svm.c 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include "kvm_cache_regs.h"
  20. #include "x86.h"
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/ftrace_event.h>
  27. #include <linux/slab.h>
  28. #include <asm/desc.h>
  29. #include <asm/virtext.h>
  30. #include "trace.h"
  31. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  32. MODULE_AUTHOR("Qumranet");
  33. MODULE_LICENSE("GPL");
  34. #define IOPM_ALLOC_ORDER 2
  35. #define MSRPM_ALLOC_ORDER 1
  36. #define SEG_TYPE_LDT 2
  37. #define SEG_TYPE_BUSY_TSS16 3
  38. #define SVM_FEATURE_NPT (1 << 0)
  39. #define SVM_FEATURE_LBRV (1 << 1)
  40. #define SVM_FEATURE_SVML (1 << 2)
  41. #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
  42. #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
  43. #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
  44. #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
  45. #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  46. static const u32 host_save_user_msrs[] = {
  47. #ifdef CONFIG_X86_64
  48. MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
  49. MSR_FS_BASE,
  50. #endif
  51. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  52. };
  53. #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
  54. struct kvm_vcpu;
  55. struct nested_state {
  56. struct vmcb *hsave;
  57. u64 hsave_msr;
  58. u64 vmcb;
  59. /* These are the merged vectors */
  60. u32 *msrpm;
  61. /* gpa pointers to the real vectors */
  62. u64 vmcb_msrpm;
  63. /* A VMEXIT is required but not yet emulated */
  64. bool exit_required;
  65. /* cache for intercepts of the guest */
  66. u16 intercept_cr_read;
  67. u16 intercept_cr_write;
  68. u16 intercept_dr_read;
  69. u16 intercept_dr_write;
  70. u32 intercept_exceptions;
  71. u64 intercept;
  72. };
  73. struct vcpu_svm {
  74. struct kvm_vcpu vcpu;
  75. struct vmcb *vmcb;
  76. unsigned long vmcb_pa;
  77. struct svm_cpu_data *svm_data;
  78. uint64_t asid_generation;
  79. uint64_t sysenter_esp;
  80. uint64_t sysenter_eip;
  81. u64 next_rip;
  82. u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
  83. u64 host_gs_base;
  84. u32 *msrpm;
  85. struct nested_state nested;
  86. bool nmi_singlestep;
  87. };
  88. /* enable NPT for AMD64 and X86 with PAE */
  89. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  90. static bool npt_enabled = true;
  91. #else
  92. static bool npt_enabled = false;
  93. #endif
  94. static int npt = 1;
  95. module_param(npt, int, S_IRUGO);
  96. static int nested = 1;
  97. module_param(nested, int, S_IRUGO);
  98. static void svm_flush_tlb(struct kvm_vcpu *vcpu);
  99. static void svm_complete_interrupts(struct vcpu_svm *svm);
  100. static int nested_svm_exit_handled(struct vcpu_svm *svm);
  101. static int nested_svm_intercept(struct vcpu_svm *svm);
  102. static int nested_svm_vmexit(struct vcpu_svm *svm);
  103. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  104. bool has_error_code, u32 error_code);
  105. static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
  106. {
  107. return container_of(vcpu, struct vcpu_svm, vcpu);
  108. }
  109. static inline bool is_nested(struct vcpu_svm *svm)
  110. {
  111. return svm->nested.vmcb;
  112. }
  113. static inline void enable_gif(struct vcpu_svm *svm)
  114. {
  115. svm->vcpu.arch.hflags |= HF_GIF_MASK;
  116. }
  117. static inline void disable_gif(struct vcpu_svm *svm)
  118. {
  119. svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
  120. }
  121. static inline bool gif_set(struct vcpu_svm *svm)
  122. {
  123. return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
  124. }
  125. static unsigned long iopm_base;
  126. struct kvm_ldttss_desc {
  127. u16 limit0;
  128. u16 base0;
  129. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  130. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  131. u32 base3;
  132. u32 zero1;
  133. } __attribute__((packed));
  134. struct svm_cpu_data {
  135. int cpu;
  136. u64 asid_generation;
  137. u32 max_asid;
  138. u32 next_asid;
  139. struct kvm_ldttss_desc *tss_desc;
  140. struct page *save_area;
  141. };
  142. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  143. static uint32_t svm_features;
  144. struct svm_init_data {
  145. int cpu;
  146. int r;
  147. };
  148. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  149. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  150. #define MSRS_RANGE_SIZE 2048
  151. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  152. #define MAX_INST_SIZE 15
  153. static inline u32 svm_has(u32 feat)
  154. {
  155. return svm_features & feat;
  156. }
  157. static inline void clgi(void)
  158. {
  159. asm volatile (__ex(SVM_CLGI));
  160. }
  161. static inline void stgi(void)
  162. {
  163. asm volatile (__ex(SVM_STGI));
  164. }
  165. static inline void invlpga(unsigned long addr, u32 asid)
  166. {
  167. asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
  168. }
  169. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  170. {
  171. to_svm(vcpu)->asid_generation--;
  172. }
  173. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  174. {
  175. force_new_asid(vcpu);
  176. }
  177. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  178. {
  179. if (!npt_enabled && !(efer & EFER_LMA))
  180. efer &= ~EFER_LME;
  181. to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
  182. vcpu->arch.efer = efer;
  183. }
  184. static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  185. bool has_error_code, u32 error_code)
  186. {
  187. struct vcpu_svm *svm = to_svm(vcpu);
  188. /* If we are within a nested VM we'd better #VMEXIT and let the
  189. guest handle the exception */
  190. if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
  191. return;
  192. svm->vmcb->control.event_inj = nr
  193. | SVM_EVTINJ_VALID
  194. | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
  195. | SVM_EVTINJ_TYPE_EXEPT;
  196. svm->vmcb->control.event_inj_err = error_code;
  197. }
  198. static int is_external_interrupt(u32 info)
  199. {
  200. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  201. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  202. }
  203. static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  204. {
  205. struct vcpu_svm *svm = to_svm(vcpu);
  206. u32 ret = 0;
  207. if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
  208. ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
  209. return ret & mask;
  210. }
  211. static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  212. {
  213. struct vcpu_svm *svm = to_svm(vcpu);
  214. if (mask == 0)
  215. svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  216. else
  217. svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
  218. }
  219. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  220. {
  221. struct vcpu_svm *svm = to_svm(vcpu);
  222. if (!svm->next_rip) {
  223. if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
  224. EMULATE_DONE)
  225. printk(KERN_DEBUG "%s: NOP\n", __func__);
  226. return;
  227. }
  228. if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
  229. printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
  230. __func__, kvm_rip_read(vcpu), svm->next_rip);
  231. kvm_rip_write(vcpu, svm->next_rip);
  232. svm_set_interrupt_shadow(vcpu, 0);
  233. }
  234. static int has_svm(void)
  235. {
  236. const char *msg;
  237. if (!cpu_has_svm(&msg)) {
  238. printk(KERN_INFO "has_svm: %s\n", msg);
  239. return 0;
  240. }
  241. return 1;
  242. }
  243. static void svm_hardware_disable(void *garbage)
  244. {
  245. cpu_svm_disable();
  246. }
  247. static int svm_hardware_enable(void *garbage)
  248. {
  249. struct svm_cpu_data *sd;
  250. uint64_t efer;
  251. struct desc_ptr gdt_descr;
  252. struct desc_struct *gdt;
  253. int me = raw_smp_processor_id();
  254. rdmsrl(MSR_EFER, efer);
  255. if (efer & EFER_SVME)
  256. return -EBUSY;
  257. if (!has_svm()) {
  258. printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
  259. me);
  260. return -EINVAL;
  261. }
  262. sd = per_cpu(svm_data, me);
  263. if (!sd) {
  264. printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
  265. me);
  266. return -EINVAL;
  267. }
  268. sd->asid_generation = 1;
  269. sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  270. sd->next_asid = sd->max_asid + 1;
  271. kvm_get_gdt(&gdt_descr);
  272. gdt = (struct desc_struct *)gdt_descr.address;
  273. sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  274. wrmsrl(MSR_EFER, efer | EFER_SVME);
  275. wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
  276. return 0;
  277. }
  278. static void svm_cpu_uninit(int cpu)
  279. {
  280. struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
  281. if (!sd)
  282. return;
  283. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  284. __free_page(sd->save_area);
  285. kfree(sd);
  286. }
  287. static int svm_cpu_init(int cpu)
  288. {
  289. struct svm_cpu_data *sd;
  290. int r;
  291. sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  292. if (!sd)
  293. return -ENOMEM;
  294. sd->cpu = cpu;
  295. sd->save_area = alloc_page(GFP_KERNEL);
  296. r = -ENOMEM;
  297. if (!sd->save_area)
  298. goto err_1;
  299. per_cpu(svm_data, cpu) = sd;
  300. return 0;
  301. err_1:
  302. kfree(sd);
  303. return r;
  304. }
  305. static void set_msr_interception(u32 *msrpm, unsigned msr,
  306. int read, int write)
  307. {
  308. int i;
  309. for (i = 0; i < NUM_MSR_MAPS; i++) {
  310. if (msr >= msrpm_ranges[i] &&
  311. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  312. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  313. msrpm_ranges[i]) * 2;
  314. u32 *base = msrpm + (msr_offset / 32);
  315. u32 msr_shift = msr_offset % 32;
  316. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  317. *base = (*base & ~(0x3 << msr_shift)) |
  318. (mask << msr_shift);
  319. return;
  320. }
  321. }
  322. BUG();
  323. }
  324. static void svm_vcpu_init_msrpm(u32 *msrpm)
  325. {
  326. memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  327. #ifdef CONFIG_X86_64
  328. set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
  329. set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
  330. set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
  331. set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
  332. set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
  333. set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
  334. #endif
  335. set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
  336. set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
  337. }
  338. static void svm_enable_lbrv(struct vcpu_svm *svm)
  339. {
  340. u32 *msrpm = svm->msrpm;
  341. svm->vmcb->control.lbr_ctl = 1;
  342. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
  343. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
  344. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
  345. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
  346. }
  347. static void svm_disable_lbrv(struct vcpu_svm *svm)
  348. {
  349. u32 *msrpm = svm->msrpm;
  350. svm->vmcb->control.lbr_ctl = 0;
  351. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
  352. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
  353. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
  354. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
  355. }
  356. static __init int svm_hardware_setup(void)
  357. {
  358. int cpu;
  359. struct page *iopm_pages;
  360. void *iopm_va;
  361. int r;
  362. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  363. if (!iopm_pages)
  364. return -ENOMEM;
  365. iopm_va = page_address(iopm_pages);
  366. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  367. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  368. if (boot_cpu_has(X86_FEATURE_NX))
  369. kvm_enable_efer_bits(EFER_NX);
  370. if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
  371. kvm_enable_efer_bits(EFER_FFXSR);
  372. if (nested) {
  373. printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
  374. kvm_enable_efer_bits(EFER_SVME);
  375. }
  376. for_each_possible_cpu(cpu) {
  377. r = svm_cpu_init(cpu);
  378. if (r)
  379. goto err;
  380. }
  381. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  382. if (!svm_has(SVM_FEATURE_NPT))
