emulate.c 127 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931
  1. /******************************************************************************
  2. * emulate.c
  3. *
  4. * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
  5. *
  6. * Copyright (c) 2005 Keir Fraser
  7. *
  8. * Linux coding style, mod r/m decoder, segment base fixes, real-mode
  9. * privileged instructions:
  10. *
  11. * Copyright (C) 2006 Qumranet
  12. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  13. *
  14. * Avi Kivity <avi@qumranet.com>
  15. * Yaniv Kamay <yaniv@qumranet.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
  21. */
  22. #include <linux/kvm_host.h>
  23. #include "kvm_cache_regs.h"
  24. #include <linux/module.h>
  25. #include <asm/kvm_emulate.h>
  26. #include <linux/stringify.h>
  27. #include "x86.h"
  28. #include "tss.h"
  29. /*
  30. * Operand types
  31. */
  32. #define OpNone 0ull
  33. #define OpImplicit 1ull /* No generic decode */
  34. #define OpReg 2ull /* Register */
  35. #define OpMem 3ull /* Memory */
  36. #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
  37. #define OpDI 5ull /* ES:DI/EDI/RDI */
  38. #define OpMem64 6ull /* Memory, 64-bit */
  39. #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
  40. #define OpDX 8ull /* DX register */
  41. #define OpCL 9ull /* CL register (for shifts) */
  42. #define OpImmByte 10ull /* 8-bit sign extended immediate */
  43. #define OpOne 11ull /* Implied 1 */
  44. #define OpImm 12ull /* Sign extended up to 32-bit immediate */
  45. #define OpMem16 13ull /* Memory operand (16-bit). */
  46. #define OpMem32 14ull /* Memory operand (32-bit). */
  47. #define OpImmU 15ull /* Immediate operand, zero extended */
  48. #define OpSI 16ull /* SI/ESI/RSI */
  49. #define OpImmFAddr 17ull /* Immediate far address */
  50. #define OpMemFAddr 18ull /* Far address in memory */
  51. #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
  52. #define OpES 20ull /* ES */
  53. #define OpCS 21ull /* CS */
  54. #define OpSS 22ull /* SS */
  55. #define OpDS 23ull /* DS */
  56. #define OpFS 24ull /* FS */
  57. #define OpGS 25ull /* GS */
  58. #define OpMem8 26ull /* 8-bit zero extended memory operand */
  59. #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
  60. #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
  61. #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
  62. #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
  63. #define OpBits 5 /* Width of operand field */
  64. #define OpMask ((1ull << OpBits) - 1)
  65. /*
  66. * Opcode effective-address decode tables.
  67. * Note that we only emulate instructions that have at least one memory
  68. * operand (excluding implicit stack references). We assume that stack
  69. * references and instruction fetches will never occur in special memory
  70. * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
  71. * not be handled.
  72. */
  73. /* Operand sizes: 8-bit operands or specified/overridden size. */
  74. #define ByteOp (1<<0) /* 8-bit operands. */
  75. /* Destination operand type. */
  76. #define DstShift 1
  77. #define ImplicitOps (OpImplicit << DstShift)
  78. #define DstReg (OpReg << DstShift)
  79. #define DstMem (OpMem << DstShift)
  80. #define DstAcc (OpAcc << DstShift)
  81. #define DstDI (OpDI << DstShift)
  82. #define DstMem64 (OpMem64 << DstShift)
  83. #define DstImmUByte (OpImmUByte << DstShift)
  84. #define DstDX (OpDX << DstShift)
  85. #define DstAccLo (OpAccLo << DstShift)
  86. #define DstMask (OpMask << DstShift)
  87. /* Source operand type. */
  88. #define SrcShift 6
  89. #define SrcNone (OpNone << SrcShift)
  90. #define SrcReg (OpReg << SrcShift)
  91. #define SrcMem (OpMem << SrcShift)
  92. #define SrcMem16 (OpMem16 << SrcShift)
  93. #define SrcMem32 (OpMem32 << SrcShift)
  94. #define SrcImm (OpImm << SrcShift)
  95. #define SrcImmByte (OpImmByte << SrcShift)
  96. #define SrcOne (OpOne << SrcShift)
  97. #define SrcImmUByte (OpImmUByte << SrcShift)
  98. #define SrcImmU (OpImmU << SrcShift)
  99. #define SrcSI (OpSI << SrcShift)
  100. #define SrcXLat (OpXLat << SrcShift)
  101. #define SrcImmFAddr (OpImmFAddr << SrcShift)
  102. #define SrcMemFAddr (OpMemFAddr << SrcShift)
  103. #define SrcAcc (OpAcc << SrcShift)
  104. #define SrcImmU16 (OpImmU16 << SrcShift)
  105. #define SrcImm64 (OpImm64 << SrcShift)
  106. #define SrcDX (OpDX << SrcShift)
  107. #define SrcMem8 (OpMem8 << SrcShift)
  108. #define SrcAccHi (OpAccHi << SrcShift)
  109. #define SrcMask (OpMask << SrcShift)
  110. #define BitOp (1<<11)
  111. #define MemAbs (1<<12) /* Memory operand is absolute displacement */
  112. #define String (1<<13) /* String instruction (rep capable) */
  113. #define Stack (1<<14) /* Stack instruction (push/pop) */
  114. #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
  115. #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
  116. #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
  117. #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
  118. #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
  119. #define Escape (5<<15) /* Escape to coprocessor instruction */
  120. #define Sse (1<<18) /* SSE Vector instruction */
  121. /* Generic ModRM decode. */
  122. #define ModRM (1<<19)
  123. /* Destination is only written; never read. */
  124. #define Mov (1<<20)
  125. /* Misc flags */
  126. #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
  127. #define VendorSpecific (1<<22) /* Vendor specific instruction */
  128. #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
  129. #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
  130. #define Undefined (1<<25) /* No Such Instruction */
  131. #define Lock (1<<26) /* lock prefix is allowed for the instruction */
  132. #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
  133. #define No64 (1<<28)
  134. #define PageTable (1 << 29) /* instruction used to write page table */
  135. #define NotImpl (1 << 30) /* instruction is not implemented */
  136. /* Source 2 operand type */
  137. #define Src2Shift (31)
  138. #define Src2None (OpNone << Src2Shift)
  139. #define Src2Mem (OpMem << Src2Shift)
  140. #define Src2CL (OpCL << Src2Shift)
  141. #define Src2ImmByte (OpImmByte << Src2Shift)
  142. #define Src2One (OpOne << Src2Shift)
  143. #define Src2Imm (OpImm << Src2Shift)
  144. #define Src2ES (OpES << Src2Shift)
  145. #define Src2CS (OpCS << Src2Shift)
  146. #define Src2SS (OpSS << Src2Shift)
  147. #define Src2DS (OpDS << Src2Shift)
  148. #define Src2FS (OpFS << Src2Shift)
  149. #define Src2GS (OpGS << Src2Shift)
  150. #define Src2Mask (OpMask << Src2Shift)
  151. #define Mmx ((u64)1 << 40) /* MMX Vector instruction */
  152. #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
  153. #define Unaligned ((u64)1 << 42) /* Explicitly unaligned (e.g. MOVDQU) */
  154. #define Avx ((u64)1 << 43) /* Advanced Vector Extensions */
  155. #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
  156. #define NoWrite ((u64)1 << 45) /* No writeback */
  157. #define SrcWrite ((u64)1 << 46) /* Write back src operand */
  158. #define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
  159. #define X2(x...) x, x
  160. #define X3(x...) X2(x), x
  161. #define X4(x...) X2(x), X2(x)
  162. #define X5(x...) X4(x), x
  163. #define X6(x...) X4(x), X2(x)
  164. #define X7(x...) X4(x), X3(x)
  165. #define X8(x...) X4(x), X4(x)
  166. #define X16(x...) X8(x), X8(x)
  167. #define NR_FASTOP (ilog2(sizeof(ulong)) + 1)
  168. #define FASTOP_SIZE 8
  169. /*
  170. * fastop functions have a special calling convention:
  171. *
  172. * dst: rax (in/out)
  173. * src: rdx (in/out)
  174. * src2: rcx (in)
  175. * flags: rflags (in/out)
  176. * ex: rsi (in:fastop pointer, out:zero if exception)
  177. *
  178. * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
  179. * different operand sizes can be reached by calculation, rather than a jump
  180. * table (which would be bigger than the code).
  181. *
  182. * fastop functions are declared as taking a never-defined fastop parameter,
  183. * so they can't be called from C directly.
  184. */
  185. struct fastop;
  186. struct opcode {
  187. u64 flags : 56;
  188. u64 intercept : 8;
  189. union {
  190. int (*execute)(struct x86_emulate_ctxt *ctxt);
  191. const struct opcode *group;
  192. const struct group_dual *gdual;
  193. const struct gprefix *gprefix;
  194. const struct escape *esc;
  195. void (*fastop)(struct fastop *fake);
  196. } u;
  197. int (*check_perm)(struct x86_emulate_ctxt *ctxt);
  198. };
  199. struct group_dual {
  200. struct opcode mod012[8];
  201. struct opcode mod3[8];
  202. };
  203. struct gprefix {
  204. struct opcode pfx_no;
  205. struct opcode pfx_66;
  206. struct opcode pfx_f2;
  207. struct opcode pfx_f3;
  208. };
  209. struct escape {
  210. struct opcode op[8];
  211. struct opcode high[64];
  212. };
  213. /* EFLAGS bit definitions. */
  214. #define EFLG_ID (1<<21)
  215. #define EFLG_VIP (1<<20)
  216. #define EFLG_VIF (1<<19)
  217. #define EFLG_AC (1<<18)
  218. #define EFLG_VM (1<<17)
  219. #define EFLG_RF (1<<16)
  220. #define EFLG_IOPL (3<<12)
  221. #define EFLG_NT (1<<14)
  222. #define EFLG_OF (1<<11)
  223. #define EFLG_DF (1<<10)
  224. #define EFLG_IF (1<<9)
  225. #define EFLG_TF (1<<8)
  226. #define EFLG_SF (1<<7)
  227. #define EFLG_ZF (1<<6)
  228. #define EFLG_AF (1<<4)
  229. #define EFLG_PF (1<<2)
  230. #define EFLG_CF (1<<0)
  231. #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
  232. #define EFLG_RESERVED_ONE_MASK 2
  233. static ulong reg_read(struct x86_emulate_ctxt *ctxt, unsigned nr)
  234. {
  235. if (!(ctxt->regs_valid & (1 << nr))) {
  236. ctxt->regs_valid |= 1 << nr;
  237. ctxt->_regs[nr] = ctxt->ops->read_gpr(ctxt, nr);
  238. }
  239. return ctxt->_regs[nr];
  240. }
  241. static ulong *reg_write(struct x86_emulate_ctxt *ctxt, unsigned nr)
  242. {
  243. ctxt->regs_valid |= 1 << nr;
  244. ctxt->regs_dirty |= 1 << nr;
  245. return &ctxt->_regs[nr];
  246. }
  247. static ulong *reg_rmw(struct x86_emulate_ctxt *ctxt, unsigned nr)
  248. {
  249. reg_read(ctxt, nr);
  250. return reg_write(ctxt, nr);
  251. }
  252. static void writeback_registers(struct x86_emulate_ctxt *ctxt)
  253. {
  254. unsigned reg;
  255. for_each_set_bit(reg, (ulong *)&ctxt->regs_dirty, 16)
  256. ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
  257. }
  258. static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
  259. {
  260. ctxt->regs_dirty = 0;
  261. ctxt->regs_valid = 0;
  262. }
  263. /*
  264. * Instruction emulation:
  265. * Most instructions are emulated directly via a fragment of inline assembly
  266. * code. This allows us to save/restore EFLAGS and thus very easily pick up
  267. * any modified flags.
  268. */
  269. #if defined(CONFIG_X86_64)
  270. #define _LO32 "k" /* force 32-bit operand */
  271. #define _STK "%%rsp" /* stack pointer */
  272. #elif defined(__i386__)
  273. #define _LO32 "" /* force 32-bit operand */
  274. #define _STK "%%esp" /* stack pointer */
  275. #endif
  276. /*
  277. * These EFLAGS bits are restored from saved value during emulation, and
  278. * any changes are written back to the saved value after emulation.
  279. */
  280. #define EFLAGS_MASK (EFLG_OF|EFLG_SF|EFLG_ZF|EFLG_AF|EFLG_PF|EFLG_CF)
  281. /* Before executing instruction: restore necessary bits in EFLAGS. */
  282. #define _PRE_EFLAGS(_sav, _msk, _tmp) \
  283. /* EFLAGS = (_sav & _msk) | (EFLAGS & ~_msk); _sav &= ~_msk; */ \
  284. "movl %"_sav",%"_LO32 _tmp"; " \
  285. "push %"_tmp"; " \
  286. "push %"_tmp"; " \
  287. "movl %"_msk",%"_LO32 _tmp"; " \
  288. "andl %"_LO32 _tmp",("_STK"); " \
  289. "pushf; " \
  290. "notl %"_LO32 _tmp"; " \
  291. "andl %"_LO32 _tmp",("_STK"); " \
  292. "andl %"_LO32 _tmp","__stringify(BITS_PER_LONG/4)"("_STK"); " \
  293. "pop %"_tmp"; " \
  294. "orl %"_LO32 _tmp",("_STK"); " \
  295. "popf; " \
  296. "pop %"_sav"; "
  297. /* After executing instruction: write-back necessary bits in EFLAGS. */
  298. #define _POST_EFLAGS(_sav, _msk, _tmp) \
  299. /* _sav |= EFLAGS & _msk; */ \
  300. "pushf; " \
  301. "pop %"_tmp"; " \
  302. "andl %"_msk",%"_LO32 _tmp"; " \
  303. "orl %"_LO32 _tmp",%"_sav"; "
  304. #ifdef CONFIG_X86_64
  305. #define ON64(x) x
  306. #else
  307. #define ON64(x)
  308. #endif
  309. #define ____emulate_2op(ctxt, _op, _x, _y, _suffix, _dsttype) \
  310. do { \
  311. __asm__ __volatile__ ( \
  312. _PRE_EFLAGS("0", "4", "2") \
  313. _op _suffix " %"_x"3,%1; " \
  314. _POST_EFLAGS("0", "4", "2") \
  315. : "=m" ((ctxt)->eflags), \
  316. "+q" (*(_dsttype*)&(ctxt)->dst.val), \
  317. "=&r" (_tmp) \
  318. : _y ((ctxt)->src.val), "i" (EFLAGS_MASK)); \
  319. } while (0)
  320. /* Raw emulation: instruction has two explicit operands. */
  321. #define __emulate_2op_nobyte(ctxt,_op,_wx,_wy,_lx,_ly,_qx,_qy) \
  322. do { \
  323. unsigned long _tmp; \
  324. \
  325. switch ((ctxt)->dst.bytes) { \
  326. case 2: \
  327. ____emulate_2op(ctxt,_op,_wx,_wy,"w",u16); \
  328. break; \
  329. case 4: \
  330. ____emulate_2op(ctxt,_op,_lx,_ly,"l",u32); \
  331. break; \
  332. case 8: \
  333. ON64(____emulate_2op(ctxt,_op,_qx,_qy,"q",u64)); \
  334. break; \
  335. } \
  336. } while (0)
  337. #define __emulate_2op(ctxt,_op,_bx,_by,_wx,_wy,_lx,_ly,_qx,_qy) \
  338. do { \
  339. unsigned long _tmp; \
  340. switch ((ctxt)->dst.bytes) { \
  341. case 1: \
  342. ____emulate_2op(ctxt,_op,_bx,_by,"b",u8); \
  343. break; \
  344. default: \
  345. __emulate_2op_nobyte(ctxt, _op, \
  346. _wx, _wy, _lx, _ly, _qx, _qy); \
  347. break; \
  348. } \
  349. } while (0)
  350. /* Source operand is byte-sized and may be restricted to just %cl. */
  351. #define emulate_2op_SrcB(ctxt, _op) \
  352. __emulate_2op(ctxt, _op, "b", "c", "b", "c", "b", "c", "b", "c")
  353. /* Source operand is byte, word, long or quad sized. */
  354. #define emulate_2op_SrcV(ctxt, _op) \
  355. __emulate_2op(ctxt, _op, "b", "q", "w", "r", _LO32, "r", "", "r")
  356. /* Source operand is word, long or quad sized. */
  357. #define emulate_2op_SrcV_nobyte(ctxt, _op) \
  358. __emulate_2op_nobyte(ctxt, _op, "w", "r", _LO32, "r", "", "r")
  359. /* Instruction has three operands and one operand is stored in ECX register */
  360. #define __emulate_2op_cl(ctxt, _op, _suffix, _type) \
  361. do { \
  362. unsigned long _tmp; \
  363. _type _clv = (ctxt)->src2.val; \
  364. _type _srcv = (ctxt)->src.val; \
  365. _type _dstv = (ctxt)->dst.val; \
  366. \
  367. __asm__ __volatile__ ( \
  368. _PRE_EFLAGS("0", "5", "2") \
  369. _op _suffix " %4,%1 \n" \
  370. _POST_EFLAGS("0", "5", "2") \
  371. : "=m" ((ctxt)->eflags), "+r" (_dstv), "=&r" (_tmp) \
  372. : "c" (_clv) , "r" (_srcv), "i" (EFLAGS_MASK) \
  373. ); \
  374. \
  375. (ctxt)->src2.val = (unsigned long) _clv; \
  376. (ctxt)->src2.val = (unsigned long) _srcv; \
  377. (ctxt)->dst.val = (unsigned long) _dstv; \
  378. } while (0)
  379. #define emulate_2op_cl(ctxt, _op) \
  380. do { \
  381. switch ((ctxt)->dst.bytes) { \
  382. case 2: \
  383. __emulate_2op_cl(ctxt, _op, "w", u16); \
  384. break; \
  385. case 4: \
  386. __emulate_2op_cl(ctxt, _op, "l", u32); \
  387. break; \
  388. case 8: \
  389. ON64(__emulate_2op_cl(ctxt, _op, "q", ulong)); \
  390. break; \
  391. } \
  392. } while (0)
  393. #define __emulate_1op(ctxt, _op, _suffix) \
  394. do { \
  395. unsigned long _tmp; \
  396. \
  397. __asm__ __volatile__ ( \
  398. _PRE_EFLAGS("0", "3", "2") \
  399. _op _suffix " %1; " \
  400. _POST_EFLAGS("0", "3", "2") \
  401. : "=m" ((ctxt)->eflags), "+m" ((ctxt)->dst.val), \
  402. "=&r" (_tmp) \
  403. : "i" (EFLAGS_MASK)); \
