  3148. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3149. }
  3150. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3151. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3152. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3153. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3154. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3155. /* Print out the zone ranges */
  3156. printk("Zone PFN ranges:\n");
  3157. for (i = 0; i < MAX_NR_ZONES; i++) {
  3158. if (i == ZONE_MOVABLE)
  3159. continue;
  3160. printk(" %-8s %8lu -> %8lu\n",
  3161. zone_names[i],
  3162. arch_zone_lowest_possible_pfn[i],
  3163. arch_zone_highest_possible_pfn[i]);
  3164. }
  3165. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3166. printk("Movable zone start PFN for each node\n");
  3167. for (i = 0; i < MAX_NUMNODES; i++) {
  3168. if (zone_movable_pfn[i])
  3169. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3170. }
  3171. /* Print out the early_node_map[] */
  3172. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3173. for (i = 0; i < nr_nodemap_entries; i++)
  3174. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  3175. early_node_map[i].start_pfn,
  3176. early_node_map[i].end_pfn);
  3177. /* Initialise every node */
  3178. setup_nr_node_ids();
  3179. for_each_online_node(nid) {
  3180. pg_data_t *pgdat = NODE_DATA(nid);
  3181. free_area_init_node(nid, pgdat, NULL,
  3182. find_min_pfn_for_node(nid), NULL);
  3183. /* Any memory on that node */
  3184. if (pgdat->node_present_pages)
  3185. node_set_state(nid, N_HIGH_MEMORY);
  3186. check_for_regular_memory(pgdat);
  3187. }
  3188. }
  3189. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3190. {
  3191. unsigned long long coremem;
  3192. if (!p)
  3193. return -EINVAL;
  3194. coremem = memparse(p, &p);
  3195. *core = coremem >> PAGE_SHIFT;
  3196. /* Paranoid check that UL is enough for the coremem value */
  3197. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3198. return 0;
  3199. }
  3200. /*
  3201. * kernelcore=size sets the amount of memory for use for allocations that
  3202. * cannot be reclaimed or migrated.
  3203. */
  3204. static int __init cmdline_parse_kernelcore(char *p)
  3205. {
  3206. return cmdline_parse_core(p, &required_kernelcore);
  3207. }
  3208. /*
  3209. * movablecore=size sets the amount of memory for use for allocations that
  3210. * can be reclaimed or migrated.
  3211. */
  3212. static int __init cmdline_parse_movablecore(char *p)
  3213. {
  3214. return cmdline_parse_core(p, &required_movablecore);
  3215. }
  3216. early_param("kernelcore", cmdline_parse_kernelcore);
  3217. early_param("movablecore", cmdline_parse_movablecore);
  3218. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3219. /**
  3220. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3221. * @new_dma_reserve: The number of pages to mark reserved
  3222. *
  3223. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3224. * In the DMA zone, a significant percentage may be consumed by kernel image
  3225. * and other unfreeable allocations which can skew the watermarks badly. This
  3226. * function may optionally be used to account for unfreeable pages in the
  3227. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3228. * smaller per-cpu batchsize.
  3229. */
  3230. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3231. {
  3232. dma_reserve = new_dma_reserve;
  3233. }
  3234. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3235. static bootmem_data_t contig_bootmem_data;
  3236. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3237. EXPORT_SYMBOL(contig_page_data);
  3238. #endif
  3239. void __init free_area_init(unsigned long *zones_size)
  3240. {
  3241. free_area_init_node(0, NODE_DATA(0), zones_size,
  3242. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3243. }
  3244. static int page_alloc_cpu_notify(struct notifier_block *self,
  3245. unsigned long action, void *hcpu)
  3246. {
  3247. int cpu = (unsigned long)hcpu;
  3248. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3249. local_irq_disable();
  3250. __drain_pages(cpu);
  3251. vm_events_fold_cpu(cpu);
  3252. local_irq_enable();
  3253. refresh_cpu_vm_stats(cpu);
  3254. }
  3255. return NOTIFY_OK;
  3256. }
  3257. void __init page_alloc_init(void)
  3258. {
  3259. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3260. }
  3261. /*
  3262. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3263. * or min_free_kbytes changes.
