vmx.c 104 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include <linux/ftrace_event.h>
  27. #include "kvm_cache_regs.h"
  28. #include "x86.h"
  29. #include <asm/io.h>
  30. #include <asm/desc.h>
  31. #include <asm/vmx.h>
  32. #include <asm/virtext.h>
  33. #include <asm/mce.h>
  34. #include "trace.h"
  35. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  36. MODULE_AUTHOR("Qumranet");
  37. MODULE_LICENSE("GPL");
  38. static int __read_mostly bypass_guest_pf = 1;
  39. module_param(bypass_guest_pf, bool, S_IRUGO);
  40. static int __read_mostly enable_vpid = 1;
  41. module_param_named(vpid, enable_vpid, bool, 0444);
  42. static int __read_mostly flexpriority_enabled = 1;
  43. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  44. static int __read_mostly enable_ept = 1;
  45. module_param_named(ept, enable_ept, bool, S_IRUGO);
  46. static int __read_mostly enable_unrestricted_guest = 1;
  47. module_param_named(unrestricted_guest,
  48. enable_unrestricted_guest, bool, S_IRUGO);
  49. static int __read_mostly emulate_invalid_guest_state = 0;
  50. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  51. struct vmcs {
  52. u32 revision_id;
  53. u32 abort;
  54. char data[0];
  55. };
  56. struct vcpu_vmx {
  57. struct kvm_vcpu vcpu;
  58. struct list_head local_vcpus_link;
  59. unsigned long host_rsp;
  60. int launched;
  61. u8 fail;
  62. u32 idt_vectoring_info;
  63. struct kvm_msr_entry *guest_msrs;
  64. struct kvm_msr_entry *host_msrs;
  65. int nmsrs;
  66. int save_nmsrs;
  67. int msr_offset_efer;
  68. #ifdef CONFIG_X86_64
  69. int msr_offset_kernel_gs_base;
  70. #endif
  71. struct vmcs *vmcs;
  72. struct {
  73. int loaded;
  74. u16 fs_sel, gs_sel, ldt_sel;
  75. int gs_ldt_reload_needed;
  76. int fs_reload_needed;
  77. int guest_efer_loaded;
  78. } host_state;
  79. struct {
  80. int vm86_active;
  81. u8 save_iopl;
  82. struct kvm_save_segment {
  83. u16 selector;
  84. unsigned long base;
  85. u32 limit;
  86. u32 ar;
  87. } tr, es, ds, fs, gs;
  88. struct {
  89. bool pending;
  90. u8 vector;
  91. unsigned rip;
  92. } irq;
  93. } rmode;
  94. int vpid;
  95. bool emulation_required;
  96. enum emulation_result invalid_state_emulation_result;
  97. /* Support for vnmi-less CPUs */
  98. int soft_vnmi_blocked;
  99. ktime_t entry_time;
  100. s64 vnmi_blocked_time;
  101. u32 exit_reason;
  102. };
  103. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  104. {
  105. return container_of(vcpu, struct vcpu_vmx, vcpu);
  106. }
  107. static int init_rmode(struct kvm *kvm);
  108. static u64 construct_eptp(unsigned long root_hpa);
  109. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  110. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  111. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  112. static unsigned long *vmx_io_bitmap_a;
  113. static unsigned long *vmx_io_bitmap_b;
  114. static unsigned long *vmx_msr_bitmap_legacy;
  115. static unsigned long *vmx_msr_bitmap_longmode;
  116. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  117. static DEFINE_SPINLOCK(vmx_vpid_lock);
  118. static struct vmcs_config {
  119. int size;
  120. int order;
  121. u32 revision_id;
  122. u32 pin_based_exec_ctrl;
  123. u32 cpu_based_exec_ctrl;
  124. u32 cpu_based_2nd_exec_ctrl;
  125. u32 vmexit_ctrl;
  126. u32 vmentry_ctrl;
  127. } vmcs_config;
  128. static struct vmx_capability {
  129. u32 ept;
  130. u32 vpid;
  131. } vmx_capability;
  132. #define VMX_SEGMENT_FIELD(seg) \
  133. [VCPU_SREG_##seg] = { \
  134. .selector = GUEST_##seg##_SELECTOR, \
  135. .base = GUEST_##seg##_BASE, \
  136. .limit = GUEST_##seg##_LIMIT, \
  137. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  138. }
  139. static struct kvm_vmx_segment_field {
  140. unsigned selector;
  141. unsigned base;
  142. unsigned limit;
  143. unsigned ar_bytes;
  144. } kvm_vmx_segment_fields[] = {
  145. VMX_SEGMENT_FIELD(CS),
  146. VMX_SEGMENT_FIELD(DS),
  147. VMX_SEGMENT_FIELD(ES),
  148. VMX_SEGMENT_FIELD(FS),
  149. VMX_SEGMENT_FIELD(GS),
  150. VMX_SEGMENT_FIELD(SS),
  151. VMX_SEGMENT_FIELD(TR),
  152. VMX_SEGMENT_FIELD(LDTR),
  153. };
  154. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  155. /*
  156. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  157. * away by decrementing the array size.
  158. */
  159. static const u32 vmx_msr_index[] = {
  160. #ifdef CONFIG_X86_64
  161. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  162. #endif
  163. MSR_EFER, MSR_K6_STAR,
  164. };
  165. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  166. static void load_msrs(struct kvm_msr_entry *e, int n)
  167. {
  168. int i;
  169. for (i = 0; i < n; ++i)
  170. wrmsrl(e[i].index, e[i].data);
  171. }
  172. static void save_msrs(struct kvm_msr_entry *e, int n)
  173. {
  174. int i;
  175. for (i = 0; i < n; ++i)
  176. rdmsrl(e[i].index, e[i].data);
  177. }
  178. static inline int is_page_fault(u32 intr_info)
  179. {
  180. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  181. INTR_INFO_VALID_MASK)) ==
  182. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  183. }
  184. static inline int is_no_device(u32 intr_info)
  185. {
  186. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  187. INTR_INFO_VALID_MASK)) ==
  188. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  189. }
  190. static inline int is_invalid_opcode(u32 intr_info)
  191. {
  192. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  193. INTR_INFO_VALID_MASK)) ==
  194. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  195. }
  196. static inline int is_external_interrupt(u32 intr_info)
  197. {
  198. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  199. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  200. }
  201. static inline int is_machine_check(u32 intr_info)
  202. {
  203. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  204. INTR_INFO_VALID_MASK)) ==
  205. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  206. }
  207. static inline int cpu_has_vmx_msr_bitmap(void)
  208. {
  209. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  210. }
  211. static inline int cpu_has_vmx_tpr_shadow(void)
  212. {
  213. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  214. }
  215. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  216. {
  217. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  218. }
  219. static inline int cpu_has_secondary_exec_ctrls(void)
  220. {
  221. return vmcs_config.cpu_based_exec_ctrl &
  222. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  223. }
  224. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  225. {
  226. return vmcs_config.cpu_based_2nd_exec_ctrl &
  227. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  228. }
  229. static inline bool cpu_has_vmx_flexpriority(void)
  230. {
  231. return cpu_has_vmx_tpr_shadow() &&
  232. cpu_has_vmx_virtualize_apic_accesses();
  233. }
  234. static inline bool cpu_has_vmx_ept_execute_only(void)
  235. {
  236. return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
  237. }
  238. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  239. {
  240. return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
  241. }
  242. static inline bool cpu_has_vmx_eptp_writeback(void)
  243. {
  244. return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
  245. }
  246. static inline bool cpu_has_vmx_ept_2m_page(void)
  247. {
  248. return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
  249. }
  250. static inline int cpu_has_vmx_invept_individual_addr(void)
  251. {
  252. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  253. }
  254. static inline int cpu_has_vmx_invept_context(void)
  255. {
  256. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  257. }
  258. static inline int cpu_has_vmx_invept_global(void)
  259. {
  260. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  261. }
  262. static inline int cpu_has_vmx_ept(void)
  263. {
  264. return vmcs_config.cpu_based_2nd_exec_ctrl &
  265. SECONDARY_EXEC_ENABLE_EPT;
  266. }
  267. static inline int cpu_has_vmx_unrestricted_guest(void)
  268. {
  269. return vmcs_config.cpu_based_2nd_exec_ctrl &
  270. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  271. }
  272. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  273. {
  274. return flexpriority_enabled &&
  275. (cpu_has_vmx_virtualize_apic_accesses()) &&
  276. (irqchip_in_kernel(kvm));
  277. }
  278. static inline int cpu_has_vmx_vpid(void)
  279. {
  280. return vmcs_config.cpu_based_2nd_exec_ctrl &
  281. SECONDARY_EXEC_ENABLE_VPID;
  282. }
  283. static inline int cpu_has_virtual_nmis(void)
  284. {
  285. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  286. }
  287. static inline bool report_flexpriority(void)
  288. {
  289. return flexpriority_enabled;
  290. }
  291. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  292. {
  293. int i;
  294. for (i = 0; i < vmx->nmsrs; ++i)
  295. if (vmx->guest_msrs[i].index == msr)
  296. return i;
  297. return -1;
  298. }
  299. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  300. {
  301. struct {
  302. u64 vpid : 16;
  303. u64 rsvd : 48;
  304. u64 gva;
  305. } operand = { vpid, 0, gva };
  306. asm volatile (__ex(ASM_VMX_INVVPID)
  307. /* CF==1 or ZF==1 --> rc = -1 */
  308. "; ja 1f ; ud2 ; 1:"
  309. : : "a"(&operand), "c"(ext) : "cc", "memory");
  310. }
  311. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  312. {
  313. struct {
  314. u64 eptp, gpa;
  315. } operand = {eptp, gpa};
  316. asm volatile (__ex(ASM_VMX_INVEPT)
  317. /* CF==1 or ZF==1 --> rc = -1 */
  318. "; ja 1f ; ud2 ; 1:\n"
  319. : : "a" (&operand), "c" (ext) : "cc", "memory");
  320. }
  321. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  322. {
  323. int i;
  324. i = __find_msr_index(vmx, msr);
  325. if (i >= 0)
  326. return &vmx->guest_msrs[i];
  327. return NULL;
  328. }
  329. static void vmcs_clear(struct vmcs *vmcs)
  330. {
  331. u64 phys_addr = __pa(vmcs);
  332. u8 error;
  333. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  334. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  335. : "cc", "memory");
  336. if (error)
  337. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  338. vmcs, phys_addr);
  339. }
  340. static void __vcpu_clear(void *arg)
  341. {
  342. struct vcpu_vmx *vmx = arg;
  343. int cpu = raw_smp_processor_id();
  344. if (vmx->vcpu.cpu == cpu)
  345. vmcs_clear(vmx->vmcs);
  346. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  347. per_cpu(current_vmcs, cpu) = NULL;
  348. rdtscll(vmx->vcpu.arch.host_tsc);
  349. list_del(&vmx->local_vcpus_link);
  350. vmx->vcpu.cpu = -1;
  351. vmx->launched = 0;
  352. }
  353. static void vcpu_clear(struct vcpu_vmx *vmx)
  354. {
  355. if (vmx->vcpu.cpu == -1)
  356. return;
  357. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  358. }
  359. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  360. {
  361. if (vmx->vpid == 0)
  362. return;
  363. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  364. }
  365. static inline void ept_sync_global(void)
  366. {
  367. if (cpu_has_vmx_invept_global())
  368. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  369. }
  370. static inline void ept_sync_context(u64 eptp)
  371. {
  372. if (enable_ept) {
  373. if (cpu_has_vmx_invept_context())
  374. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  375. else
  376. ept_sync_global();
  377. }
  378. }
  379. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  380. {
  381. if (enable_ept) {
  382. if (cpu_has_vmx_invept_individual_addr())
  383. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  384. eptp, gpa);
  385. else
  386. ept_sync_context(eptp);
  387. }
  388. }
  389. static unsigned long vmcs_readl(unsigned long field)
  390. {
  391. unsigned long value;
  392. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  393. : "=a"(value) : "d"(field) : "cc");
  394. return value;
  395. }
  396. static u16 vmcs_read16(unsigned long field)
  397. {
  398. return vmcs_readl(field);
  399. }
  400. static u32 vmcs_read32(unsigned long field)
  401. {
  402. return vmcs_readl(field);
  403. }
  404. static u64 vmcs_read64(unsigned long field)
  405. {
  406. #ifdef CONFIG_X86_64
  407. return vmcs_readl(field);
  408. #else
  409. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  410. #endif
  411. }
  412. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  413. {
  414. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  415. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  416. dump_stack();
  417. }
  418. static void vmcs_writel(unsigned long field, unsigned long value)
  419. {
  420. u8 error;
  421. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  422. : "=q"(error) : "a"(value), "d"(field) : "cc");
  423. if (unlikely(error))
  424. vmwrite_error(field, value);
  425. }
  426. static void vmcs_write16(unsigned long field, u16 value)
  427. {
  428. vmcs_writel(field, value);
  429. }
  430. static void vmcs_write32(unsigned long field, u32 value)
  431. {
  432. vmcs_writel(field, value);
  433. }
  434. static void vmcs_write64(unsigned long field, u64 value)
  435. {
  436. vmcs_writel(field, value);
  437. #ifndef CONFIG_X86_64
  438. asm volatile ("");
  439. vmcs_writel(field+1, value >> 32);
  440. #endif
  441. }
  442. static void vmcs_clear_bits(unsigned long field, u32 mask)
  443. {
  444. vmcs_writel(field, vmcs_readl(field) & ~mask);
  445. }
  446. static void vmcs_set_bits(unsigned long field, u32 mask)
  447. {
  448. vmcs_writel(field, vmcs_readl(field) | mask);
  449. }
  450. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  451. {
  452. u32 eb;
  453. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR);
  454. if (!vcpu->fpu_active)
  455. eb |= 1u << NM_VECTOR;
  456. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  457. if (vcpu->guest_debug &
  458. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  459. eb |= 1u << DB_VECTOR;
  460. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  461. eb |= 1u << BP_VECTOR;
  462. }
  463. if (to_vmx(vcpu)->rmode.vm86_active)
  464. eb = ~0;
  465. if (enable_ept)
  466. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  467. vmcs_write32(EXCEPTION_BITMAP, eb);
  468. }
  469. static void reload_tss(void)
  470. {
  471. /*
  472. * VT restores TR but not its size. Useless.
