slob.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675
  1. /*
  2. * SLOB Allocator: Simple List Of Blocks
  3. *
  4. * Matt Mackall <mpm@selenic.com> 12/30/03
  5. *
  6. * NUMA support by Paul Mundt, 2007.
  7. *
  8. * How SLOB works:
  9. *
  10. * The core of SLOB is a traditional K&R style heap allocator, with
  11. * support for returning aligned objects. The granularity of this
  12. * allocator is as little as 2 bytes, however typically most architectures
  13. * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
  14. *
  15. * The slob heap is a set of linked list of pages from alloc_pages(),
  16. * and within each page, there is a singly-linked list of free blocks
  17. * (slob_t). The heap is grown on demand. To reduce fragmentation,
  18. * heap pages are segregated into three lists, with objects less than
  19. * 256 bytes, objects less than 1024 bytes, and all other objects.
  20. *
  21. * Allocation from heap involves first searching for a page with
  22. * sufficient free blocks (using a next-fit-like approach) followed by
  23. * a first-fit scan of the page. Deallocation inserts objects back
  24. * into the free list in address order, so this is effectively an
  25. * address-ordered first fit.
  26. *
  27. * Above this is an implementation of kmalloc/kfree. Blocks returned
  28. * from kmalloc are prepended with a 4-byte header with the kmalloc size.
  29. * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
  30. * alloc_pages() directly, allocating compound pages so the page order
  31. * does not have to be separately tracked, and also stores the exact
  32. * allocation size in page->private so that it can be used to accurately
  33. * provide ksize(). These objects are detected in kfree() because slob_page()
  34. * is false for them.
  35. *
  36. * SLAB is emulated on top of SLOB by simply calling constructors and
  37. * destructors for every SLAB allocation. Objects are returned with the
  38. * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
  39. * case the low-level allocator will fragment blocks to create the proper
  40. * alignment. Again, objects of page-size or greater are allocated by
  41. * calling alloc_pages(). As SLAB objects know their size, no separate
  42. * size bookkeeping is necessary and there is essentially no allocation
  43. * space overhead, and compound pages aren't needed for multi-page
  44. * allocations.
  45. *
  46. * NUMA support in SLOB is fairly simplistic, pushing most of the real
  47. * logic down to the page allocator, and simply doing the node accounting
  48. * on the upper levels. In the event that a node id is explicitly
  49. * provided, alloc_pages_exact_node() with the specified node id is used
  50. * instead. The common case (or when the node id isn't explicitly provided)
  51. * will default to the current node, as per numa_node_id().
  52. *
  53. * Node aware pages are still inserted in to the global freelist, and
  54. * these are scanned for by matching against the node id encoded in the
  55. * page flags. As a result, block allocations that can be satisfied from
  56. * the freelist will only be done so on pages residing on the same node,
  57. * in order to prevent random node placement.
  58. */
  59. #include <linux/kernel.h>
  60. #include <linux/slab.h>
  61. #include <linux/mm.h>
  62. #include <linux/swap.h> /* struct reclaim_state */
  63. #include <linux/cache.h>
  64. #include <linux/init.h>
  65. #include <linux/export.h>
  66. #include <linux/rcupdate.h>
  67. #include <linux/list.h>
  68. #include <linux/kmemleak.h>
  69. #include <trace/events/kmem.h>
  70. #include <linux/atomic.h>
  71. /*
  72. * slob_block has a field 'units', which indicates size of block if +ve,
  73. * or offset of next block if -ve (in SLOB_UNITs).
  74. *
  75. * Free blocks of size 1 unit simply contain the offset of the next block.
  76. * Those with larger size contain their size in the first SLOB_UNIT of
  77. * memory, and the offset of the next free block in the second SLOB_UNIT.
  78. */
  79. #if PAGE_SIZE <= (32767 * 2)
  80. typedef s16 slobidx_t;
  81. #else
  82. typedef s32 slobidx_t;
  83. #endif
  84. struct slob_block {
  85. slobidx_t units;
  86. };
  87. typedef struct slob_block slob_t;
  88. /*
  89. * free_slob_page: call before a slob_page is returned to the page allocator.
  90. */
  91. static inline void free_slob_page(struct page *sp)
  92. {
  93. reset_page_mapcount(sp);
  94. sp->mapping = NULL;
  95. }
  96. /*
  97. * All partially free slob pages go on these lists.