  383. npt_enabled = false;
  384. if (npt_enabled && !npt) {
  385. printk(KERN_INFO "kvm: Nested Paging disabled\n");
  386. npt_enabled = false;
  387. }
  388. if (npt_enabled) {
  389. printk(KERN_INFO "kvm: Nested Paging enabled\n");
  390. kvm_enable_tdp();
  391. } else
  392. kvm_disable_tdp();
  393. return 0;
  394. err:
  395. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  396. iopm_base = 0;
  397. return r;
  398. }
  399. static __exit void svm_hardware_unsetup(void)
  400. {
  401. int cpu;
  402. for_each_possible_cpu(cpu)
  403. svm_cpu_uninit(cpu);
  404. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  405. iopm_base = 0;
  406. }
  407. static void init_seg(struct vmcb_seg *seg)
  408. {
  409. seg->selector = 0;
  410. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  411. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  412. seg->limit = 0xffff;
  413. seg->base = 0;
  414. }
  415. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  416. {
  417. seg->selector = 0;
  418. seg->attrib = SVM_SELECTOR_P_MASK | type;
  419. seg->limit = 0xffff;
  420. seg->base = 0;
  421. }
  422. static void init_vmcb(struct vcpu_svm *svm)
  423. {
  424. struct vmcb_control_area *control = &svm->vmcb->control;
  425. struct vmcb_save_area *save = &svm->vmcb->save;
  426. svm->vcpu.fpu_active = 1;
  427. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  428. INTERCEPT_CR3_MASK |
  429. INTERCEPT_CR4_MASK;
  430. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  431. INTERCEPT_CR3_MASK |
  432. INTERCEPT_CR4_MASK |
  433. INTERCEPT_CR8_MASK;
  434. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  435. INTERCEPT_DR1_MASK |
  436. INTERCEPT_DR2_MASK |
  437. INTERCEPT_DR3_MASK |
  438. INTERCEPT_DR4_MASK |
  439. INTERCEPT_DR5_MASK |
  440. INTERCEPT_DR6_MASK |
  441. INTERCEPT_DR7_MASK;
  442. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  443. INTERCEPT_DR1_MASK |
  444. INTERCEPT_DR2_MASK |
  445. INTERCEPT_DR3_MASK |
  446. INTERCEPT_DR4_MASK |
  447. INTERCEPT_DR5_MASK |
  448. INTERCEPT_DR6_MASK |
  449. INTERCEPT_DR7_MASK;
  450. control->intercept_exceptions = (1 << PF_VECTOR) |
  451. (1 << UD_VECTOR) |
  452. (1 << MC_VECTOR);
  453. control->intercept = (1ULL << INTERCEPT_INTR) |
  454. (1ULL << INTERCEPT_NMI) |
  455. (1ULL << INTERCEPT_SMI) |
  456. (1ULL << INTERCEPT_SELECTIVE_CR0) |
  457. (1ULL << INTERCEPT_CPUID) |
  458. (1ULL << INTERCEPT_INVD) |
  459. (1ULL << INTERCEPT_HLT) |
  460. (1ULL << INTERCEPT_INVLPG) |
  461. (1ULL << INTERCEPT_INVLPGA) |
  462. (1ULL << INTERCEPT_IOIO_PROT) |
  463. (1ULL << INTERCEPT_MSR_PROT) |
  464. (1ULL << INTERCEPT_TASK_SWITCH) |
  465. (1ULL << INTERCEPT_SHUTDOWN) |
  466. (1ULL << INTERCEPT_VMRUN) |
  467. (1ULL << INTERCEPT_VMMCALL) |
  468. (1ULL << INTERCEPT_VMLOAD) |
  469. (1ULL << INTERCEPT_VMSAVE) |
  470. (1ULL << INTERCEPT_STGI) |
  471. (1ULL << INTERCEPT_CLGI) |
  472. (1ULL << INTERCEPT_SKINIT) |
  473. (1ULL << INTERCEPT_WBINVD) |
  474. (1ULL << INTERCEPT_MONITOR) |
  475. (1ULL << INTERCEPT_MWAIT);
  476. control->iopm_base_pa = iopm_base;
  477. control->msrpm_base_pa = __pa(svm->msrpm);
  478. control->tsc_offset = 0;
  479. control->int_ctl = V_INTR_MASKING_MASK;
  480. init_seg(&save->es);
  481. init_seg(&save->ss);
  482. init_seg(&save->ds);
  483. init_seg(&save->fs);
  484. init_seg(&save->gs);
  485. save->cs.selector = 0xf000;
  486. /* Executable/Readable Code Segment */
  487. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  488. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  489. save->cs.limit = 0xffff;
  490. /*
  491. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  492. * be consistent with it.
  493. *
  494. * Replace when we have real mode working for vmx.
  495. */
  496. save->cs.base = 0xf0000;
  497. save->gdtr.limit = 0xffff;
  498. save->idtr.limit = 0xffff;
  499. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  500. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  501. save->efer = EFER_SVME;
  502. save->dr6 = 0xffff0ff0;
  503. save->dr7 = 0x400;
  504. save->rflags = 2;
  505. save->rip = 0x0000fff0;
  506. svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
  507. /* This is the guest-visible cr0 value.
  508. * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
  509. */
  510. svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  511. kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
  512. save->cr4 = X86_CR4_PAE;
  513. /* rdx = ?? */
  514. if (npt_enabled) {
  515. /* Setup VMCB for Nested Paging */
  516. control->nested_ctl = 1;
  517. control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
  518. (1ULL << INTERCEPT_INVLPG));
  519. control->intercept_exceptions &= ~(1 << PF_VECTOR);
  520. control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
  521. control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
  522. save->g_pat = 0x0007040600070406ULL;
  523. save->cr3 = 0;
  524. save->cr4 = 0;
  525. }
  526. force_new_asid(&svm->vcpu);
  527. svm->nested.vmcb = 0;
  528. svm->vcpu.arch.hflags = 0;
  529. if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
  530. control->pause_filter_count = 3000;
  531. control->intercept |= (1ULL << INTERCEPT_PAUSE);
  532. }
  533. enable_gif(svm);
  534. }
  535. static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
  536. {
  537. struct vcpu_svm *svm = to_svm(vcpu);
  538. init_vmcb(svm);
  539. if (!kvm_vcpu_is_bsp(vcpu)) {
  540. kvm_rip_write(vcpu, 0);
  541. svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
  542. svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
  543. }
  544. vcpu->arch.regs_avail = ~0;
  545. vcpu->arch.regs_dirty = ~0;
  546. return 0;
  547. }
  548. static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
  549. {
  550. struct vcpu_svm *svm;
  551. struct page *page;
  552. struct page *msrpm_pages;
  553. struct page *hsave_page;
  554. struct page *nested_msrpm_pages;
  555. int err;
  556. svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  557. if (!svm) {
  558. err = -ENOMEM;
  559. goto out;
  560. }
  561. err = kvm_vcpu_init(&svm->vcpu, kvm, id);
  562. if (err)
  563. goto free_svm;
  564. err = -ENOMEM;
  565. page = alloc_page(GFP_KERNEL);
  566. if (!page)
  567. goto uninit;
  568. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  569. if (!msrpm_pages)
  570. goto free_page1;
  571. nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  572. if (!nested_msrpm_pages)
  573. goto free_page2;
  574. hsave_page = alloc_page(GFP_KERNEL);
  575. if (!hsave_page)
  576. goto free_page3;
  577. svm->nested.hsave = page_address(hsave_page);
  578. svm->msrpm = page_address(msrpm_pages);
  579. svm_vcpu_init_msrpm(svm->msrpm);
  580. svm->nested.msrpm = page_address(nested_msrpm_pages);
  581. svm->vmcb = page_address(page);
  582. clear_page(svm->vmcb);
  583. svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  584. svm->asid_generation = 0;
  585. init_vmcb(svm);
  586. fx_init(&svm->vcpu);
  587. svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  588. if (kvm_vcpu_is_bsp(&svm->vcpu))
  589. svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
  590. return &svm->vcpu;
  591. free_page3:
  592. __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
  593. free_page2:
  594. __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
  595. free_page1:
  596. __free_page(page);
  597. uninit:
  598. kvm_vcpu_uninit(&svm->vcpu);
  599. free_svm:
  600. kmem_cache_free(kvm_vcpu_cache, svm);
  601. out:
  602. return ERR_PTR(err);
  603. }
  604. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  605. {
  606. struct vcpu_svm *svm = to_svm(vcpu);
  607. __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
  608. __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
  609. __free_page(virt_to_page(svm->nested.hsave));
  610. __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
  611. kvm_vcpu_uninit(vcpu);
  612. kmem_cache_free(kvm_vcpu_cache, svm);
  613. }
  614. static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  615. {
  616. struct vcpu_svm *svm = to_svm(vcpu);
  617. int i;
  618. if (unlikely(cpu != vcpu->cpu)) {
  619. u64 delta;
  620. if (check_tsc_unstable()) {
  621. /*
  622. * Make sure that the guest sees a monotonically
  623. * increasing TSC.
  624. */
  625. delta = vcpu->arch.host_tsc - native_read_tsc();
  626. svm->vmcb->control.tsc_offset += delta;
  627. if (is_nested(svm))
  628. svm->nested.hsave->control.tsc_offset += delta;
  629. }
  630. vcpu->cpu = cpu;
  631. kvm_migrate_timers(vcpu);
  632. svm->asid_generation = 0;
  633. }
  634. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  635. rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  636. }
  637. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  638. {
  639. struct vcpu_svm *svm = to_svm(vcpu);
  640. int i;
  641. ++vcpu->stat.host_state_reload;
  642. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  643. wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  644. vcpu->arch.host_tsc = native_read_tsc();
  645. }
  646. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  647. {
  648. return to_svm(vcpu)->vmcb->save.rflags;
  649. }
  650. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  651. {
  652. to_svm(vcpu)->vmcb->save.rflags = rflags;
  653. }
  654. static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  655. {
  656. switch (reg) {
  657. case VCPU_EXREG_PDPTR:
  658. BUG_ON(!npt_enabled);
  659. load_pdptrs(vcpu, vcpu->arch.cr3);
  660. break;
  661. default:
  662. BUG();
  663. }
  664. }
  665. static void svm_set_vintr(struct vcpu_svm *svm)
  666. {
  667. svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
  668. }
  669. static void svm_clear_vintr(struct vcpu_svm *svm)
  670. {
  671. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
  672. }
  673. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  674. {
  675. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  676. switch (seg) {
  677. case VCPU_SREG_CS: return &save->cs;
  678. case VCPU_SREG_DS: return &save->ds;
  679. case VCPU_SREG_ES: return &save->es;
  680. case VCPU_SREG_FS: return &save->fs;
  681. case VCPU_SREG_GS: return &save->gs;
  682. case VCPU_SREG_SS: return &save->ss;
  683. case VCPU_SREG_TR: return &save->tr;
  684. case VCPU_SREG_LDTR: return &save->ldtr;
  685. }
  686. BUG();
  687. return NULL;
  688. }
  689. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  690. {
  691. struct vmcb_seg *s = svm_seg(vcpu, seg);
  692. return s->base;
  693. }
  694. static void svm_get_segment(struct kvm_vcpu *vcpu,
  695. struct kvm_segment *var, int seg)
  696. {
  697. struct vmcb_seg *s = svm_seg(vcpu, seg);
  698. var->base = s->base;
  699. var->limit = s->limit;
  700. var->selector = s->selector;
  701. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  702. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  703. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  704. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  705. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  706. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  707. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  708. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  709. /* AMD's VMCB does not have an explicit unusable field, so emulate it
  710. * for cross vendor migration purposes by "not present"
  711. */
  712. var->unusable = !var->present || (var->type == 0);
  713. switch (seg) {
  714. case VCPU_SREG_CS:
  715. /*
  716. * SVM always stores 0 for the 'G' bit in the CS selector in
  717. * the VMCB on a VMEXIT. This hurts cross-vendor migration:
  718. * Intel's VMENTRY has a check on the 'G' bit.
  719. */
  720. var->g = s->limit > 0xfffff;
  721. break;
  722. case VCPU_SREG_TR:
  723. /*
  724. * Work around a bug where the busy flag in the tr selector
  725. * isn't exposed
  726. */
  727. var->type |= 0x2;
  728. break;
  729. case VCPU_SREG_DS:
  730. case VCPU_SREG_ES:
  731. case VCPU_SREG_FS:
  732. case VCPU_SREG_GS:
  733. /*
  734. * The accessed bit must always be set in the segment
  735. * descriptor cache, although it can be cleared in the
  736. * descriptor, the cached bit always remains at 1. Since
  737. * Intel has a check on this, set it here to support
  738. * cross-vendor migration.