  3264. */
  3265. static void calculate_totalreserve_pages(void)
  3266. {
  3267. struct pglist_data *pgdat;
  3268. unsigned long reserve_pages = 0;
  3269. enum zone_type i, j;
  3270. for_each_online_pgdat(pgdat) {
  3271. for (i = 0; i < MAX_NR_ZONES; i++) {
  3272. struct zone *zone = pgdat->node_zones + i;
  3273. unsigned long max = 0;
  3274. /* Find valid and maximum lowmem_reserve in the zone */
  3275. for (j = i; j < MAX_NR_ZONES; j++) {
  3276. if (zone->lowmem_reserve[j] > max)
  3277. max = zone->lowmem_reserve[j];
  3278. }
  3279. /* we treat pages_high as reserved pages. */
  3280. max += zone->pages_high;
  3281. if (max > zone->present_pages)
  3282. max = zone->present_pages;
  3283. reserve_pages += max;
  3284. }
  3285. }
  3286. totalreserve_pages = reserve_pages;
  3287. }
  3288. /*
  3289. * setup_per_zone_lowmem_reserve - called whenever
  3290. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3291. * has a correct pages reserved value, so an adequate number of
  3292. * pages are left in the zone after a successful __alloc_pages().
  3293. */
  3294. static void setup_per_zone_lowmem_reserve(void)
  3295. {
  3296. struct pglist_data *pgdat;
  3297. enum zone_type j, idx;
  3298. for_each_online_pgdat(pgdat) {
  3299. for (j = 0; j < MAX_NR_ZONES; j++) {
  3300. struct zone *zone = pgdat->node_zones + j;
  3301. unsigned long present_pages = zone->present_pages;
  3302. zone->lowmem_reserve[j] = 0;
  3303. idx = j;
  3304. while (idx) {
  3305. struct zone *lower_zone;
  3306. idx--;
  3307. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3308. sysctl_lowmem_reserve_ratio[idx] = 1;
  3309. lower_zone = pgdat->node_zones + idx;
  3310. lower_zone->lowmem_reserve[j] = present_pages /
  3311. sysctl_lowmem_reserve_ratio[idx];
  3312. present_pages += lower_zone->present_pages;
  3313. }
  3314. }
  3315. }
  3316. /* update totalreserve_pages */
  3317. calculate_totalreserve_pages();
  3318. }
  3319. /**
  3320. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3321. *
  3322. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3323. * with respect to min_free_kbytes.
  3324. */
  3325. void setup_per_zone_pages_min(void)
  3326. {
  3327. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3328. unsigned long lowmem_pages = 0;
  3329. struct zone *zone;
  3330. unsigned long flags;
  3331. /* Calculate total number of !ZONE_HIGHMEM pages */
  3332. for_each_zone(zone) {
  3333. if (!is_highmem(zone))
  3334. lowmem_pages += zone->present_pages;
  3335. }
  3336. for_each_zone(zone) {
  3337. u64 tmp;
  3338. spin_lock_irqsave(&zone->lru_lock, flags);
  3339. tmp = (u64)pages_min * zone->present_pages;
  3340. do_div(tmp, lowmem_pages);
  3341. if (is_highmem(zone)) {
  3342. /*
  3343. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3344. * need highmem pages, so cap pages_min to a small
  3345. * value here.
  3346. *
  3347. * The (pages_high-pages_low) and (pages_low-pages_min)
  3348. * deltas controls asynch page reclaim, and so should
  3349. * not be capped for highmem.
  3350. */
  3351. int min_pages;
  3352. min_pages = zone->present_pages / 1024;
  3353. if (min_pages < SWAP_CLUSTER_MAX)
  3354. min_pages = SWAP_CLUSTER_MAX;
  3355. if (min_pages > 128)
  3356. min_pages = 128;
  3357. zone->pages_min = min_pages;
  3358. } else {
  3359. /*
  3360. * If it's a lowmem zone, reserve a number of pages
  3361. * proportionate to the zone's size.
  3362. */
  3363. zone->pages_min = tmp;
  3364. }
  3365. zone->pages_low = zone->pages_min + (tmp >> 2);
  3366. zone->pages_high = zone->pages_min + (tmp >> 1);
  3367. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3368. }
  3369. /* update totalreserve_pages */
  3370. calculate_totalreserve_pages();
  3371. }
  3372. /*
  3373. * Initialise min_free_kbytes.
  3374. *
  3375. * For small machines we want it small (128k min). For large machines
  3376. * we want it large (64MB max). But it is not linear, because network
  3377. * bandwidth does not increase linearly with machine size. We use
  3378. *
  3379. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3380. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3381. *
  3382. * which yields
  3383. *
  3384. * 16MB: 512k
  3385. * 32MB: 724k
  3386. * 64MB: 1024k
  3387. * 128MB: 1448k
  3388. * 256MB: 2048k
  3389. * 512MB: 2896k
  3390. * 1024MB: 4096k
  3391. * 2048MB: 5792k
  3392. * 4096MB: 8192k
  3393. * 8192MB: 11584k
  3394. * 16384MB: 16384k
  3395. */
  3396. static int __init init_per_zone_pages_min(void)
  3397. {
  3398. unsigned long lowmem_kbytes;
  3399. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3400. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3401. if (min_free_kbytes < 128)
  3402. min_free_kbytes = 128;
  3403. if (min_free_kbytes > 65536)
  3404. min_free_kbytes = 65536;
  3405. setup_per_zone_pages_min();
  3406. setup_per_zone_lowmem_reserve();
  3407. return 0;
  3408. }
  3409. module_init(init_per_zone_pages_min)
  3410. /*
  3411. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3412. * that we can call two helper functions whenever min_free_kbytes
  3413. * changes.