  404. } while (0)
  405. /* Instruction has only one explicit operand (no source operand). */
  406. #define emulate_1op(ctxt, _op) \
  407. do { \
  408. switch ((ctxt)->dst.bytes) { \
  409. case 1: __emulate_1op(ctxt, _op, "b"); break; \
  410. case 2: __emulate_1op(ctxt, _op, "w"); break; \
  411. case 4: __emulate_1op(ctxt, _op, "l"); break; \
  412. case 8: ON64(__emulate_1op(ctxt, _op, "q")); break; \
  413. } \
  414. } while (0)
  415. static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *));
  416. #define FOP_ALIGN ".align " __stringify(FASTOP_SIZE) " \n\t"
  417. #define FOP_RET "ret \n\t"
  418. #define FOP_START(op) \
  419. extern void em_##op(struct fastop *fake); \
  420. asm(".pushsection .text, \"ax\" \n\t" \
  421. ".global em_" #op " \n\t" \
  422. FOP_ALIGN \
  423. "em_" #op ": \n\t"
  424. #define FOP_END \
  425. ".popsection")
  426. #define FOPNOP() FOP_ALIGN FOP_RET
  427. #define FOP1E(op, dst) \
  428. FOP_ALIGN "10: " #op " %" #dst " \n\t" FOP_RET
  429. #define FOP1EEX(op, dst) \
  430. FOP1E(op, dst) _ASM_EXTABLE(10b, kvm_fastop_exception)
  431. #define FASTOP1(op) \
  432. FOP_START(op) \
  433. FOP1E(op##b, al) \
  434. FOP1E(op##w, ax) \
  435. FOP1E(op##l, eax) \
  436. ON64(FOP1E(op##q, rax)) \
  437. FOP_END
  438. /* 1-operand, using src2 (for MUL/DIV r/m) */
  439. #define FASTOP1SRC2(op, name) \
  440. FOP_START(name) \
  441. FOP1E(op, cl) \
  442. FOP1E(op, cx) \
  443. FOP1E(op, ecx) \
  444. ON64(FOP1E(op, rcx)) \
  445. FOP_END
  446. /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
  447. #define FASTOP1SRC2EX(op, name) \
  448. FOP_START(name) \
  449. FOP1EEX(op, cl) \
  450. FOP1EEX(op, cx) \
  451. FOP1EEX(op, ecx) \
  452. ON64(FOP1EEX(op, rcx)) \
  453. FOP_END
  454. #define FOP2E(op, dst, src) \
  455. FOP_ALIGN #op " %" #src ", %" #dst " \n\t" FOP_RET
  456. #define FASTOP2(op) \
  457. FOP_START(op) \
  458. FOP2E(op##b, al, dl) \
  459. FOP2E(op##w, ax, dx) \
  460. FOP2E(op##l, eax, edx) \
  461. ON64(FOP2E(op##q, rax, rdx)) \
  462. FOP_END
  463. /* 2 operand, word only */
  464. #define FASTOP2W(op) \
  465. FOP_START(op) \
  466. FOPNOP() \
  467. FOP2E(op##w, ax, dx) \
  468. FOP2E(op##l, eax, edx) \
  469. ON64(FOP2E(op##q, rax, rdx)) \
  470. FOP_END
  471. /* 2 operand, src is CL */
  472. #define FASTOP2CL(op) \
  473. FOP_START(op) \
  474. FOP2E(op##b, al, cl) \
  475. FOP2E(op##w, ax, cl) \
  476. FOP2E(op##l, eax, cl) \
  477. ON64(FOP2E(op##q, rax, cl)) \
  478. FOP_END
  479. #define FOP3E(op, dst, src, src2) \
  480. FOP_ALIGN #op " %" #src2 ", %" #src ", %" #dst " \n\t" FOP_RET
  481. /* 3-operand, word-only, src2=cl */
  482. #define FASTOP3WCL(op) \
  483. FOP_START(op) \
  484. FOPNOP() \
  485. FOP3E(op##w, ax, dx, cl) \
  486. FOP3E(op##l, eax, edx, cl) \
  487. ON64(FOP3E(op##q, rax, rdx, cl)) \
  488. FOP_END
  489. /* Special case for SETcc - 1 instruction per cc */
  490. #define FOP_SETCC(op) ".align 4; " #op " %al; ret \n\t"
  491. asm(".global kvm_fastop_exception \n"
  492. "kvm_fastop_exception: xor %esi, %esi; ret");
  493. FOP_START(setcc)
  494. FOP_SETCC(seto)
  495. FOP_SETCC(setno)
  496. FOP_SETCC(setc)
  497. FOP_SETCC(setnc)
  498. FOP_SETCC(setz)
  499. FOP_SETCC(setnz)
  500. FOP_SETCC(setbe)
  501. FOP_SETCC(setnbe)
  502. FOP_SETCC(sets)
  503. FOP_SETCC(setns)
  504. FOP_SETCC(setp)
  505. FOP_SETCC(setnp)
  506. FOP_SETCC(setl)
  507. FOP_SETCC(setnl)
  508. FOP_SETCC(setle)
  509. FOP_SETCC(setnle)
  510. FOP_END;
  511. FOP_START(salc) "pushf; sbb %al, %al; popf \n\t" FOP_RET
  512. FOP_END;
  513. #define __emulate_1op_rax_rdx(ctxt, _op, _suffix, _ex) \
  514. do { \
  515. unsigned long _tmp; \
  516. ulong *rax = &ctxt->dst.val; \
  517. ulong *rdx = &ctxt->src.val; \
  518. \
  519. __asm__ __volatile__ ( \
  520. _PRE_EFLAGS("0", "5", "1") \
  521. "1: \n\t" \
  522. _op _suffix " %6; " \
  523. "2: \n\t" \
  524. _POST_EFLAGS("0", "5", "1") \
  525. ".pushsection .fixup,\"ax\" \n\t" \
  526. "3: movb $1, %4 \n\t" \
  527. "jmp 2b \n\t" \
  528. ".popsection \n\t" \
  529. _ASM_EXTABLE(1b, 3b) \
  530. : "=m" ((ctxt)->eflags), "=&r" (_tmp), \
  531. "+a" (*rax), "+d" (*rdx), "+qm"(_ex) \
  532. : "i" (EFLAGS_MASK), "m" ((ctxt)->src2.val)); \
  533. } while (0)
  534. /* instruction has only one source operand, destination is implicit (e.g. mul, div, imul, idiv) */
  535. #define emulate_1op_rax_rdx(ctxt, _op, _ex) \
  536. do { \
  537. switch((ctxt)->src.bytes) { \
  538. case 1: \
  539. __emulate_1op_rax_rdx(ctxt, _op, "b", _ex); \
  540. break; \
  541. case 2: \
  542. __emulate_1op_rax_rdx(ctxt, _op, "w", _ex); \
  543. break; \
  544. case 4: \
  545. __emulate_1op_rax_rdx(ctxt, _op, "l", _ex); \
  546. break; \
  547. case 8: ON64( \
  548. __emulate_1op_rax_rdx(ctxt, _op, "q", _ex)); \
  549. break; \
  550. } \
  551. } while (0)
  552. static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
  553. enum x86_intercept intercept,
  554. enum x86_intercept_stage stage)
  555. {
  556. struct x86_instruction_info info = {
  557. .intercept = intercept,
  558. .rep_prefix = ctxt->rep_prefix,
  559. .modrm_mod = ctxt->modrm_mod,
  560. .modrm_reg = ctxt->modrm_reg,
  561. .modrm_rm = ctxt->modrm_rm,
  562. .src_val = ctxt->src.val64,
  563. .src_bytes = ctxt->src.bytes,
  564. .dst_bytes = ctxt->dst.bytes,
  565. .ad_bytes = ctxt->ad_bytes,
  566. .next_rip = ctxt->eip,
  567. };
  568. return ctxt->ops->intercept(ctxt, &info, stage);
  569. }
  570. static void assign_masked(ulong *dest, ulong src, ulong mask)
  571. {
  572. *dest = (*dest & ~mask) | (src & mask);
  573. }
  574. static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
  575. {
  576. return (1UL << (ctxt->ad_bytes << 3)) - 1;
  577. }
  578. static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
  579. {
  580. u16 sel;
  581. struct desc_struct ss;
  582. if (ctxt->mode == X86EMUL_MODE_PROT64)
  583. return ~0UL;
  584. ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
  585. return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
  586. }
  587. static int stack_size(struct x86_emulate_ctxt *ctxt)
  588. {
  589. return (__fls(stack_mask(ctxt)) + 1) >> 3;
  590. }
  591. /* Access/update address held in a register, based on addressing mode. */
  592. static inline unsigned long
  593. address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
  594. {
  595. if (ctxt->ad_bytes == sizeof(unsigned long))
  596. return reg;
  597. else
  598. return reg & ad_mask(ctxt);
  599. }
  600. static inline unsigned long
  601. register_address(struct x86_emulate_ctxt *ctxt, unsigned long reg)
  602. {
  603. return address_mask(ctxt, reg);
  604. }
  605. static void masked_increment(ulong *reg, ulong mask, int inc)
  606. {
  607. assign_masked(reg, *reg + inc, mask);
  608. }
  609. static inline void
  610. register_address_increment(struct x86_emulate_ctxt *ctxt, unsigned long *reg, int inc)
  611. {
  612. ulong mask;
  613. if (ctxt->ad_bytes == sizeof(unsigned long))
  614. mask = ~0UL;
  615. else
  616. mask = ad_mask(ctxt);
  617. masked_increment(reg, mask, inc);
  618. }
  619. static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
  620. {
  621. masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
  622. }
  623. static inline void jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
  624. {
  625. register_address_increment(ctxt, &ctxt->_eip, rel);
  626. }
  627. static u32 desc_limit_scaled(struct desc_struct *desc)
  628. {
  629. u32 limit = get_desc_limit(desc);
  630. return desc->g ? (limit << 12) | 0xfff : limit;
  631. }
  632. static void set_seg_override(struct x86_emulate_ctxt *ctxt, int seg)
  633. {
  634. ctxt->has_seg_override = true;
  635. ctxt->seg_override = seg;
  636. }
  637. static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
  638. {
  639. if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
  640. return 0;
  641. return ctxt->ops->get_cached_segment_base(ctxt, seg);
  642. }
  643. static unsigned seg_override(struct x86_emulate_ctxt *ctxt)
  644. {
  645. if (!ctxt->has_seg_override)
  646. return 0;
  647. return ctxt->seg_override;
  648. }
  649. static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
  650. u32 error, bool valid)
  651. {
  652. ctxt->exception.vector = vec;
  653. ctxt->exception.error_code = error;
  654. ctxt->exception.error_code_valid = valid;
  655. return X86EMUL_PROPAGATE_FAULT;
  656. }
  657. static int emulate_db(struct x86_emulate_ctxt *ctxt)
  658. {
  659. return emulate_exception(ctxt, DB_VECTOR, 0, false);
  660. }
  661. static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
  662. {
  663. return emulate_exception(ctxt, GP_VECTOR, err, true);
  664. }
  665. static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
  666. {
  667. return emulate_exception(ctxt, SS_VECTOR, err, true);
  668. }
  669. static int emulate_ud(struct x86_emulate_ctxt *ctxt)
  670. {
  671. return emulate_exception(ctxt, UD_VECTOR, 0, false);
  672. }
  673. static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
  674. {
  675. return emulate_exception(ctxt, TS_VECTOR, err, true);
  676. }
  677. static int emulate_de(struct x86_emulate_ctxt *ctxt)
  678. {
  679. return emulate_exception(ctxt, DE_VECTOR, 0, false);
  680. }
  681. static int emulate_nm(struct x86_emulate_ctxt *ctxt)
  682. {
  683. return emulate_exception(ctxt, NM_VECTOR, 0, false);
  684. }
  685. static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
  686. {
  687. u16 selector;
  688. struct desc_struct desc;
  689. ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
  690. return selector;
  691. }
  692. static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
  693. unsigned seg)
  694. {
  695. u16 dummy;
  696. u32 base3;
  697. struct desc_struct desc;
  698. ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
  699. ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
  700. }
  701. /*
  702. * x86 defines three classes of vector instructions: explicitly
  703. * aligned, explicitly unaligned, and the rest, which change behaviour
  704. * depending on whether they're AVX encoded or not.
  705. *
  706. * Also included is CMPXCHG16B which is not a vector instruction, yet it is
  707. * subject to the same check.
  708. */
  709. static bool insn_aligned(struct x86_emulate_ctxt *ctxt, unsigned size)
  710. {
  711. if (likely(size < 16))
  712. return false;
  713. if (ctxt->d & Aligned)
  714. return true;
  715. else if (ctxt->d & Unaligned)
  716. return false;
  717. else if (ctxt->d & Avx)
  718. return false;
  719. else
  720. return true;
  721. }
  722. static int __linearize(struct x86_emulate_ctxt *ctxt,
  723. struct segmented_address addr,
  724. unsigned size, bool write, bool fetch,
  725. ulong *linear)
  726. {
  727. struct desc_struct desc;
  728. bool usable;
  729. ulong la;
  730. u32 lim;
  731. u16 sel;
  732. unsigned cpl;
  733. la = seg_base(ctxt, addr.seg) + addr.ea;
  734. switch (ctxt->mode) {
  735. case X86EMUL_MODE_PROT64:
  736. if (((signed long)la << 16) >> 16 != la)
  737. return emulate_gp(ctxt, 0);
  738. break;
  739. default:
  740. usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
  741. addr.seg);
  742. if (!usable)
  743. goto bad;
  744. /* code segment in protected mode or read-only data segment */
  745. if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8))
  746. || !(desc.type & 2)) && write)
  747. goto bad;
  748. /* unreadable code segment */
  749. if (!fetch && (desc.type & 8) && !(desc.type & 2))
  750. goto bad;
  751. lim = desc_limit_scaled(&desc);
  752. if ((desc.type & 8) || !(desc.type & 4)) {
  753. /* expand-up segment */
  754. if (addr.ea > lim || (u32)(addr.ea + size - 1) > lim)
  755. goto bad;
  756. } else {
  757. /* expand-down segment */
  758. if (addr.ea <= lim || (u32)(addr.ea + size - 1) <= lim)
  759. goto bad;
  760. lim = desc.d ? 0xffffffff : 0xffff;
  761. if (addr.ea > lim || (u32)(addr.ea + size - 1) > lim)
  762. goto bad;
  763. }
  764. cpl = ctxt->ops->cpl(ctxt);
  765. if (!(desc.type & 8)) {
  766. /* data segment */
  767. if (cpl > desc.dpl)
  768. goto bad;
  769. } else if ((desc.type & 8) && !(desc.type & 4)) {
  770. /* nonconforming code segment */
  771. if (cpl != desc.dpl)
  772. goto bad;
  773. } else if ((desc.type & 8) && (desc.type & 4)) {
  774. /* conforming code segment */
  775. if (cpl < desc.dpl)
  776. goto bad;
  777. }
  778. break;
  779. }
  780. if (fetch ? ctxt->mode != X86EMUL_MODE_PROT64 : ctxt->ad_bytes != 8)
  781. la &= (u32)-1;
  782. if (insn_aligned(ctxt, size) && ((la & (size - 1)) != 0))
  783. return emulate_gp(ctxt, 0);
  784. *linear = la;
  785. return X86EMUL_CONTINUE;
  786. bad:
  787. if (addr.seg == VCPU_SREG_SS)
  788. return emulate_ss(ctxt, sel);
  789. else
  790. return emulate_gp(ctxt, sel);
  791. }
  792. static int linearize(struct x86_emulate_ctxt *ctxt,
  793. struct segmented_address addr,
  794. unsigned size, bool write,
  795. ulong *linear)
  796. {
  797. return __linearize(ctxt, addr, size, write, false, linear);
  798. }
  799. static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
  800. struct segmented_address addr,
  801. void *data,
  802. unsigned size)
  803. {
  804. int rc;
  805. ulong linear;
  806. rc = linearize(ctxt, addr, size, false, &linear);
  807. if (rc != X86EMUL_CONTINUE)
  808. return rc;
  809. return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception);
  810. }
  811. /*
  812. * Fetch the next byte of the instruction being emulated which is pointed to
  813. * by ctxt->_eip, then increment ctxt->_eip.
  814. *
  815. * Also prefetch the remaining bytes of the instruction without crossing page
  816. * boundary if they are not in fetch_cache yet.
  817. */
  818. static int do_insn_fetch_byte(struct x86_emulate_ctxt *ctxt, u8 *dest)
  819. {
  820. struct fetch_cache *fc = &ctxt->fetch;
  821. int rc;
  822. int size, cur_size;
  823. if (ctxt->_eip == fc->end) {
  824. unsigned long linear;
  825. struct segmented_address addr = { .seg = VCPU_SREG_CS,
  826. .ea = ctxt->_eip };
  827. cur_size = fc->end - fc->start;
  828. size = min(15UL - cur_size,
  829. PAGE_SIZE - offset_in_page(ctxt->_eip));
  830. rc = __linearize(ctxt, addr, size, false, true, &linear);
  831. if (unlikely(rc != X86EMUL_CONTINUE))
  832. return rc;
  833. rc = ctxt->ops->fetch(ctxt, linear, fc->data + cur_size,
  834. size, &ctxt->exception);
  835. if (unlikely(rc != X86EMUL_CONTINUE))
  836. return rc;
  837. fc->end += size;
  838. }
  839. *dest = fc->data[ctxt->_eip - fc->start];
  840. ctxt->_eip++;
  841. return X86EMUL_CONTINUE;
  842. }
  843. static int do_insn_fetch(struct x86_emulate_ctxt *ctxt,
  844. void *dest, unsigned size)
  845. {
  846. int rc;
  847. /* x86 instructions are limited to 15 bytes. */
  848. if (unlikely(ctxt->_eip + size - ctxt->eip > 15))
  849. return X86EMUL_UNHANDLEABLE;
  850. while (size--) {
  851. rc = do_insn_fetch_byte(ctxt, dest++);
  852. if (rc != X86EMUL_CONTINUE)
  853. return rc;
  854. }
  855. return X86EMUL_CONTINUE;
  856. }
  857. /* Fetch next part of the instruction being emulated. */
  858. #define insn_fetch(_type, _ctxt) \
  859. ({ unsigned long _x; \
  860. rc = do_insn_fetch(_ctxt, &_x, sizeof(_type)); \
  861. if (rc != X86EMUL_CONTINUE) \
  862. goto done; \
  863. (_type)_x; \
  864. })
  865. #define insn_fetch_arr(_arr, _size, _ctxt) \
  866. ({ rc = do_insn_fetch(_ctxt, _arr, (_size)); \
  867. if (rc != X86EMUL_CONTINUE) \
  868. goto done; \
  869. })
  870. /*
  871. * Given the 'reg' portion of a ModRM byte, and a register block, return a
  872. * pointer into the block that addresses the relevant register.