  739. */
  740. if (!var->unusable)
  741. var->type |= 0x1;
  742. break;
  743. case VCPU_SREG_SS:
  744. /* On AMD CPUs sometimes the DB bit in the segment
  745. * descriptor is left as 1, although the whole segment has
  746. * been made unusable. Clear it here to pass an Intel VMX
  747. * entry check when cross vendor migrating.
  748. */
  749. if (var->unusable)
  750. var->db = 0;
  751. break;
  752. }
  753. }
  754. static int svm_get_cpl(struct kvm_vcpu *vcpu)
  755. {
  756. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  757. return save->cpl;
  758. }
  759. static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  760. {
  761. struct vcpu_svm *svm = to_svm(vcpu);
  762. dt->size = svm->vmcb->save.idtr.limit;
  763. dt->address = svm->vmcb->save.idtr.base;
  764. }
  765. static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  766. {
  767. struct vcpu_svm *svm = to_svm(vcpu);
  768. svm->vmcb->save.idtr.limit = dt->size;
  769. svm->vmcb->save.idtr.base = dt->address ;
  770. }
  771. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  772. {
  773. struct vcpu_svm *svm = to_svm(vcpu);
  774. dt->size = svm->vmcb->save.gdtr.limit;
  775. dt->address = svm->vmcb->save.gdtr.base;
  776. }
  777. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  778. {
  779. struct vcpu_svm *svm = to_svm(vcpu);
  780. svm->vmcb->save.gdtr.limit = dt->size;
  781. svm->vmcb->save.gdtr.base = dt->address ;
  782. }
  783. static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  784. {
  785. }
  786. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  787. {
  788. }
  789. static void update_cr0_intercept(struct vcpu_svm *svm)
  790. {
  791. ulong gcr0 = svm->vcpu.arch.cr0;
  792. u64 *hcr0 = &svm->vmcb->save.cr0;
  793. if (!svm->vcpu.fpu_active)
  794. *hcr0 |= SVM_CR0_SELECTIVE_MASK;
  795. else
  796. *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
  797. | (gcr0 & SVM_CR0_SELECTIVE_MASK);
  798. if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
  799. svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
  800. svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
  801. } else {
  802. svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
  803. svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
  804. }
  805. }
  806. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  807. {
  808. struct vcpu_svm *svm = to_svm(vcpu);
  809. #ifdef CONFIG_X86_64
  810. if (vcpu->arch.efer & EFER_LME) {
  811. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  812. vcpu->arch.efer |= EFER_LMA;
  813. svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
  814. }
  815. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
  816. vcpu->arch.efer &= ~EFER_LMA;
  817. svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
  818. }
  819. }
  820. #endif
  821. vcpu->arch.cr0 = cr0;
  822. if (!npt_enabled)
  823. cr0 |= X86_CR0_PG | X86_CR0_WP;
  824. if (!vcpu->fpu_active)
  825. cr0 |= X86_CR0_TS;
  826. /*
  827. * re-enable caching here because the QEMU bios
  828. * does not do it - this results in some delay at
  829. * reboot
  830. */
  831. cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
  832. svm->vmcb->save.cr0 = cr0;
  833. update_cr0_intercept(svm);
  834. }
  835. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  836. {
  837. unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
  838. unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
  839. if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
  840. force_new_asid(vcpu);
  841. vcpu->arch.cr4 = cr4;
  842. if (!npt_enabled)
  843. cr4 |= X86_CR4_PAE;
  844. cr4 |= host_cr4_mce;
  845. to_svm(vcpu)->vmcb->save.cr4 = cr4;
  846. }
  847. static void svm_set_segment(struct kvm_vcpu *vcpu,
  848. struct kvm_segment *var, int seg)
  849. {
  850. struct vcpu_svm *svm = to_svm(vcpu);
  851. struct vmcb_seg *s = svm_seg(vcpu, seg);
  852. s->base = var->base;
  853. s->limit = var->limit;
  854. s->selector = var->selector;
  855. if (var->unusable)
  856. s->attrib = 0;
  857. else {
  858. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  859. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  860. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  861. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  862. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  863. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  864. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  865. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  866. }
  867. if (seg == VCPU_SREG_CS)
  868. svm->vmcb->save.cpl
  869. = (svm->vmcb->save.cs.attrib
  870. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  871. }
  872. static void update_db_intercept(struct kvm_vcpu *vcpu)
  873. {
  874. struct vcpu_svm *svm = to_svm(vcpu);
  875. svm->vmcb->control.intercept_exceptions &=
  876. ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
  877. if (svm->nmi_singlestep)
  878. svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
  879. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  880. if (vcpu->guest_debug &
  881. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  882. svm->vmcb->control.intercept_exceptions |=
  883. 1 << DB_VECTOR;
  884. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  885. svm->vmcb->control.intercept_exceptions |=
  886. 1 << BP_VECTOR;
  887. } else
  888. vcpu->guest_debug = 0;
  889. }
  890. static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  891. {
  892. struct vcpu_svm *svm = to_svm(vcpu);
  893. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  894. svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
  895. else
  896. svm->vmcb->save.dr7 = vcpu->arch.dr7;
  897. update_db_intercept(vcpu);
  898. }
  899. static void load_host_msrs(struct kvm_vcpu *vcpu)
  900. {
  901. #ifdef CONFIG_X86_64
  902. wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  903. #endif
  904. }
  905. static void save_host_msrs(struct kvm_vcpu *vcpu)
  906. {
  907. #ifdef CONFIG_X86_64
  908. rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  909. #endif
  910. }
  911. static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
  912. {
  913. if (sd->next_asid > sd->max_asid) {
  914. ++sd->asid_generation;
  915. sd->next_asid = 1;
  916. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  917. }
  918. svm->asid_generation = sd->asid_generation;
  919. svm->vmcb->control.asid = sd->next_asid++;
  920. }
  921. static int svm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *dest)
  922. {
  923. struct vcpu_svm *svm = to_svm(vcpu);
  924. switch (dr) {
  925. case 0 ... 3:
  926. *dest = vcpu->arch.db[dr];
  927. break;
  928. case 4:
  929. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  930. return EMULATE_FAIL; /* will re-inject UD */
  931. /* fall through */
  932. case 6:
  933. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  934. *dest = vcpu->arch.dr6;
  935. else
  936. *dest = svm->vmcb->save.dr6;
  937. break;
  938. case 5:
  939. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  940. return EMULATE_FAIL; /* will re-inject UD */
  941. /* fall through */
  942. case 7:
  943. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  944. *dest = vcpu->arch.dr7;
  945. else
  946. *dest = svm->vmcb->save.dr7;
  947. break;
  948. }
  949. return EMULATE_DONE;
  950. }
  951. static int svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value)
  952. {
  953. struct vcpu_svm *svm = to_svm(vcpu);
  954. switch (dr) {
  955. case 0 ... 3:
  956. vcpu->arch.db[dr] = value;
  957. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  958. vcpu->arch.eff_db[dr] = value;
  959. break;
  960. case 4:
  961. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  962. return EMULATE_FAIL; /* will re-inject UD */
  963. /* fall through */
  964. case 6:
  965. vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
  966. break;
  967. case 5:
  968. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  969. return EMULATE_FAIL; /* will re-inject UD */
  970. /* fall through */
  971. case 7:
  972. vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
  973. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  974. svm->vmcb->save.dr7 = vcpu->arch.dr7;
  975. vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
  976. }
  977. break;
  978. }
  979. return EMULATE_DONE;
  980. }
  981. static int pf_interception(struct vcpu_svm *svm)
  982. {
  983. u64 fault_address;
  984. u32 error_code;
  985. fault_address = svm->vmcb->control.exit_info_2;
  986. error_code = svm->vmcb->control.exit_info_1;
  987. trace_kvm_page_fault(fault_address, error_code);
  988. if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
  989. kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
  990. return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
  991. }
  992. static int db_interception(struct vcpu_svm *svm)
  993. {
  994. struct kvm_run *kvm_run = svm->vcpu.run;
  995. if (!(svm->vcpu.guest_debug &
  996. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
  997. !svm->nmi_singlestep) {
  998. kvm_queue_exception(&svm->vcpu, DB_VECTOR);
  999. return 1;
  1000. }
  1001. if (svm->nmi_singlestep) {
  1002. svm->nmi_singlestep = false;
  1003. if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
  1004. svm->vmcb->save.rflags &=
  1005. ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1006. update_db_intercept(&svm->vcpu);
  1007. }
  1008. if (svm->vcpu.guest_debug &
  1009. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
  1010. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1011. kvm_run->debug.arch.pc =
  1012. svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  1013. kvm_run->debug.arch.exception = DB_VECTOR;
  1014. return 0;
  1015. }
  1016. return 1;
  1017. }
  1018. static int bp_interception(struct vcpu_svm *svm)
  1019. {
  1020. struct kvm_run *kvm_run = svm->vcpu.run;
  1021. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1022. kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
  1023. kvm_run->debug.arch.exception = BP_VECTOR;
  1024. return 0;
  1025. }
  1026. static int ud_interception(struct vcpu_svm *svm)
  1027. {
  1028. int er;
  1029. er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
  1030. if (er != EMULATE_DONE)
  1031. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1032. return 1;
  1033. }
  1034. static void svm_fpu_activate(struct kvm_vcpu *vcpu)
  1035. {
  1036. struct vcpu_svm *svm = to_svm(vcpu);
  1037. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  1038. svm->vcpu.fpu_active = 1;
  1039. update_cr0_intercept(svm);
  1040. }
  1041. static int nm_interception(struct vcpu_svm *svm)
  1042. {
  1043. svm_fpu_activate(&svm->vcpu);
  1044. return 1;
  1045. }
  1046. static int mc_interception(struct vcpu_svm *svm)
  1047. {
  1048. /*
  1049. * On an #MC intercept the MCE handler is not called automatically in
  1050. * the host. So do it by hand here.
  1051. */
  1052. asm volatile (
  1053. "int $0x12\n");
  1054. /* not sure if we ever come back to this point */
  1055. return 1;
  1056. }
  1057. static int shutdown_interception(struct vcpu_svm *svm)
  1058. {
  1059. struct kvm_run *kvm_run = svm->vcpu.run;
  1060. /*
  1061. * VMCB is undefined after a SHUTDOWN intercept
  1062. * so reinitialize it.