  473. */
  474. struct descriptor_table gdt;
  475. struct desc_struct *descs;
  476. kvm_get_gdt(&gdt);
  477. descs = (void *)gdt.base;
  478. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  479. load_TR_desc();
  480. }
  481. static void load_transition_efer(struct vcpu_vmx *vmx)
  482. {
  483. int efer_offset = vmx->msr_offset_efer;
  484. u64 host_efer = vmx->host_msrs[efer_offset].data;
  485. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  486. u64 ignore_bits;
  487. if (efer_offset < 0)
  488. return;
  489. /*
  490. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  491. * outside long mode
  492. */
  493. ignore_bits = EFER_NX | EFER_SCE;
  494. #ifdef CONFIG_X86_64
  495. ignore_bits |= EFER_LMA | EFER_LME;
  496. /* SCE is meaningful only in long mode on Intel */
  497. if (guest_efer & EFER_LMA)
  498. ignore_bits &= ~(u64)EFER_SCE;
  499. #endif
  500. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  501. return;
  502. vmx->host_state.guest_efer_loaded = 1;
  503. guest_efer &= ~ignore_bits;
  504. guest_efer |= host_efer & ignore_bits;
  505. wrmsrl(MSR_EFER, guest_efer);
  506. vmx->vcpu.stat.efer_reload++;
  507. }
  508. static void reload_host_efer(struct vcpu_vmx *vmx)
  509. {
  510. if (vmx->host_state.guest_efer_loaded) {
  511. vmx->host_state.guest_efer_loaded = 0;
  512. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  513. }
  514. }
  515. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  516. {
  517. struct vcpu_vmx *vmx = to_vmx(vcpu);
  518. if (vmx->host_state.loaded)
  519. return;
  520. vmx->host_state.loaded = 1;
  521. /*
  522. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  523. * allow segment selectors with cpl > 0 or ti == 1.
  524. */
  525. vmx->host_state.ldt_sel = kvm_read_ldt();
  526. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  527. vmx->host_state.fs_sel = kvm_read_fs();
  528. if (!(vmx->host_state.fs_sel & 7)) {
  529. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  530. vmx->host_state.fs_reload_needed = 0;
  531. } else {
  532. vmcs_write16(HOST_FS_SELECTOR, 0);
  533. vmx->host_state.fs_reload_needed = 1;
  534. }
  535. vmx->host_state.gs_sel = kvm_read_gs();
  536. if (!(vmx->host_state.gs_sel & 7))
  537. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  538. else {
  539. vmcs_write16(HOST_GS_SELECTOR, 0);
  540. vmx->host_state.gs_ldt_reload_needed = 1;
  541. }
  542. #ifdef CONFIG_X86_64
  543. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  544. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  545. #else
  546. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  547. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  548. #endif
  549. #ifdef CONFIG_X86_64
  550. if (is_long_mode(&vmx->vcpu))
  551. save_msrs(vmx->host_msrs +
  552. vmx->msr_offset_kernel_gs_base, 1);
  553. #endif
  554. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  555. load_transition_efer(vmx);
  556. }
  557. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  558. {
  559. unsigned long flags;
  560. if (!vmx->host_state.loaded)
  561. return;
  562. ++vmx->vcpu.stat.host_state_reload;
  563. vmx->host_state.loaded = 0;
  564. if (vmx->host_state.fs_reload_needed)
  565. kvm_load_fs(vmx->host_state.fs_sel);
  566. if (vmx->host_state.gs_ldt_reload_needed) {
  567. kvm_load_ldt(vmx->host_state.ldt_sel);
  568. /*
  569. * If we have to reload gs, we must take care to
  570. * preserve our gs base.
  571. */
  572. local_irq_save(flags);
  573. kvm_load_gs(vmx->host_state.gs_sel);
  574. #ifdef CONFIG_X86_64
  575. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  576. #endif
  577. local_irq_restore(flags);
  578. }
  579. reload_tss();
  580. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  581. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  582. reload_host_efer(vmx);
  583. }
  584. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  585. {
  586. preempt_disable();
  587. __vmx_load_host_state(vmx);
  588. preempt_enable();
  589. }
  590. /*
  591. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  592. * vcpu mutex is already taken.
  593. */
  594. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  595. {
  596. struct vcpu_vmx *vmx = to_vmx(vcpu);
  597. u64 phys_addr = __pa(vmx->vmcs);
  598. u64 tsc_this, delta, new_offset;
  599. if (vcpu->cpu != cpu) {
  600. vcpu_clear(vmx);
  601. kvm_migrate_timers(vcpu);
  602. vpid_sync_vcpu_all(vmx);
  603. local_irq_disable();
  604. list_add(&vmx->local_vcpus_link,
  605. &per_cpu(vcpus_on_cpu, cpu));
  606. local_irq_enable();
  607. }
  608. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  609. u8 error;
  610. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  611. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  612. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  613. : "cc");
  614. if (error)
  615. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  616. vmx->vmcs, phys_addr);
  617. }
  618. if (vcpu->cpu != cpu) {
  619. struct descriptor_table dt;
  620. unsigned long sysenter_esp;
  621. vcpu->cpu = cpu;
  622. /*
  623. * Linux uses per-cpu TSS and GDT, so set these when switching
  624. * processors.
  625. */
  626. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  627. kvm_get_gdt(&dt);
  628. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  629. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  630. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  631. /*
  632. * Make sure the time stamp counter is monotonous.
  633. */
  634. rdtscll(tsc_this);
  635. if (tsc_this < vcpu->arch.host_tsc) {
  636. delta = vcpu->arch.host_tsc - tsc_this;
  637. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  638. vmcs_write64(TSC_OFFSET, new_offset);
  639. }
  640. }
  641. }
  642. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  643. {
  644. __vmx_load_host_state(to_vmx(vcpu));
  645. }
  646. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  647. {
  648. if (vcpu->fpu_active)
  649. return;
  650. vcpu->fpu_active = 1;
  651. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  652. if (vcpu->arch.cr0 & X86_CR0_TS)
  653. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  654. update_exception_bitmap(vcpu);
  655. }
  656. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  657. {
  658. if (!vcpu->fpu_active)
  659. return;
  660. vcpu->fpu_active = 0;
  661. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  662. update_exception_bitmap(vcpu);
  663. }
  664. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  665. {
  666. return vmcs_readl(GUEST_RFLAGS);
  667. }
  668. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  669. {
  670. if (to_vmx(vcpu)->rmode.vm86_active)
  671. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  672. vmcs_writel(GUEST_RFLAGS, rflags);
  673. }
  674. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  675. {
  676. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  677. int ret = 0;
  678. if (interruptibility & GUEST_INTR_STATE_STI)
  679. ret |= X86_SHADOW_INT_STI;
  680. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  681. ret |= X86_SHADOW_INT_MOV_SS;
  682. return ret & mask;
  683. }
  684. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  685. {
  686. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  687. u32 interruptibility = interruptibility_old;
  688. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  689. if (mask & X86_SHADOW_INT_MOV_SS)
  690. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  691. if (mask & X86_SHADOW_INT_STI)
  692. interruptibility |= GUEST_INTR_STATE_STI;
  693. if ((interruptibility != interruptibility_old))
  694. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  695. }
  696. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  697. {
  698. unsigned long rip;
  699. rip = kvm_rip_read(vcpu);
  700. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  701. kvm_rip_write(vcpu, rip);
  702. /* skipping an emulated instruction also counts */
  703. vmx_set_interrupt_shadow(vcpu, 0);
  704. }
  705. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  706. bool has_error_code, u32 error_code)
  707. {
  708. struct vcpu_vmx *vmx = to_vmx(vcpu);
  709. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  710. if (has_error_code) {
  711. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  712. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  713. }
  714. if (vmx->rmode.vm86_active) {
  715. vmx->rmode.irq.pending = true;
  716. vmx->rmode.irq.vector = nr;
  717. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  718. if (kvm_exception_is_soft(nr))
  719. vmx->rmode.irq.rip +=
  720. vmx->vcpu.arch.event_exit_inst_len;
  721. intr_info |= INTR_TYPE_SOFT_INTR;
  722. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  723. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  724. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  725. return;
  726. }
  727. if (kvm_exception_is_soft(nr)) {
  728. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  729. vmx->vcpu.arch.event_exit_inst_len);
  730. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  731. } else
  732. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  733. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  734. }
  735. /*
  736. * Swap MSR entry in host/guest MSR entry array.
  737. */
  738. #ifdef CONFIG_X86_64
  739. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  740. {
  741. struct kvm_msr_entry tmp;
  742. tmp = vmx->guest_msrs[to];
  743. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  744. vmx->guest_msrs[from] = tmp;
  745. tmp = vmx->host_msrs[to];
  746. vmx->host_msrs[to] = vmx->host_msrs[from];
  747. vmx->host_msrs[from] = tmp;
  748. }
  749. #endif
  750. /*
  751. * Set up the vmcs to automatically save and restore system
  752. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  753. * mode, as fiddling with msrs is very expensive.
  754. */
  755. static void setup_msrs(struct vcpu_vmx *vmx)
  756. {
  757. int save_nmsrs;
  758. unsigned long *msr_bitmap;
  759. vmx_load_host_state(vmx);
  760. save_nmsrs = 0;
  761. #ifdef CONFIG_X86_64
  762. if (is_long_mode(&vmx->vcpu)) {
  763. int index;
  764. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  765. if (index >= 0)
  766. move_msr_up(vmx, index, save_nmsrs++);
  767. index = __find_msr_index(vmx, MSR_LSTAR);
  768. if (index >= 0)
  769. move_msr_up(vmx, index, save_nmsrs++);
  770. index = __find_msr_index(vmx, MSR_CSTAR);
  771. if (index >= 0)
  772. move_msr_up(vmx, index, save_nmsrs++);
  773. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  774. if (index >= 0)
  775. move_msr_up(vmx, index, save_nmsrs++);
  776. /*
  777. * MSR_K6_STAR is only needed on long mode guests, and only
  778. * if efer.sce is enabled.
  779. */
  780. index = __find_msr_index(vmx, MSR_K6_STAR);
  781. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  782. move_msr_up(vmx, index, save_nmsrs++);
  783. }
  784. #endif
  785. vmx->save_nmsrs = save_nmsrs;
  786. #ifdef CONFIG_X86_64
  787. vmx->msr_offset_kernel_gs_base =
  788. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  789. #endif
  790. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  791. if (cpu_has_vmx_msr_bitmap()) {
  792. if (is_long_mode(&vmx->vcpu))
  793. msr_bitmap = vmx_msr_bitmap_longmode;
  794. else
  795. msr_bitmap = vmx_msr_bitmap_legacy;
  796. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  797. }
  798. }
  799. /*
  800. * reads and returns guest's timestamp counter "register"
  801. * guest_tsc = host_tsc + tsc_offset -- 21.3
  802. */
  803. static u64 guest_read_tsc(void)
  804. {
  805. u64 host_tsc, tsc_offset;
  806. rdtscll(host_tsc);
  807. tsc_offset = vmcs_read64(TSC_OFFSET);
  808. return host_tsc + tsc_offset;
  809. }
  810. /*
  811. * writes 'guest_tsc' into guest's timestamp counter "register"
  812. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  813. */
  814. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  815. {
  816. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  817. }
  818. /*
  819. * Reads an msr value (of 'msr_index') into 'pdata'.
  820. * Returns 0 on success, non-0 otherwise.
  821. * Assumes vcpu_load() was already called.
  822. */
  823. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  824. {
  825. u64 data;
  826. struct kvm_msr_entry *msr;
  827. if (!pdata) {
  828. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  829. return -EINVAL;
  830. }
  831. switch (msr_index) {
  832. #ifdef CONFIG_X86_64
  833. case MSR_FS_BASE:
  834. data = vmcs_readl(GUEST_FS_BASE);
  835. break;
  836. case MSR_GS_BASE:
  837. data = vmcs_readl(GUEST_GS_BASE);
  838. break;
  839. case MSR_EFER:
  840. return kvm_get_msr_common(vcpu, msr_index, pdata);
  841. #endif
  842. case MSR_IA32_TSC:
  843. data = guest_read_tsc();
  844. break;
  845. case MSR_IA32_SYSENTER_CS:
  846. data = vmcs_read32(GUEST_SYSENTER_CS);
  847. break;
  848. case MSR_IA32_SYSENTER_EIP:
  849. data = vmcs_readl(GUEST_SYSENTER_EIP);
  850. break;
  851. case MSR_IA32_SYSENTER_ESP:
  852. data = vmcs_readl(GUEST_SYSENTER_ESP);
  853. break;
  854. default:
  855. vmx_load_host_state(to_vmx(vcpu));
  856. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  857. if (msr) {
  858. data = msr->data;
  859. break;
  860. }
  861. return kvm_get_msr_common(vcpu, msr_index, pdata);
  862. }
  863. *pdata = data;
  864. return 0;
  865. }
  866. /*
  867. * Writes msr value into into the appropriate "register".
  868. * Returns 0 on success, non-0 otherwise.
  869. * Assumes vcpu_load() was already called.