  3414. */
  3415. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3416. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3417. {
  3418. proc_dointvec(table, write, file, buffer, length, ppos);
  3419. if (write)
  3420. setup_per_zone_pages_min();
  3421. return 0;
  3422. }
  3423. #ifdef CONFIG_NUMA
  3424. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3425. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3426. {
  3427. struct zone *zone;
  3428. int rc;
  3429. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3430. if (rc)
  3431. return rc;
  3432. for_each_zone(zone)
  3433. zone->min_unmapped_pages = (zone->present_pages *
  3434. sysctl_min_unmapped_ratio) / 100;
  3435. return 0;
  3436. }
  3437. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3438. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3439. {
  3440. struct zone *zone;
  3441. int rc;
  3442. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3443. if (rc)
  3444. return rc;
  3445. for_each_zone(zone)
  3446. zone->min_slab_pages = (zone->present_pages *
  3447. sysctl_min_slab_ratio) / 100;
  3448. return 0;
  3449. }
  3450. #endif
  3451. /*
  3452. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3453. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3454. * whenever sysctl_lowmem_reserve_ratio changes.
  3455. *
  3456. * The reserve ratio obviously has absolutely no relation with the
  3457. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3458. * if in function of the boot time zone sizes.
  3459. */
  3460. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3461. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3462. {
  3463. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3464. setup_per_zone_lowmem_reserve();
  3465. return 0;
  3466. }
  3467. /*
  3468. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3469. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3470. * can have before it gets flushed back to buddy allocator.
  3471. */
  3472. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3473. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3474. {
  3475. struct zone *zone;
  3476. unsigned int cpu;
  3477. int ret;
  3478. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3479. if (!write || (ret == -EINVAL))
  3480. return ret;
  3481. for_each_zone(zone) {
  3482. for_each_online_cpu(cpu) {
  3483. unsigned long high;
  3484. high = zone->present_pages / percpu_pagelist_fraction;
  3485. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3486. }
  3487. }
  3488. return 0;
  3489. }
  3490. int hashdist = HASHDIST_DEFAULT;
  3491. #ifdef CONFIG_NUMA
  3492. static int __init set_hashdist(char *str)
  3493. {
  3494. if (!str)
  3495. return 0;
  3496. hashdist = simple_strtoul(str, &str, 0);
  3497. return 1;
  3498. }
  3499. __setup("hashdist=", set_hashdist);
  3500. #endif
  3501. /*
  3502. * allocate a large system hash table from bootmem
  3503. * - it is assumed that the hash table must contain an exact power-of-2
  3504. * quantity of entries
  3505. * - limit is the number of hash buckets, not the total allocation size
  3506. */
  3507. void *__init alloc_large_system_hash(const char *tablename,
  3508. unsigned long bucketsize,
  3509. unsigned long numentries,
  3510. int scale,
  3511. int flags,
  3512. unsigned int *_hash_shift,
  3513. unsigned int *_hash_mask,
  3514. unsigned long limit)
  3515. {
  3516. unsigned long long max = limit;
  3517. unsigned long log2qty, size;
  3518. void *table = NULL;
  3519. /* allow the kernel cmdline to have a say */
  3520. if (!numentries) {
  3521. /* round applicable memory size up to nearest megabyte */
  3522. numentries = nr_kernel_pages;
  3523. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3524. numentries >>= 20 - PAGE_SHIFT;
  3525. numentries <<= 20 - PAGE_SHIFT;
  3526. /* limit to 1 bucket per 2^scale bytes of low memory */
  3527. if (scale > PAGE_SHIFT)
  3528. numentries >>= (scale - PAGE_SHIFT);
  3529. else
  3530. numentries <<= (PAGE_SHIFT - scale);
  3531. /* Make sure we've got at least a 0-order allocation.. */
  3532. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3533. numentries = PAGE_SIZE / bucketsize;
  3534. }
  3535. numentries = roundup_pow_of_two(numentries);
  3536. /* limit allocation size to 1/16 total memory by default */
  3537. if (max == 0) {
  3538. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3539. do_div(max, bucketsize);
  3540. }
  3541. if (numentries > max)
  3542. numentries = max;
  3543. log2qty = ilog2(numentries);
  3544. do {
  3545. size = bucketsize << log2qty;
  3546. if (flags & HASH_EARLY)
  3547. table = alloc_bootmem(size);
  3548. else if (hashdist)
  3549. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3550. else {
  3551. unsigned long order;
  3552. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  3553. ;
  3554. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3555. /*
  3556. * If bucketsize is not a power-of-two, we may free
  3557. * some pages at the end of hash table.