  873. * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
  874. */
  875. static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
  876. int highbyte_regs)
  877. {
  878. void *p;
  879. if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
  880. p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
  881. else
  882. p = reg_rmw(ctxt, modrm_reg);
  883. return p;
  884. }
  885. static int read_descriptor(struct x86_emulate_ctxt *ctxt,
  886. struct segmented_address addr,
  887. u16 *size, unsigned long *address, int op_bytes)
  888. {
  889. int rc;
  890. if (op_bytes == 2)
  891. op_bytes = 3;
  892. *address = 0;
  893. rc = segmented_read_std(ctxt, addr, size, 2);
  894. if (rc != X86EMUL_CONTINUE)
  895. return rc;
  896. addr.ea += 2;
  897. rc = segmented_read_std(ctxt, addr, address, op_bytes);
  898. return rc;
  899. }
  900. FASTOP2(add);
  901. FASTOP2(or);
  902. FASTOP2(adc);
  903. FASTOP2(sbb);
  904. FASTOP2(and);
  905. FASTOP2(sub);
  906. FASTOP2(xor);
  907. FASTOP2(cmp);
  908. FASTOP2(test);
  909. FASTOP1SRC2(mul, mul_ex);
  910. FASTOP1SRC2(imul, imul_ex);
  911. FASTOP1SRC2EX(div, div_ex);
  912. FASTOP1SRC2EX(idiv, idiv_ex);
  913. FASTOP3WCL(shld);
  914. FASTOP3WCL(shrd);
  915. FASTOP2W(imul);
  916. FASTOP1(not);
  917. FASTOP1(neg);
  918. FASTOP1(inc);
  919. FASTOP1(dec);
  920. FASTOP2CL(rol);
  921. FASTOP2CL(ror);
  922. FASTOP2CL(rcl);
  923. FASTOP2CL(rcr);
  924. FASTOP2CL(shl);
  925. FASTOP2CL(shr);
  926. FASTOP2CL(sar);
  927. FASTOP2W(bsf);
  928. FASTOP2W(bsr);
  929. FASTOP2W(bt);
  930. FASTOP2W(bts);
  931. FASTOP2W(btr);
  932. FASTOP2W(btc);
  933. static u8 test_cc(unsigned int condition, unsigned long flags)
  934. {
  935. u8 rc;
  936. void (*fop)(void) = (void *)em_setcc + 4 * (condition & 0xf);
  937. flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
  938. asm("push %[flags]; popf; call *%[fastop]"
  939. : "=a"(rc) : [fastop]"r"(fop), [flags]"r"(flags));
  940. return rc;
  941. }
  942. static void fetch_register_operand(struct operand *op)
  943. {
  944. switch (op->bytes) {
  945. case 1:
  946. op->val = *(u8 *)op->addr.reg;
  947. break;
  948. case 2:
  949. op->val = *(u16 *)op->addr.reg;
  950. break;
  951. case 4:
  952. op->val = *(u32 *)op->addr.reg;
  953. break;
  954. case 8:
  955. op->val = *(u64 *)op->addr.reg;
  956. break;
  957. }
  958. }
  959. static void read_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, int reg)
  960. {
  961. ctxt->ops->get_fpu(ctxt);
  962. switch (reg) {
  963. case 0: asm("movdqa %%xmm0, %0" : "=m"(*data)); break;
  964. case 1: asm("movdqa %%xmm1, %0" : "=m"(*data)); break;
  965. case 2: asm("movdqa %%xmm2, %0" : "=m"(*data)); break;
  966. case 3: asm("movdqa %%xmm3, %0" : "=m"(*data)); break;
  967. case 4: asm("movdqa %%xmm4, %0" : "=m"(*data)); break;
  968. case 5: asm("movdqa %%xmm5, %0" : "=m"(*data)); break;
  969. case 6: asm("movdqa %%xmm6, %0" : "=m"(*data)); break;
  970. case 7: asm("movdqa %%xmm7, %0" : "=m"(*data)); break;
  971. #ifdef CONFIG_X86_64
  972. case 8: asm("movdqa %%xmm8, %0" : "=m"(*data)); break;
  973. case 9: asm("movdqa %%xmm9, %0" : "=m"(*data)); break;
  974. case 10: asm("movdqa %%xmm10, %0" : "=m"(*data)); break;
  975. case 11: asm("movdqa %%xmm11, %0" : "=m"(*data)); break;
  976. case 12: asm("movdqa %%xmm12, %0" : "=m"(*data)); break;
  977. case 13: asm("movdqa %%xmm13, %0" : "=m"(*data)); break;
  978. case 14: asm("movdqa %%xmm14, %0" : "=m"(*data)); break;
  979. case 15: asm("movdqa %%xmm15, %0" : "=m"(*data)); break;
  980. #endif
  981. default: BUG();
  982. }
  983. ctxt->ops->put_fpu(ctxt);
  984. }
  985. static void write_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data,
  986. int reg)
  987. {
  988. ctxt->ops->get_fpu(ctxt);
  989. switch (reg) {
  990. case 0: asm("movdqa %0, %%xmm0" : : "m"(*data)); break;
  991. case 1: asm("movdqa %0, %%xmm1" : : "m"(*data)); break;
  992. case 2: asm("movdqa %0, %%xmm2" : : "m"(*data)); break;
  993. case 3: asm("movdqa %0, %%xmm3" : : "m"(*data)); break;
  994. case 4: asm("movdqa %0, %%xmm4" : : "m"(*data)); break;
  995. case 5: asm("movdqa %0, %%xmm5" : : "m"(*data)); break;
  996. case 6: asm("movdqa %0, %%xmm6" : : "m"(*data)); break;
  997. case 7: asm("movdqa %0, %%xmm7" : : "m"(*data)); break;
  998. #ifdef CONFIG_X86_64
  999. case 8: asm("movdqa %0, %%xmm8" : : "m"(*data)); break;
  1000. case 9: asm("movdqa %0, %%xmm9" : : "m"(*data)); break;
  1001. case 10: asm("movdqa %0, %%xmm10" : : "m"(*data)); break;
  1002. case 11: asm("movdqa %0, %%xmm11" : : "m"(*data)); break;
  1003. case 12: asm("movdqa %0, %%xmm12" : : "m"(*data)); break;
  1004. case 13: asm("movdqa %0, %%xmm13" : : "m"(*data)); break;
  1005. case 14: asm("movdqa %0, %%xmm14" : : "m"(*data)); break;
  1006. case 15: asm("movdqa %0, %%xmm15" : : "m"(*data)); break;
  1007. #endif
  1008. default: BUG();
  1009. }
  1010. ctxt->ops->put_fpu(ctxt);
  1011. }
  1012. static void read_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
  1013. {
  1014. ctxt->ops->get_fpu(ctxt);
  1015. switch (reg) {
  1016. case 0: asm("movq %%mm0, %0" : "=m"(*data)); break;
  1017. case 1: asm("movq %%mm1, %0" : "=m"(*data)); break;
  1018. case 2: asm("movq %%mm2, %0" : "=m"(*data)); break;
  1019. case 3: asm("movq %%mm3, %0" : "=m"(*data)); break;
  1020. case 4: asm("movq %%mm4, %0" : "=m"(*data)); break;
  1021. case 5: asm("movq %%mm5, %0" : "=m"(*data)); break;
  1022. case 6: asm("movq %%mm6, %0" : "=m"(*data)); break;
  1023. case 7: asm("movq %%mm7, %0" : "=m"(*data)); break;
  1024. default: BUG();
  1025. }
  1026. ctxt->ops->put_fpu(ctxt);
  1027. }
  1028. static void write_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
  1029. {
  1030. ctxt->ops->get_fpu(ctxt);
  1031. switch (reg) {
  1032. case 0: asm("movq %0, %%mm0" : : "m"(*data)); break;
  1033. case 1: asm("movq %0, %%mm1" : : "m"(*data)); break;
  1034. case 2: asm("movq %0, %%mm2" : : "m"(*data)); break;
  1035. case 3: asm("movq %0, %%mm3" : : "m"(*data)); break;
  1036. case 4: asm("movq %0, %%mm4" : : "m"(*data)); break;
  1037. case 5: asm("movq %0, %%mm5" : : "m"(*data)); break;
  1038. case 6: asm("movq %0, %%mm6" : : "m"(*data)); break;
  1039. case 7: asm("movq %0, %%mm7" : : "m"(*data)); break;
  1040. default: BUG();
  1041. }
  1042. ctxt->ops->put_fpu(ctxt);
  1043. }
  1044. static int em_fninit(struct x86_emulate_ctxt *ctxt)
  1045. {
  1046. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  1047. return emulate_nm(ctxt);
  1048. ctxt->ops->get_fpu(ctxt);
  1049. asm volatile("fninit");
  1050. ctxt->ops->put_fpu(ctxt);
  1051. return X86EMUL_CONTINUE;
  1052. }
  1053. static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
  1054. {
  1055. u16 fcw;
  1056. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  1057. return emulate_nm(ctxt);
  1058. ctxt->ops->get_fpu(ctxt);
  1059. asm volatile("fnstcw %0": "+m"(fcw));
  1060. ctxt->ops->put_fpu(ctxt);
  1061. /* force 2 byte destination */
  1062. ctxt->dst.bytes = 2;
  1063. ctxt->dst.val = fcw;
  1064. return X86EMUL_CONTINUE;
  1065. }
  1066. static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
  1067. {
  1068. u16 fsw;
  1069. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  1070. return emulate_nm(ctxt);
  1071. ctxt->ops->get_fpu(ctxt);
  1072. asm volatile("fnstsw %0": "+m"(fsw));
  1073. ctxt->ops->put_fpu(ctxt);
  1074. /* force 2 byte destination */
  1075. ctxt->dst.bytes = 2;
  1076. ctxt->dst.val = fsw;
  1077. return X86EMUL_CONTINUE;
  1078. }
  1079. static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
  1080. struct operand *op)
  1081. {
  1082. unsigned reg = ctxt->modrm_reg;
  1083. int highbyte_regs = ctxt->rex_prefix == 0;
  1084. if (!(ctxt->d & ModRM))
  1085. reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
  1086. if (ctxt->d & Sse) {
  1087. op->type = OP_XMM;
  1088. op->bytes = 16;
  1089. op->addr.xmm = reg;
  1090. read_sse_reg(ctxt, &op->vec_val, reg);
  1091. return;
  1092. }
  1093. if (ctxt->d & Mmx) {
  1094. reg &= 7;
  1095. op->type = OP_MM;
  1096. op->bytes = 8;
  1097. op->addr.mm = reg;
  1098. return;
  1099. }
  1100. op->type = OP_REG;
  1101. if (ctxt->d & ByteOp) {
  1102. op->addr.reg = decode_register(ctxt, reg, highbyte_regs);
  1103. op->bytes = 1;
  1104. } else {
  1105. op->addr.reg = decode_register(ctxt, reg, 0);
  1106. op->bytes = ctxt->op_bytes;
  1107. }
  1108. fetch_register_operand(op);
  1109. op->orig_val = op->val;
  1110. }
  1111. static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
  1112. {
  1113. if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
  1114. ctxt->modrm_seg = VCPU_SREG_SS;
  1115. }
  1116. static int decode_modrm(struct x86_emulate_ctxt *ctxt,
  1117. struct operand *op)
  1118. {
  1119. u8 sib;
  1120. int index_reg = 0, base_reg = 0, scale;
  1121. int rc = X86EMUL_CONTINUE;
  1122. ulong modrm_ea = 0;
  1123. if (ctxt->rex_prefix) {
  1124. ctxt->modrm_reg = (ctxt->rex_prefix & 4) << 1; /* REX.R */
  1125. index_reg = (ctxt->rex_prefix & 2) << 2; /* REX.X */
  1126. ctxt->modrm_rm = base_reg = (ctxt->rex_prefix & 1) << 3; /* REG.B */
  1127. }
  1128. ctxt->modrm_mod |= (ctxt->modrm & 0xc0) >> 6;
  1129. ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
  1130. ctxt->modrm_rm |= (ctxt->modrm & 0x07);
  1131. ctxt->modrm_seg = VCPU_SREG_DS;
  1132. if (ctxt->modrm_mod == 3) {
  1133. op->type = OP_REG;
  1134. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  1135. op->addr.reg = decode_register(ctxt, ctxt->modrm_rm, ctxt->d & ByteOp);
  1136. if (ctxt->d & Sse) {
  1137. op->type = OP_XMM;
  1138. op->bytes = 16;
  1139. op->addr.xmm = ctxt->modrm_rm;
  1140. read_sse_reg(ctxt, &op->vec_val, ctxt->modrm_rm);
  1141. return rc;
  1142. }
  1143. if (ctxt->d & Mmx) {
  1144. op->type = OP_MM;
  1145. op->bytes = 8;
  1146. op->addr.xmm = ctxt->modrm_rm & 7;
  1147. return rc;
  1148. }
  1149. fetch_register_operand(op);
  1150. return rc;
  1151. }
  1152. op->type = OP_MEM;
  1153. if (ctxt->ad_bytes == 2) {
  1154. unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
  1155. unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
  1156. unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
  1157. unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
  1158. /* 16-bit ModR/M decode. */
  1159. switch (ctxt->modrm_mod) {
  1160. case 0:
  1161. if (ctxt->modrm_rm == 6)
  1162. modrm_ea += insn_fetch(u16, ctxt);
  1163. break;
  1164. case 1:
  1165. modrm_ea += insn_fetch(s8, ctxt);
  1166. break;
  1167. case 2:
  1168. modrm_ea += insn_fetch(u16, ctxt);
  1169. break;
  1170. }
  1171. switch (ctxt->modrm_rm) {
  1172. case 0:
  1173. modrm_ea += bx + si;
  1174. break;
  1175. case 1:
  1176. modrm_ea += bx + di;
  1177. break;
  1178. case 2:
  1179. modrm_ea += bp + si;
  1180. break;
  1181. case 3:
  1182. modrm_ea += bp + di;
  1183. break;
  1184. case 4:
  1185. modrm_ea += si;
  1186. break;
  1187. case 5:
  1188. modrm_ea += di;
  1189. break;
  1190. case 6:
  1191. if (ctxt->modrm_mod != 0)
  1192. modrm_ea += bp;
  1193. break;
  1194. case 7:
  1195. modrm_ea += bx;
  1196. break;
  1197. }
  1198. if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
  1199. (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
  1200. ctxt->modrm_seg = VCPU_SREG_SS;
  1201. modrm_ea = (u16)modrm_ea;
  1202. } else {
  1203. /* 32/64-bit ModR/M decode. */
  1204. if ((ctxt->modrm_rm & 7) == 4) {
  1205. sib = insn_fetch(u8, ctxt);
  1206. index_reg |= (sib >> 3) & 7;
  1207. base_reg |= sib & 7;
  1208. scale = sib >> 6;
  1209. if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
  1210. modrm_ea += insn_fetch(s32, ctxt);
  1211. else {
  1212. modrm_ea += reg_read(ctxt, base_reg);
  1213. adjust_modrm_seg(ctxt, base_reg);
  1214. }
  1215. if (index_reg != 4)
  1216. modrm_ea += reg_read(ctxt, index_reg) << scale;
  1217. } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
  1218. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1219. ctxt->rip_relative = 1;
  1220. } else {
  1221. base_reg = ctxt->modrm_rm;
  1222. modrm_ea += reg_read(ctxt, base_reg);
  1223. adjust_modrm_seg(ctxt, base_reg);
  1224. }
  1225. switch (ctxt->modrm_mod) {
  1226. case 0:
  1227. if (ctxt->modrm_rm == 5)
  1228. modrm_ea += insn_fetch(s32, ctxt);
  1229. break;
  1230. case 1:
  1231. modrm_ea += insn_fetch(s8, ctxt);
  1232. break;
  1233. case 2:
  1234. modrm_ea += insn_fetch(s32, ctxt);
  1235. break;
  1236. }
  1237. }
  1238. op->addr.mem.ea = modrm_ea;
  1239. done:
  1240. return rc;
  1241. }
  1242. static int decode_abs(struct x86_emulate_ctxt *ctxt,
  1243. struct operand *op)
  1244. {
  1245. int rc = X86EMUL_CONTINUE;
  1246. op->type = OP_MEM;
  1247. switch (ctxt->ad_bytes) {
  1248. case 2:
  1249. op->addr.mem.ea = insn_fetch(u16, ctxt);
  1250. break;
  1251. case 4:
  1252. op->addr.mem.ea = insn_fetch(u32, ctxt);
  1253. break;
  1254. case 8:
  1255. op->addr.mem.ea = insn_fetch(u64, ctxt);
  1256. break;
  1257. }
  1258. done:
  1259. return rc;
  1260. }
  1261. static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
  1262. {
  1263. long sv = 0, mask;
  1264. if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
  1265. mask = ~(ctxt->dst.bytes * 8 - 1);
  1266. if (ctxt->src.bytes == 2)
  1267. sv = (s16)ctxt->src.val & (s16)mask;
  1268. else if (ctxt->src.bytes == 4)
  1269. sv = (s32)ctxt->src.val & (s32)mask;
  1270. ctxt->dst.addr.mem.ea += (sv >> 3);
  1271. }
  1272. /* only subword offset */
  1273. ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
  1274. }
  1275. static int read_emulated(struct x86_emulate_ctxt *ctxt,
  1276. unsigned long addr, void *dest, unsigned size)
  1277. {
  1278. int rc;
  1279. struct read_cache *mc = &ctxt->mem_read;
  1280. if (mc->pos < mc->end)
  1281. goto read_cached;
  1282. WARN_ON((mc->end + size) >= sizeof(mc->data));
  1283. rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
  1284. &ctxt->exception);
  1285. if (rc != X86EMUL_CONTINUE)
  1286. return rc;
  1287. mc->end += size;
  1288. read_cached:
  1289. memcpy(dest, mc->data + mc->pos, size);
  1290. mc->pos += size;
  1291. return X86EMUL_CONTINUE;
  1292. }
  1293. static int segmented_read(struct x86_emulate_ctxt *ctxt,
  1294. struct segmented_address addr,
  1295. void *data,
  1296. unsigned size)
  1297. {
  1298. int rc;
  1299. ulong linear;
  1300. rc = linearize(ctxt, addr, size, false, &linear);
  1301. if (rc != X86EMUL_CONTINUE)
  1302. return rc;
  1303. return read_emulated(ctxt, linear, data, size);
  1304. }
  1305. static int segmented_write(struct x86_emulate_ctxt *ctxt,
  1306. struct segmented_address addr,
  1307. const void *data,
  1308. unsigned size)
  1309. {
  1310. int rc;
  1311. ulong linear;
  1312. rc = linearize(ctxt, addr, size, true, &linear);
  1313. if (rc != X86EMUL_CONTINUE)
  1314. return rc;
  1315. return ctxt->ops->write_emulated(ctxt, linear, data, size,
  1316. &ctxt->exception);
  1317. }
  1318. static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
  1319. struct segmented_address addr,
  1320. const void *orig_data, const void *data,
  1321. unsigned size)
  1322. {
  1323. int rc;
  1324. ulong linear;
  1325. rc = linearize(ctxt, addr, size, true, &linear);
  1326. if (rc != X86EMUL_CONTINUE)
  1327. return rc;
  1328. return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
  1329. size, &ctxt->exception);
  1330. }
  1331. static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  1332. unsigned int size, unsigned short port,
  1333. void *dest)
  1334. {
  1335. struct read_cache *rc = &ctxt->io_read;
  1336. if (rc->pos == rc->end) { /* refill pio read ahead */
  1337. unsigned int in_page, n;
  1338. unsigned int count = ctxt->rep_prefix ?
  1339. address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
  1340. in_page = (ctxt->eflags & EFLG_DF) ?
  1341. offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
  1342. PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
  1343. n = min(min(in_page, (unsigned int)sizeof(rc->data)) / size,
  1344. count);
  1345. if (n == 0)
  1346. n = 1;
  1347. rc->pos = rc->end = 0;
  1348. if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
  1349. return 0;
  1350. rc->end = n * size;
  1351. }
  1352. if (ctxt->rep_prefix && !(ctxt->eflags & EFLG_DF)) {
  1353. ctxt->dst.data = rc->data + rc->pos;
  1354. ctxt->dst.type = OP_MEM_STR;
  1355. ctxt->dst.count = (rc->end - rc->pos) / size;
  1356. rc->pos = rc->end;
  1357. } else {
  1358. memcpy(dest, rc->data + rc->pos, size);
  1359. rc->pos += size;
  1360. }
  1361. return 1;
  1362. }
  1363. static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
  1364. u16 index, struct desc_struct *desc)
  1365. {
  1366. struct desc_ptr dt;
  1367. ulong addr;
  1368. ctxt->ops->get_idt(ctxt, &dt);
  1369. if (dt.size < index * 8 + 7)
  1370. return emulate_gp(ctxt, index << 3 | 0x2);
  1371. addr = dt.address + index * 8;
  1372. return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc,
  1373. &ctxt->exception);
  1374. }
  1375. static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
  1376. u16 selector, struct desc_ptr *dt)
  1377. {
  1378. const struct x86_emulate_ops *ops = ctxt->ops;
  1379. if (selector & 1 << 2) {
  1380. struct desc_struct desc;
  1381. u16 sel;
  1382. memset (dt, 0, sizeof *dt);
  1383. if (!ops->get_segment(ctxt, &sel, &desc, NULL, VCPU_SREG_LDTR))
  1384. return;
  1385. dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
  1386. dt->address = get_desc_base(&desc);
  1387. } else
  1388. ops->get_gdt(ctxt, dt);
  1389. }
  1390. /* allowed just for 8 bytes segments */
  1391. static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1392. u16 selector, struct desc_struct *desc,
  1393. ulong *desc_addr_p)
  1394. {
  1395. struct desc_ptr dt;
  1396. u16 index = selector >> 3;
  1397. ulong addr;
  1398. get_descriptor_table_ptr(ctxt, selector, &dt);
  1399. if (dt.size < index * 8 + 7)
  1400. return emulate_gp(ctxt, selector & 0xfffc);
  1401. *desc_addr_p = addr = dt.address + index * 8;
  1402. return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc,
  1403. &ctxt->exception);
  1404. }
  1405. /* allowed just for 8 bytes segments */
  1406. static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1407. u16 selector, struct desc_struct *desc)
  1408. {
  1409. struct desc_ptr dt;
  1410. u16 index = selector >> 3;
  1411. ulong addr;
  1412. get_descriptor_table_ptr(ctxt, selector, &dt);
  1413. if (dt.size < index * 8 + 7)
  1414. return emulate_gp(ctxt, selector & 0xfffc);
  1415. addr = dt.address + index * 8;
  1416. return ctxt->ops->write_std(ctxt, addr, desc, sizeof *desc,
  1417. &ctxt->exception);
  1418. }
  1419. /* Does not support long mode */
  1420. static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1421. u16 selector, int seg)
  1422. {
  1423. struct desc_struct seg_desc, old_desc;
  1424. u8 dpl, rpl, cpl;
  1425. unsigned err_vec = GP_VECTOR;
  1426. u32 err_code = 0;
  1427. bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
  1428. ulong desc_addr;
  1429. int ret;
  1430. u16 dummy;
  1431. memset(&seg_desc, 0, sizeof seg_desc);
  1432. if (ctxt->mode == X86EMUL_MODE_REAL) {
  1433. /* set real mode segment descriptor (keep limit etc. for
  1434. * unreal mode) */
  1435. ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
  1436. set_desc_base(&seg_desc, selector << 4);
  1437. goto load;
  1438. } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
  1439. /* VM86 needs a clean new segment descriptor */
  1440. set_desc_base(&seg_desc, selector << 4);
  1441. set_desc_limit(&seg_desc, 0xffff);
  1442. seg_desc.type = 3;
  1443. seg_desc.p = 1;
  1444. seg_desc.s = 1;
  1445. seg_desc.dpl = 3;
  1446. goto load;
  1447. }
  1448. rpl = selector & 3;
  1449. cpl = ctxt->ops->cpl(ctxt);
  1450. /* NULL selector is not valid for TR, CS and SS (except for long mode) */
  1451. if ((seg == VCPU_SREG_CS
  1452. || (seg == VCPU_SREG_SS
  1453. && (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl))
  1454. || seg == VCPU_SREG_TR)
  1455. && null_selector)
  1456. goto exception;
  1457. /* TR should be in GDT only */
  1458. if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
  1459. goto exception;
  1460. if (null_selector) /* for NULL selector skip all following checks */
  1461. goto load;
  1462. ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
  1463. if (ret != X86EMUL_CONTINUE)
  1464. return ret;
  1465. err_code = selector & 0xfffc;
  1466. err_vec = GP_VECTOR;
  1467. /* can't load system descriptor into segment selector */
  1468. if (seg <= VCPU_SREG_GS && !seg_desc.s)
  1469. goto exception;
  1470. if (!seg_desc.p) {
  1471. err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
  1472. goto exception;
  1473. }
  1474. dpl = seg_desc.dpl;
  1475. switch (seg) {
  1476. case VCPU_SREG_SS:
  1477. /*
  1478. * segment is not a writable data segment or segment
  1479. * selector's RPL != CPL or segment selector's RPL != CPL
  1480. */
  1481. if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
  1482. goto exception;
  1483. break;
  1484. case VCPU_SREG_CS:
  1485. if (!(seg_desc.type & 8))
  1486. goto exception;
  1487. if (seg_desc.type & 4) {
  1488. /* conforming */
  1489. if (dpl > cpl)
  1490. goto exception;
  1491. } else {
  1492. /* nonconforming */
  1493. if (rpl > cpl || dpl != cpl)
  1494. goto exception;
  1495. }
  1496. /* CS(RPL) <- CPL */
  1497. selector = (selector & 0xfffc) | cpl;
  1498. break;
  1499. case VCPU_SREG_TR:
  1500. if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
  1501. goto exception;
  1502. old_desc = seg_desc;
  1503. seg_desc.type |= 2; /* busy */
  1504. ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
  1505. sizeof(seg_desc), &ctxt->exception);
  1506. if (ret != X86EMUL_CONTINUE)
  1507. return ret;
  1508. break;
  1509. case VCPU_SREG_LDTR:
  1510. if (seg_desc.s || seg_desc.type != 2)
  1511. goto exception;
  1512. break;
  1513. default: /* DS, ES, FS, or GS */
  1514. /*
  1515. * segment is not a data or readable code segment or
  1516. * ((segment is a data or nonconforming code segment)
  1517. * and (both RPL and CPL > DPL))
  1518. */
  1519. if ((seg_desc.type & 0xa) == 0x8 ||
  1520. (((seg_desc.type & 0xc) != 0xc) &&
  1521. (rpl > dpl && cpl > dpl)))
  1522. goto exception;
  1523. break;
  1524. }
  1525. if (seg_desc.s) {
  1526. /* mark segment as accessed */
  1527. seg_desc.type |= 1;
  1528. ret = write_segment_descriptor(ctxt, selector, &seg_desc);
  1529. if (ret != X86EMUL_CONTINUE)
  1530. return ret;
  1531. }
  1532. load:
  1533. ctxt->ops->set_segment(ctxt, selector, &seg_desc, 0, seg);
  1534. return X86EMUL_CONTINUE;
  1535. exception:
  1536. emulate_exception(ctxt, err_vec, err_code, true);
  1537. return X86EMUL_PROPAGATE_FAULT;
  1538. }
  1539. static void write_register_operand(struct operand *op)
  1540. {
  1541. /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
  1542. switch (op->bytes) {
  1543. case 1:
  1544. *(u8 *)op->addr.reg = (u8)op->val;
  1545. break;
  1546. case 2:
  1547. *(u16 *)op->addr.reg = (u16)op->val;
  1548. break;
  1549. case 4:
  1550. *op->addr.reg = (u32)op->val;
  1551. break; /* 64b: zero-extend */
  1552. case 8:
  1553. *op->addr.reg = op->val;
  1554. break;
  1555. }
  1556. }
  1557. static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
  1558. {
  1559. int rc;
  1560. switch (op->type) {
  1561. case OP_REG:
  1562. write_register_operand(op);
  1563. break;
  1564. case OP_MEM:
  1565. if (ctxt->lock_prefix)
  1566. rc = segmented_cmpxchg(ctxt,
  1567. op->addr.mem,
  1568. &op->orig_val,
  1569. &op->val,
  1570. op->bytes);
  1571. else
  1572. rc = segmented_write(ctxt,
  1573. op->addr.mem,
  1574. &op->val,
  1575. op->bytes);
  1576. if (rc != X86EMUL_CONTINUE)
  1577. return rc;
  1578. break;
  1579. case OP_MEM_STR:
  1580. rc = segmented_write(ctxt,
  1581. op->addr.mem,
  1582. op->data,
  1583. op->bytes * op->count);
  1584. if (rc != X86EMUL_CONTINUE)
  1585. return rc;
  1586. break;
  1587. case OP_XMM:
  1588. write_sse_reg(ctxt, &op->vec_val, op->addr.xmm);
  1589. break;
  1590. case OP_MM:
  1591. write_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
  1592. break;
  1593. case OP_NONE:
  1594. /* no writeback */
  1595. break;
  1596. default:
  1597. break;
  1598. }
  1599. return X86EMUL_CONTINUE;
  1600. }
  1601. static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes)
  1602. {
  1603. struct segmented_address addr;
  1604. rsp_increment(ctxt, -bytes);
  1605. addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
  1606. addr.seg = VCPU_SREG_SS;
  1607. return segmented_write(ctxt, addr, data, bytes);
  1608. }
  1609. static int em_push(struct x86_emulate_ctxt *ctxt)
  1610. {
  1611. /* Disable writeback. */
  1612. ctxt->dst.type = OP_NONE;
  1613. return push(ctxt, &ctxt->src.val, ctxt->op_bytes);
  1614. }
  1615. static int emulate_pop(struct x86_emulate_ctxt *ctxt,
  1616. void *dest, int len)
  1617. {
  1618. int rc;
  1619. struct segmented_address addr;
  1620. addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
  1621. addr.seg = VCPU_SREG_SS;
  1622. rc = segmented_read(ctxt, addr, dest, len);
  1623. if (rc != X86EMUL_CONTINUE)
  1624. return rc;
  1625. rsp_increment(ctxt, len);
  1626. return rc;
  1627. }
  1628. static int em_pop(struct x86_emulate_ctxt *ctxt)
  1629. {
  1630. return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
  1631. }
  1632. static int emulate_popf(struct x86_emulate_ctxt *ctxt,
  1633. void *dest, int len)
  1634. {
  1635. int rc;
  1636. unsigned long val, change_mask;
  1637. int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1638. int cpl = ctxt->ops->cpl(ctxt);
  1639. rc = emulate_pop(ctxt, &val, len);
  1640. if (rc != X86EMUL_CONTINUE)
  1641. return rc;
  1642. change_mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_OF
  1643. | EFLG_TF | EFLG_DF | EFLG_NT | EFLG_RF | EFLG_AC | EFLG_ID;
  1644. switch(ctxt->mode) {
  1645. case X86EMUL_MODE_PROT64:
  1646. case X86EMUL_MODE_PROT32:
  1647. case X86EMUL_MODE_PROT16:
  1648. if (cpl == 0)
  1649. change_mask |= EFLG_IOPL;
  1650. if (cpl <= iopl)
  1651. change_mask |= EFLG_IF;
  1652. break;
  1653. case X86EMUL_MODE_VM86:
  1654. if (iopl < 3)
  1655. return emulate_gp(ctxt, 0);
  1656. change_mask |= EFLG_IF;
  1657. break;
  1658. default: /* real mode */
  1659. change_mask |= (EFLG_IOPL | EFLG_IF);
  1660. break;
  1661. }
  1662. *(unsigned long *)dest =
  1663. (ctxt->eflags & ~change_mask) | (val & change_mask);
  1664. return rc;
  1665. }
  1666. static int em_popf(struct x86_emulate_ctxt *ctxt)
  1667. {
  1668. ctxt->dst.type = OP_REG;
  1669. ctxt->dst.addr.reg = &ctxt->eflags;
  1670. ctxt->dst.bytes = ctxt->op_bytes;
  1671. return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
  1672. }
  1673. static int em_enter(struct x86_emulate_ctxt *ctxt)
  1674. {
  1675. int rc;
  1676. unsigned frame_size = ctxt->src.val;
  1677. unsigned nesting_level = ctxt->src2.val & 31;
  1678. ulong rbp;
  1679. if (nesting_level)
  1680. return X86EMUL_UNHANDLEABLE;
  1681. rbp = reg_read(ctxt, VCPU_REGS_RBP);
  1682. rc = push(ctxt, &rbp, stack_size(ctxt));
  1683. if (rc != X86EMUL_CONTINUE)
  1684. return rc;
  1685. assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
  1686. stack_mask(ctxt));
  1687. assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
  1688. reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
  1689. stack_mask(ctxt));
  1690. return X86EMUL_CONTINUE;
  1691. }
  1692. static int em_leave(struct x86_emulate_ctxt *ctxt)
  1693. {
  1694. assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
  1695. stack_mask(ctxt));
  1696. return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
  1697. }
  1698. static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
  1699. {
  1700. int seg = ctxt->src2.val;
  1701. ctxt->src.val = get_segment_selector(ctxt, seg);
  1702. return em_push(ctxt);
  1703. }
  1704. static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
  1705. {
  1706. int seg = ctxt->src2.val;
  1707. unsigned long selector;
  1708. int rc;
  1709. rc = emulate_pop(ctxt, &selector, ctxt->op_bytes);
  1710. if (rc != X86EMUL_CONTINUE)
  1711. return rc;
  1712. rc = load_segment_descriptor(ctxt, (u16)selector, seg);
  1713. return rc;
  1714. }
  1715. static int em_pusha(struct x86_emulate_ctxt *ctxt)
  1716. {
  1717. unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
  1718. int rc = X86EMUL_CONTINUE;
  1719. int reg = VCPU_REGS_RAX;
  1720. while (reg <= VCPU_REGS_RDI) {
  1721. (reg == VCPU_REGS_RSP) ?