  870. */
  871. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  872. {
  873. struct vcpu_vmx *vmx = to_vmx(vcpu);
  874. struct kvm_msr_entry *msr;
  875. u64 host_tsc;
  876. int ret = 0;
  877. switch (msr_index) {
  878. case MSR_EFER:
  879. vmx_load_host_state(vmx);
  880. ret = kvm_set_msr_common(vcpu, msr_index, data);
  881. break;
  882. #ifdef CONFIG_X86_64
  883. case MSR_FS_BASE:
  884. vmcs_writel(GUEST_FS_BASE, data);
  885. break;
  886. case MSR_GS_BASE:
  887. vmcs_writel(GUEST_GS_BASE, data);
  888. break;
  889. #endif
  890. case MSR_IA32_SYSENTER_CS:
  891. vmcs_write32(GUEST_SYSENTER_CS, data);
  892. break;
  893. case MSR_IA32_SYSENTER_EIP:
  894. vmcs_writel(GUEST_SYSENTER_EIP, data);
  895. break;
  896. case MSR_IA32_SYSENTER_ESP:
  897. vmcs_writel(GUEST_SYSENTER_ESP, data);
  898. break;
  899. case MSR_IA32_TSC:
  900. rdtscll(host_tsc);
  901. guest_write_tsc(data, host_tsc);
  902. break;
  903. case MSR_IA32_CR_PAT:
  904. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  905. vmcs_write64(GUEST_IA32_PAT, data);
  906. vcpu->arch.pat = data;
  907. break;
  908. }
  909. /* Otherwise falls through to kvm_set_msr_common */
  910. default:
  911. vmx_load_host_state(vmx);
  912. msr = find_msr_entry(vmx, msr_index);
  913. if (msr) {
  914. msr->data = data;
  915. break;
  916. }
  917. ret = kvm_set_msr_common(vcpu, msr_index, data);
  918. }
  919. return ret;
  920. }
  921. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  922. {
  923. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  924. switch (reg) {
  925. case VCPU_REGS_RSP:
  926. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  927. break;
  928. case VCPU_REGS_RIP:
  929. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  930. break;
  931. case VCPU_EXREG_PDPTR:
  932. if (enable_ept)
  933. ept_save_pdptrs(vcpu);
  934. break;
  935. default:
  936. break;
  937. }
  938. }
  939. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  940. {
  941. int old_debug = vcpu->guest_debug;
  942. unsigned long flags;
  943. vcpu->guest_debug = dbg->control;
  944. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  945. vcpu->guest_debug = 0;
  946. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  947. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  948. else
  949. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  950. flags = vmcs_readl(GUEST_RFLAGS);
  951. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  952. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  953. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  954. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  955. vmcs_writel(GUEST_RFLAGS, flags);
  956. update_exception_bitmap(vcpu);
  957. return 0;
  958. }
  959. static __init int cpu_has_kvm_support(void)
  960. {
  961. return cpu_has_vmx();
  962. }
  963. static __init int vmx_disabled_by_bios(void)
  964. {
  965. u64 msr;
  966. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  967. return (msr & (FEATURE_CONTROL_LOCKED |
  968. FEATURE_CONTROL_VMXON_ENABLED))
  969. == FEATURE_CONTROL_LOCKED;
  970. /* locked but not enabled */
  971. }
  972. static void hardware_enable(void *garbage)
  973. {
  974. int cpu = raw_smp_processor_id();
  975. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  976. u64 old;
  977. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  978. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  979. if ((old & (FEATURE_CONTROL_LOCKED |
  980. FEATURE_CONTROL_VMXON_ENABLED))
  981. != (FEATURE_CONTROL_LOCKED |
  982. FEATURE_CONTROL_VMXON_ENABLED))
  983. /* enable and lock */
  984. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  985. FEATURE_CONTROL_LOCKED |
  986. FEATURE_CONTROL_VMXON_ENABLED);
  987. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  988. asm volatile (ASM_VMX_VMXON_RAX
  989. : : "a"(&phys_addr), "m"(phys_addr)
  990. : "memory", "cc");
  991. }
  992. static void vmclear_local_vcpus(void)
  993. {
  994. int cpu = raw_smp_processor_id();
  995. struct vcpu_vmx *vmx, *n;
  996. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  997. local_vcpus_link)
  998. __vcpu_clear(vmx);
  999. }
  1000. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  1001. * tricks.
  1002. */
  1003. static void kvm_cpu_vmxoff(void)
  1004. {
  1005. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  1006. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  1007. }
  1008. static void hardware_disable(void *garbage)
  1009. {
  1010. vmclear_local_vcpus();
  1011. kvm_cpu_vmxoff();
  1012. }
  1013. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  1014. u32 msr, u32 *result)
  1015. {
  1016. u32 vmx_msr_low, vmx_msr_high;
  1017. u32 ctl = ctl_min | ctl_opt;
  1018. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  1019. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  1020. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  1021. /* Ensure minimum (required) set of control bits are supported. */
  1022. if (ctl_min & ~ctl)
  1023. return -EIO;
  1024. *result = ctl;
  1025. return 0;
  1026. }
  1027. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  1028. {
  1029. u32 vmx_msr_low, vmx_msr_high;
  1030. u32 min, opt, min2, opt2;
  1031. u32 _pin_based_exec_control = 0;
  1032. u32 _cpu_based_exec_control = 0;
  1033. u32 _cpu_based_2nd_exec_control = 0;
  1034. u32 _vmexit_control = 0;
  1035. u32 _vmentry_control = 0;
  1036. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  1037. opt = PIN_BASED_VIRTUAL_NMIS;
  1038. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  1039. &_pin_based_exec_control) < 0)
  1040. return -EIO;
  1041. min = CPU_BASED_HLT_EXITING |
  1042. #ifdef CONFIG_X86_64
  1043. CPU_BASED_CR8_LOAD_EXITING |
  1044. CPU_BASED_CR8_STORE_EXITING |
  1045. #endif
  1046. CPU_BASED_CR3_LOAD_EXITING |
  1047. CPU_BASED_CR3_STORE_EXITING |
  1048. CPU_BASED_USE_IO_BITMAPS |
  1049. CPU_BASED_MOV_DR_EXITING |
  1050. CPU_BASED_USE_TSC_OFFSETING |
  1051. CPU_BASED_INVLPG_EXITING;
  1052. opt = CPU_BASED_TPR_SHADOW |
  1053. CPU_BASED_USE_MSR_BITMAPS |
  1054. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1055. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1056. &_cpu_based_exec_control) < 0)
  1057. return -EIO;
  1058. #ifdef CONFIG_X86_64
  1059. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1060. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1061. ~CPU_BASED_CR8_STORE_EXITING;
  1062. #endif
  1063. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1064. min2 = 0;
  1065. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1066. SECONDARY_EXEC_WBINVD_EXITING |
  1067. SECONDARY_EXEC_ENABLE_VPID |
  1068. SECONDARY_EXEC_ENABLE_EPT |
  1069. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1070. if (adjust_vmx_controls(min2, opt2,
  1071. MSR_IA32_VMX_PROCBASED_CTLS2,
  1072. &_cpu_based_2nd_exec_control) < 0)
  1073. return -EIO;
  1074. }
  1075. #ifndef CONFIG_X86_64
  1076. if (!(_cpu_based_2nd_exec_control &
  1077. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1078. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1079. #endif
  1080. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1081. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1082. enabled */
  1083. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1084. CPU_BASED_CR3_STORE_EXITING |
  1085. CPU_BASED_INVLPG_EXITING);
  1086. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1087. &_cpu_based_exec_control) < 0)
  1088. return -EIO;
  1089. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1090. vmx_capability.ept, vmx_capability.vpid);
  1091. }
  1092. min = 0;
  1093. #ifdef CONFIG_X86_64
  1094. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1095. #endif
  1096. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1097. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1098. &_vmexit_control) < 0)
  1099. return -EIO;
  1100. min = 0;
  1101. opt = VM_ENTRY_LOAD_IA32_PAT;
  1102. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1103. &_vmentry_control) < 0)
  1104. return -EIO;
  1105. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1106. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1107. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1108. return -EIO;
  1109. #ifdef CONFIG_X86_64
  1110. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1111. if (vmx_msr_high & (1u<<16))
  1112. return -EIO;
  1113. #endif
  1114. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1115. if (((vmx_msr_high >> 18) & 15) != 6)
  1116. return -EIO;
  1117. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1118. vmcs_conf->order = get_order(vmcs_config.size);
  1119. vmcs_conf->revision_id = vmx_msr_low;
  1120. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1121. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1122. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1123. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1124. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1125. return 0;
  1126. }
  1127. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1128. {
  1129. int node = cpu_to_node(cpu);
  1130. struct page *pages;
  1131. struct vmcs *vmcs;
  1132. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  1133. if (!pages)
  1134. return NULL;
  1135. vmcs = page_address(pages);
  1136. memset(vmcs, 0, vmcs_config.size);
  1137. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1138. return vmcs;
  1139. }
  1140. static struct vmcs *alloc_vmcs(void)
  1141. {
  1142. return alloc_vmcs_cpu(raw_smp_processor_id());
  1143. }
  1144. static void free_vmcs(struct vmcs *vmcs)
  1145. {
  1146. free_pages((unsigned long)vmcs, vmcs_config.order);
  1147. }
  1148. static void free_kvm_area(void)
  1149. {
  1150. int cpu;
  1151. for_each_online_cpu(cpu)
  1152. free_vmcs(per_cpu(vmxarea, cpu));
  1153. }
  1154. static __init int alloc_kvm_area(void)
  1155. {
  1156. int cpu;
  1157. for_each_online_cpu(cpu) {
  1158. struct vmcs *vmcs;
  1159. vmcs = alloc_vmcs_cpu(cpu);
  1160. if (!vmcs) {
  1161. free_kvm_area();
  1162. return -ENOMEM;
  1163. }
  1164. per_cpu(vmxarea, cpu) = vmcs;
  1165. }
  1166. return 0;
  1167. }
  1168. static __init int hardware_setup(void)
  1169. {
  1170. if (setup_vmcs_config(&vmcs_config) < 0)
  1171. return -EIO;
  1172. if (boot_cpu_has(X86_FEATURE_NX))
  1173. kvm_enable_efer_bits(EFER_NX);
  1174. if (!cpu_has_vmx_vpid())
  1175. enable_vpid = 0;
  1176. if (!cpu_has_vmx_ept()) {
  1177. enable_ept = 0;
  1178. enable_unrestricted_guest = 0;
  1179. }
  1180. if (!cpu_has_vmx_unrestricted_guest())
  1181. enable_unrestricted_guest = 0;
  1182. if (!cpu_has_vmx_flexpriority())
  1183. flexpriority_enabled = 0;
  1184. if (!cpu_has_vmx_tpr_shadow())
  1185. kvm_x86_ops->update_cr8_intercept = NULL;
  1186. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  1187. kvm_disable_largepages();
  1188. return alloc_kvm_area();
  1189. }
  1190. static __exit void hardware_unsetup(void)
  1191. {
  1192. free_kvm_area();
  1193. }
  1194. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1195. {
  1196. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1197. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1198. vmcs_write16(sf->selector, save->selector);
  1199. vmcs_writel(sf->base, save->base);
  1200. vmcs_write32(sf->limit, save->limit);
  1201. vmcs_write32(sf->ar_bytes, save->ar);
  1202. } else {
  1203. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1204. << AR_DPL_SHIFT;
  1205. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1206. }
  1207. }
  1208. static void enter_pmode(struct kvm_vcpu *vcpu)
  1209. {
  1210. unsigned long flags;
  1211. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1212. vmx->emulation_required = 1;
  1213. vmx->rmode.vm86_active = 0;
  1214. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  1215. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  1216. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  1217. flags = vmcs_readl(GUEST_RFLAGS);
  1218. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1219. flags |= (vmx->rmode.save_iopl << IOPL_SHIFT);
  1220. vmcs_writel(GUEST_RFLAGS, flags);
  1221. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1222. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1223. update_exception_bitmap(vcpu);
  1224. if (emulate_invalid_guest_state)
  1225. return;
  1226. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  1227. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  1228. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  1229. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  1230. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1231. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1232. vmcs_write16(GUEST_CS_SELECTOR,
  1233. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1234. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1235. }
  1236. static gva_t rmode_tss_base(struct kvm *kvm)
  1237. {
  1238. if (!kvm->arch.tss_addr) {
  1239. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1240. kvm->memslots[0].npages - 3;
  1241. return base_gfn << PAGE_SHIFT;
  1242. }
  1243. return kvm->arch.tss_addr;
  1244. }
  1245. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1246. {
  1247. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1248. save->selector = vmcs_read16(sf->selector);
  1249. save->base = vmcs_readl(sf->base);
  1250. save->limit = vmcs_read32(sf->limit);
  1251. save->ar = vmcs_read32(sf->ar_bytes);
  1252. vmcs_write16(sf->selector, save->base >> 4);
  1253. vmcs_write32(sf->base, save->base & 0xfffff);
  1254. vmcs_write32(sf->limit, 0xffff);
  1255. vmcs_write32(sf->ar_bytes, 0xf3);
  1256. }
  1257. static void enter_rmode(struct kvm_vcpu *vcpu)
  1258. {
  1259. unsigned long flags;
  1260. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1261. if (enable_unrestricted_guest)
  1262. return;
  1263. vmx->emulation_required = 1;
  1264. vmx->rmode.vm86_active = 1;
  1265. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1266. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1267. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1268. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1269. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1270. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1271. flags = vmcs_readl(GUEST_RFLAGS);
  1272. vmx->rmode.save_iopl
  1273. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1274. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1275. vmcs_writel(GUEST_RFLAGS, flags);
  1276. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1277. update_exception_bitmap(vcpu);
  1278. if (emulate_invalid_guest_state)
  1279. goto continue_rmode;