  1063. */
  1064. clear_page(svm->vmcb);
  1065. init_vmcb(svm);
  1066. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1067. return 0;
  1068. }
  1069. static int io_interception(struct vcpu_svm *svm)
  1070. {
  1071. u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
  1072. int size, in, string;
  1073. unsigned port;
  1074. ++svm->vcpu.stat.io_exits;
  1075. svm->next_rip = svm->vmcb->control.exit_info_2;
  1076. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  1077. if (string) {
  1078. if (emulate_instruction(&svm->vcpu,
  1079. 0, 0, 0) == EMULATE_DO_MMIO)
  1080. return 0;
  1081. return 1;
  1082. }
  1083. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  1084. port = io_info >> 16;
  1085. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  1086. skip_emulated_instruction(&svm->vcpu);
  1087. return kvm_emulate_pio(&svm->vcpu, in, size, port);
  1088. }
  1089. static int nmi_interception(struct vcpu_svm *svm)
  1090. {
  1091. return 1;
  1092. }
  1093. static int intr_interception(struct vcpu_svm *svm)
  1094. {
  1095. ++svm->vcpu.stat.irq_exits;
  1096. return 1;
  1097. }
  1098. static int nop_on_interception(struct vcpu_svm *svm)
  1099. {
  1100. return 1;
  1101. }
  1102. static int halt_interception(struct vcpu_svm *svm)
  1103. {
  1104. svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
  1105. skip_emulated_instruction(&svm->vcpu);
  1106. return kvm_emulate_halt(&svm->vcpu);
  1107. }
  1108. static int vmmcall_interception(struct vcpu_svm *svm)
  1109. {
  1110. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1111. skip_emulated_instruction(&svm->vcpu);
  1112. kvm_emulate_hypercall(&svm->vcpu);
  1113. return 1;
  1114. }
  1115. static int nested_svm_check_permissions(struct vcpu_svm *svm)
  1116. {
  1117. if (!(svm->vcpu.arch.efer & EFER_SVME)
  1118. || !is_paging(&svm->vcpu)) {
  1119. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1120. return 1;
  1121. }
  1122. if (svm->vmcb->save.cpl) {
  1123. kvm_inject_gp(&svm->vcpu, 0);
  1124. return 1;
  1125. }
  1126. return 0;
  1127. }
  1128. static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
  1129. bool has_error_code, u32 error_code)
  1130. {
  1131. int vmexit;
  1132. if (!is_nested(svm))
  1133. return 0;
  1134. svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
  1135. svm->vmcb->control.exit_code_hi = 0;
  1136. svm->vmcb->control.exit_info_1 = error_code;
  1137. svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
  1138. vmexit = nested_svm_intercept(svm);
  1139. if (vmexit == NESTED_EXIT_DONE)
  1140. svm->nested.exit_required = true;
  1141. return vmexit;
  1142. }
  1143. static inline int nested_svm_intr(struct vcpu_svm *svm)
  1144. {
  1145. if (!is_nested(svm))
  1146. return 0;
  1147. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1148. return 0;
  1149. if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
  1150. return 0;
  1151. svm->vmcb->control.exit_code = SVM_EXIT_INTR;
  1152. if (svm->nested.intercept & 1ULL) {
  1153. /*
  1154. * The #vmexit can't be emulated here directly because this
  1155. * code path runs with irqs and preemtion disabled. A
  1156. * #vmexit emulation might sleep. Only signal request for
  1157. * the #vmexit here.
  1158. */
  1159. svm->nested.exit_required = true;
  1160. trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
  1161. return 1;
  1162. }
  1163. return 0;
  1164. }
  1165. static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
  1166. {
  1167. struct page *page;
  1168. page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
  1169. if (is_error_page(page))
  1170. goto error;
  1171. *_page = page;
  1172. return kmap(page);
  1173. error:
  1174. kvm_release_page_clean(page);
  1175. kvm_inject_gp(&svm->vcpu, 0);
  1176. return NULL;
  1177. }
  1178. static void nested_svm_unmap(struct page *page)
  1179. {
  1180. kunmap(page);
  1181. kvm_release_page_dirty(page);
  1182. }
  1183. static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
  1184. {
  1185. u32 param = svm->vmcb->control.exit_info_1 & 1;
  1186. u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1187. struct page *page;
  1188. bool ret = false;
  1189. u32 t0, t1;
  1190. u8 *msrpm;
  1191. if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
  1192. return false;
  1193. msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, &page);
  1194. if (!msrpm)
  1195. goto out;
  1196. switch (msr) {
  1197. case 0 ... 0x1fff:
  1198. t0 = (msr * 2) % 8;
  1199. t1 = msr / 8;
  1200. break;
  1201. case 0xc0000000 ... 0xc0001fff:
  1202. t0 = (8192 + msr - 0xc0000000) * 2;
  1203. t1 = (t0 / 8);
  1204. t0 %= 8;
  1205. break;
  1206. case 0xc0010000 ... 0xc0011fff:
  1207. t0 = (16384 + msr - 0xc0010000) * 2;
  1208. t1 = (t0 / 8);
  1209. t0 %= 8;
  1210. break;
  1211. default:
  1212. ret = true;
  1213. goto out;
  1214. }
  1215. ret = msrpm[t1] & ((1 << param) << t0);
  1216. out:
  1217. nested_svm_unmap(page);
  1218. return ret;
  1219. }
  1220. static int nested_svm_exit_special(struct vcpu_svm *svm)
  1221. {
  1222. u32 exit_code = svm->vmcb->control.exit_code;
  1223. switch (exit_code) {
  1224. case SVM_EXIT_INTR:
  1225. case SVM_EXIT_NMI:
  1226. return NESTED_EXIT_HOST;
  1227. /* For now we are always handling NPFs when using them */
  1228. case SVM_EXIT_NPF:
  1229. if (npt_enabled)
  1230. return NESTED_EXIT_HOST;
  1231. break;
  1232. /* When we're shadowing, trap PFs */
  1233. case SVM_EXIT_EXCP_BASE + PF_VECTOR:
  1234. if (!npt_enabled)
  1235. return NESTED_EXIT_HOST;
  1236. break;
  1237. default:
  1238. break;
  1239. }
  1240. return NESTED_EXIT_CONTINUE;
  1241. }
  1242. /*
  1243. * If this function returns true, this #vmexit was already handled
  1244. */
  1245. static int nested_svm_intercept(struct vcpu_svm *svm)
  1246. {
  1247. u32 exit_code = svm->vmcb->control.exit_code;
  1248. int vmexit = NESTED_EXIT_HOST;
  1249. switch (exit_code) {
  1250. case SVM_EXIT_MSR:
  1251. vmexit = nested_svm_exit_handled_msr(svm);
  1252. break;
  1253. case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
  1254. u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
  1255. if (svm->nested.intercept_cr_read & cr_bits)
  1256. vmexit = NESTED_EXIT_DONE;
  1257. break;
  1258. }
  1259. case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
  1260. u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
  1261. if (svm->nested.intercept_cr_write & cr_bits)
  1262. vmexit = NESTED_EXIT_DONE;
  1263. break;
  1264. }
  1265. case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
  1266. u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
  1267. if (svm->nested.intercept_dr_read & dr_bits)
  1268. vmexit = NESTED_EXIT_DONE;
  1269. break;
  1270. }
  1271. case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
  1272. u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
  1273. if (svm->nested.intercept_dr_write & dr_bits)
  1274. vmexit = NESTED_EXIT_DONE;
  1275. break;
  1276. }
  1277. case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
  1278. u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
  1279. if (svm->nested.intercept_exceptions & excp_bits)
  1280. vmexit = NESTED_EXIT_DONE;
  1281. break;
  1282. }
  1283. default: {
  1284. u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
  1285. if (svm->nested.intercept & exit_bits)
  1286. vmexit = NESTED_EXIT_DONE;
  1287. }
  1288. }
  1289. return vmexit;
  1290. }
  1291. static int nested_svm_exit_handled(struct vcpu_svm *svm)
  1292. {
  1293. int vmexit;
  1294. vmexit = nested_svm_intercept(svm);
  1295. if (vmexit == NESTED_EXIT_DONE)
  1296. nested_svm_vmexit(svm);
  1297. return vmexit;
  1298. }
  1299. static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
  1300. {
  1301. struct vmcb_control_area *dst = &dst_vmcb->control;
  1302. struct vmcb_control_area *from = &from_vmcb->control;
  1303. dst->intercept_cr_read = from->intercept_cr_read;
  1304. dst->intercept_cr_write = from->intercept_cr_write;
  1305. dst->intercept_dr_read = from->intercept_dr_read;
  1306. dst->intercept_dr_write = from->intercept_dr_write;
  1307. dst->intercept_exceptions = from->intercept_exceptions;
  1308. dst->intercept = from->intercept;
  1309. dst->iopm_base_pa = from->iopm_base_pa;
  1310. dst->msrpm_base_pa = from->msrpm_base_pa;
  1311. dst->tsc_offset = from->tsc_offset;
  1312. dst->asid = from->asid;
  1313. dst->tlb_ctl = from->tlb_ctl;
  1314. dst->int_ctl = from->int_ctl;
  1315. dst->int_vector = from->int_vector;
  1316. dst->int_state = from->int_state;
  1317. dst->exit_code = from->exit_code;
  1318. dst->exit_code_hi = from->exit_code_hi;
  1319. dst->exit_info_1 = from->exit_info_1;
  1320. dst->exit_info_2 = from->exit_info_2;
  1321. dst->exit_int_info = from->exit_int_info;
  1322. dst->exit_int_info_err = from->exit_int_info_err;
  1323. dst->nested_ctl = from->nested_ctl;
  1324. dst->event_inj = from->event_inj;
  1325. dst->event_inj_err = from->event_inj_err;
  1326. dst->nested_cr3 = from->nested_cr3;
  1327. dst->lbr_ctl = from->lbr_ctl;
  1328. }
  1329. static int nested_svm_vmexit(struct vcpu_svm *svm)
  1330. {
  1331. struct vmcb *nested_vmcb;
  1332. struct vmcb *hsave = svm->nested.hsave;
  1333. struct vmcb *vmcb = svm->vmcb;
  1334. struct page *page;
  1335. trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
  1336. vmcb->control.exit_info_1,
  1337. vmcb->control.exit_info_2,
  1338. vmcb->control.exit_int_info,
  1339. vmcb->control.exit_int_info_err);
  1340. nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
  1341. if (!nested_vmcb)
  1342. return 1;
  1343. /* Give the current vmcb to the guest */
  1344. disable_gif(svm);
  1345. nested_vmcb->save.es = vmcb->save.es;
  1346. nested_vmcb->save.cs = vmcb->save.cs;
  1347. nested_vmcb->save.ss = vmcb->save.ss;
  1348. nested_vmcb->save.ds = vmcb->save.ds;
  1349. nested_vmcb->save.gdtr = vmcb->save.gdtr;
  1350. nested_vmcb->save.idtr = vmcb->save.idtr;
  1351. if (npt_enabled)
  1352. nested_vmcb->save.cr3 = vmcb->save.cr3;
  1353. nested_vmcb->save.cr2 = vmcb->save.cr2;
  1354. nested_vmcb->save.rflags = vmcb->save.rflags;
  1355. nested_vmcb->save.rip = vmcb->save.rip;
  1356. nested_vmcb->save.rsp = vmcb->save.rsp;
  1357. nested_vmcb->save.rax = vmcb->save.rax;
  1358. nested_vmcb->save.dr7 = vmcb->save.dr7;
  1359. nested_vmcb->save.dr6 = vmcb->save.dr6;
  1360. nested_vmcb->save.cpl = vmcb->save.cpl;
  1361. nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
  1362. nested_vmcb->control.int_vector = vmcb->control.int_vector;
  1363. nested_vmcb->control.int_state = vmcb->control.int_state;
  1364. nested_vmcb->control.exit_code = vmcb->control.exit_code;
  1365. nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
  1366. nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
  1367. nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
  1368. nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
  1369. nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
  1370. /*
  1371. * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
  1372. * to make sure that we do not lose injected events. So check event_inj
  1373. * here and copy it to exit_int_info if it is valid.
  1374. * Exit_int_info and event_inj can't be both valid because the case
  1375. * below only happens on a VMRUN instruction intercept which has
  1376. * no valid exit_int_info set.