  98. */
  99. #define SLOB_BREAK1 256
  100. #define SLOB_BREAK2 1024
  101. static LIST_HEAD(free_slob_small);
  102. static LIST_HEAD(free_slob_medium);
  103. static LIST_HEAD(free_slob_large);
  104. /*
  105. * is_slob_page: True for all slob pages (false for bigblock pages)
  106. */
  107. static inline int is_slob_page(struct page *sp)
  108. {
  109. return PageSlab(sp);
  110. }
  111. static inline void set_slob_page(struct page *sp)
  112. {
  113. __SetPageSlab(sp);
  114. }
  115. static inline void clear_slob_page(struct page *sp)
  116. {
  117. __ClearPageSlab(sp);
  118. }
  119. static inline struct page *slob_page(const void *addr)
  120. {
  121. return virt_to_page(addr);
  122. }
  123. /*
  124. * slob_page_free: true for pages on free_slob_pages list.
  125. */
  126. static inline int slob_page_free(struct page *sp)
  127. {
  128. return PageSlobFree(sp);
  129. }
  130. static void set_slob_page_free(struct page *sp, struct list_head *list)
  131. {
  132. list_add(&sp->list, list);
  133. __SetPageSlobFree(sp);
  134. }
  135. static inline void clear_slob_page_free(struct page *sp)
  136. {
  137. list_del(&sp->list);
  138. __ClearPageSlobFree(sp);
  139. }
  140. #define SLOB_UNIT sizeof(slob_t)
  141. #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
  142. #define SLOB_ALIGN L1_CACHE_BYTES
  143. /*
  144. * struct slob_rcu is inserted at the tail of allocated slob blocks, which
  145. * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
  146. * the block using call_rcu.
  147. */
  148. struct slob_rcu {
  149. struct rcu_head head;
  150. int size;
  151. };
  152. /*
  153. * slob_lock protects all slob allocator structures.
  154. */
  155. static DEFINE_SPINLOCK(slob_lock);
  156. /*
  157. * Encode the given size and next info into a free slob block s.
  158. */
  159. static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
  160. {
  161. slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
  162. slobidx_t offset = next - base;
  163. if (size > 1) {
  164. s[0].units = size;
  165. s[1].units = offset;
  166. } else
  167. s[0].units = -offset;
  168. }
  169. /*
  170. * Return the size of a slob block.
  171. */
  172. static slobidx_t slob_units(slob_t *s)
  173. {
  174. if (s->units > 0)
  175. return s->units;
  176. return 1;
  177. }
  178. /*
  179. * Return the next free slob block pointer after this one.
  180. */
  181. static slob_t *slob_next(slob_t *s)
  182. {
  183. slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
  184. slobidx_t next;
  185. if (s[0].units < 0)
  186. next = -s[0].units;
  187. else
  188. next = s[1].units;
  189. return base+next;
  190. }
  191. /*
  192. * Returns true if s is the last free block in its page.
  193. */
  194. static int slob_last(slob_t *s)
  195. {
  196. return !((unsigned long)slob_next(s) & ~PAGE_MASK);
  197. }
  198. static void *slob_new_pages(gfp_t gfp, int order, int node)
  199. {
  200. void *page;
  201. #ifdef CONFIG_NUMA
  202. if (node != -1)
  203. page = alloc_pages_exact_node(node, gfp, order);
  204. else
  205. #endif
  206. page = alloc_pages(gfp, order);
  207. if (!page)
  208. return NULL;
  209. return page_address(page);
  210. }
  211. static void slob_free_pages(void *b, int order)
  212. {
  213. if (current->reclaim_state)
  214. current->reclaim_state->reclaimed_slab += 1 << order;
  215. free_pages((unsigned long)b, order);
  216. }
  217. /*
  218. * Allocate a slob block within a given slob_page sp.