  3558. */
  3559. if (table) {
  3560. unsigned long alloc_end = (unsigned long)table +
  3561. (PAGE_SIZE << order);
  3562. unsigned long used = (unsigned long)table +
  3563. PAGE_ALIGN(size);
  3564. split_page(virt_to_page(table), order);
  3565. while (used < alloc_end) {
  3566. free_page(used);
  3567. used += PAGE_SIZE;
  3568. }
  3569. }
  3570. }
  3571. } while (!table && size > PAGE_SIZE && --log2qty);
  3572. if (!table)
  3573. panic("Failed to allocate %s hash table\n", tablename);
  3574. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3575. tablename,
  3576. (1U << log2qty),
  3577. ilog2(size) - PAGE_SHIFT,
  3578. size);
  3579. if (_hash_shift)
  3580. *_hash_shift = log2qty;
  3581. if (_hash_mask)
  3582. *_hash_mask = (1 << log2qty) - 1;
  3583. return table;
  3584. }
  3585. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3586. struct page *pfn_to_page(unsigned long pfn)
  3587. {
  3588. return __pfn_to_page(pfn);
  3589. }
  3590. unsigned long page_to_pfn(struct page *page)
  3591. {
  3592. return __page_to_pfn(page);
  3593. }
  3594. EXPORT_SYMBOL(pfn_to_page);
  3595. EXPORT_SYMBOL(page_to_pfn);
  3596. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3597. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3598. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3599. unsigned long pfn)
  3600. {
  3601. #ifdef CONFIG_SPARSEMEM
  3602. return __pfn_to_section(pfn)->pageblock_flags;
  3603. #else
  3604. return zone->pageblock_flags;
  3605. #endif /* CONFIG_SPARSEMEM */
  3606. }
  3607. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3608. {
  3609. #ifdef CONFIG_SPARSEMEM
  3610. pfn &= (PAGES_PER_SECTION-1);
  3611. return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
  3612. #else
  3613. pfn = pfn - zone->zone_start_pfn;
  3614. return (pfn >> (MAX_ORDER-1)) * NR_PAGEBLOCK_BITS;
  3615. #endif /* CONFIG_SPARSEMEM */
  3616. }
  3617. /**
  3618. * get_pageblock_flags_group - Return the requested group of flags for the MAX_ORDER_NR_PAGES block of pages
  3619. * @page: The page within the block of interest
  3620. * @start_bitidx: The first bit of interest to retrieve
  3621. * @end_bitidx: The last bit of interest
  3622. * returns pageblock_bits flags
  3623. */
  3624. unsigned long get_pageblock_flags_group(struct page *page,
  3625. int start_bitidx, int end_bitidx)
  3626. {
  3627. struct zone *zone;
  3628. unsigned long *bitmap;
  3629. unsigned long pfn, bitidx;
  3630. unsigned long flags = 0;
  3631. unsigned long value = 1;
  3632. zone = page_zone(page);
  3633. pfn = page_to_pfn(page);
  3634. bitmap = get_pageblock_bitmap(zone, pfn);
  3635. bitidx = pfn_to_bitidx(zone, pfn);
  3636. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3637. if (test_bit(bitidx + start_bitidx, bitmap))
  3638. flags |= value;
  3639. return flags;
  3640. }
  3641. /**
  3642. * set_pageblock_flags_group - Set the requested group of flags for a MAX_ORDER_NR_PAGES block of pages
  3643. * @page: The page within the block of interest
  3644. * @start_bitidx: The first bit of interest
  3645. * @end_bitidx: The last bit of interest
  3646. * @flags: The flags to set
  3647. */
  3648. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3649. int start_bitidx, int end_bitidx)
  3650. {
  3651. struct zone *zone;
  3652. unsigned long *bitmap;
  3653. unsigned long pfn, bitidx;
  3654. unsigned long value = 1;
  3655. zone = page_zone(page);
  3656. pfn = page_to_pfn(page);
  3657. bitmap = get_pageblock_bitmap(zone, pfn);
  3658. bitidx = pfn_to_bitidx(zone, pfn);
  3659. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3660. if (flags & value)
  3661. __set_bit(bitidx + start_bitidx, bitmap);
  3662. else
  3663. __clear_bit(bitidx + start_bitidx, bitmap);
  3664. }