  1280. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1281. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1282. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1283. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1284. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1285. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1286. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1287. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1288. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  1289. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  1290. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  1291. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  1292. continue_rmode:
  1293. kvm_mmu_reset_context(vcpu);
  1294. init_rmode(vcpu->kvm);
  1295. }
  1296. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1297. {
  1298. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1299. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1300. vcpu->arch.shadow_efer = efer;
  1301. if (!msr)
  1302. return;
  1303. if (efer & EFER_LMA) {
  1304. vmcs_write32(VM_ENTRY_CONTROLS,
  1305. vmcs_read32(VM_ENTRY_CONTROLS) |
  1306. VM_ENTRY_IA32E_MODE);
  1307. msr->data = efer;
  1308. } else {
  1309. vmcs_write32(VM_ENTRY_CONTROLS,
  1310. vmcs_read32(VM_ENTRY_CONTROLS) &
  1311. ~VM_ENTRY_IA32E_MODE);
  1312. msr->data = efer & ~EFER_LME;
  1313. }
  1314. setup_msrs(vmx);
  1315. }
  1316. #ifdef CONFIG_X86_64
  1317. static void enter_lmode(struct kvm_vcpu *vcpu)
  1318. {
  1319. u32 guest_tr_ar;
  1320. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1321. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1322. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1323. __func__);
  1324. vmcs_write32(GUEST_TR_AR_BYTES,
  1325. (guest_tr_ar & ~AR_TYPE_MASK)
  1326. | AR_TYPE_BUSY_64_TSS);
  1327. }
  1328. vcpu->arch.shadow_efer |= EFER_LMA;
  1329. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1330. }
  1331. static void exit_lmode(struct kvm_vcpu *vcpu)
  1332. {
  1333. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1334. vmcs_write32(VM_ENTRY_CONTROLS,
  1335. vmcs_read32(VM_ENTRY_CONTROLS)
  1336. & ~VM_ENTRY_IA32E_MODE);
  1337. }
  1338. #endif
  1339. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1340. {
  1341. vpid_sync_vcpu_all(to_vmx(vcpu));
  1342. if (enable_ept)
  1343. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1344. }
  1345. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1346. {
  1347. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1348. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1349. }
  1350. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1351. {
  1352. if (!test_bit(VCPU_EXREG_PDPTR,
  1353. (unsigned long *)&vcpu->arch.regs_dirty))
  1354. return;
  1355. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1356. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1357. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1358. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1359. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1360. }
  1361. }
  1362. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  1363. {
  1364. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1365. vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  1366. vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  1367. vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  1368. vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  1369. }
  1370. __set_bit(VCPU_EXREG_PDPTR,
  1371. (unsigned long *)&vcpu->arch.regs_avail);
  1372. __set_bit(VCPU_EXREG_PDPTR,
  1373. (unsigned long *)&vcpu->arch.regs_dirty);
  1374. }
  1375. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1376. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1377. unsigned long cr0,
  1378. struct kvm_vcpu *vcpu)
  1379. {
  1380. if (!(cr0 & X86_CR0_PG)) {
  1381. /* From paging/starting to nonpaging */
  1382. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1383. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1384. (CPU_BASED_CR3_LOAD_EXITING |
  1385. CPU_BASED_CR3_STORE_EXITING));
  1386. vcpu->arch.cr0 = cr0;
  1387. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1388. *hw_cr0 &= ~X86_CR0_WP;
  1389. } else if (!is_paging(vcpu)) {
  1390. /* From nonpaging to paging */
  1391. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1392. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1393. ~(CPU_BASED_CR3_LOAD_EXITING |
  1394. CPU_BASED_CR3_STORE_EXITING));
  1395. vcpu->arch.cr0 = cr0;
  1396. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1397. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1398. *hw_cr0 &= ~X86_CR0_WP;
  1399. }
  1400. }
  1401. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1402. struct kvm_vcpu *vcpu)
  1403. {
  1404. if (!is_paging(vcpu)) {
  1405. *hw_cr4 &= ~X86_CR4_PAE;
  1406. *hw_cr4 |= X86_CR4_PSE;
  1407. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1408. *hw_cr4 &= ~X86_CR4_PAE;
  1409. }
  1410. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1411. {
  1412. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1413. unsigned long hw_cr0;
  1414. if (enable_unrestricted_guest)
  1415. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  1416. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  1417. else
  1418. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  1419. vmx_fpu_deactivate(vcpu);
  1420. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  1421. enter_pmode(vcpu);
  1422. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  1423. enter_rmode(vcpu);
  1424. #ifdef CONFIG_X86_64
  1425. if (vcpu->arch.shadow_efer & EFER_LME) {
  1426. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1427. enter_lmode(vcpu);
  1428. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1429. exit_lmode(vcpu);
  1430. }
  1431. #endif
  1432. if (enable_ept)
  1433. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1434. vmcs_writel(CR0_READ_SHADOW, cr0);
  1435. vmcs_writel(GUEST_CR0, hw_cr0);
  1436. vcpu->arch.cr0 = cr0;
  1437. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1438. vmx_fpu_activate(vcpu);
  1439. }
  1440. static u64 construct_eptp(unsigned long root_hpa)
  1441. {
  1442. u64 eptp;
  1443. /* TODO write the value reading from MSR */
  1444. eptp = VMX_EPT_DEFAULT_MT |
  1445. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1446. eptp |= (root_hpa & PAGE_MASK);
  1447. return eptp;
  1448. }
  1449. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1450. {
  1451. unsigned long guest_cr3;
  1452. u64 eptp;
  1453. guest_cr3 = cr3;
  1454. if (enable_ept) {
  1455. eptp = construct_eptp(cr3);
  1456. vmcs_write64(EPT_POINTER, eptp);
  1457. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1458. vcpu->kvm->arch.ept_identity_map_addr;
  1459. }
  1460. vmx_flush_tlb(vcpu);
  1461. vmcs_writel(GUEST_CR3, guest_cr3);
  1462. if (vcpu->arch.cr0 & X86_CR0_PE)
  1463. vmx_fpu_deactivate(vcpu);
  1464. }
  1465. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1466. {
  1467. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  1468. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1469. vcpu->arch.cr4 = cr4;
  1470. if (enable_ept)
  1471. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1472. vmcs_writel(CR4_READ_SHADOW, cr4);
  1473. vmcs_writel(GUEST_CR4, hw_cr4);
  1474. }
  1475. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1476. {
  1477. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1478. return vmcs_readl(sf->base);
  1479. }
  1480. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1481. struct kvm_segment *var, int seg)
  1482. {
  1483. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1484. u32 ar;
  1485. var->base = vmcs_readl(sf->base);
  1486. var->limit = vmcs_read32(sf->limit);
  1487. var->selector = vmcs_read16(sf->selector);
  1488. ar = vmcs_read32(sf->ar_bytes);
  1489. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1490. ar = 0;
  1491. var->type = ar & 15;
  1492. var->s = (ar >> 4) & 1;
  1493. var->dpl = (ar >> 5) & 3;
  1494. var->present = (ar >> 7) & 1;
  1495. var->avl = (ar >> 12) & 1;
  1496. var->l = (ar >> 13) & 1;
  1497. var->db = (ar >> 14) & 1;
  1498. var->g = (ar >> 15) & 1;
  1499. var->unusable = (ar >> 16) & 1;
  1500. }
  1501. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1502. {
  1503. struct kvm_segment kvm_seg;
  1504. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1505. return 0;
  1506. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1507. return 3;
  1508. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1509. return kvm_seg.selector & 3;
  1510. }
  1511. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1512. {
  1513. u32 ar;
  1514. if (var->unusable)
  1515. ar = 1 << 16;
  1516. else {
  1517. ar = var->type & 15;
  1518. ar |= (var->s & 1) << 4;
  1519. ar |= (var->dpl & 3) << 5;
  1520. ar |= (var->present & 1) << 7;
  1521. ar |= (var->avl & 1) << 12;
  1522. ar |= (var->l & 1) << 13;
  1523. ar |= (var->db & 1) << 14;
  1524. ar |= (var->g & 1) << 15;
  1525. }
  1526. if (ar == 0) /* a 0 value means unusable */
  1527. ar = AR_UNUSABLE_MASK;
  1528. return ar;
  1529. }
  1530. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1531. struct kvm_segment *var, int seg)
  1532. {
  1533. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1534. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1535. u32 ar;
  1536. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  1537. vmx->rmode.tr.selector = var->selector;
  1538. vmx->rmode.tr.base = var->base;
  1539. vmx->rmode.tr.limit = var->limit;
  1540. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  1541. return;
  1542. }
  1543. vmcs_writel(sf->base, var->base);
  1544. vmcs_write32(sf->limit, var->limit);
  1545. vmcs_write16(sf->selector, var->selector);
  1546. if (vmx->rmode.vm86_active && var->s) {
  1547. /*
  1548. * Hack real-mode segments into vm86 compatibility.
  1549. */
  1550. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1551. vmcs_writel(sf->base, 0xf0000);
  1552. ar = 0xf3;
  1553. } else
  1554. ar = vmx_segment_access_rights(var);
  1555. /*
  1556. * Fix the "Accessed" bit in AR field of segment registers for older
  1557. * qemu binaries.
  1558. * IA32 arch specifies that at the time of processor reset the
  1559. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  1560. * is setting it to 0 in the usedland code. This causes invalid guest
  1561. * state vmexit when "unrestricted guest" mode is turned on.
  1562. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  1563. * tree. Newer qemu binaries with that qemu fix would not need this
  1564. * kvm hack.
  1565. */
  1566. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  1567. ar |= 0x1; /* Accessed */
  1568. vmcs_write32(sf->ar_bytes, ar);
  1569. }
  1570. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1571. {
  1572. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1573. *db = (ar >> 14) & 1;
  1574. *l = (ar >> 13) & 1;
  1575. }
  1576. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1577. {
  1578. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1579. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1580. }
  1581. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1582. {
  1583. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1584. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1585. }
  1586. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1587. {
  1588. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1589. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1590. }
  1591. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1592. {
  1593. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1594. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1595. }
  1596. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1597. {
  1598. struct kvm_segment var;
  1599. u32 ar;
  1600. vmx_get_segment(vcpu, &var, seg);
  1601. ar = vmx_segment_access_rights(&var);
  1602. if (var.base != (var.selector << 4))
  1603. return false;
  1604. if (var.limit != 0xffff)
  1605. return false;
  1606. if (ar != 0xf3)
  1607. return false;
  1608. return true;
  1609. }
  1610. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1611. {
  1612. struct kvm_segment cs;
  1613. unsigned int cs_rpl;
  1614. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1615. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1616. if (cs.unusable)
  1617. return false;
  1618. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1619. return false;
  1620. if (!cs.s)
  1621. return false;
  1622. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1623. if (cs.dpl > cs_rpl)
  1624. return false;
  1625. } else {
  1626. if (cs.dpl != cs_rpl)
  1627. return false;
  1628. }
  1629. if (!cs.present)
  1630. return false;
  1631. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1632. return true;
  1633. }
  1634. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1635. {
  1636. struct kvm_segment ss;
  1637. unsigned int ss_rpl;
  1638. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1639. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1640. if (ss.unusable)
  1641. return true;
  1642. if (ss.type != 3 && ss.type != 7)
  1643. return false;
  1644. if (!ss.s)
  1645. return false;
  1646. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1647. return false;
  1648. if (!ss.present)
  1649. return false;
  1650. return true;
  1651. }
  1652. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1653. {
  1654. struct kvm_segment var;
  1655. unsigned int rpl;
  1656. vmx_get_segment(vcpu, &var, seg);
  1657. rpl = var.selector & SELECTOR_RPL_MASK;
  1658. if (var.unusable)
  1659. return true;
  1660. if (!var.s)
  1661. return false;
  1662. if (!var.present)
  1663. return false;
  1664. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1665. if (var.dpl < rpl) /* DPL < RPL */
  1666. return false;
  1667. }
  1668. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1669. * rights flags
  1670. */
  1671. return true;
  1672. }
  1673. static bool tr_valid(struct kvm_vcpu *vcpu)
  1674. {
  1675. struct kvm_segment tr;
  1676. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1677. if (tr.unusable)
  1678. return false;
  1679. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1680. return false;
  1681. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1682. return false;
  1683. if (!tr.present)
  1684. return false;
  1685. return true;
  1686. }
  1687. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1688. {
  1689. struct kvm_segment ldtr;
  1690. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1691. if (ldtr.unusable)
  1692. return true;
  1693. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1694. return false;
  1695. if (ldtr.type != 2)
  1696. return false;
  1697. if (!ldtr.present)
  1698. return false;
  1699. return true;
  1700. }
  1701. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1702. {
  1703. struct kvm_segment cs, ss;
  1704. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1705. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1706. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1707. (ss.selector & SELECTOR_RPL_MASK));
  1708. }
  1709. /*
  1710. * Check if guest state is valid. Returns true if valid, false if
  1711. * not.