  1377. */
  1378. if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
  1379. struct vmcb_control_area *nc = &nested_vmcb->control;
  1380. nc->exit_int_info = vmcb->control.event_inj;
  1381. nc->exit_int_info_err = vmcb->control.event_inj_err;
  1382. }
  1383. nested_vmcb->control.tlb_ctl = 0;
  1384. nested_vmcb->control.event_inj = 0;
  1385. nested_vmcb->control.event_inj_err = 0;
  1386. /* We always set V_INTR_MASKING and remember the old value in hflags */
  1387. if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
  1388. nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
  1389. /* Restore the original control entries */
  1390. copy_vmcb_control_area(vmcb, hsave);
  1391. kvm_clear_exception_queue(&svm->vcpu);
  1392. kvm_clear_interrupt_queue(&svm->vcpu);
  1393. /* Restore selected save entries */
  1394. svm->vmcb->save.es = hsave->save.es;
  1395. svm->vmcb->save.cs = hsave->save.cs;
  1396. svm->vmcb->save.ss = hsave->save.ss;
  1397. svm->vmcb->save.ds = hsave->save.ds;
  1398. svm->vmcb->save.gdtr = hsave->save.gdtr;
  1399. svm->vmcb->save.idtr = hsave->save.idtr;
  1400. svm->vmcb->save.rflags = hsave->save.rflags;
  1401. svm_set_efer(&svm->vcpu, hsave->save.efer);
  1402. svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
  1403. svm_set_cr4(&svm->vcpu, hsave->save.cr4);
  1404. if (npt_enabled) {
  1405. svm->vmcb->save.cr3 = hsave->save.cr3;
  1406. svm->vcpu.arch.cr3 = hsave->save.cr3;
  1407. } else {
  1408. kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
  1409. }
  1410. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
  1411. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
  1412. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
  1413. svm->vmcb->save.dr7 = 0;
  1414. svm->vmcb->save.cpl = 0;
  1415. svm->vmcb->control.exit_int_info = 0;
  1416. /* Exit nested SVM mode */
  1417. svm->nested.vmcb = 0;
  1418. nested_svm_unmap(page);
  1419. kvm_mmu_reset_context(&svm->vcpu);
  1420. kvm_mmu_load(&svm->vcpu);
  1421. return 0;
  1422. }
  1423. static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
  1424. {
  1425. u32 *nested_msrpm;
  1426. struct page *page;
  1427. int i;
  1428. nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, &page);
  1429. if (!nested_msrpm)
  1430. return false;
  1431. for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
  1432. svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
  1433. svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
  1434. nested_svm_unmap(page);
  1435. return true;
  1436. }
  1437. static bool nested_svm_vmrun(struct vcpu_svm *svm)
  1438. {
  1439. struct vmcb *nested_vmcb;
  1440. struct vmcb *hsave = svm->nested.hsave;
  1441. struct vmcb *vmcb = svm->vmcb;
  1442. struct page *page;
  1443. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1444. if (!nested_vmcb)
  1445. return false;
  1446. /* nested_vmcb is our indicator if nested SVM is activated */
  1447. svm->nested.vmcb = svm->vmcb->save.rax;
  1448. trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, svm->nested.vmcb,
  1449. nested_vmcb->save.rip,
  1450. nested_vmcb->control.int_ctl,
  1451. nested_vmcb->control.event_inj,
  1452. nested_vmcb->control.nested_ctl);
  1453. /* Clear internal status */
  1454. kvm_clear_exception_queue(&svm->vcpu);
  1455. kvm_clear_interrupt_queue(&svm->vcpu);
  1456. /* Save the old vmcb, so we don't need to pick what we save, but
  1457. can restore everything when a VMEXIT occurs */
  1458. hsave->save.es = vmcb->save.es;
  1459. hsave->save.cs = vmcb->save.cs;
  1460. hsave->save.ss = vmcb->save.ss;
  1461. hsave->save.ds = vmcb->save.ds;
  1462. hsave->save.gdtr = vmcb->save.gdtr;
  1463. hsave->save.idtr = vmcb->save.idtr;
  1464. hsave->save.efer = svm->vcpu.arch.efer;
  1465. hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
  1466. hsave->save.cr4 = svm->vcpu.arch.cr4;
  1467. hsave->save.rflags = vmcb->save.rflags;
  1468. hsave->save.rip = svm->next_rip;
  1469. hsave->save.rsp = vmcb->save.rsp;
  1470. hsave->save.rax = vmcb->save.rax;
  1471. if (npt_enabled)
  1472. hsave->save.cr3 = vmcb->save.cr3;
  1473. else
  1474. hsave->save.cr3 = svm->vcpu.arch.cr3;
  1475. copy_vmcb_control_area(hsave, vmcb);
  1476. if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
  1477. svm->vcpu.arch.hflags |= HF_HIF_MASK;
  1478. else
  1479. svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
  1480. /* Load the nested guest state */
  1481. svm->vmcb->save.es = nested_vmcb->save.es;
  1482. svm->vmcb->save.cs = nested_vmcb->save.cs;
  1483. svm->vmcb->save.ss = nested_vmcb->save.ss;
  1484. svm->vmcb->save.ds = nested_vmcb->save.ds;
  1485. svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
  1486. svm->vmcb->save.idtr = nested_vmcb->save.idtr;
  1487. svm->vmcb->save.rflags = nested_vmcb->save.rflags;
  1488. svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
  1489. svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
  1490. svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
  1491. if (npt_enabled) {
  1492. svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
  1493. svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
  1494. } else {
  1495. kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
  1496. kvm_mmu_reset_context(&svm->vcpu);
  1497. }
  1498. svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
  1499. kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
  1500. kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
  1501. kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
  1502. /* In case we don't even reach vcpu_run, the fields are not updated */
  1503. svm->vmcb->save.rax = nested_vmcb->save.rax;
  1504. svm->vmcb->save.rsp = nested_vmcb->save.rsp;
  1505. svm->vmcb->save.rip = nested_vmcb->save.rip;
  1506. svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
  1507. svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
  1508. svm->vmcb->save.cpl = nested_vmcb->save.cpl;
  1509. /* We don't want a nested guest to be more powerful than the guest,
  1510. so all intercepts are ORed */
  1511. svm->vmcb->control.intercept_cr_read |=
  1512. nested_vmcb->control.intercept_cr_read;
  1513. svm->vmcb->control.intercept_cr_write |=
  1514. nested_vmcb->control.intercept_cr_write;
  1515. svm->vmcb->control.intercept_dr_read |=
  1516. nested_vmcb->control.intercept_dr_read;
  1517. svm->vmcb->control.intercept_dr_write |=
  1518. nested_vmcb->control.intercept_dr_write;
  1519. svm->vmcb->control.intercept_exceptions |=
  1520. nested_vmcb->control.intercept_exceptions;
  1521. svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
  1522. svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
  1523. /* cache intercepts */
  1524. svm->nested.intercept_cr_read = nested_vmcb->control.intercept_cr_read;
  1525. svm->nested.intercept_cr_write = nested_vmcb->control.intercept_cr_write;
  1526. svm->nested.intercept_dr_read = nested_vmcb->control.intercept_dr_read;
  1527. svm->nested.intercept_dr_write = nested_vmcb->control.intercept_dr_write;
  1528. svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
  1529. svm->nested.intercept = nested_vmcb->control.intercept;
  1530. force_new_asid(&svm->vcpu);
  1531. svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
  1532. if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
  1533. svm->vcpu.arch.hflags |= HF_VINTR_MASK;
  1534. else
  1535. svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
  1536. svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
  1537. svm->vmcb->control.int_state = nested_vmcb->control.int_state;
  1538. svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
  1539. svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
  1540. svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
  1541. nested_svm_unmap(page);
  1542. enable_gif(svm);
  1543. return true;
  1544. }
  1545. static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
  1546. {
  1547. to_vmcb->save.fs = from_vmcb->save.fs;
  1548. to_vmcb->save.gs = from_vmcb->save.gs;
  1549. to_vmcb->save.tr = from_vmcb->save.tr;
  1550. to_vmcb->save.ldtr = from_vmcb->save.ldtr;
  1551. to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
  1552. to_vmcb->save.star = from_vmcb->save.star;
  1553. to_vmcb->save.lstar = from_vmcb->save.lstar;
  1554. to_vmcb->save.cstar = from_vmcb->save.cstar;
  1555. to_vmcb->save.sfmask = from_vmcb->save.sfmask;
  1556. to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
  1557. to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
  1558. to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
  1559. }
  1560. static int vmload_interception(struct vcpu_svm *svm)
  1561. {
  1562. struct vmcb *nested_vmcb;
  1563. struct page *page;
  1564. if (nested_svm_check_permissions(svm))
  1565. return 1;
  1566. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1567. skip_emulated_instruction(&svm->vcpu);
  1568. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1569. if (!nested_vmcb)
  1570. return 1;
  1571. nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
  1572. nested_svm_unmap(page);
  1573. return 1;
  1574. }
  1575. static int vmsave_interception(struct vcpu_svm *svm)
  1576. {
  1577. struct vmcb *nested_vmcb;
  1578. struct page *page;
  1579. if (nested_svm_check_permissions(svm))
  1580. return 1;
  1581. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1582. skip_emulated_instruction(&svm->vcpu);
  1583. nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
  1584. if (!nested_vmcb)
  1585. return 1;
  1586. nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
  1587. nested_svm_unmap(page);
  1588. return 1;
  1589. }
  1590. static int vmrun_interception(struct vcpu_svm *svm)
  1591. {
  1592. if (nested_svm_check_permissions(svm))
  1593. return 1;
  1594. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1595. skip_emulated_instruction(&svm->vcpu);
  1596. if (!nested_svm_vmrun(svm))
  1597. return 1;
  1598. if (!nested_svm_vmrun_msrpm(svm))
  1599. goto failed;
  1600. return 1;
  1601. failed:
  1602. svm->vmcb->control.exit_code = SVM_EXIT_ERR;
  1603. svm->vmcb->control.exit_code_hi = 0;
  1604. svm->vmcb->control.exit_info_1 = 0;
  1605. svm->vmcb->control.exit_info_2 = 0;
  1606. nested_svm_vmexit(svm);
  1607. return 1;
  1608. }
  1609. static int stgi_interception(struct vcpu_svm *svm)
  1610. {
  1611. if (nested_svm_check_permissions(svm))
  1612. return 1;
  1613. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1614. skip_emulated_instruction(&svm->vcpu);
  1615. enable_gif(svm);
  1616. return 1;
  1617. }
  1618. static int clgi_interception(struct vcpu_svm *svm)
  1619. {
  1620. if (nested_svm_check_permissions(svm))
  1621. return 1;
  1622. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1623. skip_emulated_instruction(&svm->vcpu);
  1624. disable_gif(svm);
  1625. /* After a CLGI no interrupts should come */
  1626. svm_clear_vintr(svm);
  1627. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  1628. return 1;
  1629. }
  1630. static int invlpga_interception(struct vcpu_svm *svm)
  1631. {
  1632. struct kvm_vcpu *vcpu = &svm->vcpu;
  1633. trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
  1634. vcpu->arch.regs[VCPU_REGS_RAX]);