  219. */
  220. static void *slob_page_alloc(struct page *sp, size_t size, int align)
  221. {
  222. slob_t *prev, *cur, *aligned = NULL;
  223. int delta = 0, units = SLOB_UNITS(size);
  224. for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
  225. slobidx_t avail = slob_units(cur);
  226. if (align) {
  227. aligned = (slob_t *)ALIGN((unsigned long)cur, align);
  228. delta = aligned - cur;
  229. }
  230. if (avail >= units + delta) { /* room enough? */
  231. slob_t *next;
  232. if (delta) { /* need to fragment head to align? */
  233. next = slob_next(cur);
  234. set_slob(aligned, avail - delta, next);
  235. set_slob(cur, delta, aligned);
  236. prev = cur;
  237. cur = aligned;
  238. avail = slob_units(cur);
  239. }
  240. next = slob_next(cur);
  241. if (avail == units) { /* exact fit? unlink. */
  242. if (prev)
  243. set_slob(prev, slob_units(prev), next);
  244. else
  245. sp->freelist = next;
  246. } else { /* fragment */
  247. if (prev)
  248. set_slob(prev, slob_units(prev), cur + units);
  249. else
  250. sp->freelist = cur + units;
  251. set_slob(cur + units, avail - units, next);
  252. }
  253. sp->units -= units;
  254. if (!sp->units)
  255. clear_slob_page_free(sp);
  256. return cur;
  257. }
  258. if (slob_last(cur))
  259. return NULL;
  260. }
  261. }
  262. /*
  263. * slob_alloc: entry point into the slob allocator.
  264. */
  265. static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
  266. {
  267. struct page *sp;
  268. struct list_head *prev;
  269. struct list_head *slob_list;
  270. slob_t *b = NULL;
  271. unsigned long flags;
  272. if (size < SLOB_BREAK1)
  273. slob_list = &free_slob_small;
  274. else if (size < SLOB_BREAK2)
  275. slob_list = &free_slob_medium;
  276. else
  277. slob_list = &free_slob_large;
  278. spin_lock_irqsave(&slob_lock, flags);
  279. /* Iterate through each partially free page, try to find room */
  280. list_for_each_entry(sp, slob_list, list) {
  281. #ifdef CONFIG_NUMA
  282. /*
  283. * If there's a node specification, search for a partial
  284. * page with a matching node id in the freelist.
  285. */
  286. if (node != -1 && page_to_nid(sp) != node)
  287. continue;
  288. #endif
  289. /* Enough room on this page? */
  290. if (sp->units < SLOB_UNITS(size))
  291. continue;
  292. /* Attempt to alloc */
  293. prev = sp->list.prev;
  294. b = slob_page_alloc(sp, size, align);
  295. if (!b)
  296. continue;
  297. /* Improve fragment distribution and reduce our average
  298. * search time by starting our next search here. (see
  299. * Knuth vol 1, sec 2.5, pg 449) */
  300. if (prev != slob_list->prev &&
  301. slob_list->next != prev->next)
  302. list_move_tail(slob_list, prev->next);
  303. break;
  304. }
  305. spin_unlock_irqrestore(&slob_lock, flags);
  306. /* Not enough space: must allocate a new page */
  307. if (!b) {
  308. b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
  309. if (!b)
  310. return NULL;
  311. sp = slob_page(b);
  312. set_slob_page(sp);
  313. spin_lock_irqsave(&slob_lock, flags);
  314. sp->units = SLOB_UNITS(PAGE_SIZE);
  315. sp->freelist = b;
  316. INIT_LIST_HEAD(&sp->list);
  317. set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
  318. set_slob_page_free(sp, slob_list);
  319. b = slob_page_alloc(sp, size, align);
  320. BUG_ON(!b);
  321. spin_unlock_irqrestore(&slob_lock, flags);
  322. }
  323. if (unlikely((gfp & __GFP_ZERO) && b))
  324. memset(b, 0, size);
  325. return b;
  326. }
  327. /*
  328. * slob_free: entry point into the slob allocator.