  1712. * We assume that registers are always usable
  1713. */
  1714. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1715. {
  1716. /* real mode guest state checks */
  1717. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1718. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1719. return false;
  1720. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1721. return false;
  1722. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1723. return false;
  1724. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1725. return false;
  1726. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1727. return false;
  1728. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1729. return false;
  1730. } else {
  1731. /* protected mode guest state checks */
  1732. if (!cs_ss_rpl_check(vcpu))
  1733. return false;
  1734. if (!code_segment_valid(vcpu))
  1735. return false;
  1736. if (!stack_segment_valid(vcpu))
  1737. return false;
  1738. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1739. return false;
  1740. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1741. return false;
  1742. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1743. return false;
  1744. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1745. return false;
  1746. if (!tr_valid(vcpu))
  1747. return false;
  1748. if (!ldtr_valid(vcpu))
  1749. return false;
  1750. }
  1751. /* TODO:
  1752. * - Add checks on RIP
  1753. * - Add checks on RFLAGS
  1754. */
  1755. return true;
  1756. }
  1757. static int init_rmode_tss(struct kvm *kvm)
  1758. {
  1759. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1760. u16 data = 0;
  1761. int ret = 0;
  1762. int r;
  1763. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1764. if (r < 0)
  1765. goto out;
  1766. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1767. r = kvm_write_guest_page(kvm, fn++, &data,
  1768. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1769. if (r < 0)
  1770. goto out;
  1771. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1772. if (r < 0)
  1773. goto out;
  1774. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1775. if (r < 0)
  1776. goto out;
  1777. data = ~0;
  1778. r = kvm_write_guest_page(kvm, fn, &data,
  1779. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1780. sizeof(u8));
  1781. if (r < 0)
  1782. goto out;
  1783. ret = 1;
  1784. out:
  1785. return ret;
  1786. }
  1787. static int init_rmode_identity_map(struct kvm *kvm)
  1788. {
  1789. int i, r, ret;
  1790. pfn_t identity_map_pfn;
  1791. u32 tmp;
  1792. if (!enable_ept)
  1793. return 1;
  1794. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1795. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1796. "haven't been allocated!\n");
  1797. return 0;
  1798. }
  1799. if (likely(kvm->arch.ept_identity_pagetable_done))
  1800. return 1;
  1801. ret = 0;
  1802. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  1803. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1804. if (r < 0)
  1805. goto out;
  1806. /* Set up identity-mapping pagetable for EPT in real mode */
  1807. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1808. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1809. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1810. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1811. &tmp, i * sizeof(tmp), sizeof(tmp));
  1812. if (r < 0)
  1813. goto out;
  1814. }
  1815. kvm->arch.ept_identity_pagetable_done = true;
  1816. ret = 1;
  1817. out:
  1818. return ret;
  1819. }
  1820. static void seg_setup(int seg)
  1821. {
  1822. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1823. unsigned int ar;
  1824. vmcs_write16(sf->selector, 0);
  1825. vmcs_writel(sf->base, 0);
  1826. vmcs_write32(sf->limit, 0xffff);
  1827. if (enable_unrestricted_guest) {
  1828. ar = 0x93;
  1829. if (seg == VCPU_SREG_CS)
  1830. ar |= 0x08; /* code segment */
  1831. } else
  1832. ar = 0xf3;
  1833. vmcs_write32(sf->ar_bytes, ar);
  1834. }
  1835. static int alloc_apic_access_page(struct kvm *kvm)
  1836. {
  1837. struct kvm_userspace_memory_region kvm_userspace_mem;
  1838. int r = 0;
  1839. down_write(&kvm->slots_lock);
  1840. if (kvm->arch.apic_access_page)
  1841. goto out;
  1842. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1843. kvm_userspace_mem.flags = 0;
  1844. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1845. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1846. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1847. if (r)
  1848. goto out;
  1849. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1850. out:
  1851. up_write(&kvm->slots_lock);
  1852. return r;
  1853. }
  1854. static int alloc_identity_pagetable(struct kvm *kvm)
  1855. {
  1856. struct kvm_userspace_memory_region kvm_userspace_mem;
  1857. int r = 0;
  1858. down_write(&kvm->slots_lock);
  1859. if (kvm->arch.ept_identity_pagetable)
  1860. goto out;
  1861. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1862. kvm_userspace_mem.flags = 0;
  1863. kvm_userspace_mem.guest_phys_addr =
  1864. kvm->arch.ept_identity_map_addr;
  1865. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1866. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1867. if (r)
  1868. goto out;
  1869. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1870. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  1871. out:
  1872. up_write(&kvm->slots_lock);
  1873. return r;
  1874. }
  1875. static void allocate_vpid(struct vcpu_vmx *vmx)
  1876. {
  1877. int vpid;
  1878. vmx->vpid = 0;
  1879. if (!enable_vpid)
  1880. return;
  1881. spin_lock(&vmx_vpid_lock);
  1882. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1883. if (vpid < VMX_NR_VPIDS) {
  1884. vmx->vpid = vpid;
  1885. __set_bit(vpid, vmx_vpid_bitmap);
  1886. }
  1887. spin_unlock(&vmx_vpid_lock);
  1888. }
  1889. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1890. {
  1891. int f = sizeof(unsigned long);
  1892. if (!cpu_has_vmx_msr_bitmap())
  1893. return;
  1894. /*
  1895. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1896. * have the write-low and read-high bitmap offsets the wrong way round.
  1897. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1898. */
  1899. if (msr <= 0x1fff) {
  1900. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1901. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1902. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1903. msr &= 0x1fff;
  1904. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1905. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1906. }
  1907. }
  1908. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1909. {
  1910. if (!longmode_only)
  1911. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1912. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1913. }
  1914. /*
  1915. * Sets up the vmcs for emulated real mode.
  1916. */
  1917. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1918. {
  1919. u32 host_sysenter_cs, msr_low, msr_high;
  1920. u32 junk;
  1921. u64 host_pat, tsc_this, tsc_base;
  1922. unsigned long a;
  1923. struct descriptor_table dt;
  1924. int i;
  1925. unsigned long kvm_vmx_return;
  1926. u32 exec_control;
  1927. /* I/O */
  1928. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1929. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1930. if (cpu_has_vmx_msr_bitmap())
  1931. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1932. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1933. /* Control */
  1934. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1935. vmcs_config.pin_based_exec_ctrl);
  1936. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1937. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1938. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1939. #ifdef CONFIG_X86_64
  1940. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1941. CPU_BASED_CR8_LOAD_EXITING;
  1942. #endif
  1943. }
  1944. if (!enable_ept)
  1945. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1946. CPU_BASED_CR3_LOAD_EXITING |
  1947. CPU_BASED_INVLPG_EXITING;
  1948. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1949. if (cpu_has_secondary_exec_ctrls()) {
  1950. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1951. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1952. exec_control &=
  1953. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1954. if (vmx->vpid == 0)
  1955. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1956. if (!enable_ept)
  1957. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1958. if (!enable_unrestricted_guest)
  1959. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  1960. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1961. }
  1962. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1963. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1964. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1965. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1966. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1967. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1968. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1969. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1970. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1971. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1972. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1973. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1974. #ifdef CONFIG_X86_64
  1975. rdmsrl(MSR_FS_BASE, a);
  1976. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1977. rdmsrl(MSR_GS_BASE, a);
  1978. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1979. #else
  1980. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1981. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1982. #endif
  1983. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1984. kvm_get_idt(&dt);
  1985. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1986. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1987. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1988. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1989. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1990. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1991. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1992. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1993. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1994. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1995. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1996. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1997. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1998. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1999. host_pat = msr_low | ((u64) msr_high << 32);
  2000. vmcs_write64(HOST_IA32_PAT, host_pat);
  2001. }
  2002. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  2003. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  2004. host_pat = msr_low | ((u64) msr_high << 32);
  2005. /* Write the default value follow host pat */
  2006. vmcs_write64(GUEST_IA32_PAT, host_pat);
  2007. /* Keep arch.pat sync with GUEST_IA32_PAT */
  2008. vmx->vcpu.arch.pat = host_pat;
  2009. }
  2010. for (i = 0; i < NR_VMX_MSR; ++i) {
  2011. u32 index = vmx_msr_index[i];
  2012. u32 data_low, data_high;
  2013. u64 data;
  2014. int j = vmx->nmsrs;
  2015. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  2016. continue;
  2017. if (wrmsr_safe(index, data_low, data_high) < 0)
  2018. continue;
  2019. data = data_low | ((u64)data_high << 32);
  2020. vmx->host_msrs[j].index = index;
  2021. vmx->host_msrs[j].reserved = 0;
  2022. vmx->host_msrs[j].data = data;
  2023. vmx->guest_msrs[j] = vmx->host_msrs[j];
  2024. ++vmx->nmsrs;
  2025. }
  2026. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  2027. /* 22.2.1, 20.8.1 */
  2028. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  2029. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  2030. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  2031. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  2032. rdtscll(tsc_this);
  2033. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  2034. tsc_base = tsc_this;
  2035. guest_write_tsc(0, tsc_base);
  2036. return 0;
  2037. }
  2038. static int init_rmode(struct kvm *kvm)
  2039. {
  2040. if (!init_rmode_tss(kvm))
  2041. return 0;
  2042. if (!init_rmode_identity_map(kvm))
  2043. return 0;
  2044. return 1;
  2045. }
  2046. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  2047. {
  2048. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2049. u64 msr;
  2050. int ret;
  2051. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2052. down_read(&vcpu->kvm->slots_lock);
  2053. if (!init_rmode(vmx->vcpu.kvm)) {
  2054. ret = -ENOMEM;
  2055. goto out;
  2056. }
  2057. vmx->rmode.vm86_active = 0;
  2058. vmx->soft_vnmi_blocked = 0;
  2059. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  2060. kvm_set_cr8(&vmx->vcpu, 0);
  2061. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  2062. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2063. msr |= MSR_IA32_APICBASE_BSP;
  2064. kvm_set_apic_base(&vmx->vcpu, msr);
  2065. fx_init(&vmx->vcpu);
  2066. seg_setup(VCPU_SREG_CS);
  2067. /*
  2068. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  2069. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  2070. */
  2071. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  2072. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  2073. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  2074. } else {
  2075. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  2076. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  2077. }
  2078. seg_setup(VCPU_SREG_DS);
  2079. seg_setup(VCPU_SREG_ES);
  2080. seg_setup(VCPU_SREG_FS);
  2081. seg_setup(VCPU_SREG_GS);
  2082. seg_setup(VCPU_SREG_SS);
  2083. vmcs_write16(GUEST_TR_SELECTOR, 0);
  2084. vmcs_writel(GUEST_TR_BASE, 0);
  2085. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  2086. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2087. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  2088. vmcs_writel(GUEST_LDTR_BASE, 0);
  2089. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  2090. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  2091. vmcs_write32(GUEST_SYSENTER_CS, 0);
  2092. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  2093. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  2094. vmcs_writel(GUEST_RFLAGS, 0x02);
  2095. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  2096. kvm_rip_write(vcpu, 0xfff0);
  2097. else
  2098. kvm_rip_write(vcpu, 0);
  2099. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2100. vmcs_writel(GUEST_DR7, 0x400);
  2101. vmcs_writel(GUEST_GDTR_BASE, 0);
  2102. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2103. vmcs_writel(GUEST_IDTR_BASE, 0);
  2104. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2105. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2106. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2107. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2108. /* Special registers */
  2109. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2110. setup_msrs(vmx);
  2111. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2112. if (cpu_has_vmx_tpr_shadow()) {
  2113. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2114. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2115. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2116. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2117. vmcs_write32(TPR_THRESHOLD, 0);
  2118. }
  2119. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2120. vmcs_write64(APIC_ACCESS_ADDR,
  2121. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2122. if (vmx->vpid != 0)
  2123. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2124. vmx->vcpu.arch.cr0 = 0x60000010;
  2125. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2126. vmx_set_cr4(&vmx->vcpu, 0);
  2127. vmx_set_efer(&vmx->vcpu, 0);
  2128. vmx_fpu_activate(&vmx->vcpu);
  2129. update_exception_bitmap(&vmx->vcpu);
  2130. vpid_sync_vcpu_all(vmx);
  2131. ret = 0;
  2132. /* HACK: Don't enable emulation on guest boot/reset */
  2133. vmx->emulation_required = 0;
  2134. out:
  2135. up_read(&vcpu->kvm->slots_lock);
  2136. return ret;
  2137. }
  2138. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2139. {
  2140. u32 cpu_based_vm_exec_control;
  2141. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2142. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2143. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2144. }
  2145. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2146. {
  2147. u32 cpu_based_vm_exec_control;
  2148. if (!cpu_has_virtual_nmis()) {
  2149. enable_irq_window(vcpu);
  2150. return;
  2151. }
  2152. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2153. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2154. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2155. }
  2156. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  2157. {
  2158. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2159. uint32_t intr;
  2160. int irq = vcpu->arch.interrupt.nr;
  2161. trace_kvm_inj_virq(irq);
  2162. ++vcpu->stat.irq_injections;
  2163. if (vmx->rmode.vm86_active) {
  2164. vmx->rmode.irq.pending = true;
  2165. vmx->rmode.irq.vector = irq;
  2166. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2167. if (vcpu->arch.interrupt.soft)
  2168. vmx->rmode.irq.rip +=
  2169. vmx->vcpu.arch.event_exit_inst_len;
  2170. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2171. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2172. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2173. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2174. return;
  2175. }
  2176. intr = irq | INTR_INFO_VALID_MASK;
  2177. if (vcpu->arch.interrupt.soft) {
  2178. intr |= INTR_TYPE_SOFT_INTR;
  2179. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2180. vmx->vcpu.arch.event_exit_inst_len);
  2181. } else
  2182. intr |= INTR_TYPE_EXT_INTR;
  2183. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  2184. }
  2185. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2186. {
  2187. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2188. if (!cpu_has_virtual_nmis()) {
  2189. /*
  2190. * Tracking the NMI-blocked state in software is built upon
  2191. * finding the next open IRQ window. This, in turn, depends on
  2192. * well-behaving guests: They have to keep IRQs disabled at
  2193. * least as long as the NMI handler runs. Otherwise we may
  2194. * cause NMI nesting, maybe breaking the guest. But as this is
  2195. * highly unlikely, we can live with the residual risk.
  2196. */
  2197. vmx->soft_vnmi_blocked = 1;
  2198. vmx->vnmi_blocked_time = 0;
  2199. }
  2200. ++vcpu->stat.nmi_injections;
  2201. if (vmx->rmode.vm86_active) {
  2202. vmx->rmode.irq.pending = true;
  2203. vmx->rmode.irq.vector = NMI_VECTOR;
  2204. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2205. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2206. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2207. INTR_INFO_VALID_MASK);
  2208. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2209. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2210. return;
  2211. }
  2212. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2213. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2214. }
  2215. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2216. {
  2217. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2218. return 0;
  2219. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2220. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2221. GUEST_INTR_STATE_NMI));
  2222. }
  2223. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2224. {
  2225. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2226. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2227. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2228. }
  2229. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2230. {
  2231. int ret;
  2232. struct kvm_userspace_memory_region tss_mem = {
  2233. .slot = TSS_PRIVATE_MEMSLOT,
  2234. .guest_phys_addr = addr,
  2235. .memory_size = PAGE_SIZE * 3,
  2236. .flags = 0,
  2237. };
  2238. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2239. if (ret)
  2240. return ret;
  2241. kvm->arch.tss_addr = addr;
  2242. return 0;
  2243. }
  2244. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2245. int vec, u32 err_code)
  2246. {
  2247. /*
  2248. * Instruction with address size override prefix opcode 0x67
  2249. * Cause the #SS fault with 0 error code in VM86 mode.