  1635. /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
  1636. kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
  1637. svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
  1638. skip_emulated_instruction(&svm->vcpu);
  1639. return 1;
  1640. }
  1641. static int skinit_interception(struct vcpu_svm *svm)
  1642. {
  1643. trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
  1644. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1645. return 1;
  1646. }
  1647. static int invalid_op_interception(struct vcpu_svm *svm)
  1648. {
  1649. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  1650. return 1;
  1651. }
  1652. static int task_switch_interception(struct vcpu_svm *svm)
  1653. {
  1654. u16 tss_selector;
  1655. int reason;
  1656. int int_type = svm->vmcb->control.exit_int_info &
  1657. SVM_EXITINTINFO_TYPE_MASK;
  1658. int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
  1659. uint32_t type =
  1660. svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
  1661. uint32_t idt_v =
  1662. svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
  1663. tss_selector = (u16)svm->vmcb->control.exit_info_1;
  1664. if (svm->vmcb->control.exit_info_2 &
  1665. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
  1666. reason = TASK_SWITCH_IRET;
  1667. else if (svm->vmcb->control.exit_info_2 &
  1668. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
  1669. reason = TASK_SWITCH_JMP;
  1670. else if (idt_v)
  1671. reason = TASK_SWITCH_GATE;
  1672. else
  1673. reason = TASK_SWITCH_CALL;
  1674. if (reason == TASK_SWITCH_GATE) {
  1675. switch (type) {
  1676. case SVM_EXITINTINFO_TYPE_NMI:
  1677. svm->vcpu.arch.nmi_injected = false;
  1678. break;
  1679. case SVM_EXITINTINFO_TYPE_EXEPT:
  1680. kvm_clear_exception_queue(&svm->vcpu);
  1681. break;
  1682. case SVM_EXITINTINFO_TYPE_INTR:
  1683. kvm_clear_interrupt_queue(&svm->vcpu);
  1684. break;
  1685. default:
  1686. break;
  1687. }
  1688. }
  1689. if (reason != TASK_SWITCH_GATE ||
  1690. int_type == SVM_EXITINTINFO_TYPE_SOFT ||
  1691. (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
  1692. (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
  1693. skip_emulated_instruction(&svm->vcpu);
  1694. return kvm_task_switch(&svm->vcpu, tss_selector, reason);
  1695. }
  1696. static int cpuid_interception(struct vcpu_svm *svm)
  1697. {
  1698. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  1699. kvm_emulate_cpuid(&svm->vcpu);
  1700. return 1;
  1701. }
  1702. static int iret_interception(struct vcpu_svm *svm)
  1703. {
  1704. ++svm->vcpu.stat.nmi_window_exits;
  1705. svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
  1706. svm->vcpu.arch.hflags |= HF_IRET_MASK;
  1707. return 1;
  1708. }
  1709. static int invlpg_interception(struct vcpu_svm *svm)
  1710. {
  1711. if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
  1712. pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
  1713. return 1;
  1714. }
  1715. static int emulate_on_interception(struct vcpu_svm *svm)
  1716. {
  1717. if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
  1718. pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
  1719. return 1;
  1720. }
  1721. static int cr8_write_interception(struct vcpu_svm *svm)
  1722. {
  1723. struct kvm_run *kvm_run = svm->vcpu.run;
  1724. u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
  1725. /* instruction emulation calls kvm_set_cr8() */
  1726. emulate_instruction(&svm->vcpu, 0, 0, 0);
  1727. if (irqchip_in_kernel(svm->vcpu.kvm)) {
  1728. svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  1729. return 1;
  1730. }
  1731. if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
  1732. return 1;
  1733. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1734. return 0;
  1735. }
  1736. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  1737. {
  1738. struct vcpu_svm *svm = to_svm(vcpu);
  1739. switch (ecx) {
  1740. case MSR_IA32_TSC: {
  1741. u64 tsc_offset;
  1742. if (is_nested(svm))
  1743. tsc_offset = svm->nested.hsave->control.tsc_offset;
  1744. else
  1745. tsc_offset = svm->vmcb->control.tsc_offset;
  1746. *data = tsc_offset + native_read_tsc();
  1747. break;
  1748. }
  1749. case MSR_K6_STAR:
  1750. *data = svm->vmcb->save.star;
  1751. break;
  1752. #ifdef CONFIG_X86_64
  1753. case MSR_LSTAR:
  1754. *data = svm->vmcb->save.lstar;
  1755. break;
  1756. case MSR_CSTAR:
  1757. *data = svm->vmcb->save.cstar;
  1758. break;
  1759. case MSR_KERNEL_GS_BASE:
  1760. *data = svm->vmcb->save.kernel_gs_base;
  1761. break;
  1762. case MSR_SYSCALL_MASK:
  1763. *data = svm->vmcb->save.sfmask;
  1764. break;
  1765. #endif
  1766. case MSR_IA32_SYSENTER_CS:
  1767. *data = svm->vmcb->save.sysenter_cs;
  1768. break;
  1769. case MSR_IA32_SYSENTER_EIP:
  1770. *data = svm->sysenter_eip;
  1771. break;
  1772. case MSR_IA32_SYSENTER_ESP:
  1773. *data = svm->sysenter_esp;
  1774. break;
  1775. /* Nobody will change the following 5 values in the VMCB so
  1776. we can safely return them on rdmsr. They will always be 0
  1777. until LBRV is implemented. */
  1778. case MSR_IA32_DEBUGCTLMSR:
  1779. *data = svm->vmcb->save.dbgctl;
  1780. break;
  1781. case MSR_IA32_LASTBRANCHFROMIP:
  1782. *data = svm->vmcb->save.br_from;
  1783. break;
  1784. case MSR_IA32_LASTBRANCHTOIP:
  1785. *data = svm->vmcb->save.br_to;
  1786. break;
  1787. case MSR_IA32_LASTINTFROMIP:
  1788. *data = svm->vmcb->save.last_excp_from;
  1789. break;
  1790. case MSR_IA32_LASTINTTOIP:
  1791. *data = svm->vmcb->save.last_excp_to;
  1792. break;
  1793. case MSR_VM_HSAVE_PA:
  1794. *data = svm->nested.hsave_msr;
  1795. break;
  1796. case MSR_VM_CR:
  1797. *data = 0;
  1798. break;
  1799. case MSR_IA32_UCODE_REV:
  1800. *data = 0x01000065;
  1801. break;
  1802. default:
  1803. return kvm_get_msr_common(vcpu, ecx, data);
  1804. }
  1805. return 0;
  1806. }
  1807. static int rdmsr_interception(struct vcpu_svm *svm)
  1808. {
  1809. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1810. u64 data;
  1811. if (svm_get_msr(&svm->vcpu, ecx, &data)) {
  1812. trace_kvm_msr_read_ex(ecx);
  1813. kvm_inject_gp(&svm->vcpu, 0);
  1814. } else {
  1815. trace_kvm_msr_read(ecx, data);
  1816. svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
  1817. svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
  1818. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  1819. skip_emulated_instruction(&svm->vcpu);
  1820. }
  1821. return 1;
  1822. }
  1823. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  1824. {
  1825. struct vcpu_svm *svm = to_svm(vcpu);
  1826. switch (ecx) {
  1827. case MSR_IA32_TSC: {
  1828. u64 tsc_offset = data - native_read_tsc();
  1829. u64 g_tsc_offset = 0;
  1830. if (is_nested(svm)) {
  1831. g_tsc_offset = svm->vmcb->control.tsc_offset -
  1832. svm->nested.hsave->control.tsc_offset;
  1833. svm->nested.hsave->control.tsc_offset = tsc_offset;
  1834. }
  1835. svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
  1836. break;
  1837. }
  1838. case MSR_K6_STAR:
  1839. svm->vmcb->save.star = data;
  1840. break;
  1841. #ifdef CONFIG_X86_64
  1842. case MSR_LSTAR:
  1843. svm->vmcb->save.lstar = data;
  1844. break;
  1845. case MSR_CSTAR:
  1846. svm->vmcb->save.cstar = data;
  1847. break;
  1848. case MSR_KERNEL_GS_BASE:
  1849. svm->vmcb->save.kernel_gs_base = data;
  1850. break;
  1851. case MSR_SYSCALL_MASK:
  1852. svm->vmcb->save.sfmask = data;
  1853. break;
  1854. #endif
  1855. case MSR_IA32_SYSENTER_CS:
  1856. svm->vmcb->save.sysenter_cs = data;
  1857. break;
  1858. case MSR_IA32_SYSENTER_EIP:
  1859. svm->sysenter_eip = data;
  1860. svm->vmcb->save.sysenter_eip = data;
  1861. break;
  1862. case MSR_IA32_SYSENTER_ESP:
  1863. svm->sysenter_esp = data;
  1864. svm->vmcb->save.sysenter_esp = data;
  1865. break;
  1866. case MSR_IA32_DEBUGCTLMSR:
  1867. if (!svm_has(SVM_FEATURE_LBRV)) {
  1868. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
  1869. __func__, data);
  1870. break;
  1871. }
  1872. if (data & DEBUGCTL_RESERVED_BITS)
  1873. return 1;
  1874. svm->vmcb->save.dbgctl = data;
  1875. if (data & (1ULL<<0))
  1876. svm_enable_lbrv(svm);
  1877. else
  1878. svm_disable_lbrv(svm);
  1879. break;
  1880. case MSR_VM_HSAVE_PA:
  1881. svm->nested.hsave_msr = data;
  1882. break;
  1883. case MSR_VM_CR:
  1884. case MSR_VM_IGNNE:
  1885. pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
  1886. break;
  1887. default:
  1888. return kvm_set_msr_common(vcpu, ecx, data);
  1889. }
  1890. return 0;
  1891. }
  1892. static int wrmsr_interception(struct vcpu_svm *svm)
  1893. {
  1894. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1895. u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
  1896. | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  1897. svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
  1898. if (svm_set_msr(&svm->vcpu, ecx, data)) {
  1899. trace_kvm_msr_write_ex(ecx, data);
  1900. kvm_inject_gp(&svm->vcpu, 0);
  1901. } else {
  1902. trace_kvm_msr_write(ecx, data);
  1903. skip_emulated_instruction(&svm->vcpu);
  1904. }
  1905. return 1;
  1906. }
  1907. static int msr_interception(struct vcpu_svm *svm)
  1908. {
  1909. if (svm->vmcb->control.exit_info_1)
  1910. return wrmsr_interception(svm);
  1911. else
  1912. return rdmsr_interception(svm);
  1913. }
  1914. static int interrupt_window_interception(struct vcpu_svm *svm)
  1915. {
  1916. struct kvm_run *kvm_run = svm->vcpu.run;
  1917. svm_clear_vintr(svm);
  1918. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  1919. /*
  1920. * If the user space waits to inject interrupts, exit as soon as
  1921. * possible
  1922. */
  1923. if (!irqchip_in_kernel(svm->vcpu.kvm) &&
  1924. kvm_run->request_interrupt_window &&
  1925. !kvm_cpu_has_interrupt(&svm->vcpu)) {
  1926. ++svm->vcpu.stat.irq_window_exits;
  1927. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1928. return 0;
  1929. }
  1930. return 1;
  1931. }
  1932. static int pause_interception(struct vcpu_svm *svm)
  1933. {
  1934. kvm_vcpu_on_spin(&(svm->vcpu));
  1935. return 1;
  1936. }
  1937. static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
  1938. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1939. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1940. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1941. [SVM_EXIT_READ_CR8] = emulate_on_interception,
  1942. [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
  1943. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1944. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1945. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1946. [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
  1947. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1948. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1949. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1950. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1951. [SVM_EXIT_READ_DR4] = emulate_on_interception,
  1952. [SVM_EXIT_READ_DR5] = emulate_on_interception,
  1953. [SVM_EXIT_READ_DR6] = emulate_on_interception,
  1954. [SVM_EXIT_READ_DR7] = emulate_on_interception,