  1722. (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
  1723. rc = em_push(ctxt);
  1724. if (rc != X86EMUL_CONTINUE)
  1725. return rc;
  1726. ++reg;
  1727. }
  1728. return rc;
  1729. }
  1730. static int em_pushf(struct x86_emulate_ctxt *ctxt)
  1731. {
  1732. ctxt->src.val = (unsigned long)ctxt->eflags;
  1733. return em_push(ctxt);
  1734. }
  1735. static int em_popa(struct x86_emulate_ctxt *ctxt)
  1736. {
  1737. int rc = X86EMUL_CONTINUE;
  1738. int reg = VCPU_REGS_RDI;
  1739. while (reg >= VCPU_REGS_RAX) {
  1740. if (reg == VCPU_REGS_RSP) {
  1741. rsp_increment(ctxt, ctxt->op_bytes);
  1742. --reg;
  1743. }
  1744. rc = emulate_pop(ctxt, reg_rmw(ctxt, reg), ctxt->op_bytes);
  1745. if (rc != X86EMUL_CONTINUE)
  1746. break;
  1747. --reg;
  1748. }
  1749. return rc;
  1750. }
  1751. static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
  1752. {
  1753. const struct x86_emulate_ops *ops = ctxt->ops;
  1754. int rc;
  1755. struct desc_ptr dt;
  1756. gva_t cs_addr;
  1757. gva_t eip_addr;
  1758. u16 cs, eip;
  1759. /* TODO: Add limit checks */
  1760. ctxt->src.val = ctxt->eflags;
  1761. rc = em_push(ctxt);
  1762. if (rc != X86EMUL_CONTINUE)
  1763. return rc;
  1764. ctxt->eflags &= ~(EFLG_IF | EFLG_TF | EFLG_AC);
  1765. ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
  1766. rc = em_push(ctxt);
  1767. if (rc != X86EMUL_CONTINUE)
  1768. return rc;
  1769. ctxt->src.val = ctxt->_eip;
  1770. rc = em_push(ctxt);
  1771. if (rc != X86EMUL_CONTINUE)
  1772. return rc;
  1773. ops->get_idt(ctxt, &dt);
  1774. eip_addr = dt.address + (irq << 2);
  1775. cs_addr = dt.address + (irq << 2) + 2;
  1776. rc = ops->read_std(ctxt, cs_addr, &cs, 2, &ctxt->exception);
  1777. if (rc != X86EMUL_CONTINUE)
  1778. return rc;
  1779. rc = ops->read_std(ctxt, eip_addr, &eip, 2, &ctxt->exception);
  1780. if (rc != X86EMUL_CONTINUE)
  1781. return rc;
  1782. rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
  1783. if (rc != X86EMUL_CONTINUE)
  1784. return rc;
  1785. ctxt->_eip = eip;
  1786. return rc;
  1787. }
  1788. int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
  1789. {
  1790. int rc;
  1791. invalidate_registers(ctxt);
  1792. rc = __emulate_int_real(ctxt, irq);
  1793. if (rc == X86EMUL_CONTINUE)
  1794. writeback_registers(ctxt);
  1795. return rc;
  1796. }
  1797. static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
  1798. {
  1799. switch(ctxt->mode) {
  1800. case X86EMUL_MODE_REAL:
  1801. return __emulate_int_real(ctxt, irq);
  1802. case X86EMUL_MODE_VM86:
  1803. case X86EMUL_MODE_PROT16:
  1804. case X86EMUL_MODE_PROT32:
  1805. case X86EMUL_MODE_PROT64:
  1806. default:
  1807. /* Protected mode interrupts unimplemented yet */
  1808. return X86EMUL_UNHANDLEABLE;
  1809. }
  1810. }
  1811. static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
  1812. {
  1813. int rc = X86EMUL_CONTINUE;
  1814. unsigned long temp_eip = 0;
  1815. unsigned long temp_eflags = 0;
  1816. unsigned long cs = 0;
  1817. unsigned long mask = EFLG_CF | EFLG_PF | EFLG_AF | EFLG_ZF | EFLG_SF | EFLG_TF |
  1818. EFLG_IF | EFLG_DF | EFLG_OF | EFLG_IOPL | EFLG_NT | EFLG_RF |
  1819. EFLG_AC | EFLG_ID | (1 << 1); /* Last one is the reserved bit */
  1820. unsigned long vm86_mask = EFLG_VM | EFLG_VIF | EFLG_VIP;
  1821. /* TODO: Add stack limit check */
  1822. rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
  1823. if (rc != X86EMUL_CONTINUE)
  1824. return rc;
  1825. if (temp_eip & ~0xffff)
  1826. return emulate_gp(ctxt, 0);
  1827. rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
  1828. if (rc != X86EMUL_CONTINUE)
  1829. return rc;
  1830. rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
  1831. if (rc != X86EMUL_CONTINUE)
  1832. return rc;
  1833. rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
  1834. if (rc != X86EMUL_CONTINUE)
  1835. return rc;
  1836. ctxt->_eip = temp_eip;
  1837. if (ctxt->op_bytes == 4)
  1838. ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
  1839. else if (ctxt->op_bytes == 2) {
  1840. ctxt->eflags &= ~0xffff;
  1841. ctxt->eflags |= temp_eflags;
  1842. }
  1843. ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
  1844. ctxt->eflags |= EFLG_RESERVED_ONE_MASK;
  1845. return rc;
  1846. }
  1847. static int em_iret(struct x86_emulate_ctxt *ctxt)
  1848. {
  1849. switch(ctxt->mode) {
  1850. case X86EMUL_MODE_REAL:
  1851. return emulate_iret_real(ctxt);
  1852. case X86EMUL_MODE_VM86:
  1853. case X86EMUL_MODE_PROT16:
  1854. case X86EMUL_MODE_PROT32:
  1855. case X86EMUL_MODE_PROT64:
  1856. default:
  1857. /* iret from protected mode unimplemented yet */
  1858. return X86EMUL_UNHANDLEABLE;
  1859. }
  1860. }
  1861. static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
  1862. {
  1863. int rc;
  1864. unsigned short sel;
  1865. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  1866. rc = load_segment_descriptor(ctxt, sel, VCPU_SREG_CS);
  1867. if (rc != X86EMUL_CONTINUE)
  1868. return rc;
  1869. ctxt->_eip = 0;
  1870. memcpy(&ctxt->_eip, ctxt->src.valptr, ctxt->op_bytes);
  1871. return X86EMUL_CONTINUE;
  1872. }
  1873. static int em_grp45(struct x86_emulate_ctxt *ctxt)
  1874. {
  1875. int rc = X86EMUL_CONTINUE;
  1876. switch (ctxt->modrm_reg) {
  1877. case 2: /* call near abs */ {
  1878. long int old_eip;
  1879. old_eip = ctxt->_eip;
  1880. ctxt->_eip = ctxt->src.val;
  1881. ctxt->src.val = old_eip;
  1882. rc = em_push(ctxt);
  1883. break;
  1884. }
  1885. case 4: /* jmp abs */
  1886. ctxt->_eip = ctxt->src.val;
  1887. break;
  1888. case 5: /* jmp far */
  1889. rc = em_jmp_far(ctxt);
  1890. break;
  1891. case 6: /* push */
  1892. rc = em_push(ctxt);
  1893. break;
  1894. }
  1895. return rc;
  1896. }
  1897. static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
  1898. {
  1899. u64 old = ctxt->dst.orig_val64;
  1900. if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
  1901. ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
  1902. *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
  1903. *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
  1904. ctxt->eflags &= ~EFLG_ZF;
  1905. } else {
  1906. ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
  1907. (u32) reg_read(ctxt, VCPU_REGS_RBX);
  1908. ctxt->eflags |= EFLG_ZF;
  1909. }
  1910. return X86EMUL_CONTINUE;
  1911. }
  1912. static int em_ret(struct x86_emulate_ctxt *ctxt)
  1913. {
  1914. ctxt->dst.type = OP_REG;
  1915. ctxt->dst.addr.reg = &ctxt->_eip;
  1916. ctxt->dst.bytes = ctxt->op_bytes;
  1917. return em_pop(ctxt);
  1918. }
  1919. static int em_ret_far(struct x86_emulate_ctxt *ctxt)
  1920. {
  1921. int rc;
  1922. unsigned long cs;
  1923. rc = emulate_pop(ctxt, &ctxt->_eip, ctxt->op_bytes);
  1924. if (rc != X86EMUL_CONTINUE)
  1925. return rc;
  1926. if (ctxt->op_bytes == 4)
  1927. ctxt->_eip = (u32)ctxt->_eip;
  1928. rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
  1929. if (rc != X86EMUL_CONTINUE)
  1930. return rc;
  1931. rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
  1932. return rc;
  1933. }
  1934. static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
  1935. {
  1936. /* Save real source value, then compare EAX against destination. */
  1937. ctxt->src.orig_val = ctxt->src.val;
  1938. ctxt->src.val = reg_read(ctxt, VCPU_REGS_RAX);
  1939. fastop(ctxt, em_cmp);
  1940. if (ctxt->eflags & EFLG_ZF) {
  1941. /* Success: write back to memory. */
  1942. ctxt->dst.val = ctxt->src.orig_val;
  1943. } else {
  1944. /* Failure: write the value we saw to EAX. */
  1945. ctxt->dst.type = OP_REG;
  1946. ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  1947. }
  1948. return X86EMUL_CONTINUE;
  1949. }
  1950. static int em_lseg(struct x86_emulate_ctxt *ctxt)
  1951. {
  1952. int seg = ctxt->src2.val;
  1953. unsigned short sel;
  1954. int rc;
  1955. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  1956. rc = load_segment_descriptor(ctxt, sel, seg);
  1957. if (rc != X86EMUL_CONTINUE)
  1958. return rc;
  1959. ctxt->dst.val = ctxt->src.val;
  1960. return rc;
  1961. }
  1962. static void
  1963. setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
  1964. struct desc_struct *cs, struct desc_struct *ss)
  1965. {
  1966. cs->l = 0; /* will be adjusted later */
  1967. set_desc_base(cs, 0); /* flat segment */
  1968. cs->g = 1; /* 4kb granularity */
  1969. set_desc_limit(cs, 0xfffff); /* 4GB limit */
  1970. cs->type = 0x0b; /* Read, Execute, Accessed */
  1971. cs->s = 1;
  1972. cs->dpl = 0; /* will be adjusted later */
  1973. cs->p = 1;
  1974. cs->d = 1;
  1975. cs->avl = 0;
  1976. set_desc_base(ss, 0); /* flat segment */
  1977. set_desc_limit(ss, 0xfffff); /* 4GB limit */
  1978. ss->g = 1; /* 4kb granularity */
  1979. ss->s = 1;
  1980. ss->type = 0x03; /* Read/Write, Accessed */
  1981. ss->d = 1; /* 32bit stack segment */
  1982. ss->dpl = 0;
  1983. ss->p = 1;
  1984. ss->l = 0;
  1985. ss->avl = 0;
  1986. }
  1987. static bool vendor_intel(struct x86_emulate_ctxt *ctxt)
  1988. {
  1989. u32 eax, ebx, ecx, edx;
  1990. eax = ecx = 0;
  1991. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  1992. return ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx
  1993. && ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx
  1994. && edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx;
  1995. }
  1996. static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt)
  1997. {
  1998. const struct x86_emulate_ops *ops = ctxt->ops;
  1999. u32 eax, ebx, ecx, edx;
  2000. /*
  2001. * syscall should always be enabled in longmode - so only become
  2002. * vendor specific (cpuid) if other modes are active...
  2003. */
  2004. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2005. return true;
  2006. eax = 0x00000000;
  2007. ecx = 0x00000000;
  2008. ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  2009. /*
  2010. * Intel ("GenuineIntel")
  2011. * remark: Intel CPUs only support "syscall" in 64bit
  2012. * longmode. Also an 64bit guest with a
  2013. * 32bit compat-app running will #UD !! While this
  2014. * behaviour can be fixed (by emulating) into AMD
  2015. * response - CPUs of AMD can't behave like Intel.
  2016. */
  2017. if (ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx &&
  2018. ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx &&
  2019. edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx)
  2020. return false;
  2021. /* AMD ("AuthenticAMD") */
  2022. if (ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx &&
  2023. ecx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx &&
  2024. edx == X86EMUL_CPUID_VENDOR_AuthenticAMD_edx)
  2025. return true;
  2026. /* AMD ("AMDisbetter!") */
  2027. if (ebx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx &&
  2028. ecx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx &&
  2029. edx == X86EMUL_CPUID_VENDOR_AMDisbetterI_edx)
  2030. return true;
  2031. /* default: (not Intel, not AMD), apply Intel's stricter rules... */
  2032. return false;
  2033. }
  2034. static int em_syscall(struct x86_emulate_ctxt *ctxt)
  2035. {
  2036. const struct x86_emulate_ops *ops = ctxt->ops;
  2037. struct desc_struct cs, ss;
  2038. u64 msr_data;
  2039. u16 cs_sel, ss_sel;
  2040. u64 efer = 0;
  2041. /* syscall is not available in real mode */
  2042. if (ctxt->mode == X86EMUL_MODE_REAL ||
  2043. ctxt->mode == X86EMUL_MODE_VM86)
  2044. return emulate_ud(ctxt);
  2045. if (!(em_syscall_is_enabled(ctxt)))
  2046. return emulate_ud(ctxt);
  2047. ops->get_msr(ctxt, MSR_EFER, &efer);
  2048. setup_syscalls_segments(ctxt, &cs, &ss);
  2049. if (!(efer & EFER_SCE))
  2050. return emulate_ud(ctxt);
  2051. ops->get_msr(ctxt, MSR_STAR, &msr_data);
  2052. msr_data >>= 32;
  2053. cs_sel = (u16)(msr_data & 0xfffc);
  2054. ss_sel = (u16)(msr_data + 8);
  2055. if (efer & EFER_LMA) {
  2056. cs.d = 0;
  2057. cs.l = 1;
  2058. }
  2059. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2060. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2061. *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
  2062. if (efer & EFER_LMA) {
  2063. #ifdef CONFIG_X86_64
  2064. *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags & ~EFLG_RF;
  2065. ops->get_msr(ctxt,
  2066. ctxt->mode == X86EMUL_MODE_PROT64 ?
  2067. MSR_LSTAR : MSR_CSTAR, &msr_data);
  2068. ctxt->_eip = msr_data;
  2069. ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
  2070. ctxt->eflags &= ~(msr_data | EFLG_RF);
  2071. #endif
  2072. } else {
  2073. /* legacy mode */
  2074. ops->get_msr(ctxt, MSR_STAR, &msr_data);
  2075. ctxt->_eip = (u32)msr_data;
  2076. ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF);
  2077. }
  2078. return X86EMUL_CONTINUE;
  2079. }
  2080. static int em_sysenter(struct x86_emulate_ctxt *ctxt)
  2081. {
  2082. const struct x86_emulate_ops *ops = ctxt->ops;
  2083. struct desc_struct cs, ss;
  2084. u64 msr_data;
  2085. u16 cs_sel, ss_sel;
  2086. u64 efer = 0;
  2087. ops->get_msr(ctxt, MSR_EFER, &efer);
  2088. /* inject #GP if in real mode */
  2089. if (ctxt->mode == X86EMUL_MODE_REAL)
  2090. return emulate_gp(ctxt, 0);
  2091. /*
  2092. * Not recognized on AMD in compat mode (but is recognized in legacy
  2093. * mode).
  2094. */
  2095. if ((ctxt->mode == X86EMUL_MODE_PROT32) && (efer & EFER_LMA)
  2096. && !vendor_intel(ctxt))
  2097. return emulate_ud(ctxt);
  2098. /* XXX sysenter/sysexit have not been tested in 64bit mode.
  2099. * Therefore, we inject an #UD.