  2250. */
  2251. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2252. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2253. return 1;
  2254. /*
  2255. * Forward all other exceptions that are valid in real mode.
  2256. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2257. * the required debugging infrastructure rework.
  2258. */
  2259. switch (vec) {
  2260. case DB_VECTOR:
  2261. if (vcpu->guest_debug &
  2262. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2263. return 0;
  2264. kvm_queue_exception(vcpu, vec);
  2265. return 1;
  2266. case BP_VECTOR:
  2267. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2268. return 0;
  2269. /* fall through */
  2270. case DE_VECTOR:
  2271. case OF_VECTOR:
  2272. case BR_VECTOR:
  2273. case UD_VECTOR:
  2274. case DF_VECTOR:
  2275. case SS_VECTOR:
  2276. case GP_VECTOR:
  2277. case MF_VECTOR:
  2278. kvm_queue_exception(vcpu, vec);
  2279. return 1;
  2280. }
  2281. return 0;
  2282. }
  2283. /*
  2284. * Trigger machine check on the host. We assume all the MSRs are already set up
  2285. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  2286. * We pass a fake environment to the machine check handler because we want
  2287. * the guest to be always treated like user space, no matter what context
  2288. * it used internally.
  2289. */
  2290. static void kvm_machine_check(void)
  2291. {
  2292. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  2293. struct pt_regs regs = {
  2294. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  2295. .flags = X86_EFLAGS_IF,
  2296. };
  2297. do_machine_check(&regs, 0);
  2298. #endif
  2299. }
  2300. static int handle_machine_check(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2301. {
  2302. /* already handled by vcpu_run */
  2303. return 1;
  2304. }
  2305. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2306. {
  2307. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2308. u32 intr_info, ex_no, error_code;
  2309. unsigned long cr2, rip, dr6;
  2310. u32 vect_info;
  2311. enum emulation_result er;
  2312. vect_info = vmx->idt_vectoring_info;
  2313. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2314. if (is_machine_check(intr_info))
  2315. return handle_machine_check(vcpu, kvm_run);
  2316. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2317. !is_page_fault(intr_info))
  2318. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2319. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2320. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2321. return 1; /* already handled by vmx_vcpu_run() */
  2322. if (is_no_device(intr_info)) {
  2323. vmx_fpu_activate(vcpu);
  2324. return 1;
  2325. }
  2326. if (is_invalid_opcode(intr_info)) {
  2327. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2328. if (er != EMULATE_DONE)
  2329. kvm_queue_exception(vcpu, UD_VECTOR);
  2330. return 1;
  2331. }
  2332. error_code = 0;
  2333. rip = kvm_rip_read(vcpu);
  2334. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2335. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2336. if (is_page_fault(intr_info)) {
  2337. /* EPT won't cause page fault directly */
  2338. if (enable_ept)
  2339. BUG();
  2340. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2341. trace_kvm_page_fault(cr2, error_code);
  2342. if (kvm_event_needs_reinjection(vcpu))
  2343. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2344. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2345. }
  2346. if (vmx->rmode.vm86_active &&
  2347. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2348. error_code)) {
  2349. if (vcpu->arch.halt_request) {
  2350. vcpu->arch.halt_request = 0;
  2351. return kvm_emulate_halt(vcpu);
  2352. }
  2353. return 1;
  2354. }
  2355. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2356. switch (ex_no) {
  2357. case DB_VECTOR:
  2358. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2359. if (!(vcpu->guest_debug &
  2360. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2361. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2362. kvm_queue_exception(vcpu, DB_VECTOR);
  2363. return 1;
  2364. }
  2365. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2366. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2367. /* fall through */
  2368. case BP_VECTOR:
  2369. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2370. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2371. kvm_run->debug.arch.exception = ex_no;
  2372. break;
  2373. default:
  2374. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2375. kvm_run->ex.exception = ex_no;
  2376. kvm_run->ex.error_code = error_code;
  2377. break;
  2378. }
  2379. return 0;
  2380. }
  2381. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2382. struct kvm_run *kvm_run)
  2383. {
  2384. ++vcpu->stat.irq_exits;
  2385. return 1;
  2386. }
  2387. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2388. {
  2389. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2390. return 0;
  2391. }
  2392. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2393. {
  2394. unsigned long exit_qualification;
  2395. int size, in, string;
  2396. unsigned port;
  2397. ++vcpu->stat.io_exits;
  2398. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2399. string = (exit_qualification & 16) != 0;
  2400. if (string) {
  2401. if (emulate_instruction(vcpu,
  2402. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2403. return 0;
  2404. return 1;
  2405. }
  2406. size = (exit_qualification & 7) + 1;
  2407. in = (exit_qualification & 8) != 0;
  2408. port = exit_qualification >> 16;
  2409. skip_emulated_instruction(vcpu);
  2410. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2411. }
  2412. static void
  2413. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2414. {
  2415. /*
  2416. * Patch in the VMCALL instruction:
  2417. */
  2418. hypercall[0] = 0x0f;
  2419. hypercall[1] = 0x01;
  2420. hypercall[2] = 0xc1;
  2421. }
  2422. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2423. {
  2424. unsigned long exit_qualification, val;
  2425. int cr;
  2426. int reg;
  2427. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2428. cr = exit_qualification & 15;
  2429. reg = (exit_qualification >> 8) & 15;
  2430. switch ((exit_qualification >> 4) & 3) {
  2431. case 0: /* mov to cr */
  2432. val = kvm_register_read(vcpu, reg);
  2433. trace_kvm_cr_write(cr, val);
  2434. switch (cr) {
  2435. case 0:
  2436. kvm_set_cr0(vcpu, val);
  2437. skip_emulated_instruction(vcpu);
  2438. return 1;
  2439. case 3:
  2440. kvm_set_cr3(vcpu, val);
  2441. skip_emulated_instruction(vcpu);
  2442. return 1;
  2443. case 4:
  2444. kvm_set_cr4(vcpu, val);
  2445. skip_emulated_instruction(vcpu);
  2446. return 1;
  2447. case 8: {
  2448. u8 cr8_prev = kvm_get_cr8(vcpu);
  2449. u8 cr8 = kvm_register_read(vcpu, reg);
  2450. kvm_set_cr8(vcpu, cr8);
  2451. skip_emulated_instruction(vcpu);
  2452. if (irqchip_in_kernel(vcpu->kvm))
  2453. return 1;
  2454. if (cr8_prev <= cr8)
  2455. return 1;
  2456. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2457. return 0;
  2458. }
  2459. };
  2460. break;
  2461. case 2: /* clts */
  2462. vmx_fpu_deactivate(vcpu);
  2463. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2464. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2465. vmx_fpu_activate(vcpu);
  2466. skip_emulated_instruction(vcpu);
  2467. return 1;
  2468. case 1: /*mov from cr*/
  2469. switch (cr) {
  2470. case 3:
  2471. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2472. trace_kvm_cr_read(cr, vcpu->arch.cr3);
  2473. skip_emulated_instruction(vcpu);
  2474. return 1;
  2475. case 8:
  2476. val = kvm_get_cr8(vcpu);
  2477. kvm_register_write(vcpu, reg, val);
  2478. trace_kvm_cr_read(cr, val);
  2479. skip_emulated_instruction(vcpu);
  2480. return 1;
  2481. }
  2482. break;
  2483. case 3: /* lmsw */
  2484. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2485. skip_emulated_instruction(vcpu);
  2486. return 1;
  2487. default:
  2488. break;
  2489. }
  2490. kvm_run->exit_reason = 0;
  2491. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2492. (int)(exit_qualification >> 4) & 3, cr);
  2493. return 0;
  2494. }
  2495. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2496. {
  2497. unsigned long exit_qualification;
  2498. unsigned long val;
  2499. int dr, reg;
  2500. dr = vmcs_readl(GUEST_DR7);
  2501. if (dr & DR7_GD) {
  2502. /*
  2503. * As the vm-exit takes precedence over the debug trap, we
  2504. * need to emulate the latter, either for the host or the
  2505. * guest debugging itself.
  2506. */
  2507. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2508. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2509. kvm_run->debug.arch.dr7 = dr;
  2510. kvm_run->debug.arch.pc =
  2511. vmcs_readl(GUEST_CS_BASE) +
  2512. vmcs_readl(GUEST_RIP);
  2513. kvm_run->debug.arch.exception = DB_VECTOR;
  2514. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2515. return 0;
  2516. } else {
  2517. vcpu->arch.dr7 &= ~DR7_GD;
  2518. vcpu->arch.dr6 |= DR6_BD;
  2519. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2520. kvm_queue_exception(vcpu, DB_VECTOR);
  2521. return 1;
  2522. }
  2523. }
  2524. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2525. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2526. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2527. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2528. switch (dr) {
  2529. case 0 ... 3:
  2530. val = vcpu->arch.db[dr];
  2531. break;
  2532. case 6:
  2533. val = vcpu->arch.dr6;
  2534. break;
  2535. case 7:
  2536. val = vcpu->arch.dr7;
  2537. break;
  2538. default:
  2539. val = 0;
  2540. }
  2541. kvm_register_write(vcpu, reg, val);
  2542. } else {
  2543. val = vcpu->arch.regs[reg];
  2544. switch (dr) {
  2545. case 0 ... 3:
  2546. vcpu->arch.db[dr] = val;
  2547. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2548. vcpu->arch.eff_db[dr] = val;
  2549. break;
  2550. case 4 ... 5:
  2551. if (vcpu->arch.cr4 & X86_CR4_DE)
  2552. kvm_queue_exception(vcpu, UD_VECTOR);
  2553. break;
  2554. case 6:
  2555. if (val & 0xffffffff00000000ULL) {
  2556. kvm_queue_exception(vcpu, GP_VECTOR);
  2557. break;
  2558. }
  2559. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2560. break;
  2561. case 7:
  2562. if (val & 0xffffffff00000000ULL) {
  2563. kvm_queue_exception(vcpu, GP_VECTOR);
  2564. break;
  2565. }
  2566. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2567. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2568. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2569. vcpu->arch.switch_db_regs =
  2570. (val & DR7_BP_EN_MASK);
  2571. }
  2572. break;
  2573. }
  2574. }
  2575. skip_emulated_instruction(vcpu);
  2576. return 1;
  2577. }
  2578. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2579. {
  2580. kvm_emulate_cpuid(vcpu);
  2581. return 1;
  2582. }
  2583. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2584. {
  2585. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2586. u64 data;
  2587. if (vmx_get_msr(vcpu, ecx, &data)) {
  2588. kvm_inject_gp(vcpu, 0);
  2589. return 1;
  2590. }
  2591. trace_kvm_msr_read(ecx, data);
  2592. /* FIXME: handling of bits 32:63 of rax, rdx */
  2593. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2594. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2595. skip_emulated_instruction(vcpu);
  2596. return 1;
  2597. }
  2598. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2599. {
  2600. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2601. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2602. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2603. trace_kvm_msr_write(ecx, data);
  2604. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2605. kvm_inject_gp(vcpu, 0);
  2606. return 1;
  2607. }
  2608. skip_emulated_instruction(vcpu);
  2609. return 1;
  2610. }
  2611. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2612. struct kvm_run *kvm_run)
  2613. {
  2614. return 1;
  2615. }
  2616. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2617. struct kvm_run *kvm_run)
  2618. {
  2619. u32 cpu_based_vm_exec_control;
  2620. /* clear pending irq */
  2621. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2622. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2623. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2624. ++vcpu->stat.irq_window_exits;
  2625. /*
  2626. * If the user space waits to inject interrupts, exit as soon as
  2627. * possible
  2628. */
  2629. if (!irqchip_in_kernel(vcpu->kvm) &&
  2630. kvm_run->request_interrupt_window &&
  2631. !kvm_cpu_has_interrupt(vcpu)) {
  2632. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2633. return 0;
  2634. }
  2635. return 1;
  2636. }
  2637. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2638. {
  2639. skip_emulated_instruction(vcpu);
  2640. return kvm_emulate_halt(vcpu);
  2641. }
  2642. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2643. {
  2644. skip_emulated_instruction(vcpu);
  2645. kvm_emulate_hypercall(vcpu);
  2646. return 1;
  2647. }
  2648. static int handle_vmx_insn(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2649. {
  2650. kvm_queue_exception(vcpu, UD_VECTOR);
  2651. return 1;
  2652. }
  2653. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2654. {
  2655. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2656. kvm_mmu_invlpg(vcpu, exit_qualification);
  2657. skip_emulated_instruction(vcpu);
  2658. return 1;
  2659. }
  2660. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2661. {
  2662. skip_emulated_instruction(vcpu);
  2663. /* TODO: Add support for VT-d/pass-through device */
  2664. return 1;
  2665. }
  2666. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2667. {
  2668. unsigned long exit_qualification;
  2669. enum emulation_result er;
  2670. unsigned long offset;
  2671. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2672. offset = exit_qualification & 0xffful;
  2673. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2674. if (er != EMULATE_DONE) {
  2675. printk(KERN_ERR
  2676. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2677. offset);
  2678. return -ENOTSUPP;
  2679. }
  2680. return 1;
  2681. }
  2682. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2683. {
  2684. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2685. unsigned long exit_qualification;
  2686. u16 tss_selector;
  2687. int reason, type, idt_v;
  2688. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2689. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2690. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2691. reason = (u32)exit_qualification >> 30;
  2692. if (reason == TASK_SWITCH_GATE && idt_v) {
  2693. switch (type) {
  2694. case INTR_TYPE_NMI_INTR:
  2695. vcpu->arch.nmi_injected = false;
  2696. if (cpu_has_virtual_nmis())
  2697. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2698. GUEST_INTR_STATE_NMI);
  2699. break;
  2700. case INTR_TYPE_EXT_INTR:
  2701. case INTR_TYPE_SOFT_INTR:
  2702. kvm_clear_interrupt_queue(vcpu);
  2703. break;
  2704. case INTR_TYPE_HARD_EXCEPTION:
  2705. case INTR_TYPE_SOFT_EXCEPTION:
  2706. kvm_clear_exception_queue(vcpu);
  2707. break;
  2708. default:
  2709. break;
  2710. }
  2711. }
  2712. tss_selector = exit_qualification;
  2713. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2714. type != INTR_TYPE_EXT_INTR &&
  2715. type != INTR_TYPE_NMI_INTR))
  2716. skip_emulated_instruction(vcpu);
  2717. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2718. return 0;
  2719. /* clear all local breakpoint enable flags */
  2720. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2721. /*
  2722. * TODO: What about debug traps on tss switch?