  329. */
  330. static void slob_free(void *block, int size)
  331. {
  332. struct page *sp;
  333. slob_t *prev, *next, *b = (slob_t *)block;
  334. slobidx_t units;
  335. unsigned long flags;
  336. struct list_head *slob_list;
  337. if (unlikely(ZERO_OR_NULL_PTR(block)))
  338. return;
  339. BUG_ON(!size);
  340. sp = slob_page(block);
  341. units = SLOB_UNITS(size);
  342. spin_lock_irqsave(&slob_lock, flags);
  343. if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
  344. /* Go directly to page allocator. Do not pass slob allocator */
  345. if (slob_page_free(sp))
  346. clear_slob_page_free(sp);
  347. spin_unlock_irqrestore(&slob_lock, flags);
  348. clear_slob_page(sp);
  349. free_slob_page(sp);
  350. slob_free_pages(b, 0);
  351. return;
  352. }
  353. if (!slob_page_free(sp)) {
  354. /* This slob page is about to become partially free. Easy! */
  355. sp->units = units;
  356. sp->freelist = b;
  357. set_slob(b, units,
  358. (void *)((unsigned long)(b +
  359. SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
  360. if (size < SLOB_BREAK1)
  361. slob_list = &free_slob_small;
  362. else if (size < SLOB_BREAK2)
  363. slob_list = &free_slob_medium;
  364. else
  365. slob_list = &free_slob_large;
  366. set_slob_page_free(sp, slob_list);
  367. goto out;
  368. }
  369. /*
  370. * Otherwise the page is already partially free, so find reinsertion
  371. * point.
  372. */
  373. sp->units += units;
  374. if (b < (slob_t *)sp->freelist) {
  375. if (b + units == sp->freelist) {
  376. units += slob_units(sp->freelist);
  377. sp->freelist = slob_next(sp->freelist);
  378. }
  379. set_slob(b, units, sp->freelist);
  380. sp->freelist = b;
  381. } else {
  382. prev = sp->freelist;
  383. next = slob_next(prev);
  384. while (b > next) {
  385. prev = next;
  386. next = slob_next(prev);
  387. }
  388. if (!slob_last(prev) && b + units == next) {
  389. units += slob_units(next);
  390. set_slob(b, units, slob_next(next));
  391. } else
  392. set_slob(b, units, next);
  393. if (prev + slob_units(prev) == b) {
  394. units = slob_units(b) + slob_units(prev);
  395. set_slob(prev, units, slob_next(b));
  396. } else
  397. set_slob(prev, slob_units(prev), b);
  398. }
  399. out:
  400. spin_unlock_irqrestore(&slob_lock, flags);
  401. }
  402. /*
  403. * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
  404. */
  405. void *__kmalloc_node(size_t size, gfp_t gfp, int node)
  406. {
  407. unsigned int *m;
  408. int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
  409. void *ret;
  410. gfp &= gfp_allowed_mask;
  411. lockdep_trace_alloc(gfp);
  412. if (size < PAGE_SIZE - align) {
  413. if (!size)
  414. return ZERO_SIZE_PTR;
  415. m = slob_alloc(size + align, gfp, align, node);
  416. if (!m)
  417. return NULL;
  418. *m = size;
  419. ret = (void *)m + align;
  420. trace_kmalloc_node(_RET_IP_, ret,
  421. size, size + align, gfp, node);
  422. } else {
  423. unsigned int order = get_order(size);
  424. if (likely(order))
  425. gfp |= __GFP_COMP;
  426. ret = slob_new_pages(gfp, order, node);
  427. if (ret) {
  428. struct page *page;
  429. page = virt_to_page(ret);
  430. page->private = size;
  431. }
  432. trace_kmalloc_node(_RET_IP_, ret,
  433. size, PAGE_SIZE << order, gfp, node);
  434. }
  435. kmemleak_alloc(ret, size, 1, gfp);
  436. return ret;
  437. }
  438. EXPORT_SYMBOL(__kmalloc_node);
  439. void kfree(const void *block)
  440. {
  441. struct page *sp;
  442. trace_kfree(_RET_IP_, block);
  443. if (unlikely(ZERO_OR_NULL_PTR(block)))
  444. return;
  445. kmemleak_free(block);
  446. sp = slob_page(block);
  447. if (is_slob_page(sp)) {
  448. int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
  449. unsigned int *m = (unsigned int *)(block - align);
  450. slob_free(m, *m + align);
  451. } else
  452. put_page(sp);
  453. }
  454. EXPORT_SYMBOL(kfree);
  455. /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
  456. size_t ksize(const void *block)
  457. {
  458. struct page *sp;