  2100. */
  2101. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2102. return emulate_ud(ctxt);
  2103. setup_syscalls_segments(ctxt, &cs, &ss);
  2104. ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
  2105. switch (ctxt->mode) {
  2106. case X86EMUL_MODE_PROT32:
  2107. if ((msr_data & 0xfffc) == 0x0)
  2108. return emulate_gp(ctxt, 0);
  2109. break;
  2110. case X86EMUL_MODE_PROT64:
  2111. if (msr_data == 0x0)
  2112. return emulate_gp(ctxt, 0);
  2113. break;
  2114. default:
  2115. break;
  2116. }
  2117. ctxt->eflags &= ~(EFLG_VM | EFLG_IF | EFLG_RF);
  2118. cs_sel = (u16)msr_data;
  2119. cs_sel &= ~SELECTOR_RPL_MASK;
  2120. ss_sel = cs_sel + 8;
  2121. ss_sel &= ~SELECTOR_RPL_MASK;
  2122. if (ctxt->mode == X86EMUL_MODE_PROT64 || (efer & EFER_LMA)) {
  2123. cs.d = 0;
  2124. cs.l = 1;
  2125. }
  2126. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2127. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2128. ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
  2129. ctxt->_eip = msr_data;
  2130. ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
  2131. *reg_write(ctxt, VCPU_REGS_RSP) = msr_data;
  2132. return X86EMUL_CONTINUE;
  2133. }
  2134. static int em_sysexit(struct x86_emulate_ctxt *ctxt)
  2135. {
  2136. const struct x86_emulate_ops *ops = ctxt->ops;
  2137. struct desc_struct cs, ss;
  2138. u64 msr_data;
  2139. int usermode;
  2140. u16 cs_sel = 0, ss_sel = 0;
  2141. /* inject #GP if in real mode or Virtual 8086 mode */
  2142. if (ctxt->mode == X86EMUL_MODE_REAL ||
  2143. ctxt->mode == X86EMUL_MODE_VM86)
  2144. return emulate_gp(ctxt, 0);
  2145. setup_syscalls_segments(ctxt, &cs, &ss);
  2146. if ((ctxt->rex_prefix & 0x8) != 0x0)
  2147. usermode = X86EMUL_MODE_PROT64;
  2148. else
  2149. usermode = X86EMUL_MODE_PROT32;
  2150. cs.dpl = 3;
  2151. ss.dpl = 3;
  2152. ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
  2153. switch (usermode) {
  2154. case X86EMUL_MODE_PROT32:
  2155. cs_sel = (u16)(msr_data + 16);
  2156. if ((msr_data & 0xfffc) == 0x0)
  2157. return emulate_gp(ctxt, 0);
  2158. ss_sel = (u16)(msr_data + 24);
  2159. break;
  2160. case X86EMUL_MODE_PROT64:
  2161. cs_sel = (u16)(msr_data + 32);
  2162. if (msr_data == 0x0)
  2163. return emulate_gp(ctxt, 0);
  2164. ss_sel = cs_sel + 8;
  2165. cs.d = 0;
  2166. cs.l = 1;
  2167. break;
  2168. }
  2169. cs_sel |= SELECTOR_RPL_MASK;
  2170. ss_sel |= SELECTOR_RPL_MASK;
  2171. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2172. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2173. ctxt->_eip = reg_read(ctxt, VCPU_REGS_RDX);
  2174. *reg_write(ctxt, VCPU_REGS_RSP) = reg_read(ctxt, VCPU_REGS_RCX);
  2175. return X86EMUL_CONTINUE;
  2176. }
  2177. static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
  2178. {
  2179. int iopl;
  2180. if (ctxt->mode == X86EMUL_MODE_REAL)
  2181. return false;
  2182. if (ctxt->mode == X86EMUL_MODE_VM86)
  2183. return true;
  2184. iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  2185. return ctxt->ops->cpl(ctxt) > iopl;
  2186. }
  2187. static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
  2188. u16 port, u16 len)
  2189. {
  2190. const struct x86_emulate_ops *ops = ctxt->ops;
  2191. struct desc_struct tr_seg;
  2192. u32 base3;
  2193. int r;
  2194. u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
  2195. unsigned mask = (1 << len) - 1;
  2196. unsigned long base;
  2197. ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
  2198. if (!tr_seg.p)
  2199. return false;
  2200. if (desc_limit_scaled(&tr_seg) < 103)
  2201. return false;
  2202. base = get_desc_base(&tr_seg);
  2203. #ifdef CONFIG_X86_64
  2204. base |= ((u64)base3) << 32;
  2205. #endif
  2206. r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL);
  2207. if (r != X86EMUL_CONTINUE)
  2208. return false;
  2209. if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
  2210. return false;
  2211. r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL);
  2212. if (r != X86EMUL_CONTINUE)
  2213. return false;
  2214. if ((perm >> bit_idx) & mask)
  2215. return false;
  2216. return true;
  2217. }
  2218. static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
  2219. u16 port, u16 len)
  2220. {
  2221. if (ctxt->perm_ok)
  2222. return true;
  2223. if (emulator_bad_iopl(ctxt))
  2224. if (!emulator_io_port_access_allowed(ctxt, port, len))
  2225. return false;
  2226. ctxt->perm_ok = true;
  2227. return true;
  2228. }
  2229. static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
  2230. struct tss_segment_16 *tss)
  2231. {
  2232. tss->ip = ctxt->_eip;
  2233. tss->flag = ctxt->eflags;
  2234. tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
  2235. tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
  2236. tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
  2237. tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
  2238. tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
  2239. tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
  2240. tss->si = reg_read(ctxt, VCPU_REGS_RSI);
  2241. tss->di = reg_read(ctxt, VCPU_REGS_RDI);
  2242. tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
  2243. tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
  2244. tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
  2245. tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
  2246. tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
  2247. }
  2248. static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
  2249. struct tss_segment_16 *tss)
  2250. {
  2251. int ret;
  2252. ctxt->_eip = tss->ip;
  2253. ctxt->eflags = tss->flag | 2;
  2254. *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
  2255. *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
  2256. *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
  2257. *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
  2258. *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
  2259. *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
  2260. *reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
  2261. *reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
  2262. /*
  2263. * SDM says that segment selectors are loaded before segment
  2264. * descriptors
  2265. */
  2266. set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
  2267. set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
  2268. set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
  2269. set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
  2270. set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
  2271. /*
  2272. * Now load segment descriptors. If fault happens at this stage
  2273. * it is handled in a context of new task
  2274. */
  2275. ret = load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR);
  2276. if (ret != X86EMUL_CONTINUE)
  2277. return ret;
  2278. ret = load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES);
  2279. if (ret != X86EMUL_CONTINUE)
  2280. return ret;
  2281. ret = load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS);
  2282. if (ret != X86EMUL_CONTINUE)
  2283. return ret;
  2284. ret = load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS);
  2285. if (ret != X86EMUL_CONTINUE)
  2286. return ret;
  2287. ret = load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS);
  2288. if (ret != X86EMUL_CONTINUE)
  2289. return ret;
  2290. return X86EMUL_CONTINUE;
  2291. }
  2292. static int task_switch_16(struct x86_emulate_ctxt *ctxt,
  2293. u16 tss_selector, u16 old_tss_sel,
  2294. ulong old_tss_base, struct desc_struct *new_desc)
  2295. {
  2296. const struct x86_emulate_ops *ops = ctxt->ops;
  2297. struct tss_segment_16 tss_seg;
  2298. int ret;
  2299. u32 new_tss_base = get_desc_base(new_desc);
  2300. ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
  2301. &ctxt->exception);
  2302. if (ret != X86EMUL_CONTINUE)
  2303. /* FIXME: need to provide precise fault address */
  2304. return ret;
  2305. save_state_to_tss16(ctxt, &tss_seg);
  2306. ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
  2307. &ctxt->exception);
  2308. if (ret != X86EMUL_CONTINUE)
  2309. /* FIXME: need to provide precise fault address */
  2310. return ret;
  2311. ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
  2312. &ctxt->exception);
  2313. if (ret != X86EMUL_CONTINUE)
  2314. /* FIXME: need to provide precise fault address */
  2315. return ret;
  2316. if (old_tss_sel != 0xffff) {
  2317. tss_seg.prev_task_link = old_tss_sel;
  2318. ret = ops->write_std(ctxt, new_tss_base,
  2319. &tss_seg.prev_task_link,
  2320. sizeof tss_seg.prev_task_link,
  2321. &ctxt->exception);
  2322. if (ret != X86EMUL_CONTINUE)
  2323. /* FIXME: need to provide precise fault address */
  2324. return ret;
  2325. }
  2326. return load_state_from_tss16(ctxt, &tss_seg);
  2327. }
  2328. static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
  2329. struct tss_segment_32 *tss)
  2330. {
  2331. tss->cr3 = ctxt->ops->get_cr(ctxt, 3);
  2332. tss->eip = ctxt->_eip;
  2333. tss->eflags = ctxt->eflags;
  2334. tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
  2335. tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
  2336. tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
  2337. tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
  2338. tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
  2339. tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
  2340. tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
  2341. tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
  2342. tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
  2343. tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
  2344. tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
  2345. tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
  2346. tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
  2347. tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
  2348. tss->ldt_selector = get_segment_selector(ctxt, VCPU_SREG_LDTR);
  2349. }
  2350. static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
  2351. struct tss_segment_32 *tss)
  2352. {
  2353. int ret;
  2354. if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
  2355. return emulate_gp(ctxt, 0);
  2356. ctxt->_eip = tss->eip;
  2357. ctxt->eflags = tss->eflags | 2;
  2358. /* General purpose registers */
  2359. *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
  2360. *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
  2361. *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
  2362. *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
  2363. *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
  2364. *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
  2365. *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
  2366. *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
  2367. /*
  2368. * SDM says that segment selectors are loaded before segment
  2369. * descriptors
  2370. */
  2371. set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
  2372. set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
  2373. set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
  2374. set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
  2375. set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
  2376. set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
  2377. set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
  2378. /*
  2379. * If we're switching between Protected Mode and VM86, we need to make
  2380. * sure to update the mode before loading the segment descriptors so
  2381. * that the selectors are interpreted correctly.
  2382. *
  2383. * Need to get rflags to the vcpu struct immediately because it
  2384. * influences the CPL which is checked at least when loading the segment
  2385. * descriptors and when pushing an error code to the new kernel stack.
  2386. *
  2387. * TODO Introduce a separate ctxt->ops->set_cpl callback
  2388. */
  2389. if (ctxt->eflags & X86_EFLAGS_VM)
  2390. ctxt->mode = X86EMUL_MODE_VM86;
  2391. else
  2392. ctxt->mode = X86EMUL_MODE_PROT32;
  2393. ctxt->ops->set_rflags(ctxt, ctxt->eflags);
  2394. /*
  2395. * Now load segment descriptors. If fault happenes at this stage
  2396. * it is handled in a context of new task
  2397. */
  2398. ret = load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
  2399. if (ret != X86EMUL_CONTINUE)
  2400. return ret;
  2401. ret = load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES);
  2402. if (ret != X86EMUL_CONTINUE)
  2403. return ret;
  2404. ret = load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS);
  2405. if (ret != X86EMUL_CONTINUE)
  2406. return ret;
  2407. ret = load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS);
  2408. if (ret != X86EMUL_CONTINUE)
  2409. return ret;
  2410. ret = load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS);
  2411. if (ret != X86EMUL_CONTINUE)
  2412. return ret;
  2413. ret = load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS);
  2414. if (ret != X86EMUL_CONTINUE)
  2415. return ret;
  2416. ret = load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS);
  2417. if (ret != X86EMUL_CONTINUE)
  2418. return ret;
  2419. return X86EMUL_CONTINUE;
  2420. }
  2421. static int task_switch_32(struct x86_emulate_ctxt *ctxt,
  2422. u16 tss_selector, u16 old_tss_sel,
  2423. ulong old_tss_base, struct desc_struct *new_desc)
  2424. {
  2425. const struct x86_emulate_ops *ops = ctxt->ops;
  2426. struct tss_segment_32 tss_seg;
  2427. int ret;
  2428. u32 new_tss_base = get_desc_base(new_desc);
  2429. ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
  2430. &ctxt->exception);
  2431. if (ret != X86EMUL_CONTINUE)
  2432. /* FIXME: need to provide precise fault address */
  2433. return ret;
  2434. save_state_to_tss32(ctxt, &tss_seg);
  2435. ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
  2436. &ctxt->exception);
  2437. if (ret != X86EMUL_CONTINUE)
  2438. /* FIXME: need to provide precise fault address */
  2439. return ret;
  2440. ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
  2441. &ctxt->exception);
  2442. if (ret != X86EMUL_CONTINUE)
  2443. /* FIXME: need to provide precise fault address */
  2444. return ret;
  2445. if (old_tss_sel != 0xffff) {
  2446. tss_seg.prev_task_link = old_tss_sel;
  2447. ret = ops->write_std(ctxt, new_tss_base,
  2448. &tss_seg.prev_task_link,
  2449. sizeof tss_seg.prev_task_link,
  2450. &ctxt->exception);
  2451. if (ret != X86EMUL_CONTINUE)
  2452. /* FIXME: need to provide precise fault address */
  2453. return ret;
  2454. }
  2455. return load_state_from_tss32(ctxt, &tss_seg);
  2456. }
  2457. static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
  2458. u16 tss_selector, int idt_index, int reason,
  2459. bool has_error_code, u32 error_code)
  2460. {
  2461. const struct x86_emulate_ops *ops = ctxt->ops;
  2462. struct desc_struct curr_tss_desc, next_tss_desc;
  2463. int ret;
  2464. u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
  2465. ulong old_tss_base =
  2466. ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
  2467. u32 desc_limit;
  2468. ulong desc_addr;
  2469. /* FIXME: old_tss_base == ~0 ? */
  2470. ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
  2471. if (ret != X86EMUL_CONTINUE)
  2472. return ret;
  2473. ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
  2474. if (ret != X86EMUL_CONTINUE)
  2475. return ret;
  2476. /* FIXME: check that next_tss_desc is tss */
  2477. /*
  2478. * Check privileges. The three cases are task switch caused by...
  2479. *
  2480. * 1. jmp/call/int to task gate: Check against DPL of the task gate
  2481. * 2. Exception/IRQ/iret: No check is performed
  2482. * 3. jmp/call to TSS: Check against DPL of the TSS
  2483. */
  2484. if (reason == TASK_SWITCH_GATE) {
  2485. if (idt_index != -1) {
  2486. /* Software interrupts */
  2487. struct desc_struct task_gate_desc;
  2488. int dpl;
  2489. ret = read_interrupt_descriptor(ctxt, idt_index,
  2490. &task_gate_desc);
  2491. if (ret != X86EMUL_CONTINUE)
  2492. return ret;
  2493. dpl = task_gate_desc.dpl;
  2494. if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
  2495. return emulate_gp(ctxt, (idt_index << 3) | 0x2);
  2496. }
  2497. } else if (reason != TASK_SWITCH_IRET) {
  2498. int dpl = next_tss_desc.dpl;
  2499. if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
  2500. return emulate_gp(ctxt, tss_selector);
  2501. }
  2502. desc_limit = desc_limit_scaled(&next_tss_desc);
  2503. if (!next_tss_desc.p ||
  2504. ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
  2505. desc_limit < 0x2b)) {
  2506. emulate_ts(ctxt, tss_selector & 0xfffc);
  2507. return X86EMUL_PROPAGATE_FAULT;
  2508. }
  2509. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  2510. curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
  2511. write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
  2512. }
  2513. if (reason == TASK_SWITCH_IRET)
  2514. ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
  2515. /* set back link to prev task only if NT bit is set in eflags
  2516. note that old_tss_sel is not used after this point */
  2517. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  2518. old_tss_sel = 0xffff;
  2519. if (next_tss_desc.type & 8)
  2520. ret = task_switch_32(ctxt, tss_selector, old_tss_sel,
  2521. old_tss_base, &next_tss_desc);
  2522. else
  2523. ret = task_switch_16(ctxt, tss_selector, old_tss_sel,
  2524. old_tss_base, &next_tss_desc);
  2525. if (ret != X86EMUL_CONTINUE)
  2526. return ret;
  2527. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
  2528. ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
  2529. if (reason != TASK_SWITCH_IRET) {
  2530. next_tss_desc.type |= (1 << 1); /* set busy flag */
  2531. write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
  2532. }
  2533. ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
  2534. ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
  2535. if (has_error_code) {
  2536. ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
  2537. ctxt->lock_prefix = 0;
  2538. ctxt->src.val = (unsigned long) error_code;
  2539. ret = em_push(ctxt);
  2540. }
  2541. return ret;
  2542. }
  2543. int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
  2544. u16 tss_selector, int idt_index, int reason,
  2545. bool has_error_code, u32 error_code)
  2546. {
  2547. int rc;
  2548. invalidate_registers(ctxt);
  2549. ctxt->_eip = ctxt->eip;
  2550. ctxt->dst.type = OP_NONE;
  2551. rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
  2552. has_error_code, error_code);
  2553. if (rc == X86EMUL_CONTINUE) {
  2554. ctxt->eip = ctxt->_eip;
  2555. writeback_registers(ctxt);
  2556. }
  2557. return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
  2558. }
  2559. static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
  2560. struct operand *op)
  2561. {
  2562. int df = (ctxt->eflags & EFLG_DF) ? -op->count : op->count;
  2563. register_address_increment(ctxt, reg_rmw(ctxt, reg), df * op->bytes);
  2564. op->addr.mem.ea = register_address(ctxt, reg_read(ctxt, reg));
  2565. }
  2566. static int em_das(struct x86_emulate_ctxt *ctxt)
  2567. {
  2568. u8 al, old_al;
  2569. bool af, cf, old_cf;
  2570. cf = ctxt->eflags & X86_EFLAGS_CF;
  2571. al = ctxt->dst.val;
  2572. old_al = al;
  2573. old_cf = cf;
  2574. cf = false;
  2575. af = ctxt->eflags & X86_EFLAGS_AF;
  2576. if ((al & 0x0f) > 9 || af) {
  2577. al -= 6;
  2578. cf = old_cf | (al >= 250);
  2579. af = true;
  2580. } else {
  2581. af = false;
  2582. }
  2583. if (old_al > 0x99 || old_cf) {
  2584. al -= 0x60;
  2585. cf = true;
  2586. }
  2587. ctxt->dst.val = al;
  2588. /* Set PF, ZF, SF */
  2589. ctxt->src.type = OP_IMM;
  2590. ctxt->src.val = 0;
  2591. ctxt->src.bytes = 1;
  2592. fastop(ctxt, em_or);
  2593. ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
  2594. if (cf)
  2595. ctxt->eflags |= X86_EFLAGS_CF;
  2596. if (af)
  2597. ctxt->eflags |= X86_EFLAGS_AF;
  2598. return X86EMUL_CONTINUE;
  2599. }
  2600. static int em_aam(struct x86_emulate_ctxt *ctxt)
  2601. {
  2602. u8 al, ah;
  2603. if (ctxt->src.val == 0)
  2604. return emulate_de(ctxt);
  2605. al = ctxt->dst.val & 0xff;
  2606. ah = al / ctxt->src.val;
  2607. al %= ctxt->src.val;
  2608. ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
  2609. /* Set PF, ZF, SF */
  2610. ctxt->src.type = OP_IMM;
  2611. ctxt->src.val = 0;
  2612. ctxt->src.bytes = 1;
  2613. fastop(ctxt, em_or);
  2614. return X86EMUL_CONTINUE;
  2615. }
  2616. static int em_aad(struct x86_emulate_ctxt *ctxt)
  2617. {
  2618. u8 al = ctxt->dst.val & 0xff;
  2619. u8 ah = (ctxt->dst.val >> 8) & 0xff;
  2620. al = (al + (ah * ctxt->src.val)) & 0xff;
  2621. ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
  2622. /* Set PF, ZF, SF */
  2623. ctxt->src.type = OP_IMM;
  2624. ctxt->src.val = 0;
  2625. ctxt->src.bytes = 1;
  2626. fastop(ctxt, em_or);
  2627. return X86EMUL_CONTINUE;
  2628. }
  2629. static int em_call(struct x86_emulate_ctxt *ctxt)
  2630. {
  2631. long rel = ctxt->src.val;
  2632. ctxt->src.val = (unsigned long)ctxt->_eip;
  2633. jmp_rel(ctxt, rel);
  2634. return em_push(ctxt);
  2635. }
  2636. static int em_call_far(struct x86_emulate_ctxt *ctxt)
  2637. {
  2638. u16 sel, old_cs;
  2639. ulong old_eip;
  2640. int rc;
  2641. old_cs = get_segment_selector(ctxt, VCPU_SREG_CS);
  2642. old_eip = ctxt->_eip;
  2643. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  2644. if (load_segment_descriptor(ctxt, sel, VCPU_SREG_CS))
  2645. return X86EMUL_CONTINUE;
  2646. ctxt->_eip = 0;
  2647. memcpy(&ctxt->_eip, ctxt->src.valptr, ctxt->op_bytes);
  2648. ctxt->src.val = old_cs;
  2649. rc = em_push(ctxt);
  2650. if (rc != X86EMUL_CONTINUE)
  2651. return rc;
  2652. ctxt->src.val = old_eip;
  2653. return em_push(ctxt);
  2654. }
  2655. static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
  2656. {
  2657. int rc;
  2658. ctxt->dst.type = OP_REG;
  2659. ctxt->dst.addr.reg = &ctxt->_eip;
  2660. ctxt->dst.bytes = ctxt->op_bytes;