  2723. * Are we supposed to inject them and update dr6?
  2724. */
  2725. return 1;
  2726. }
  2727. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2728. {
  2729. unsigned long exit_qualification;
  2730. gpa_t gpa;
  2731. int gla_validity;
  2732. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2733. if (exit_qualification & (1 << 6)) {
  2734. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2735. return -ENOTSUPP;
  2736. }
  2737. gla_validity = (exit_qualification >> 7) & 0x3;
  2738. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2739. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2740. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2741. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2742. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2743. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2744. (long unsigned int)exit_qualification);
  2745. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2746. kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  2747. return 0;
  2748. }
  2749. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2750. trace_kvm_page_fault(gpa, exit_qualification);
  2751. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2752. }
  2753. static u64 ept_rsvd_mask(u64 spte, int level)
  2754. {
  2755. int i;
  2756. u64 mask = 0;
  2757. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  2758. mask |= (1ULL << i);
  2759. if (level > 2)
  2760. /* bits 7:3 reserved */
  2761. mask |= 0xf8;
  2762. else if (level == 2) {
  2763. if (spte & (1ULL << 7))
  2764. /* 2MB ref, bits 20:12 reserved */
  2765. mask |= 0x1ff000;
  2766. else
  2767. /* bits 6:3 reserved */
  2768. mask |= 0x78;
  2769. }
  2770. return mask;
  2771. }
  2772. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  2773. int level)
  2774. {
  2775. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  2776. /* 010b (write-only) */
  2777. WARN_ON((spte & 0x7) == 0x2);
  2778. /* 110b (write/execute) */
  2779. WARN_ON((spte & 0x7) == 0x6);
  2780. /* 100b (execute-only) and value not supported by logical processor */
  2781. if (!cpu_has_vmx_ept_execute_only())
  2782. WARN_ON((spte & 0x7) == 0x4);
  2783. /* not 000b */
  2784. if ((spte & 0x7)) {
  2785. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  2786. if (rsvd_bits != 0) {
  2787. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  2788. __func__, rsvd_bits);
  2789. WARN_ON(1);
  2790. }
  2791. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  2792. u64 ept_mem_type = (spte & 0x38) >> 3;
  2793. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  2794. ept_mem_type == 7) {
  2795. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  2796. __func__, ept_mem_type);
  2797. WARN_ON(1);
  2798. }
  2799. }
  2800. }
  2801. }
  2802. static int handle_ept_misconfig(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2803. {
  2804. u64 sptes[4];
  2805. int nr_sptes, i;
  2806. gpa_t gpa;
  2807. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2808. printk(KERN_ERR "EPT: Misconfiguration.\n");
  2809. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  2810. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  2811. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  2812. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  2813. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2814. kvm_run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  2815. return 0;
  2816. }
  2817. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2818. {
  2819. u32 cpu_based_vm_exec_control;
  2820. /* clear pending NMI */
  2821. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2822. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2823. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2824. ++vcpu->stat.nmi_window_exits;
  2825. return 1;
  2826. }
  2827. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2828. struct kvm_run *kvm_run)
  2829. {
  2830. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2831. enum emulation_result err = EMULATE_DONE;
  2832. local_irq_enable();
  2833. preempt_enable();
  2834. while (!guest_state_valid(vcpu)) {
  2835. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2836. if (err == EMULATE_DO_MMIO)
  2837. break;
  2838. if (err != EMULATE_DONE) {
  2839. kvm_report_emulation_failure(vcpu, "emulation failure");
  2840. break;
  2841. }
  2842. if (signal_pending(current))
  2843. break;
  2844. if (need_resched())
  2845. schedule();
  2846. }
  2847. preempt_disable();
  2848. local_irq_disable();
  2849. vmx->invalid_state_emulation_result = err;
  2850. }
  2851. /*
  2852. * The exit handlers return 1 if the exit was handled fully and guest execution
  2853. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2854. * to be done to userspace and return 0.
  2855. */
  2856. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2857. struct kvm_run *kvm_run) = {
  2858. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2859. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2860. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2861. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2862. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2863. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2864. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2865. [EXIT_REASON_CPUID] = handle_cpuid,
  2866. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2867. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2868. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2869. [EXIT_REASON_HLT] = handle_halt,
  2870. [EXIT_REASON_INVLPG] = handle_invlpg,
  2871. [EXIT_REASON_VMCALL] = handle_vmcall,
  2872. [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
  2873. [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
  2874. [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
  2875. [EXIT_REASON_VMPTRST] = handle_vmx_insn,
  2876. [EXIT_REASON_VMREAD] = handle_vmx_insn,
  2877. [EXIT_REASON_VMRESUME] = handle_vmx_insn,
  2878. [EXIT_REASON_VMWRITE] = handle_vmx_insn,
  2879. [EXIT_REASON_VMOFF] = handle_vmx_insn,
  2880. [EXIT_REASON_VMON] = handle_vmx_insn,
  2881. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2882. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2883. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2884. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2885. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  2886. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2887. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  2888. };
  2889. static const int kvm_vmx_max_exit_handlers =
  2890. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2891. /*
  2892. * The guest has exited. See if we can fix it or if we need userspace
  2893. * assistance.
  2894. */
  2895. static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2896. {
  2897. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2898. u32 exit_reason = vmx->exit_reason;
  2899. u32 vectoring_info = vmx->idt_vectoring_info;
  2900. trace_kvm_exit(exit_reason, kvm_rip_read(vcpu));
  2901. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2902. * we just return 0 */
  2903. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2904. if (guest_state_valid(vcpu))
  2905. vmx->emulation_required = 0;
  2906. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2907. }
  2908. /* Access CR3 don't cause VMExit in paging mode, so we need
  2909. * to sync with guest real CR3. */
  2910. if (enable_ept && is_paging(vcpu))
  2911. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2912. if (unlikely(vmx->fail)) {
  2913. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2914. kvm_run->fail_entry.hardware_entry_failure_reason
  2915. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2916. return 0;
  2917. }
  2918. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2919. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2920. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2921. exit_reason != EXIT_REASON_TASK_SWITCH))
  2922. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2923. "(0x%x) and exit reason is 0x%x\n",
  2924. __func__, vectoring_info, exit_reason);
  2925. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2926. if (vmx_interrupt_allowed(vcpu)) {
  2927. vmx->soft_vnmi_blocked = 0;
  2928. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2929. vcpu->arch.nmi_pending) {
  2930. /*
  2931. * This CPU don't support us in finding the end of an
  2932. * NMI-blocked window if the guest runs with IRQs
  2933. * disabled. So we pull the trigger after 1 s of
  2934. * futile waiting, but inform the user about this.
  2935. */
  2936. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2937. "state on VCPU %d after 1 s timeout\n",
  2938. __func__, vcpu->vcpu_id);
  2939. vmx->soft_vnmi_blocked = 0;
  2940. }
  2941. }
  2942. if (exit_reason < kvm_vmx_max_exit_handlers
  2943. && kvm_vmx_exit_handlers[exit_reason])
  2944. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2945. else {
  2946. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2947. kvm_run->hw.hardware_exit_reason = exit_reason;
  2948. }
  2949. return 0;
  2950. }
  2951. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2952. {
  2953. if (irr == -1 || tpr < irr) {
  2954. vmcs_write32(TPR_THRESHOLD, 0);
  2955. return;
  2956. }
  2957. vmcs_write32(TPR_THRESHOLD, irr);
  2958. }
  2959. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2960. {
  2961. u32 exit_intr_info;
  2962. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  2963. bool unblock_nmi;
  2964. u8 vector;
  2965. int type;
  2966. bool idtv_info_valid;
  2967. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2968. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  2969. /* Handle machine checks before interrupts are enabled */
  2970. if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
  2971. || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
  2972. && is_machine_check(exit_intr_info)))
  2973. kvm_machine_check();
  2974. /* We need to handle NMIs before interrupts are enabled */
  2975. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  2976. (exit_intr_info & INTR_INFO_VALID_MASK))
  2977. asm("int $2");
  2978. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2979. if (cpu_has_virtual_nmis()) {
  2980. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2981. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2982. /*
  2983. * SDM 3: 27.7.1.2 (September 2008)
  2984. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2985. * a guest IRET fault.
  2986. * SDM 3: 23.2.2 (September 2008)
  2987. * Bit 12 is undefined in any of the following cases:
  2988. * If the VM exit sets the valid bit in the IDT-vectoring
  2989. * information field.
  2990. * If the VM exit is due to a double fault.
  2991. */
  2992. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  2993. vector != DF_VECTOR && !idtv_info_valid)
  2994. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2995. GUEST_INTR_STATE_NMI);
  2996. } else if (unlikely(vmx->soft_vnmi_blocked))
  2997. vmx->vnmi_blocked_time +=
  2998. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2999. vmx->vcpu.arch.nmi_injected = false;
  3000. kvm_clear_exception_queue(&vmx->vcpu);
  3001. kvm_clear_interrupt_queue(&vmx->vcpu);
  3002. if (!idtv_info_valid)
  3003. return;
  3004. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  3005. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  3006. switch (type) {
  3007. case INTR_TYPE_NMI_INTR:
  3008. vmx->vcpu.arch.nmi_injected = true;
  3009. /*
  3010. * SDM 3: 27.7.1.2 (September 2008)
  3011. * Clear bit "block by NMI" before VM entry if a NMI
  3012. * delivery faulted.
  3013. */
  3014. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3015. GUEST_INTR_STATE_NMI);
  3016. break;
  3017. case INTR_TYPE_SOFT_EXCEPTION:
  3018. vmx->vcpu.arch.event_exit_inst_len =
  3019. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3020. /* fall through */
  3021. case INTR_TYPE_HARD_EXCEPTION:
  3022. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  3023. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  3024. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  3025. } else
  3026. kvm_queue_exception(&vmx->vcpu, vector);
  3027. break;
  3028. case INTR_TYPE_SOFT_INTR:
  3029. vmx->vcpu.arch.event_exit_inst_len =
  3030. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3031. /* fall through */
  3032. case INTR_TYPE_EXT_INTR:
  3033. kvm_queue_interrupt(&vmx->vcpu, vector,
  3034. type == INTR_TYPE_SOFT_INTR);
  3035. break;
  3036. default:
  3037. break;
  3038. }
  3039. }
  3040. /*
  3041. * Failure to inject an interrupt should give us the information
  3042. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  3043. * when fetching the interrupt redirection bitmap in the real-mode
  3044. * tss, this doesn't happen. So we do it ourselves.