  459. BUG_ON(!block);
  460. if (unlikely(block == ZERO_SIZE_PTR))
  461. return 0;
  462. sp = slob_page(block);
  463. if (is_slob_page(sp)) {
  464. int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
  465. unsigned int *m = (unsigned int *)(block - align);
  466. return SLOB_UNITS(*m) * SLOB_UNIT;
  467. } else
  468. return sp->private;
  469. }
  470. EXPORT_SYMBOL(ksize);
  471. struct kmem_cache {
  472. unsigned int size, align;
  473. unsigned long flags;
  474. const char *name;
  475. void (*ctor)(void *);
  476. };
  477. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  478. size_t align, unsigned long flags, void (*ctor)(void *))
  479. {
  480. struct kmem_cache *c;
  481. c = slob_alloc(sizeof(struct kmem_cache),
  482. GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
  483. if (c) {
  484. c->name = name;
  485. c->size = size;
  486. if (flags & SLAB_DESTROY_BY_RCU) {
  487. /* leave room for rcu footer at the end of object */
  488. c->size += sizeof(struct slob_rcu);
  489. }
  490. c->flags = flags;
  491. c->ctor = ctor;
  492. /* ignore alignment unless it's forced */
  493. c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
  494. if (c->align < ARCH_SLAB_MINALIGN)
  495. c->align = ARCH_SLAB_MINALIGN;
  496. if (c->align < align)
  497. c->align = align;
  498. } else if (flags & SLAB_PANIC)
  499. panic("Cannot create slab cache %s\n", name);
  500. kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL);
  501. return c;
  502. }
  503. EXPORT_SYMBOL(kmem_cache_create);
  504. void kmem_cache_destroy(struct kmem_cache *c)
  505. {
  506. kmemleak_free(c);
  507. if (c->flags & SLAB_DESTROY_BY_RCU)
  508. rcu_barrier();
  509. slob_free(c, sizeof(struct kmem_cache));
  510. }
  511. EXPORT_SYMBOL(kmem_cache_destroy);
  512. void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
  513. {
  514. void *b;
  515. flags &= gfp_allowed_mask;
  516. lockdep_trace_alloc(flags);
  517. if (c->size < PAGE_SIZE) {
  518. b = slob_alloc(c->size, flags, c->align, node);
  519. trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
  520. SLOB_UNITS(c->size) * SLOB_UNIT,
  521. flags, node);
  522. } else {
  523. b = slob_new_pages(flags, get_order(c->size), node);
  524. trace_kmem_cache_alloc_node(_RET_IP_, b, c->size,
  525. PAGE_SIZE << get_order(c->size),
  526. flags, node);
  527. }
  528. if (c->ctor)
  529. c->ctor(b);
  530. kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
  531. return b;
  532. }
  533. EXPORT_SYMBOL(kmem_cache_alloc_node);
  534. static void __kmem_cache_free(void *b, int size)
  535. {
  536. if (size < PAGE_SIZE)
  537. slob_free(b, size);
  538. else
  539. slob_free_pages(b, get_order(size));
  540. }
  541. static void kmem_rcu_free(struct rcu_head *head)
  542. {
  543. struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
  544. void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
  545. __kmem_cache_free(b, slob_rcu->size);
  546. }
  547. void kmem_cache_free(struct kmem_cache *c, void *b)
  548. {
  549. kmemleak_free_recursive(b, c->flags);
  550. if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
  551. struct slob_rcu *slob_rcu;
  552. slob_rcu = b + (c->size - sizeof(struct slob_rcu));
  553. slob_rcu->size = c->size;
  554. call_rcu(&slob_rcu->head, kmem_rcu_free);
  555. } else {
  556. __kmem_cache_free(b, c->size);
  557. }
  558. trace_kmem_cache_free(_RET_IP_, b);
  559. }
  560. EXPORT_SYMBOL(kmem_cache_free);
  561. unsigned int kmem_cache_size(struct kmem_cache *c)
  562. {
  563. return c->size;
  564. }
  565. EXPORT_SYMBOL(kmem_cache_size);
  566. int kmem_cache_shrink(struct kmem_cache *d)
  567. {
  568. return 0;
  569. }
  570. EXPORT_SYMBOL(kmem_cache_shrink);
  571. static unsigned int slob_ready __read_mostly;
  572. int slab_is_available(void)
  573. {
  574. return slob_ready;
  575. }
  576. void __init kmem_cache_init(void)
  577. {
  578. slob_ready = 1;
  579. }
  580. void __init kmem_cache_init_late(void)
  581. {
  582. /* Nothing to do */
  583. }