  2661. rc = emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
  2662. if (rc != X86EMUL_CONTINUE)
  2663. return rc;
  2664. rsp_increment(ctxt, ctxt->src.val);
  2665. return X86EMUL_CONTINUE;
  2666. }
  2667. static int em_xchg(struct x86_emulate_ctxt *ctxt)
  2668. {
  2669. /* Write back the register source. */
  2670. ctxt->src.val = ctxt->dst.val;
  2671. write_register_operand(&ctxt->src);
  2672. /* Write back the memory destination with implicit LOCK prefix. */
  2673. ctxt->dst.val = ctxt->src.orig_val;
  2674. ctxt->lock_prefix = 1;
  2675. return X86EMUL_CONTINUE;
  2676. }
  2677. static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
  2678. {
  2679. ctxt->dst.val = ctxt->src2.val;
  2680. return fastop(ctxt, em_imul);
  2681. }
  2682. static int em_cwd(struct x86_emulate_ctxt *ctxt)
  2683. {
  2684. ctxt->dst.type = OP_REG;
  2685. ctxt->dst.bytes = ctxt->src.bytes;
  2686. ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  2687. ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
  2688. return X86EMUL_CONTINUE;
  2689. }
  2690. static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
  2691. {
  2692. u64 tsc = 0;
  2693. ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
  2694. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
  2695. *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
  2696. return X86EMUL_CONTINUE;
  2697. }
  2698. static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
  2699. {
  2700. u64 pmc;
  2701. if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
  2702. return emulate_gp(ctxt, 0);
  2703. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
  2704. *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
  2705. return X86EMUL_CONTINUE;
  2706. }
  2707. static int em_mov(struct x86_emulate_ctxt *ctxt)
  2708. {
  2709. memcpy(ctxt->dst.valptr, ctxt->src.valptr, ctxt->op_bytes);
  2710. return X86EMUL_CONTINUE;
  2711. }
  2712. static int em_cr_write(struct x86_emulate_ctxt *ctxt)
  2713. {
  2714. if (ctxt->ops->set_cr(ctxt, ctxt->modrm_reg, ctxt->src.val))
  2715. return emulate_gp(ctxt, 0);
  2716. /* Disable writeback. */
  2717. ctxt->dst.type = OP_NONE;
  2718. return X86EMUL_CONTINUE;
  2719. }
  2720. static int em_dr_write(struct x86_emulate_ctxt *ctxt)
  2721. {
  2722. unsigned long val;
  2723. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2724. val = ctxt->src.val & ~0ULL;
  2725. else
  2726. val = ctxt->src.val & ~0U;
  2727. /* #UD condition is already handled. */
  2728. if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
  2729. return emulate_gp(ctxt, 0);
  2730. /* Disable writeback. */
  2731. ctxt->dst.type = OP_NONE;
  2732. return X86EMUL_CONTINUE;
  2733. }
  2734. static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
  2735. {
  2736. u64 msr_data;
  2737. msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
  2738. | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
  2739. if (ctxt->ops->set_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), msr_data))
  2740. return emulate_gp(ctxt, 0);
  2741. return X86EMUL_CONTINUE;
  2742. }
  2743. static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
  2744. {
  2745. u64 msr_data;
  2746. if (ctxt->ops->get_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &msr_data))
  2747. return emulate_gp(ctxt, 0);
  2748. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
  2749. *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
  2750. return X86EMUL_CONTINUE;
  2751. }
  2752. static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
  2753. {
  2754. if (ctxt->modrm_reg > VCPU_SREG_GS)
  2755. return emulate_ud(ctxt);
  2756. ctxt->dst.val = get_segment_selector(ctxt, ctxt->modrm_reg);
  2757. return X86EMUL_CONTINUE;
  2758. }
  2759. static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
  2760. {
  2761. u16 sel = ctxt->src.val;
  2762. if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
  2763. return emulate_ud(ctxt);
  2764. if (ctxt->modrm_reg == VCPU_SREG_SS)
  2765. ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
  2766. /* Disable writeback. */
  2767. ctxt->dst.type = OP_NONE;
  2768. return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
  2769. }
  2770. static int em_lldt(struct x86_emulate_ctxt *ctxt)
  2771. {
  2772. u16 sel = ctxt->src.val;
  2773. /* Disable writeback. */
  2774. ctxt->dst.type = OP_NONE;
  2775. return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
  2776. }
  2777. static int em_ltr(struct x86_emulate_ctxt *ctxt)
  2778. {
  2779. u16 sel = ctxt->src.val;
  2780. /* Disable writeback. */
  2781. ctxt->dst.type = OP_NONE;
  2782. return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
  2783. }
  2784. static int em_invlpg(struct x86_emulate_ctxt *ctxt)
  2785. {
  2786. int rc;
  2787. ulong linear;
  2788. rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear);
  2789. if (rc == X86EMUL_CONTINUE)
  2790. ctxt->ops->invlpg(ctxt, linear);
  2791. /* Disable writeback. */
  2792. ctxt->dst.type = OP_NONE;
  2793. return X86EMUL_CONTINUE;
  2794. }
  2795. static int em_clts(struct x86_emulate_ctxt *ctxt)
  2796. {
  2797. ulong cr0;
  2798. cr0 = ctxt->ops->get_cr(ctxt, 0);
  2799. cr0 &= ~X86_CR0_TS;
  2800. ctxt->ops->set_cr(ctxt, 0, cr0);
  2801. return X86EMUL_CONTINUE;
  2802. }
  2803. static int em_vmcall(struct x86_emulate_ctxt *ctxt)
  2804. {
  2805. int rc;
  2806. if (ctxt->modrm_mod != 3 || ctxt->modrm_rm != 1)
  2807. return X86EMUL_UNHANDLEABLE;
  2808. rc = ctxt->ops->fix_hypercall(ctxt);
  2809. if (rc != X86EMUL_CONTINUE)
  2810. return rc;
  2811. /* Let the processor re-execute the fixed hypercall */
  2812. ctxt->_eip = ctxt->eip;
  2813. /* Disable writeback. */
  2814. ctxt->dst.type = OP_NONE;
  2815. return X86EMUL_CONTINUE;
  2816. }
  2817. static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
  2818. void (*get)(struct x86_emulate_ctxt *ctxt,
  2819. struct desc_ptr *ptr))
  2820. {
  2821. struct desc_ptr desc_ptr;
  2822. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2823. ctxt->op_bytes = 8;
  2824. get(ctxt, &desc_ptr);
  2825. if (ctxt->op_bytes == 2) {
  2826. ctxt->op_bytes = 4;
  2827. desc_ptr.address &= 0x00ffffff;
  2828. }
  2829. /* Disable writeback. */
  2830. ctxt->dst.type = OP_NONE;
  2831. return segmented_write(ctxt, ctxt->dst.addr.mem,
  2832. &desc_ptr, 2 + ctxt->op_bytes);
  2833. }
  2834. static int em_sgdt(struct x86_emulate_ctxt *ctxt)
  2835. {
  2836. return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
  2837. }
  2838. static int em_sidt(struct x86_emulate_ctxt *ctxt)
  2839. {
  2840. return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
  2841. }
  2842. static int em_lgdt(struct x86_emulate_ctxt *ctxt)
  2843. {
  2844. struct desc_ptr desc_ptr;
  2845. int rc;
  2846. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2847. ctxt->op_bytes = 8;
  2848. rc = read_descriptor(ctxt, ctxt->src.addr.mem,
  2849. &desc_ptr.size, &desc_ptr.address,
  2850. ctxt->op_bytes);
  2851. if (rc != X86EMUL_CONTINUE)
  2852. return rc;
  2853. ctxt->ops->set_gdt(ctxt, &desc_ptr);
  2854. /* Disable writeback. */
  2855. ctxt->dst.type = OP_NONE;
  2856. return X86EMUL_CONTINUE;
  2857. }
  2858. static int em_vmmcall(struct x86_emulate_ctxt *ctxt)
  2859. {
  2860. int rc;
  2861. rc = ctxt->ops->fix_hypercall(ctxt);
  2862. /* Disable writeback. */
  2863. ctxt->dst.type = OP_NONE;
  2864. return rc;
  2865. }
  2866. static int em_lidt(struct x86_emulate_ctxt *ctxt)
  2867. {
  2868. struct desc_ptr desc_ptr;
  2869. int rc;
  2870. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2871. ctxt->op_bytes = 8;
  2872. rc = read_descriptor(ctxt, ctxt->src.addr.mem,
  2873. &desc_ptr.size, &desc_ptr.address,
  2874. ctxt->op_bytes);
  2875. if (rc != X86EMUL_CONTINUE)
  2876. return rc;
  2877. ctxt->ops->set_idt(ctxt, &desc_ptr);
  2878. /* Disable writeback. */
  2879. ctxt->dst.type = OP_NONE;
  2880. return X86EMUL_CONTINUE;
  2881. }
  2882. static int em_smsw(struct x86_emulate_ctxt *ctxt)
  2883. {
  2884. ctxt->dst.bytes = 2;
  2885. ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
  2886. return X86EMUL_CONTINUE;
  2887. }
  2888. static int em_lmsw(struct x86_emulate_ctxt *ctxt)
  2889. {
  2890. ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
  2891. | (ctxt->src.val & 0x0f));
  2892. ctxt->dst.type = OP_NONE;
  2893. return X86EMUL_CONTINUE;
  2894. }
  2895. static int em_loop(struct x86_emulate_ctxt *ctxt)
  2896. {
  2897. register_address_increment(ctxt, reg_rmw(ctxt, VCPU_REGS_RCX), -1);
  2898. if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
  2899. (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
  2900. jmp_rel(ctxt, ctxt->src.val);
  2901. return X86EMUL_CONTINUE;
  2902. }
  2903. static int em_jcxz(struct x86_emulate_ctxt *ctxt)
  2904. {
  2905. if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
  2906. jmp_rel(ctxt, ctxt->src.val);
  2907. return X86EMUL_CONTINUE;
  2908. }
  2909. static int em_in(struct x86_emulate_ctxt *ctxt)
  2910. {
  2911. if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
  2912. &ctxt->dst.val))
  2913. return X86EMUL_IO_NEEDED;
  2914. return X86EMUL_CONTINUE;
  2915. }
  2916. static int em_out(struct x86_emulate_ctxt *ctxt)
  2917. {
  2918. ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
  2919. &ctxt->src.val, 1);
  2920. /* Disable writeback. */
  2921. ctxt->dst.type = OP_NONE;
  2922. return X86EMUL_CONTINUE;
  2923. }
  2924. static int em_cli(struct x86_emulate_ctxt *ctxt)
  2925. {
  2926. if (emulator_bad_iopl(ctxt))
  2927. return emulate_gp(ctxt, 0);
  2928. ctxt->eflags &= ~X86_EFLAGS_IF;
  2929. return X86EMUL_CONTINUE;
  2930. }
  2931. static int em_sti(struct x86_emulate_ctxt *ctxt)
  2932. {
  2933. if (emulator_bad_iopl(ctxt))
  2934. return emulate_gp(ctxt, 0);
  2935. ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
  2936. ctxt->eflags |= X86_EFLAGS_IF;
  2937. return X86EMUL_CONTINUE;
  2938. }
  2939. static int em_cpuid(struct x86_emulate_ctxt *ctxt)
  2940. {
  2941. u32 eax, ebx, ecx, edx;
  2942. eax = reg_read(ctxt, VCPU_REGS_RAX);
  2943. ecx = reg_read(ctxt, VCPU_REGS_RCX);
  2944. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  2945. *reg_write(ctxt, VCPU_REGS_RAX) = eax;
  2946. *reg_write(ctxt, VCPU_REGS_RBX) = ebx;
  2947. *reg_write(ctxt, VCPU_REGS_RCX) = ecx;
  2948. *reg_write(ctxt, VCPU_REGS_RDX) = edx;
  2949. return X86EMUL_CONTINUE;
  2950. }
  2951. static int em_lahf(struct x86_emulate_ctxt *ctxt)
  2952. {
  2953. *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
  2954. *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
  2955. return X86EMUL_CONTINUE;
  2956. }
  2957. static int em_bswap(struct x86_emulate_ctxt *ctxt)
  2958. {
  2959. switch (ctxt->op_bytes) {
  2960. #ifdef CONFIG_X86_64
  2961. case 8:
  2962. asm("bswap %0" : "+r"(ctxt->dst.val));
  2963. break;
  2964. #endif
  2965. default:
  2966. asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
  2967. break;
  2968. }
  2969. return X86EMUL_CONTINUE;
  2970. }
  2971. static bool valid_cr(int nr)
  2972. {
  2973. switch (nr) {
  2974. case 0:
  2975. case 2 ... 4:
  2976. case 8:
  2977. return true;
  2978. default:
  2979. return false;
  2980. }
  2981. }
  2982. static int check_cr_read(struct x86_emulate_ctxt *ctxt)
  2983. {
  2984. if (!valid_cr(ctxt->modrm_reg))
  2985. return emulate_ud(ctxt);
  2986. return X86EMUL_CONTINUE;
  2987. }
  2988. static int check_cr_write(struct x86_emulate_ctxt *ctxt)
  2989. {
  2990. u64 new_val = ctxt->src.val64;
  2991. int cr = ctxt->modrm_reg;
  2992. u64 efer = 0;
  2993. static u64 cr_reserved_bits[] = {
  2994. 0xffffffff00000000ULL,
  2995. 0, 0, 0, /* CR3 checked later */
  2996. CR4_RESERVED_BITS,
  2997. 0, 0, 0,
  2998. CR8_RESERVED_BITS,
  2999. };
  3000. if (!valid_cr(cr))
  3001. return emulate_ud(ctxt);
  3002. if (new_val & cr_reserved_bits[cr])
  3003. return emulate_gp(ctxt, 0);
  3004. switch (cr) {
  3005. case 0: {
  3006. u64 cr4;
  3007. if (((new_val & X86_CR0_PG) && !(new_val & X86_CR0_PE)) ||
  3008. ((new_val & X86_CR0_NW) && !(new_val & X86_CR0_CD)))
  3009. return emulate_gp(ctxt, 0);
  3010. cr4 = ctxt->ops->get_cr(ctxt, 4);
  3011. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3012. if ((new_val & X86_CR0_PG) && (efer & EFER_LME) &&
  3013. !(cr4 & X86_CR4_PAE))
  3014. return emulate_gp(ctxt, 0);
  3015. break;
  3016. }
  3017. case 3: {
  3018. u64 rsvd = 0;
  3019. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3020. if (efer & EFER_LMA)
  3021. rsvd = CR3_L_MODE_RESERVED_BITS;
  3022. else if (ctxt->ops->get_cr(ctxt, 4) & X86_CR4_PAE)
  3023. rsvd = CR3_PAE_RESERVED_BITS;
  3024. else if (ctxt->ops->get_cr(ctxt, 0) & X86_CR0_PG)
  3025. rsvd = CR3_NONPAE_RESERVED_BITS;
  3026. if (new_val & rsvd)
  3027. return emulate_gp(ctxt, 0);
  3028. break;
  3029. }
  3030. case 4: {
  3031. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3032. if ((efer & EFER_LMA) && !(new_val & X86_CR4_PAE))
  3033. return emulate_gp(ctxt, 0);
  3034. break;
  3035. }
  3036. }
  3037. return X86EMUL_CONTINUE;
  3038. }
  3039. static int check_dr7_gd(struct x86_emulate_ctxt *ctxt)
  3040. {
  3041. unsigned long dr7;
  3042. ctxt->ops->get_dr(ctxt, 7, &dr7);
  3043. /* Check if DR7.Global_Enable is set */
  3044. return dr7 & (1 << 13);
  3045. }
  3046. static int check_dr_read(struct x86_emulate_ctxt *ctxt)
  3047. {
  3048. int dr = ctxt->modrm_reg;
  3049. u64 cr4;
  3050. if (dr > 7)
  3051. return emulate_ud(ctxt);
  3052. cr4 = ctxt->ops->get_cr(ctxt, 4);
  3053. if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
  3054. return emulate_ud(ctxt);
  3055. if (check_dr7_gd(ctxt))
  3056. return emulate_db(ctxt);
  3057. return X86EMUL_CONTINUE;
  3058. }
  3059. static int check_dr_write(struct x86_emulate_ctxt *ctxt)
  3060. {
  3061. u64 new_val = ctxt->src.val64;
  3062. int dr = ctxt->modrm_reg;
  3063. if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
  3064. return emulate_gp(ctxt, 0);
  3065. return check_dr_read(ctxt);
  3066. }
  3067. static int check_svme(struct x86_emulate_ctxt *ctxt)
  3068. {
  3069. u64 efer;
  3070. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3071. if (!(efer & EFER_SVME))
  3072. return emulate_ud(ctxt);
  3073. return X86EMUL_CONTINUE;
  3074. }
  3075. static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
  3076. {
  3077. u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
  3078. /* Valid physical address? */
  3079. if (rax & 0xffff000000000000ULL)
  3080. return emulate_gp(ctxt, 0);
  3081. return check_svme(ctxt);
  3082. }
  3083. static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
  3084. {
  3085. u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
  3086. if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
  3087. return emulate_ud(ctxt);
  3088. return X86EMUL_CONTINUE;
  3089. }
  3090. static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
  3091. {
  3092. u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
  3093. u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
  3094. if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
  3095. (rcx > 3))
  3096. return emulate_gp(ctxt, 0);
  3097. return X86EMUL_CONTINUE;
  3098. }
  3099. static int check_perm_in(struct x86_emulate_ctxt *ctxt)
  3100. {
  3101. ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
  3102. if (!emulator_io_permited(ctxt, ctxt->src.val, ctxt->dst.bytes))
  3103. return emulate_gp(ctxt, 0);
  3104. return X86EMUL_CONTINUE;
  3105. }
  3106. static int check_perm_out(struct x86_emulate_ctxt *ctxt)
  3107. {
  3108. ctxt->src.bytes = min(ctxt->src.bytes, 4u);
  3109. if (!emulator_io_permited(ctxt, ctxt->dst.val, ctxt->src.bytes))
  3110. return emulate_gp(ctxt, 0);
  3111. return X86EMUL_CONTINUE;
  3112. }
  3113. #define D(_y) { .flags = (_y) }
  3114. #define DI(_y, _i) { .flags = (_y), .intercept = x86_intercept_##_i }
  3115. #define DIP(_y, _i, _p) { .flags = (_y), .intercept = x86_intercept_##_i, \
  3116. .check_perm = (_p) }
  3117. #define N D(NotImpl)
  3118. #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
  3119. #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
  3120. #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
  3121. #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
  3122. #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
  3123. #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
  3124. #define II(_f, _e, _i) \
  3125. { .flags = (_f), .u.execute = (_e), .intercept = x86_intercept_##_i }
  3126. #define IIP(_f, _e, _i, _p) \
  3127. { .flags = (_f), .u.execute = (_e), .intercept = x86_intercept_##_i, \
  3128. .check_perm = (_p) }
  3129. #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
  3130. #define D2bv(_f) D((_f) | ByteOp), D(_f)
  3131. #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
  3132. #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
  3133. #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
  3134. #define I2bvIP(_f, _e, _i, _p) \
  3135. IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
  3136. #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \
  3137. F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
  3138. F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
  3139. static const struct opcode group7_rm1[] = {
  3140. DI(SrcNone | Priv, monitor),
  3141. DI(SrcNone | Priv, mwait),
  3142. N, N, N, N, N, N,
  3143. };
  3144. static const struct opcode group7_rm3[] = {
  3145. DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
  3146. II(SrcNone | Prot | VendorSpecific, em_vmmcall, vmmcall),
  3147. DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
  3148. DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
  3149. DIP(SrcNone | Prot | Priv, stgi, check_svme),
  3150. DIP(SrcNone | Prot | Priv, clgi, check_svme),
  3151. DIP(SrcNone | Prot | Priv, skinit, check_svme),
  3152. DIP(SrcNone | Prot | Priv, invlpga, check_svme),
  3153. };
  3154. static const struct opcode group7_rm7[] = {
  3155. N,
  3156. DIP(SrcNone, rdtscp, check_rdtsc),
  3157. N, N, N, N, N, N,
  3158. };
  3159. static const struct opcode group1[] = {
  3160. F(Lock, em_add),
  3161. F(Lock | PageTable, em_or),
  3162. F(Lock, em_adc),
  3163. F(Lock, em_sbb),
  3164. F(Lock | PageTable, em_and),
  3165. F(Lock, em_sub),
  3166. F(Lock, em_xor),
  3167. F(NoWrite, em_cmp),
  3168. };
  3169. static const struct opcode group1A[] = {
  3170. I(DstMem | SrcNone | Mov | Stack, em_pop), N, N, N, N, N, N, N,
  3171. };
  3172. static const struct opcode group2[] = {
  3173. F(DstMem | ModRM, em_rol),
  3174. F(DstMem | ModRM, em_ror),
  3175. F(DstMem | ModRM, em_rcl),
  3176. F(DstMem | ModRM, em_rcr),
  3177. F(DstMem | ModRM, em_shl),
  3178. F(DstMem | ModRM, em_shr),
  3179. F(DstMem | ModRM, em_shl),
  3180. F(DstMem | ModRM, em_sar),
  3181. };
  3182. static const struct opcode group3[] = {
  3183. F(DstMem | SrcImm | NoWrite, em_test),
  3184. F(DstMem | SrcImm | NoWrite, em_test),
  3185. F(DstMem | SrcNone | Lock, em_not),
  3186. F(DstMem | SrcNone | Lock, em_neg),
  3187. F(DstXacc | Src2Mem, em_mul_ex),
  3188. F(DstXacc | Src2Mem, em_imul_ex),
  3189. F(DstXacc | Src2Mem, em_div_ex),
  3190. F(DstXacc | Src2Mem, em_idiv_ex),
  3191. };
  3192. static const struct opcode group4[] = {
  3193. F(ByteOp | DstMem | SrcNone | Lock, em_inc),
  3194. F(ByteOp | DstMem | SrcNone | Lock, em_dec),
  3195. N, N, N, N, N, N,
  3196. };
  3197. static const struct opcode group5[] = {
  3198. F(DstMem | SrcNone | Lock, em_inc),
  3199. F(DstMem | SrcNone | Lock, em_dec),
  3200. I(SrcMem | Stack, em_grp45),
  3201. I(SrcMemFAddr | ImplicitOps | Stack, em_call_far),
  3202. I(SrcMem | Stack, em_grp45),
  3203. I(SrcMemFAddr | ImplicitOps, em_grp45),
  3204. I(SrcMem | Stack, em_grp45), D(Undefined),
  3205. };
  3206. static const struct opcode group6[] = {
  3207. DI(Prot, sldt),
  3208. DI(Prot, str),
  3209. II(Prot | Priv | SrcMem16, em_lldt, lldt),
  3210. II(Prot | Priv | SrcMem16, em_ltr, ltr),
  3211. N, N, N, N,
  3212. };
  3213. static const struct group_dual group7 = { {
  3214. II(Mov | DstMem | Priv, em_sgdt, sgdt),
  3215. II(Mov | DstMem | Priv, em_sidt, sidt),
  3216. II(SrcMem | Priv, em_lgdt, lgdt),
  3217. II(SrcMem | Priv, em_lidt, lidt),
  3218. II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
  3219. II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
  3220. II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
  3221. }, {
  3222. I(SrcNone | Priv | VendorSpecific, em_vmcall),
  3223. EXT(0, group7_rm1),
  3224. N, EXT(0, group7_rm3),
  3225. II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
  3226. II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
  3227. EXT(0, group7_rm7),
  3228. } };
  3229. static const struct opcode group8[] = {
  3230. N, N, N, N,
  3231. F(DstMem | SrcImmByte | NoWrite, em_bt),
  3232. F(DstMem | SrcImmByte | Lock | PageTable, em_bts),
  3233. F(DstMem | SrcImmByte | Lock, em_btr),
  3234. F(DstMem | SrcImmByte | Lock | PageTable, em_btc),
  3235. };
  3236. static const struct group_dual group9 = { {
  3237. N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
  3238. }, {
  3239. N, N, N, N, N, N, N, N,
  3240. } };
  3241. static const struct opcode group11[] = {
  3242. I(DstMem | SrcImm | Mov | PageTable, em_mov),
  3243. X7(D(Undefined)),
  3244. };
  3245. static const struct gprefix pfx_0f_6f_0f_7f = {
  3246. I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
  3247. };
  3248. static const struct gprefix pfx_vmovntpx = {
  3249. I(0, em_mov), N, N, N,
  3250. };
  3251. static const struct escape escape_d9 = { {
  3252. N, N, N, N, N, N, N, I(DstMem, em_fnstcw),
  3253. }, {
  3254. /* 0xC0 - 0xC7 */
  3255. N, N, N, N, N, N, N, N,
  3256. /* 0xC8 - 0xCF */
  3257. N, N, N, N, N, N, N, N,
  3258. /* 0xD0 - 0xC7 */
  3259. N, N, N, N, N, N, N, N,
  3260. /* 0xD8 - 0xDF */
  3261. N, N, N, N, N, N, N, N,
  3262. /* 0xE0 - 0xE7 */
  3263. N, N, N, N, N, N, N, N,
  3264. /* 0xE8 - 0xEF */
  3265. N, N, N, N, N, N, N, N,
  3266. /* 0xF0 - 0xF7 */
  3267. N, N, N, N, N, N, N, N,