  3045. */
  3046. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  3047. {
  3048. vmx->rmode.irq.pending = 0;
  3049. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  3050. return;
  3051. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  3052. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  3053. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  3054. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  3055. return;
  3056. }
  3057. vmx->idt_vectoring_info =
  3058. VECTORING_INFO_VALID_MASK
  3059. | INTR_TYPE_EXT_INTR
  3060. | vmx->rmode.irq.vector;
  3061. }
  3062. #ifdef CONFIG_X86_64
  3063. #define R "r"
  3064. #define Q "q"
  3065. #else
  3066. #define R "e"
  3067. #define Q "l"
  3068. #endif
  3069. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3070. {
  3071. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3072. if (enable_ept && is_paging(vcpu)) {
  3073. vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
  3074. ept_load_pdptrs(vcpu);
  3075. }
  3076. /* Record the guest's net vcpu time for enforced NMI injections. */
  3077. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  3078. vmx->entry_time = ktime_get();
  3079. /* Handle invalid guest state instead of entering VMX */
  3080. if (vmx->emulation_required && emulate_invalid_guest_state) {
  3081. handle_invalid_guest_state(vcpu, kvm_run);
  3082. return;
  3083. }
  3084. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  3085. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  3086. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  3087. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  3088. /* When single-stepping over STI and MOV SS, we must clear the
  3089. * corresponding interruptibility bits in the guest state. Otherwise
  3090. * vmentry fails as it then expects bit 14 (BS) in pending debug
  3091. * exceptions being set, but that's not correct for the guest debugging
  3092. * case. */
  3093. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3094. vmx_set_interrupt_shadow(vcpu, 0);
  3095. /*
  3096. * Loading guest fpu may have cleared host cr0.ts
  3097. */
  3098. vmcs_writel(HOST_CR0, read_cr0());
  3099. set_debugreg(vcpu->arch.dr6, 6);
  3100. asm(
  3101. /* Store host registers */
  3102. "push %%"R"dx; push %%"R"bp;"
  3103. "push %%"R"cx \n\t"
  3104. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  3105. "je 1f \n\t"
  3106. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  3107. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  3108. "1: \n\t"
  3109. /* Reload cr2 if changed */
  3110. "mov %c[cr2](%0), %%"R"ax \n\t"
  3111. "mov %%cr2, %%"R"dx \n\t"
  3112. "cmp %%"R"ax, %%"R"dx \n\t"
  3113. "je 2f \n\t"
  3114. "mov %%"R"ax, %%cr2 \n\t"
  3115. "2: \n\t"
  3116. /* Check if vmlaunch of vmresume is needed */
  3117. "cmpl $0, %c[launched](%0) \n\t"
  3118. /* Load guest registers. Don't clobber flags. */
  3119. "mov %c[rax](%0), %%"R"ax \n\t"
  3120. "mov %c[rbx](%0), %%"R"bx \n\t"
  3121. "mov %c[rdx](%0), %%"R"dx \n\t"
  3122. "mov %c[rsi](%0), %%"R"si \n\t"
  3123. "mov %c[rdi](%0), %%"R"di \n\t"
  3124. "mov %c[rbp](%0), %%"R"bp \n\t"
  3125. #ifdef CONFIG_X86_64
  3126. "mov %c[r8](%0), %%r8 \n\t"
  3127. "mov %c[r9](%0), %%r9 \n\t"
  3128. "mov %c[r10](%0), %%r10 \n\t"
  3129. "mov %c[r11](%0), %%r11 \n\t"
  3130. "mov %c[r12](%0), %%r12 \n\t"
  3131. "mov %c[r13](%0), %%r13 \n\t"
  3132. "mov %c[r14](%0), %%r14 \n\t"
  3133. "mov %c[r15](%0), %%r15 \n\t"
  3134. #endif
  3135. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  3136. /* Enter guest mode */
  3137. "jne .Llaunched \n\t"
  3138. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  3139. "jmp .Lkvm_vmx_return \n\t"
  3140. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  3141. ".Lkvm_vmx_return: "
  3142. /* Save guest registers, load host registers, keep flags */
  3143. "xchg %0, (%%"R"sp) \n\t"
  3144. "mov %%"R"ax, %c[rax](%0) \n\t"
  3145. "mov %%"R"bx, %c[rbx](%0) \n\t"
  3146. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  3147. "mov %%"R"dx, %c[rdx](%0) \n\t"
  3148. "mov %%"R"si, %c[rsi](%0) \n\t"
  3149. "mov %%"R"di, %c[rdi](%0) \n\t"
  3150. "mov %%"R"bp, %c[rbp](%0) \n\t"
  3151. #ifdef CONFIG_X86_64
  3152. "mov %%r8, %c[r8](%0) \n\t"
  3153. "mov %%r9, %c[r9](%0) \n\t"
  3154. "mov %%r10, %c[r10](%0) \n\t"
  3155. "mov %%r11, %c[r11](%0) \n\t"
  3156. "mov %%r12, %c[r12](%0) \n\t"
  3157. "mov %%r13, %c[r13](%0) \n\t"
  3158. "mov %%r14, %c[r14](%0) \n\t"
  3159. "mov %%r15, %c[r15](%0) \n\t"
  3160. #endif
  3161. "mov %%cr2, %%"R"ax \n\t"
  3162. "mov %%"R"ax, %c[cr2](%0) \n\t"
  3163. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  3164. "setbe %c[fail](%0) \n\t"
  3165. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  3166. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  3167. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  3168. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  3169. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  3170. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  3171. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  3172. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  3173. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  3174. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  3175. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  3176. #ifdef CONFIG_X86_64
  3177. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  3178. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  3179. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  3180. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  3181. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  3182. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  3183. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  3184. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  3185. #endif
  3186. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  3187. : "cc", "memory"
  3188. , R"bx", R"di", R"si"
  3189. #ifdef CONFIG_X86_64
  3190. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  3191. #endif
  3192. );
  3193. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  3194. | (1 << VCPU_EXREG_PDPTR));
  3195. vcpu->arch.regs_dirty = 0;
  3196. get_debugreg(vcpu->arch.dr6, 6);
  3197. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  3198. if (vmx->rmode.irq.pending)
  3199. fixup_rmode_irq(vmx);
  3200. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  3201. vmx->launched = 1;
  3202. vmx_complete_interrupts(vmx);
  3203. }
  3204. #undef R
  3205. #undef Q
  3206. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  3207. {
  3208. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3209. if (vmx->vmcs) {
  3210. vcpu_clear(vmx);
  3211. free_vmcs(vmx->vmcs);
  3212. vmx->vmcs = NULL;
  3213. }
  3214. }
  3215. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  3216. {
  3217. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3218. spin_lock(&vmx_vpid_lock);
  3219. if (vmx->vpid != 0)
  3220. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3221. spin_unlock(&vmx_vpid_lock);
  3222. vmx_free_vmcs(vcpu);
  3223. kfree(vmx->host_msrs);
  3224. kfree(vmx->guest_msrs);
  3225. kvm_vcpu_uninit(vcpu);
  3226. kmem_cache_free(kvm_vcpu_cache, vmx);
  3227. }
  3228. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3229. {
  3230. int err;
  3231. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3232. int cpu;
  3233. if (!vmx)
  3234. return ERR_PTR(-ENOMEM);
  3235. allocate_vpid(vmx);
  3236. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3237. if (err)
  3238. goto free_vcpu;
  3239. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3240. if (!vmx->guest_msrs) {
  3241. err = -ENOMEM;
  3242. goto uninit_vcpu;
  3243. }
  3244. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3245. if (!vmx->host_msrs)
  3246. goto free_guest_msrs;
  3247. vmx->vmcs = alloc_vmcs();
  3248. if (!vmx->vmcs)
  3249. goto free_msrs;
  3250. vmcs_clear(vmx->vmcs);
  3251. cpu = get_cpu();
  3252. vmx_vcpu_load(&vmx->vcpu, cpu);
  3253. err = vmx_vcpu_setup(vmx);
  3254. vmx_vcpu_put(&vmx->vcpu);
  3255. put_cpu();
  3256. if (err)
  3257. goto free_vmcs;
  3258. if (vm_need_virtualize_apic_accesses(kvm))
  3259. if (alloc_apic_access_page(kvm) != 0)
  3260. goto free_vmcs;
  3261. if (enable_ept) {
  3262. if (!kvm->arch.ept_identity_map_addr)
  3263. kvm->arch.ept_identity_map_addr =
  3264. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  3265. if (alloc_identity_pagetable(kvm) != 0)
  3266. goto free_vmcs;
  3267. }
  3268. return &vmx->vcpu;
  3269. free_vmcs:
  3270. free_vmcs(vmx->vmcs);
  3271. free_msrs:
  3272. kfree(vmx->host_msrs);
  3273. free_guest_msrs:
  3274. kfree(vmx->guest_msrs);
  3275. uninit_vcpu:
  3276. kvm_vcpu_uninit(&vmx->vcpu);
  3277. free_vcpu:
  3278. kmem_cache_free(kvm_vcpu_cache, vmx);
  3279. return ERR_PTR(err);
  3280. }
  3281. static void __init vmx_check_processor_compat(void *rtn)
  3282. {
  3283. struct vmcs_config vmcs_conf;
  3284. *(int *)rtn = 0;
  3285. if (setup_vmcs_config(&vmcs_conf) < 0)
  3286. *(int *)rtn = -EIO;
  3287. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3288. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3289. smp_processor_id());
  3290. *(int *)rtn = -EIO;
  3291. }
  3292. }
  3293. static int get_ept_level(void)
  3294. {
  3295. return VMX_EPT_DEFAULT_GAW + 1;
  3296. }
  3297. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3298. {
  3299. u64 ret;
  3300. /* For VT-d and EPT combination
  3301. * 1. MMIO: always map as UC
  3302. * 2. EPT with VT-d:
  3303. * a. VT-d without snooping control feature: can't guarantee the
  3304. * result, try to trust guest.
  3305. * b. VT-d with snooping control feature: snooping control feature of
  3306. * VT-d engine can guarantee the cache correctness. Just set it
  3307. * to WB to keep consistent with host. So the same as item 3.
  3308. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3309. * consistent with host MTRR
  3310. */
  3311. if (is_mmio)
  3312. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3313. else if (vcpu->kvm->arch.iommu_domain &&
  3314. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3315. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3316. VMX_EPT_MT_EPTE_SHIFT;
  3317. else
  3318. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3319. | VMX_EPT_IGMT_BIT;
  3320. return ret;
  3321. }
  3322. static const struct trace_print_flags vmx_exit_reasons_str[] = {
  3323. { EXIT_REASON_EXCEPTION_NMI, "exception" },
  3324. { EXIT_REASON_EXTERNAL_INTERRUPT, "ext_irq" },
  3325. { EXIT_REASON_TRIPLE_FAULT, "triple_fault" },
  3326. { EXIT_REASON_NMI_WINDOW, "nmi_window" },
  3327. { EXIT_REASON_IO_INSTRUCTION, "io_instruction" },
  3328. { EXIT_REASON_CR_ACCESS, "cr_access" },
  3329. { EXIT_REASON_DR_ACCESS, "dr_access" },
  3330. { EXIT_REASON_CPUID, "cpuid" },
  3331. { EXIT_REASON_MSR_READ, "rdmsr" },
  3332. { EXIT_REASON_MSR_WRITE, "wrmsr" },
  3333. { EXIT_REASON_PENDING_INTERRUPT, "interrupt_window" },
  3334. { EXIT_REASON_HLT, "halt" },
  3335. { EXIT_REASON_INVLPG, "invlpg" },
  3336. { EXIT_REASON_VMCALL, "hypercall" },
  3337. { EXIT_REASON_TPR_BELOW_THRESHOLD, "tpr_below_thres" },
  3338. { EXIT_REASON_APIC_ACCESS, "apic_access" },
  3339. { EXIT_REASON_WBINVD, "wbinvd" },
  3340. { EXIT_REASON_TASK_SWITCH, "task_switch" },
  3341. { EXIT_REASON_EPT_VIOLATION, "ept_violation" },
  3342. { -1, NULL }
  3343. };
  3344. static struct kvm_x86_ops vmx_x86_ops = {
  3345. .cpu_has_kvm_support = cpu_has_kvm_support,
  3346. .disabled_by_bios = vmx_disabled_by_bios,
  3347. .hardware_setup = hardware_setup,
  3348. .hardware_unsetup = hardware_unsetup,
  3349. .check_processor_compatibility = vmx_check_processor_compat,
  3350. .hardware_enable = hardware_enable,
  3351. .hardware_disable = hardware_disable,
  3352. .cpu_has_accelerated_tpr = report_flexpriority,
  3353. .vcpu_create = vmx_create_vcpu,
  3354. .vcpu_free = vmx_free_vcpu,
  3355. .vcpu_reset = vmx_vcpu_reset,
  3356. .prepare_guest_switch = vmx_save_host_state,
  3357. .vcpu_load = vmx_vcpu_load,
  3358. .vcpu_put = vmx_vcpu_put,
  3359. .set_guest_debug = set_guest_debug,
  3360. .get_msr = vmx_get_msr,
  3361. .set_msr = vmx_set_msr,
  3362. .get_segment_base = vmx_get_segment_base,
  3363. .get_segment = vmx_get_segment,
  3364. .set_segment = vmx_set_segment,
  3365. .get_cpl = vmx_get_cpl,
  3366. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3367. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3368. .set_cr0 = vmx_set_cr0,
  3369. .set_cr3 = vmx_set_cr3,
  3370. .set_cr4 = vmx_set_cr4,
  3371. .set_efer = vmx_set_efer,
  3372. .get_idt = vmx_get_idt,
  3373. .set_idt = vmx_set_idt,
  3374. .get_gdt = vmx_get_gdt,
  3375. .set_gdt = vmx_set_gdt,
  3376. .cache_reg = vmx_cache_reg,
  3377. .get_rflags = vmx_get_rflags,
  3378. .set_rflags = vmx_set_rflags,
  3379. .tlb_flush = vmx_flush_tlb,
  3380. .run = vmx_vcpu_run,
  3381. .handle_exit = vmx_handle_exit,
  3382. .skip_emulated_instruction = skip_emulated_instruction,
  3383. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  3384. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  3385. .patch_hypercall = vmx_patch_hypercall,
  3386. .set_irq = vmx_inject_irq,
  3387. .set_nmi = vmx_inject_nmi,
  3388. .queue_exception = vmx_queue_exception,
  3389. .interrupt_allowed = vmx_interrupt_allowed,
  3390. .nmi_allowed = vmx_nmi_allowed,
  3391. .enable_nmi_window = enable_nmi_window,
  3392. .enable_irq_window = enable_irq_window,
  3393. .update_cr8_intercept = update_cr8_intercept,
  3394. .set_tss_addr = vmx_set_tss_addr,
  3395. .get_tdp_level = get_ept_level,
  3396. .get_mt_mask = vmx_get_mt_mask,
  3397. .exit_reasons_str = vmx_exit_reasons_str,
  3398. };
  3399. static int __init vmx_init(void)
  3400. {
  3401. int r;
  3402. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3403. if (!vmx_io_bitmap_a)
  3404. return -ENOMEM;
  3405. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3406. if (!vmx_io_bitmap_b) {
  3407. r = -ENOMEM;
  3408. goto out;
  3409. }
  3410. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3411. if (!vmx_msr_bitmap_legacy) {
  3412. r = -ENOMEM;
  3413. goto out1;
  3414. }
  3415. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3416. if (!vmx_msr_bitmap_longmode) {
  3417. r = -ENOMEM;
  3418. goto out2;
  3419. }
  3420. /*
  3421. * Allow direct access to the PC debug port (it is often used for I/O
  3422. * delays, but the vmexits simply slow things down).
  3423. */
  3424. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3425. clear_bit(0x80, vmx_io_bitmap_a);
  3426. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3427. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3428. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3429. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3430. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3431. if (r)
  3432. goto out3;
  3433. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3434. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3435. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3436. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3437. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3438. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3439. if (enable_ept) {
  3440. bypass_guest_pf = 0;
  3441. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3442. VMX_EPT_WRITABLE_MASK);
  3443. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3444. VMX_EPT_EXECUTABLE_MASK);
  3445. kvm_enable_tdp();
  3446. } else
  3447. kvm_disable_tdp();
  3448. if (bypass_guest_pf)
  3449. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3450. ept_sync_global();
  3451. return 0;
  3452. out3:
  3453. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3454. out2:
  3455. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3456. out1:
  3457. free_page((unsigned long)vmx_io_bitmap_b);
  3458. out:
  3459. free_page((unsigned long)vmx_io_bitmap_a);
  3460. return r;
  3461. }
  3462. static void __exit vmx_exit(void)
  3463. {
  3464. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3465. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3466. free_page((unsigned long)vmx_io_bitmap_b);
  3467. free_page((unsigned long)vmx_io_bitmap_a);
  3468. kvm_exit();
  3469. }
  3470. module_init(vmx_init)
  3471. module_exit(vmx_exit)