  1955. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1956. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1957. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1958. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1959. [SVM_EXIT_WRITE_DR4] = emulate_on_interception,
  1960. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1961. [SVM_EXIT_WRITE_DR6] = emulate_on_interception,
  1962. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1963. [SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
  1964. [SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
  1965. [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
  1966. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1967. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  1968. [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
  1969. [SVM_EXIT_INTR] = intr_interception,
  1970. [SVM_EXIT_NMI] = nmi_interception,
  1971. [SVM_EXIT_SMI] = nop_on_interception,
  1972. [SVM_EXIT_INIT] = nop_on_interception,
  1973. [SVM_EXIT_VINTR] = interrupt_window_interception,
  1974. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1975. [SVM_EXIT_CPUID] = cpuid_interception,
  1976. [SVM_EXIT_IRET] = iret_interception,
  1977. [SVM_EXIT_INVD] = emulate_on_interception,
  1978. [SVM_EXIT_PAUSE] = pause_interception,
  1979. [SVM_EXIT_HLT] = halt_interception,
  1980. [SVM_EXIT_INVLPG] = invlpg_interception,
  1981. [SVM_EXIT_INVLPGA] = invlpga_interception,
  1982. [SVM_EXIT_IOIO] = io_interception,
  1983. [SVM_EXIT_MSR] = msr_interception,
  1984. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1985. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  1986. [SVM_EXIT_VMRUN] = vmrun_interception,
  1987. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  1988. [SVM_EXIT_VMLOAD] = vmload_interception,
  1989. [SVM_EXIT_VMSAVE] = vmsave_interception,
  1990. [SVM_EXIT_STGI] = stgi_interception,
  1991. [SVM_EXIT_CLGI] = clgi_interception,
  1992. [SVM_EXIT_SKINIT] = skinit_interception,
  1993. [SVM_EXIT_WBINVD] = emulate_on_interception,
  1994. [SVM_EXIT_MONITOR] = invalid_op_interception,
  1995. [SVM_EXIT_MWAIT] = invalid_op_interception,
  1996. [SVM_EXIT_NPF] = pf_interception,
  1997. };
  1998. static int handle_exit(struct kvm_vcpu *vcpu)
  1999. {
  2000. struct vcpu_svm *svm = to_svm(vcpu);
  2001. struct kvm_run *kvm_run = vcpu->run;
  2002. u32 exit_code = svm->vmcb->control.exit_code;
  2003. trace_kvm_exit(exit_code, svm->vmcb->save.rip);
  2004. if (unlikely(svm->nested.exit_required)) {
  2005. nested_svm_vmexit(svm);
  2006. svm->nested.exit_required = false;
  2007. return 1;
  2008. }
  2009. if (is_nested(svm)) {
  2010. int vmexit;
  2011. trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
  2012. svm->vmcb->control.exit_info_1,
  2013. svm->vmcb->control.exit_info_2,
  2014. svm->vmcb->control.exit_int_info,
  2015. svm->vmcb->control.exit_int_info_err);
  2016. vmexit = nested_svm_exit_special(svm);
  2017. if (vmexit == NESTED_EXIT_CONTINUE)
  2018. vmexit = nested_svm_exit_handled(svm);
  2019. if (vmexit == NESTED_EXIT_DONE)
  2020. return 1;
  2021. }
  2022. svm_complete_interrupts(svm);
  2023. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
  2024. vcpu->arch.cr0 = svm->vmcb->save.cr0;
  2025. if (npt_enabled)
  2026. vcpu->arch.cr3 = svm->vmcb->save.cr3;
  2027. if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  2028. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2029. kvm_run->fail_entry.hardware_entry_failure_reason
  2030. = svm->vmcb->control.exit_code;
  2031. return 0;
  2032. }
  2033. if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
  2034. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
  2035. exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
  2036. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  2037. "exit_code 0x%x\n",
  2038. __func__, svm->vmcb->control.exit_int_info,
  2039. exit_code);
  2040. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  2041. || !svm_exit_handlers[exit_code]) {
  2042. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2043. kvm_run->hw.hardware_exit_reason = exit_code;
  2044. return 0;
  2045. }
  2046. return svm_exit_handlers[exit_code](svm);
  2047. }
  2048. static void reload_tss(struct kvm_vcpu *vcpu)
  2049. {
  2050. int cpu = raw_smp_processor_id();
  2051. struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
  2052. sd->tss_desc->type = 9; /* available 32/64-bit TSS */
  2053. load_TR_desc();
  2054. }
  2055. static void pre_svm_run(struct vcpu_svm *svm)
  2056. {
  2057. int cpu = raw_smp_processor_id();
  2058. struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
  2059. svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  2060. /* FIXME: handle wraparound of asid_generation */
  2061. if (svm->asid_generation != sd->asid_generation)
  2062. new_asid(svm, sd);
  2063. }
  2064. static void svm_inject_nmi(struct kvm_vcpu *vcpu)
  2065. {
  2066. struct vcpu_svm *svm = to_svm(vcpu);
  2067. svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
  2068. vcpu->arch.hflags |= HF_NMI_MASK;
  2069. svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
  2070. ++vcpu->stat.nmi_injections;
  2071. }
  2072. static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
  2073. {
  2074. struct vmcb_control_area *control;
  2075. trace_kvm_inj_virq(irq);
  2076. ++svm->vcpu.stat.irq_injections;
  2077. control = &svm->vmcb->control;
  2078. control->int_vector = irq;
  2079. control->int_ctl &= ~V_INTR_PRIO_MASK;
  2080. control->int_ctl |= V_IRQ_MASK |
  2081. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  2082. }
  2083. static void svm_set_irq(struct kvm_vcpu *vcpu)
  2084. {
  2085. struct vcpu_svm *svm = to_svm(vcpu);
  2086. BUG_ON(!(gif_set(svm)));
  2087. svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
  2088. SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
  2089. }
  2090. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2091. {
  2092. struct vcpu_svm *svm = to_svm(vcpu);
  2093. if (irr == -1)
  2094. return;
  2095. if (tpr >= irr)
  2096. svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
  2097. }
  2098. static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
  2099. {
  2100. struct vcpu_svm *svm = to_svm(vcpu);
  2101. struct vmcb *vmcb = svm->vmcb;
  2102. return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  2103. !(svm->vcpu.arch.hflags & HF_NMI_MASK);
  2104. }
  2105. static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
  2106. {
  2107. struct vcpu_svm *svm = to_svm(vcpu);
  2108. return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
  2109. }
  2110. static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  2111. {
  2112. struct vcpu_svm *svm = to_svm(vcpu);
  2113. if (masked) {
  2114. svm->vcpu.arch.hflags |= HF_NMI_MASK;
  2115. svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
  2116. } else {
  2117. svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
  2118. svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
  2119. }
  2120. }
  2121. static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
  2122. {
  2123. struct vcpu_svm *svm = to_svm(vcpu);
  2124. struct vmcb *vmcb = svm->vmcb;
  2125. int ret;
  2126. if (!gif_set(svm) ||
  2127. (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
  2128. return 0;
  2129. ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
  2130. if (is_nested(svm))
  2131. return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
  2132. return ret;
  2133. }
  2134. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2135. {
  2136. struct vcpu_svm *svm = to_svm(vcpu);
  2137. nested_svm_intr(svm);
  2138. /* In case GIF=0 we can't rely on the CPU to tell us when
  2139. * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
  2140. * The next time we get that intercept, this function will be
  2141. * called again though and we'll get the vintr intercept. */
  2142. if (gif_set(svm)) {
  2143. svm_set_vintr(svm);
  2144. svm_inject_irq(svm, 0x0);
  2145. }
  2146. }
  2147. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2148. {
  2149. struct vcpu_svm *svm = to_svm(vcpu);
  2150. if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
  2151. == HF_NMI_MASK)
  2152. return; /* IRET will cause a vm exit */
  2153. /* Something prevents NMI from been injected. Single step over
  2154. possible problem (IRET or exception injection or interrupt
  2155. shadow) */
  2156. svm->nmi_singlestep = true;
  2157. svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
  2158. update_db_intercept(vcpu);
  2159. }
  2160. static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2161. {
  2162. return 0;
  2163. }
  2164. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  2165. {
  2166. force_new_asid(vcpu);
  2167. }
  2168. static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  2169. {
  2170. }
  2171. static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
  2172. {
  2173. struct vcpu_svm *svm = to_svm(vcpu);
  2174. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
  2175. int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
  2176. kvm_set_cr8(vcpu, cr8);
  2177. }
  2178. }
  2179. static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
  2180. {
  2181. struct vcpu_svm *svm = to_svm(vcpu);
  2182. u64 cr8;
  2183. cr8 = kvm_get_cr8(vcpu);
  2184. svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  2185. svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
  2186. }
  2187. static void svm_complete_interrupts(struct vcpu_svm *svm)
  2188. {
  2189. u8 vector;
  2190. int type;
  2191. u32 exitintinfo = svm->vmcb->control.exit_int_info;
  2192. if (svm->vcpu.arch.hflags & HF_IRET_MASK)
  2193. svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
  2194. svm->vcpu.arch.nmi_injected = false;
  2195. kvm_clear_exception_queue(&svm->vcpu);
  2196. kvm_clear_interrupt_queue(&svm->vcpu);
  2197. if (!(exitintinfo & SVM_EXITINTINFO_VALID))
  2198. return;
  2199. vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
  2200. type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
  2201. switch (type) {
  2202. case SVM_EXITINTINFO_TYPE_NMI:
  2203. svm->vcpu.arch.nmi_injected = true;
  2204. break;
  2205. case SVM_EXITINTINFO_TYPE_EXEPT:
  2206. /* In case of software exception do not reinject an exception
  2207. vector, but re-execute and instruction instead */
  2208. if (is_nested(svm))
  2209. break;
  2210. if (kvm_exception_is_soft(vector))
  2211. break;
  2212. if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
  2213. u32 err = svm->vmcb->control.exit_int_info_err;
  2214. kvm_queue_exception_e(&svm->vcpu, vector, err);
  2215. } else
  2216. kvm_queue_exception(&svm->vcpu, vector);
  2217. break;
  2218. case SVM_EXITINTINFO_TYPE_INTR:
  2219. kvm_queue_interrupt(&svm->vcpu, vector, false);
  2220. break;
  2221. default:
  2222. break;
  2223. }
  2224. }
  2225. #ifdef CONFIG_X86_64
  2226. #define R "r"
  2227. #else
  2228. #define R "e"
  2229. #endif
  2230. static void svm_vcpu_run(struct kvm_vcpu *vcpu)
  2231. {
  2232. struct vcpu_svm *svm = to_svm(vcpu);
  2233. u16 fs_selector;
  2234. u16 gs_selector;
  2235. u16 ldt_selector;
  2236. /*
  2237. * A vmexit emulation is required before the vcpu can be executed
  2238. * again.