  3268. /* 0xF8 - 0xFF */
  3269. N, N, N, N, N, N, N, N,
  3270. } };
  3271. static const struct escape escape_db = { {
  3272. N, N, N, N, N, N, N, N,
  3273. }, {
  3274. /* 0xC0 - 0xC7 */
  3275. N, N, N, N, N, N, N, N,
  3276. /* 0xC8 - 0xCF */
  3277. N, N, N, N, N, N, N, N,
  3278. /* 0xD0 - 0xC7 */
  3279. N, N, N, N, N, N, N, N,
  3280. /* 0xD8 - 0xDF */
  3281. N, N, N, N, N, N, N, N,
  3282. /* 0xE0 - 0xE7 */
  3283. N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
  3284. /* 0xE8 - 0xEF */
  3285. N, N, N, N, N, N, N, N,
  3286. /* 0xF0 - 0xF7 */
  3287. N, N, N, N, N, N, N, N,
  3288. /* 0xF8 - 0xFF */
  3289. N, N, N, N, N, N, N, N,
  3290. } };
  3291. static const struct escape escape_dd = { {
  3292. N, N, N, N, N, N, N, I(DstMem, em_fnstsw),
  3293. }, {
  3294. /* 0xC0 - 0xC7 */
  3295. N, N, N, N, N, N, N, N,
  3296. /* 0xC8 - 0xCF */
  3297. N, N, N, N, N, N, N, N,
  3298. /* 0xD0 - 0xC7 */
  3299. N, N, N, N, N, N, N, N,
  3300. /* 0xD8 - 0xDF */
  3301. N, N, N, N, N, N, N, N,
  3302. /* 0xE0 - 0xE7 */
  3303. N, N, N, N, N, N, N, N,
  3304. /* 0xE8 - 0xEF */
  3305. N, N, N, N, N, N, N, N,
  3306. /* 0xF0 - 0xF7 */
  3307. N, N, N, N, N, N, N, N,
  3308. /* 0xF8 - 0xFF */
  3309. N, N, N, N, N, N, N, N,
  3310. } };
  3311. static const struct opcode opcode_table[256] = {
  3312. /* 0x00 - 0x07 */
  3313. F6ALU(Lock, em_add),
  3314. I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
  3315. I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
  3316. /* 0x08 - 0x0F */
  3317. F6ALU(Lock | PageTable, em_or),
  3318. I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
  3319. N,
  3320. /* 0x10 - 0x17 */
  3321. F6ALU(Lock, em_adc),
  3322. I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
  3323. I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
  3324. /* 0x18 - 0x1F */
  3325. F6ALU(Lock, em_sbb),
  3326. I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
  3327. I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
  3328. /* 0x20 - 0x27 */
  3329. F6ALU(Lock | PageTable, em_and), N, N,
  3330. /* 0x28 - 0x2F */
  3331. F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
  3332. /* 0x30 - 0x37 */
  3333. F6ALU(Lock, em_xor), N, N,
  3334. /* 0x38 - 0x3F */
  3335. F6ALU(NoWrite, em_cmp), N, N,
  3336. /* 0x40 - 0x4F */
  3337. X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
  3338. /* 0x50 - 0x57 */
  3339. X8(I(SrcReg | Stack, em_push)),
  3340. /* 0x58 - 0x5F */
  3341. X8(I(DstReg | Stack, em_pop)),
  3342. /* 0x60 - 0x67 */
  3343. I(ImplicitOps | Stack | No64, em_pusha),
  3344. I(ImplicitOps | Stack | No64, em_popa),
  3345. N, D(DstReg | SrcMem32 | ModRM | Mov) /* movsxd (x86/64) */ ,
  3346. N, N, N, N,
  3347. /* 0x68 - 0x6F */
  3348. I(SrcImm | Mov | Stack, em_push),
  3349. I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
  3350. I(SrcImmByte | Mov | Stack, em_push),
  3351. I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
  3352. I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
  3353. I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
  3354. /* 0x70 - 0x7F */
  3355. X16(D(SrcImmByte)),
  3356. /* 0x80 - 0x87 */
  3357. G(ByteOp | DstMem | SrcImm, group1),
  3358. G(DstMem | SrcImm, group1),
  3359. G(ByteOp | DstMem | SrcImm | No64, group1),
  3360. G(DstMem | SrcImmByte, group1),
  3361. F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
  3362. I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
  3363. /* 0x88 - 0x8F */
  3364. I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
  3365. I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
  3366. I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
  3367. D(ModRM | SrcMem | NoAccess | DstReg),
  3368. I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
  3369. G(0, group1A),
  3370. /* 0x90 - 0x97 */
  3371. DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
  3372. /* 0x98 - 0x9F */
  3373. D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
  3374. I(SrcImmFAddr | No64, em_call_far), N,
  3375. II(ImplicitOps | Stack, em_pushf, pushf),
  3376. II(ImplicitOps | Stack, em_popf, popf), N, I(ImplicitOps, em_lahf),
  3377. /* 0xA0 - 0xA7 */
  3378. I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
  3379. I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
  3380. I2bv(SrcSI | DstDI | Mov | String, em_mov),
  3381. F2bv(SrcSI | DstDI | String | NoWrite, em_cmp),
  3382. /* 0xA8 - 0xAF */
  3383. F2bv(DstAcc | SrcImm | NoWrite, em_test),
  3384. I2bv(SrcAcc | DstDI | Mov | String, em_mov),
  3385. I2bv(SrcSI | DstAcc | Mov | String, em_mov),
  3386. F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp),
  3387. /* 0xB0 - 0xB7 */
  3388. X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
  3389. /* 0xB8 - 0xBF */
  3390. X8(I(DstReg | SrcImm64 | Mov, em_mov)),
  3391. /* 0xC0 - 0xC7 */
  3392. G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
  3393. I(ImplicitOps | Stack | SrcImmU16, em_ret_near_imm),
  3394. I(ImplicitOps | Stack, em_ret),
  3395. I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
  3396. I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
  3397. G(ByteOp, group11), G(0, group11),
  3398. /* 0xC8 - 0xCF */
  3399. I(Stack | SrcImmU16 | Src2ImmByte, em_enter), I(Stack, em_leave),
  3400. N, I(ImplicitOps | Stack, em_ret_far),
  3401. D(ImplicitOps), DI(SrcImmByte, intn),
  3402. D(ImplicitOps | No64), II(ImplicitOps, em_iret, iret),
  3403. /* 0xD0 - 0xD7 */
  3404. G(Src2One | ByteOp, group2), G(Src2One, group2),
  3405. G(Src2CL | ByteOp, group2), G(Src2CL, group2),
  3406. I(DstAcc | SrcImmUByte | No64, em_aam),
  3407. I(DstAcc | SrcImmUByte | No64, em_aad),
  3408. F(DstAcc | ByteOp | No64, em_salc),
  3409. I(DstAcc | SrcXLat | ByteOp, em_mov),
  3410. /* 0xD8 - 0xDF */
  3411. N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
  3412. /* 0xE0 - 0xE7 */
  3413. X3(I(SrcImmByte, em_loop)),
  3414. I(SrcImmByte, em_jcxz),
  3415. I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
  3416. I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
  3417. /* 0xE8 - 0xEF */
  3418. I(SrcImm | Stack, em_call), D(SrcImm | ImplicitOps),
  3419. I(SrcImmFAddr | No64, em_jmp_far), D(SrcImmByte | ImplicitOps),
  3420. I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
  3421. I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
  3422. /* 0xF0 - 0xF7 */
  3423. N, DI(ImplicitOps, icebp), N, N,
  3424. DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
  3425. G(ByteOp, group3), G(0, group3),
  3426. /* 0xF8 - 0xFF */
  3427. D(ImplicitOps), D(ImplicitOps),
  3428. I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
  3429. D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
  3430. };
  3431. static const struct opcode twobyte_table[256] = {
  3432. /* 0x00 - 0x0F */
  3433. G(0, group6), GD(0, &group7), N, N,
  3434. N, I(ImplicitOps | VendorSpecific, em_syscall),
  3435. II(ImplicitOps | Priv, em_clts, clts), N,
  3436. DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
  3437. N, D(ImplicitOps | ModRM), N, N,
  3438. /* 0x10 - 0x1F */
  3439. N, N, N, N, N, N, N, N, D(ImplicitOps | ModRM), N, N, N, N, N, N, N,
  3440. /* 0x20 - 0x2F */
  3441. DIP(ModRM | DstMem | Priv | Op3264, cr_read, check_cr_read),
  3442. DIP(ModRM | DstMem | Priv | Op3264, dr_read, check_dr_read),
  3443. IIP(ModRM | SrcMem | Priv | Op3264, em_cr_write, cr_write, check_cr_write),
  3444. IIP(ModRM | SrcMem | Priv | Op3264, em_dr_write, dr_write, check_dr_write),
  3445. N, N, N, N,
  3446. N, N, N, GP(ModRM | DstMem | SrcReg | Sse | Mov | Aligned, &pfx_vmovntpx),
  3447. N, N, N, N,
  3448. /* 0x30 - 0x3F */
  3449. II(ImplicitOps | Priv, em_wrmsr, wrmsr),
  3450. IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
  3451. II(ImplicitOps | Priv, em_rdmsr, rdmsr),
  3452. IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
  3453. I(ImplicitOps | VendorSpecific, em_sysenter),
  3454. I(ImplicitOps | Priv | VendorSpecific, em_sysexit),
  3455. N, N,
  3456. N, N, N, N, N, N, N, N,
  3457. /* 0x40 - 0x4F */
  3458. X16(D(DstReg | SrcMem | ModRM | Mov)),
  3459. /* 0x50 - 0x5F */
  3460. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  3461. /* 0x60 - 0x6F */
  3462. N, N, N, N,
  3463. N, N, N, N,
  3464. N, N, N, N,
  3465. N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
  3466. /* 0x70 - 0x7F */
  3467. N, N, N, N,
  3468. N, N, N, N,
  3469. N, N, N, N,
  3470. N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
  3471. /* 0x80 - 0x8F */
  3472. X16(D(SrcImm)),
  3473. /* 0x90 - 0x9F */
  3474. X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
  3475. /* 0xA0 - 0xA7 */
  3476. I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
  3477. II(ImplicitOps, em_cpuid, cpuid),
  3478. F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
  3479. F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
  3480. F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
  3481. /* 0xA8 - 0xAF */
  3482. I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
  3483. DI(ImplicitOps, rsm),
  3484. F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
  3485. F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
  3486. F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
  3487. D(ModRM), F(DstReg | SrcMem | ModRM, em_imul),
  3488. /* 0xB0 - 0xB7 */
  3489. I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_cmpxchg),
  3490. I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
  3491. F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
  3492. I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
  3493. I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
  3494. D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
  3495. /* 0xB8 - 0xBF */
  3496. N, N,
  3497. G(BitOp, group8),
  3498. F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
  3499. F(DstReg | SrcMem | ModRM, em_bsf), F(DstReg | SrcMem | ModRM, em_bsr),
  3500. D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
  3501. /* 0xC0 - 0xC7 */
  3502. D2bv(DstMem | SrcReg | ModRM | Lock),
  3503. N, D(DstMem | SrcReg | ModRM | Mov),
  3504. N, N, N, GD(0, &group9),
  3505. /* 0xC8 - 0xCF */
  3506. X8(I(DstReg, em_bswap)),
  3507. /* 0xD0 - 0xDF */
  3508. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  3509. /* 0xE0 - 0xEF */
  3510. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  3511. /* 0xF0 - 0xFF */
  3512. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
  3513. };
  3514. #undef D
  3515. #undef N
  3516. #undef G
  3517. #undef GD
  3518. #undef I
  3519. #undef GP
  3520. #undef EXT
  3521. #undef D2bv
  3522. #undef D2bvIP
  3523. #undef I2bv
  3524. #undef I2bvIP
  3525. #undef I6ALU
  3526. static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
  3527. {
  3528. unsigned size;
  3529. size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3530. if (size == 8)
  3531. size = 4;
  3532. return size;
  3533. }
  3534. static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
  3535. unsigned size, bool sign_extension)
  3536. {
  3537. int rc = X86EMUL_CONTINUE;
  3538. op->type = OP_IMM;
  3539. op->bytes = size;
  3540. op->addr.mem.ea = ctxt->_eip;
  3541. /* NB. Immediates are sign-extended as necessary. */
  3542. switch (op->bytes) {
  3543. case 1:
  3544. op->val = insn_fetch(s8, ctxt);
  3545. break;
  3546. case 2:
  3547. op->val = insn_fetch(s16, ctxt);
  3548. break;
  3549. case 4:
  3550. op->val = insn_fetch(s32, ctxt);
  3551. break;
  3552. case 8:
  3553. op->val = insn_fetch(s64, ctxt);
  3554. break;
  3555. }
  3556. if (!sign_extension) {
  3557. switch (op->bytes) {
  3558. case 1:
  3559. op->val &= 0xff;
  3560. break;
  3561. case 2:
  3562. op->val &= 0xffff;
  3563. break;
  3564. case 4:
  3565. op->val &= 0xffffffff;
  3566. break;
  3567. }
  3568. }
  3569. done:
  3570. return rc;
  3571. }
  3572. static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
  3573. unsigned d)
  3574. {
  3575. int rc = X86EMUL_CONTINUE;
  3576. switch (d) {
  3577. case OpReg:
  3578. decode_register_operand(ctxt, op);
  3579. break;
  3580. case OpImmUByte:
  3581. rc = decode_imm(ctxt, op, 1, false);
  3582. break;
  3583. case OpMem:
  3584. ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3585. mem_common:
  3586. *op = ctxt->memop;
  3587. ctxt->memopp = op;
  3588. if ((ctxt->d & BitOp) && op == &ctxt->dst)
  3589. fetch_bit_operand(ctxt);
  3590. op->orig_val = op->val;
  3591. break;
  3592. case OpMem64:
  3593. ctxt->memop.bytes = 8;
  3594. goto mem_common;
  3595. case OpAcc:
  3596. op->type = OP_REG;
  3597. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3598. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  3599. fetch_register_operand(op);
  3600. op->orig_val = op->val;
  3601. break;
  3602. case OpAccLo:
  3603. op->type = OP_REG;
  3604. op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
  3605. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  3606. fetch_register_operand(op);
  3607. op->orig_val = op->val;
  3608. break;
  3609. case OpAccHi:
  3610. if (ctxt->d & ByteOp) {
  3611. op->type = OP_NONE;
  3612. break;
  3613. }
  3614. op->type = OP_REG;
  3615. op->bytes = ctxt->op_bytes;
  3616. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  3617. fetch_register_operand(op);
  3618. op->orig_val = op->val;
  3619. break;
  3620. case OpDI:
  3621. op->type = OP_MEM;
  3622. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3623. op->addr.mem.ea =
  3624. register_address(ctxt, reg_read(ctxt, VCPU_REGS_RDI));
  3625. op->addr.mem.seg = VCPU_SREG_ES;
  3626. op->val = 0;
  3627. op->count = 1;
  3628. break;
  3629. case OpDX:
  3630. op->type = OP_REG;
  3631. op->bytes = 2;
  3632. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  3633. fetch_register_operand(op);
  3634. break;
  3635. case OpCL:
  3636. op->bytes = 1;
  3637. op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
  3638. break;
  3639. case OpImmByte:
  3640. rc = decode_imm(ctxt, op, 1, true);
  3641. break;
  3642. case OpOne:
  3643. op->bytes = 1;
  3644. op->val = 1;
  3645. break;
  3646. case OpImm:
  3647. rc = decode_imm(ctxt, op, imm_size(ctxt), true);
  3648. break;
  3649. case OpImm64:
  3650. rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
  3651. break;
  3652. case OpMem8:
  3653. ctxt->memop.bytes = 1;
  3654. if (ctxt->memop.type == OP_REG) {
  3655. ctxt->memop.addr.reg = decode_register(ctxt, ctxt->modrm_rm, 1);
  3656. fetch_register_operand(&ctxt->memop);
  3657. }
  3658. goto mem_common;
  3659. case OpMem16:
  3660. ctxt->memop.bytes = 2;
  3661. goto mem_common;
  3662. case OpMem32:
  3663. ctxt->memop.bytes = 4;
  3664. goto mem_common;
  3665. case OpImmU16:
  3666. rc = decode_imm(ctxt, op, 2, false);
  3667. break;
  3668. case OpImmU:
  3669. rc = decode_imm(ctxt, op, imm_size(ctxt), false);
  3670. break;
  3671. case OpSI:
  3672. op->type = OP_MEM;
  3673. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3674. op->addr.mem.ea =
  3675. register_address(ctxt, reg_read(ctxt, VCPU_REGS_RSI));
  3676. op->addr.mem.seg = seg_override(ctxt);
  3677. op->val = 0;
  3678. op->count = 1;
  3679. break;
  3680. case OpXLat:
  3681. op->type = OP_MEM;
  3682. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3683. op->addr.mem.ea =
  3684. register_address(ctxt,
  3685. reg_read(ctxt, VCPU_REGS_RBX) +
  3686. (reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
  3687. op->addr.mem.seg = seg_override(ctxt);
  3688. op->val = 0;
  3689. break;
  3690. case OpImmFAddr:
  3691. op->type = OP_IMM;
  3692. op->addr.mem.ea = ctxt->_eip;
  3693. op->bytes = ctxt->op_bytes + 2;
  3694. insn_fetch_arr(op->valptr, op->bytes, ctxt);
  3695. break;
  3696. case OpMemFAddr:
  3697. ctxt->memop.bytes = ctxt->op_bytes + 2;
  3698. goto mem_common;
  3699. case OpES:
  3700. op->val = VCPU_SREG_ES;
  3701. break;
  3702. case OpCS:
  3703. op->val = VCPU_SREG_CS;
  3704. break;
  3705. case OpSS:
  3706. op->val = VCPU_SREG_SS;
  3707. break;
  3708. case OpDS:
  3709. op->val = VCPU_SREG_DS;
  3710. break;
  3711. case OpFS:
  3712. op->val = VCPU_SREG_FS;
  3713. break;
  3714. case OpGS:
  3715. op->val = VCPU_SREG_GS;
  3716. break;
  3717. case OpImplicit:
  3718. /* Special instructions do their own operand decoding. */
  3719. default:
  3720. op->type = OP_NONE; /* Disable writeback. */
  3721. break;
  3722. }
  3723. done:
  3724. return rc;
  3725. }
  3726. int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
  3727. {
  3728. int rc = X86EMUL_CONTINUE;
  3729. int mode = ctxt->mode;
  3730. int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
  3731. bool op_prefix = false;
  3732. struct opcode opcode;
  3733. ctxt->memop.type = OP_NONE;
  3734. ctxt->memopp = NULL;
  3735. ctxt->_eip = ctxt->eip;
  3736. ctxt->fetch.start = ctxt->_eip;
  3737. ctxt->fetch.end = ctxt->fetch.start + insn_len;
  3738. if (insn_len > 0)
  3739. memcpy(ctxt->fetch.data, insn, insn_len);
  3740. switch (mode) {
  3741. case X86EMUL_MODE_REAL:
  3742. case X86EMUL_MODE_VM86:
  3743. case X86EMUL_MODE_PROT16:
  3744. def_op_bytes = def_ad_bytes = 2;
  3745. break;
  3746. case X86EMUL_MODE_PROT32:
  3747. def_op_bytes = def_ad_bytes = 4;
  3748. break;
  3749. #ifdef CONFIG_X86_64
  3750. case X86EMUL_MODE_PROT64:
  3751. def_op_bytes = 4;
  3752. def_ad_bytes = 8;
  3753. break;
  3754. #endif
  3755. default:
  3756. return EMULATION_FAILED;
  3757. }
  3758. ctxt->op_bytes = def_op_bytes;
  3759. ctxt->ad_bytes = def_ad_bytes;
  3760. /* Legacy prefixes. */
  3761. for (;;) {
  3762. switch (ctxt->b = insn_fetch(u8, ctxt)) {
  3763. case 0x66: /* operand-size override */
  3764. op_prefix = true;
  3765. /* switch between 2/4 bytes */
  3766. ctxt->op_bytes = def_op_bytes ^ 6;
  3767. break;
  3768. case 0x67: /* address-size override */
  3769. if (mode == X86EMUL_MODE_PROT64)
  3770. /* switch between 4/8 bytes */
  3771. ctxt->ad_bytes = def_ad_bytes ^ 12;
  3772. else
  3773. /* switch between 2/4 bytes */
  3774. ctxt->ad_bytes = def_ad_bytes ^ 6;
  3775. break;
  3776. case 0x26: /* ES override */
  3777. case 0x2e: /* CS override */
  3778. case 0x36: /* SS override */
  3779. case 0x3e: /* DS override */
  3780. set_seg_override(ctxt, (ctxt->b >> 3) & 3);
  3781. break;
  3782. case 0x64: /* FS override */
  3783. case 0x65: /* GS override */
  3784. set_seg_override(ctxt, ctxt->b & 7);
  3785. break;
  3786. case 0x40 ... 0x4f: /* REX */
  3787. if (mode != X86EMUL_MODE_PROT64)
  3788. goto done_prefixes;
  3789. ctxt->rex_prefix = ctxt->b;
  3790. continue;
  3791. case 0xf0: /* LOCK */
  3792. ctxt->lock_prefix = 1;
  3793. break;
  3794. case 0xf2: /* REPNE/REPNZ */
  3795. case 0xf3: /* REP/REPE/REPZ */
  3796. ctxt->rep_prefix = ctxt->b;
  3797. break;
  3798. default:
  3799. goto done_prefixes;
  3800. }
  3801. /* Any legacy prefix after a REX prefix nullifies its effect. */
  3802. ctxt->rex_prefix = 0;
  3803. }
  3804. done_prefixes:
  3805. /* REX prefix. */
  3806. if (ctxt->rex_prefix & 8)
  3807. ctxt->op_bytes = 8; /* REX.W */
  3808. /* Opcode byte(s). */
  3809. opcode = opcode_table[ctxt->b];
  3810. /* Two-byte opcode? */
  3811. if (ctxt->b == 0x0f) {
  3812. ctxt->twobyte = 1;
  3813. ctxt->b = insn_fetch(u8, ctxt);
  3814. opcode = twobyte_table[ctxt->b];
  3815. }
  3816. ctxt->d = opcode.flags;
  3817. if (ctxt->d & ModRM)
  3818. ctxt->modrm = insn_fetch(u8, ctxt);
  3819. while (ctxt->d & GroupMask) {
  3820. switch (ctxt->d & GroupMask) {
  3821. case Group:
  3822. goffset = (ctxt->modrm >> 3) & 7;
  3823. opcode = opcode.u.group[goffset];
  3824. break;
  3825. case GroupDual:
  3826. goffset = (ctxt->modrm >> 3) & 7;
  3827. if ((ctxt->modrm >> 6) == 3)
  3828. opcode = opcode.u.gdual->mod3[goffset];
  3829. else
  3830. opcode = opcode.u.gdual->mod012[goffset];
  3831. break;
  3832. case RMExt:
  3833. goffset = ctxt->modrm & 7;
  3834. opcode = opcode.u.group[goffset];
  3835. break;
  3836. case Prefix:
  3837. if (ctxt->rep_prefix && op_prefix)
  3838. return EMULATION_FAILED;
  3839. simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
  3840. switch (simd_prefix) {
  3841. case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
  3842. case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
  3843. case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
  3844. case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
  3845. }
  3846. break;
  3847. case Escape:
  3848. if (ctxt->modrm > 0xbf)
  3849. opcode = opcode.u.esc->high[ctxt->modrm - 0xc0];
  3850. else
  3851. opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
  3852. break;
  3853. default:
  3854. return EMULATION_FAILED;
  3855. }
  3856. ctxt->d &= ~(u64)GroupMask;
  3857. ctxt->d |= opcode.flags;
  3858. }
  3859. ctxt->execute = opcode.u.execute;
  3860. ctxt->check_perm = opcode.check_perm;
  3861. ctxt->intercept = opcode.intercept;
  3862. /* Unrecognised? */
  3863. if (ctxt->d == 0 || (ctxt->d & NotImpl))
  3864. return EMULATION_FAILED;
  3865. if (!(ctxt->d & VendorSpecific) && ctxt->only_vendor_specific_insn)
  3866. return EMULATION_FAILED;
  3867. if (mode == X86EMUL_MODE_PROT64 && (ctxt->d & Stack))
  3868. ctxt->op_bytes = 8;
  3869. if (ctxt->d & Op3264) {
  3870. if (mode == X86EMUL_MODE_PROT64)
  3871. ctxt->op_bytes = 8;
  3872. else
  3873. ctxt->op_bytes = 4;
  3874. }
  3875. if (ctxt->d & Sse)
  3876. ctxt->op_bytes = 16;
  3877. else if (ctxt->d & Mmx)
  3878. ctxt->op_bytes = 8;
  3879. /* ModRM and SIB bytes. */
  3880. if (ctxt->d & ModRM) {
  3881. rc = decode_modrm(ctxt, &ctxt->memop);
  3882. if (!ctxt->has_seg_override)
  3883. set_seg_override(ctxt, ctxt->modrm_seg);
  3884. } else if (ctxt->d & MemAbs)
  3885. rc = decode_abs(ctxt, &ctxt->memop);
  3886. if (rc != X86EMUL_CONTINUE)
  3887. goto done;
  3888. if (!ctxt->has_seg_override)
  3889. set_seg_override(ctxt, VCPU_SREG_DS);
  3890. ctxt->memop.addr.mem.seg = seg_override(ctxt);
  3891. if (ctxt->memop.type == OP_MEM && ctxt->ad_bytes != 8)
  3892. ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
  3893. /*
  3894. * Decode and fetch the source operand: register, memory
  3895. * or immediate.