  2239. */
  2240. if (unlikely(svm->nested.exit_required))
  2241. return;
  2242. svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2243. svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2244. svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
  2245. pre_svm_run(svm);
  2246. sync_lapic_to_cr8(vcpu);
  2247. save_host_msrs(vcpu);
  2248. fs_selector = kvm_read_fs();
  2249. gs_selector = kvm_read_gs();
  2250. ldt_selector = kvm_read_ldt();
  2251. svm->vmcb->save.cr2 = vcpu->arch.cr2;
  2252. /* required for live migration with NPT */
  2253. if (npt_enabled)
  2254. svm->vmcb->save.cr3 = vcpu->arch.cr3;
  2255. clgi();
  2256. local_irq_enable();
  2257. asm volatile (
  2258. "push %%"R"bp; \n\t"
  2259. "mov %c[rbx](%[svm]), %%"R"bx \n\t"
  2260. "mov %c[rcx](%[svm]), %%"R"cx \n\t"
  2261. "mov %c[rdx](%[svm]), %%"R"dx \n\t"
  2262. "mov %c[rsi](%[svm]), %%"R"si \n\t"
  2263. "mov %c[rdi](%[svm]), %%"R"di \n\t"
  2264. "mov %c[rbp](%[svm]), %%"R"bp \n\t"
  2265. #ifdef CONFIG_X86_64
  2266. "mov %c[r8](%[svm]), %%r8 \n\t"
  2267. "mov %c[r9](%[svm]), %%r9 \n\t"
  2268. "mov %c[r10](%[svm]), %%r10 \n\t"
  2269. "mov %c[r11](%[svm]), %%r11 \n\t"
  2270. "mov %c[r12](%[svm]), %%r12 \n\t"
  2271. "mov %c[r13](%[svm]), %%r13 \n\t"
  2272. "mov %c[r14](%[svm]), %%r14 \n\t"
  2273. "mov %c[r15](%[svm]), %%r15 \n\t"
  2274. #endif
  2275. /* Enter guest mode */
  2276. "push %%"R"ax \n\t"
  2277. "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
  2278. __ex(SVM_VMLOAD) "\n\t"
  2279. __ex(SVM_VMRUN) "\n\t"
  2280. __ex(SVM_VMSAVE) "\n\t"
  2281. "pop %%"R"ax \n\t"
  2282. /* Save guest registers, load host registers */
  2283. "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
  2284. "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
  2285. "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
  2286. "mov %%"R"si, %c[rsi](%[svm]) \n\t"
  2287. "mov %%"R"di, %c[rdi](%[svm]) \n\t"
  2288. "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
  2289. #ifdef CONFIG_X86_64
  2290. "mov %%r8, %c[r8](%[svm]) \n\t"
  2291. "mov %%r9, %c[r9](%[svm]) \n\t"
  2292. "mov %%r10, %c[r10](%[svm]) \n\t"
  2293. "mov %%r11, %c[r11](%[svm]) \n\t"
  2294. "mov %%r12, %c[r12](%[svm]) \n\t"
  2295. "mov %%r13, %c[r13](%[svm]) \n\t"
  2296. "mov %%r14, %c[r14](%[svm]) \n\t"
  2297. "mov %%r15, %c[r15](%[svm]) \n\t"
  2298. #endif
  2299. "pop %%"R"bp"
  2300. :
  2301. : [svm]"a"(svm),
  2302. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  2303. [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
  2304. [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
  2305. [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
  2306. [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
  2307. [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
  2308. [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
  2309. #ifdef CONFIG_X86_64
  2310. , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
  2311. [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
  2312. [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
  2313. [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
  2314. [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
  2315. [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
  2316. [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
  2317. [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
  2318. #endif
  2319. : "cc", "memory"
  2320. , R"bx", R"cx", R"dx", R"si", R"di"
  2321. #ifdef CONFIG_X86_64
  2322. , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
  2323. #endif
  2324. );
  2325. vcpu->arch.cr2 = svm->vmcb->save.cr2;
  2326. vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
  2327. vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
  2328. vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
  2329. kvm_load_fs(fs_selector);
  2330. kvm_load_gs(gs_selector);
  2331. kvm_load_ldt(ldt_selector);
  2332. load_host_msrs(vcpu);
  2333. reload_tss(vcpu);
  2334. local_irq_disable();
  2335. stgi();
  2336. sync_cr8_to_lapic(vcpu);
  2337. svm->next_rip = 0;
  2338. if (npt_enabled) {
  2339. vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
  2340. vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
  2341. }
  2342. }
  2343. #undef R
  2344. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  2345. {
  2346. struct vcpu_svm *svm = to_svm(vcpu);
  2347. if (npt_enabled) {
  2348. svm->vmcb->control.nested_cr3 = root;
  2349. force_new_asid(vcpu);
  2350. return;
  2351. }
  2352. svm->vmcb->save.cr3 = root;
  2353. force_new_asid(vcpu);
  2354. }
  2355. static int is_disabled(void)
  2356. {
  2357. u64 vm_cr;
  2358. rdmsrl(MSR_VM_CR, vm_cr);
  2359. if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
  2360. return 1;
  2361. return 0;
  2362. }
  2363. static void
  2364. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2365. {
  2366. /*
  2367. * Patch in the VMMCALL instruction:
  2368. */
  2369. hypercall[0] = 0x0f;
  2370. hypercall[1] = 0x01;
  2371. hypercall[2] = 0xd9;
  2372. }
  2373. static void svm_check_processor_compat(void *rtn)
  2374. {
  2375. *(int *)rtn = 0;
  2376. }
  2377. static bool svm_cpu_has_accelerated_tpr(void)
  2378. {
  2379. return false;
  2380. }
  2381. static int get_npt_level(void)
  2382. {
  2383. #ifdef CONFIG_X86_64
  2384. return PT64_ROOT_LEVEL;
  2385. #else
  2386. return PT32E_ROOT_LEVEL;
  2387. #endif
  2388. }
  2389. static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  2390. {
  2391. return 0;
  2392. }
  2393. static void svm_cpuid_update(struct kvm_vcpu *vcpu)
  2394. {
  2395. }
  2396. static const struct trace_print_flags svm_exit_reasons_str[] = {
  2397. { SVM_EXIT_READ_CR0, "read_cr0" },
  2398. { SVM_EXIT_READ_CR3, "read_cr3" },
  2399. { SVM_EXIT_READ_CR4, "read_cr4" },
  2400. { SVM_EXIT_READ_CR8, "read_cr8" },
  2401. { SVM_EXIT_WRITE_CR0, "write_cr0" },
  2402. { SVM_EXIT_WRITE_CR3, "write_cr3" },
  2403. { SVM_EXIT_WRITE_CR4, "write_cr4" },
  2404. { SVM_EXIT_WRITE_CR8, "write_cr8" },
  2405. { SVM_EXIT_READ_DR0, "read_dr0" },
  2406. { SVM_EXIT_READ_DR1, "read_dr1" },
  2407. { SVM_EXIT_READ_DR2, "read_dr2" },
  2408. { SVM_EXIT_READ_DR3, "read_dr3" },
  2409. { SVM_EXIT_WRITE_DR0, "write_dr0" },
  2410. { SVM_EXIT_WRITE_DR1, "write_dr1" },
  2411. { SVM_EXIT_WRITE_DR2, "write_dr2" },
  2412. { SVM_EXIT_WRITE_DR3, "write_dr3" },
  2413. { SVM_EXIT_WRITE_DR5, "write_dr5" },
  2414. { SVM_EXIT_WRITE_DR7, "write_dr7" },
  2415. { SVM_EXIT_EXCP_BASE + DB_VECTOR, "DB excp" },
  2416. { SVM_EXIT_EXCP_BASE + BP_VECTOR, "BP excp" },
  2417. { SVM_EXIT_EXCP_BASE + UD_VECTOR, "UD excp" },
  2418. { SVM_EXIT_EXCP_BASE + PF_VECTOR, "PF excp" },
  2419. { SVM_EXIT_EXCP_BASE + NM_VECTOR, "NM excp" },
  2420. { SVM_EXIT_EXCP_BASE + MC_VECTOR, "MC excp" },
  2421. { SVM_EXIT_INTR, "interrupt" },
  2422. { SVM_EXIT_NMI, "nmi" },
  2423. { SVM_EXIT_SMI, "smi" },
  2424. { SVM_EXIT_INIT, "init" },
  2425. { SVM_EXIT_VINTR, "vintr" },
  2426. { SVM_EXIT_CPUID, "cpuid" },
  2427. { SVM_EXIT_INVD, "invd" },
  2428. { SVM_EXIT_HLT, "hlt" },
  2429. { SVM_EXIT_INVLPG, "invlpg" },
  2430. { SVM_EXIT_INVLPGA, "invlpga" },
  2431. { SVM_EXIT_IOIO, "io" },
  2432. { SVM_EXIT_MSR, "msr" },
  2433. { SVM_EXIT_TASK_SWITCH, "task_switch" },
  2434. { SVM_EXIT_SHUTDOWN, "shutdown" },
  2435. { SVM_EXIT_VMRUN, "vmrun" },
  2436. { SVM_EXIT_VMMCALL, "hypercall" },
  2437. { SVM_EXIT_VMLOAD, "vmload" },
  2438. { SVM_EXIT_VMSAVE, "vmsave" },
  2439. { SVM_EXIT_STGI, "stgi" },
  2440. { SVM_EXIT_CLGI, "clgi" },
  2441. { SVM_EXIT_SKINIT, "skinit" },
  2442. { SVM_EXIT_WBINVD, "wbinvd" },
  2443. { SVM_EXIT_MONITOR, "monitor" },
  2444. { SVM_EXIT_MWAIT, "mwait" },
  2445. { SVM_EXIT_NPF, "npf" },
  2446. { -1, NULL }
  2447. };
  2448. static int svm_get_lpage_level(void)
  2449. {
  2450. return PT_PDPE_LEVEL;
  2451. }
  2452. static bool svm_rdtscp_supported(void)
  2453. {
  2454. return false;
  2455. }
  2456. static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
  2457. {
  2458. struct vcpu_svm *svm = to_svm(vcpu);
  2459. update_cr0_intercept(svm);
  2460. svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
  2461. }
  2462. static struct kvm_x86_ops svm_x86_ops = {
  2463. .cpu_has_kvm_support = has_svm,
  2464. .disabled_by_bios = is_disabled,
  2465. .hardware_setup = svm_hardware_setup,
  2466. .hardware_unsetup = svm_hardware_unsetup,
  2467. .check_processor_compatibility = svm_check_processor_compat,
  2468. .hardware_enable = svm_hardware_enable,
  2469. .hardware_disable = svm_hardware_disable,
  2470. .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
  2471. .vcpu_create = svm_create_vcpu,
  2472. .vcpu_free = svm_free_vcpu,
  2473. .vcpu_reset = svm_vcpu_reset,
  2474. .prepare_guest_switch = svm_prepare_guest_switch,
  2475. .vcpu_load = svm_vcpu_load,
  2476. .vcpu_put = svm_vcpu_put,
  2477. .set_guest_debug = svm_guest_debug,
  2478. .get_msr = svm_get_msr,
  2479. .set_msr = svm_set_msr,
  2480. .get_segment_base = svm_get_segment_base,
  2481. .get_segment = svm_get_segment,
  2482. .set_segment = svm_set_segment,
  2483. .get_cpl = svm_get_cpl,
  2484. .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
  2485. .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
  2486. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  2487. .set_cr0 = svm_set_cr0,
  2488. .set_cr3 = svm_set_cr3,
  2489. .set_cr4 = svm_set_cr4,
  2490. .set_efer = svm_set_efer,
  2491. .get_idt = svm_get_idt,
  2492. .set_idt = svm_set_idt,
  2493. .get_gdt = svm_get_gdt,
  2494. .set_gdt = svm_set_gdt,
  2495. .get_dr = svm_get_dr,
  2496. .set_dr = svm_set_dr,
  2497. .cache_reg = svm_cache_reg,
  2498. .get_rflags = svm_get_rflags,
  2499. .set_rflags = svm_set_rflags,
  2500. .fpu_activate = svm_fpu_activate,
  2501. .fpu_deactivate = svm_fpu_deactivate,
  2502. .tlb_flush = svm_flush_tlb,
  2503. .run = svm_vcpu_run,
  2504. .handle_exit = handle_exit,
  2505. .skip_emulated_instruction = skip_emulated_instruction,
  2506. .set_interrupt_shadow = svm_set_interrupt_shadow,
  2507. .get_interrupt_shadow = svm_get_interrupt_shadow,
  2508. .patch_hypercall = svm_patch_hypercall,
  2509. .set_irq = svm_set_irq,
  2510. .set_nmi = svm_inject_nmi,
  2511. .queue_exception = svm_queue_exception,
  2512. .interrupt_allowed = svm_interrupt_allowed,
  2513. .nmi_allowed = svm_nmi_allowed,
  2514. .get_nmi_mask = svm_get_nmi_mask,
  2515. .set_nmi_mask = svm_set_nmi_mask,
  2516. .enable_nmi_window = enable_nmi_window,
  2517. .enable_irq_window = enable_irq_window,
  2518. .update_cr8_intercept = update_cr8_intercept,
  2519. .set_tss_addr = svm_set_tss_addr,
  2520. .get_tdp_level = get_npt_level,
  2521. .get_mt_mask = svm_get_mt_mask,
  2522. .exit_reasons_str = svm_exit_reasons_str,
  2523. .get_lpage_level = svm_get_lpage_level,
  2524. .cpuid_update = svm_cpuid_update,
  2525. .rdtscp_supported = svm_rdtscp_supported,
  2526. };
  2527. static int __init svm_init(void)
  2528. {
  2529. return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
  2530. THIS_MODULE);
  2531. }
  2532. static void __exit svm_exit(void)
  2533. {
  2534. kvm_exit();
  2535. }
  2536. module_init(svm_init)
  2537. module_exit(svm_exit)