  3896. */
  3897. rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
  3898. if (rc != X86EMUL_CONTINUE)
  3899. goto done;
  3900. /*
  3901. * Decode and fetch the second source operand: register, memory
  3902. * or immediate.
  3903. */
  3904. rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
  3905. if (rc != X86EMUL_CONTINUE)
  3906. goto done;
  3907. /* Decode and fetch the destination operand: register or memory. */
  3908. rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
  3909. done:
  3910. if (ctxt->memopp && ctxt->memopp->type == OP_MEM && ctxt->rip_relative)
  3911. ctxt->memopp->addr.mem.ea += ctxt->_eip;
  3912. return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
  3913. }
  3914. bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
  3915. {
  3916. return ctxt->d & PageTable;
  3917. }
  3918. static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
  3919. {
  3920. /* The second termination condition only applies for REPE
  3921. * and REPNE. Test if the repeat string operation prefix is
  3922. * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
  3923. * corresponding termination condition according to:
  3924. * - if REPE/REPZ and ZF = 0 then done
  3925. * - if REPNE/REPNZ and ZF = 1 then done
  3926. */
  3927. if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
  3928. (ctxt->b == 0xae) || (ctxt->b == 0xaf))
  3929. && (((ctxt->rep_prefix == REPE_PREFIX) &&
  3930. ((ctxt->eflags & EFLG_ZF) == 0))
  3931. || ((ctxt->rep_prefix == REPNE_PREFIX) &&
  3932. ((ctxt->eflags & EFLG_ZF) == EFLG_ZF))))
  3933. return true;
  3934. return false;
  3935. }
  3936. static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
  3937. {
  3938. bool fault = false;
  3939. ctxt->ops->get_fpu(ctxt);
  3940. asm volatile("1: fwait \n\t"
  3941. "2: \n\t"
  3942. ".pushsection .fixup,\"ax\" \n\t"
  3943. "3: \n\t"
  3944. "movb $1, %[fault] \n\t"
  3945. "jmp 2b \n\t"
  3946. ".popsection \n\t"
  3947. _ASM_EXTABLE(1b, 3b)
  3948. : [fault]"+qm"(fault));
  3949. ctxt->ops->put_fpu(ctxt);
  3950. if (unlikely(fault))
  3951. return emulate_exception(ctxt, MF_VECTOR, 0, false);
  3952. return X86EMUL_CONTINUE;
  3953. }
  3954. static void fetch_possible_mmx_operand(struct x86_emulate_ctxt *ctxt,
  3955. struct operand *op)
  3956. {
  3957. if (op->type == OP_MM)
  3958. read_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
  3959. }
  3960. static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *))
  3961. {
  3962. ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
  3963. if (!(ctxt->d & ByteOp))
  3964. fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
  3965. asm("push %[flags]; popf; call *%[fastop]; pushf; pop %[flags]\n"
  3966. : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
  3967. [fastop]"+S"(fop)
  3968. : "c"(ctxt->src2.val));
  3969. ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
  3970. if (!fop) /* exception is returned in fop variable */
  3971. return emulate_de(ctxt);
  3972. return X86EMUL_CONTINUE;
  3973. }
  3974. int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
  3975. {
  3976. const struct x86_emulate_ops *ops = ctxt->ops;
  3977. int rc = X86EMUL_CONTINUE;
  3978. int saved_dst_type = ctxt->dst.type;
  3979. ctxt->mem_read.pos = 0;
  3980. if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
  3981. (ctxt->d & Undefined)) {
  3982. rc = emulate_ud(ctxt);
  3983. goto done;
  3984. }
  3985. /* LOCK prefix is allowed only with some instructions */
  3986. if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
  3987. rc = emulate_ud(ctxt);
  3988. goto done;
  3989. }
  3990. if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
  3991. rc = emulate_ud(ctxt);
  3992. goto done;
  3993. }
  3994. if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
  3995. || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
  3996. rc = emulate_ud(ctxt);
  3997. goto done;
  3998. }
  3999. if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
  4000. rc = emulate_nm(ctxt);
  4001. goto done;
  4002. }
  4003. if (ctxt->d & Mmx) {
  4004. rc = flush_pending_x87_faults(ctxt);
  4005. if (rc != X86EMUL_CONTINUE)
  4006. goto done;
  4007. /*
  4008. * Now that we know the fpu is exception safe, we can fetch
  4009. * operands from it.
  4010. */
  4011. fetch_possible_mmx_operand(ctxt, &ctxt->src);
  4012. fetch_possible_mmx_operand(ctxt, &ctxt->src2);
  4013. if (!(ctxt->d & Mov))
  4014. fetch_possible_mmx_operand(ctxt, &ctxt->dst);
  4015. }
  4016. if (unlikely(ctxt->guest_mode) && ctxt->intercept) {
  4017. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4018. X86_ICPT_PRE_EXCEPT);
  4019. if (rc != X86EMUL_CONTINUE)
  4020. goto done;
  4021. }
  4022. /* Privileged instruction can be executed only in CPL=0 */
  4023. if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
  4024. rc = emulate_gp(ctxt, 0);
  4025. goto done;
  4026. }
  4027. /* Instruction can only be executed in protected mode */
  4028. if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
  4029. rc = emulate_ud(ctxt);
  4030. goto done;
  4031. }
  4032. /* Do instruction specific permission checks */
  4033. if (ctxt->check_perm) {
  4034. rc = ctxt->check_perm(ctxt);
  4035. if (rc != X86EMUL_CONTINUE)
  4036. goto done;
  4037. }
  4038. if (unlikely(ctxt->guest_mode) && ctxt->intercept) {
  4039. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4040. X86_ICPT_POST_EXCEPT);
  4041. if (rc != X86EMUL_CONTINUE)
  4042. goto done;
  4043. }
  4044. if (ctxt->rep_prefix && (ctxt->d & String)) {
  4045. /* All REP prefixes have the same first termination condition */
  4046. if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
  4047. ctxt->eip = ctxt->_eip;
  4048. goto done;
  4049. }
  4050. }
  4051. if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
  4052. rc = segmented_read(ctxt, ctxt->src.addr.mem,
  4053. ctxt->src.valptr, ctxt->src.bytes);
  4054. if (rc != X86EMUL_CONTINUE)
  4055. goto done;
  4056. ctxt->src.orig_val64 = ctxt->src.val64;
  4057. }
  4058. if (ctxt->src2.type == OP_MEM) {
  4059. rc = segmented_read(ctxt, ctxt->src2.addr.mem,
  4060. &ctxt->src2.val, ctxt->src2.bytes);
  4061. if (rc != X86EMUL_CONTINUE)
  4062. goto done;
  4063. }
  4064. if ((ctxt->d & DstMask) == ImplicitOps)
  4065. goto special_insn;
  4066. if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
  4067. /* optimisation - avoid slow emulated read if Mov */
  4068. rc = segmented_read(ctxt, ctxt->dst.addr.mem,
  4069. &ctxt->dst.val, ctxt->dst.bytes);
  4070. if (rc != X86EMUL_CONTINUE)
  4071. goto done;
  4072. }
  4073. ctxt->dst.orig_val = ctxt->dst.val;
  4074. special_insn:
  4075. if (unlikely(ctxt->guest_mode) && ctxt->intercept) {
  4076. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4077. X86_ICPT_POST_MEMACCESS);
  4078. if (rc != X86EMUL_CONTINUE)
  4079. goto done;
  4080. }
  4081. if (ctxt->execute) {
  4082. if (ctxt->d & Fastop) {
  4083. void (*fop)(struct fastop *) = (void *)ctxt->execute;
  4084. rc = fastop(ctxt, fop);
  4085. if (rc != X86EMUL_CONTINUE)
  4086. goto done;
  4087. goto writeback;
  4088. }
  4089. rc = ctxt->execute(ctxt);
  4090. if (rc != X86EMUL_CONTINUE)
  4091. goto done;
  4092. goto writeback;
  4093. }
  4094. if (ctxt->twobyte)
  4095. goto twobyte_insn;
  4096. switch (ctxt->b) {
  4097. case 0x63: /* movsxd */
  4098. if (ctxt->mode != X86EMUL_MODE_PROT64)
  4099. goto cannot_emulate;
  4100. ctxt->dst.val = (s32) ctxt->src.val;
  4101. break;
  4102. case 0x70 ... 0x7f: /* jcc (short) */
  4103. if (test_cc(ctxt->b, ctxt->eflags))
  4104. jmp_rel(ctxt, ctxt->src.val);
  4105. break;
  4106. case 0x8d: /* lea r16/r32, m */
  4107. ctxt->dst.val = ctxt->src.addr.mem.ea;
  4108. break;
  4109. case 0x90 ... 0x97: /* nop / xchg reg, rax */
  4110. if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
  4111. break;
  4112. rc = em_xchg(ctxt);
  4113. break;
  4114. case 0x98: /* cbw/cwde/cdqe */
  4115. switch (ctxt->op_bytes) {
  4116. case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
  4117. case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
  4118. case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
  4119. }
  4120. break;
  4121. case 0xcc: /* int3 */
  4122. rc = emulate_int(ctxt, 3);
  4123. break;
  4124. case 0xcd: /* int n */
  4125. rc = emulate_int(ctxt, ctxt->src.val);
  4126. break;
  4127. case 0xce: /* into */
  4128. if (ctxt->eflags & EFLG_OF)
  4129. rc = emulate_int(ctxt, 4);
  4130. break;
  4131. case 0xe9: /* jmp rel */
  4132. case 0xeb: /* jmp rel short */
  4133. jmp_rel(ctxt, ctxt->src.val);
  4134. ctxt->dst.type = OP_NONE; /* Disable writeback. */
  4135. break;
  4136. case 0xf4: /* hlt */
  4137. ctxt->ops->halt(ctxt);
  4138. break;
  4139. case 0xf5: /* cmc */
  4140. /* complement carry flag from eflags reg */
  4141. ctxt->eflags ^= EFLG_CF;
  4142. break;
  4143. case 0xf8: /* clc */
  4144. ctxt->eflags &= ~EFLG_CF;
  4145. break;
  4146. case 0xf9: /* stc */
  4147. ctxt->eflags |= EFLG_CF;
  4148. break;
  4149. case 0xfc: /* cld */
  4150. ctxt->eflags &= ~EFLG_DF;
  4151. break;
  4152. case 0xfd: /* std */
  4153. ctxt->eflags |= EFLG_DF;
  4154. break;
  4155. default:
  4156. goto cannot_emulate;
  4157. }
  4158. if (rc != X86EMUL_CONTINUE)
  4159. goto done;
  4160. writeback:
  4161. if (!(ctxt->d & NoWrite)) {
  4162. rc = writeback(ctxt, &ctxt->dst);
  4163. if (rc != X86EMUL_CONTINUE)
  4164. goto done;
  4165. }
  4166. if (ctxt->d & SrcWrite) {
  4167. BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
  4168. rc = writeback(ctxt, &ctxt->src);
  4169. if (rc != X86EMUL_CONTINUE)
  4170. goto done;
  4171. }
  4172. /*
  4173. * restore dst type in case the decoding will be reused
  4174. * (happens for string instruction )
  4175. */
  4176. ctxt->dst.type = saved_dst_type;
  4177. if ((ctxt->d & SrcMask) == SrcSI)
  4178. string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
  4179. if ((ctxt->d & DstMask) == DstDI)
  4180. string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
  4181. if (ctxt->rep_prefix && (ctxt->d & String)) {
  4182. unsigned int count;
  4183. struct read_cache *r = &ctxt->io_read;
  4184. if ((ctxt->d & SrcMask) == SrcSI)
  4185. count = ctxt->src.count;
  4186. else
  4187. count = ctxt->dst.count;
  4188. register_address_increment(ctxt, reg_rmw(ctxt, VCPU_REGS_RCX),
  4189. -count);
  4190. if (!string_insn_completed(ctxt)) {
  4191. /*
  4192. * Re-enter guest when pio read ahead buffer is empty
  4193. * or, if it is not used, after each 1024 iteration.
  4194. */
  4195. if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
  4196. (r->end == 0 || r->end != r->pos)) {
  4197. /*
  4198. * Reset read cache. Usually happens before
  4199. * decode, but since instruction is restarted
  4200. * we have to do it here.
  4201. */
  4202. ctxt->mem_read.end = 0;
  4203. writeback_registers(ctxt);
  4204. return EMULATION_RESTART;
  4205. }
  4206. goto done; /* skip rip writeback */
  4207. }
  4208. }
  4209. ctxt->eip = ctxt->_eip;
  4210. done:
  4211. if (rc == X86EMUL_PROPAGATE_FAULT)
  4212. ctxt->have_exception = true;
  4213. if (rc == X86EMUL_INTERCEPTED)
  4214. return EMULATION_INTERCEPTED;
  4215. if (rc == X86EMUL_CONTINUE)
  4216. writeback_registers(ctxt);
  4217. return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
  4218. twobyte_insn:
  4219. switch (ctxt->b) {
  4220. case 0x09: /* wbinvd */
  4221. (ctxt->ops->wbinvd)(ctxt);
  4222. break;
  4223. case 0x08: /* invd */
  4224. case 0x0d: /* GrpP (prefetch) */
  4225. case 0x18: /* Grp16 (prefetch/nop) */
  4226. break;
  4227. case 0x20: /* mov cr, reg */
  4228. ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
  4229. break;
  4230. case 0x21: /* mov from dr to reg */
  4231. ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val);
  4232. break;
  4233. case 0x40 ... 0x4f: /* cmov */
  4234. ctxt->dst.val = ctxt->dst.orig_val = ctxt->src.val;
  4235. if (!test_cc(ctxt->b, ctxt->eflags))
  4236. ctxt->dst.type = OP_NONE; /* no writeback */
  4237. break;
  4238. case 0x80 ... 0x8f: /* jnz rel, etc*/
  4239. if (test_cc(ctxt->b, ctxt->eflags))
  4240. jmp_rel(ctxt, ctxt->src.val);
  4241. break;
  4242. case 0x90 ... 0x9f: /* setcc r/m8 */
  4243. ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
  4244. break;
  4245. case 0xae: /* clflush */
  4246. break;
  4247. case 0xb6 ... 0xb7: /* movzx */
  4248. ctxt->dst.bytes = ctxt->op_bytes;
  4249. ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
  4250. : (u16) ctxt->src.val;
  4251. break;
  4252. case 0xbe ... 0xbf: /* movsx */
  4253. ctxt->dst.bytes = ctxt->op_bytes;
  4254. ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
  4255. (s16) ctxt->src.val;
  4256. break;
  4257. case 0xc0 ... 0xc1: /* xadd */
  4258. fastop(ctxt, em_add);
  4259. /* Write back the register source. */
  4260. ctxt->src.val = ctxt->dst.orig_val;
  4261. write_register_operand(&ctxt->src);
  4262. break;
  4263. case 0xc3: /* movnti */
  4264. ctxt->dst.bytes = ctxt->op_bytes;
  4265. ctxt->dst.val = (ctxt->op_bytes == 4) ? (u32) ctxt->src.val :
  4266. (u64) ctxt->src.val;
  4267. break;
  4268. default:
  4269. goto cannot_emulate;
  4270. }
  4271. if (rc != X86EMUL_CONTINUE)
  4272. goto done;
  4273. goto writeback;
  4274. cannot_emulate:
  4275. return EMULATION_FAILED;
  4276. }
  4277. void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
  4278. {
  4279. invalidate_registers(ctxt);
  4280. }
  4281. void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
  4282. {
  4283. writeback_registers(ctxt);
  4284. }