process.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739
  1. /*
  2. * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
  3. * Licensed under the GPL
  4. */
  5. #include <stdlib.h>
  6. #include <unistd.h>
  7. #include <sched.h>
  8. #include <errno.h>
  9. #include <string.h>
  10. #include <sys/mman.h>
  11. #include <sys/wait.h>
  12. #include <asm/unistd.h>
  13. #include "as-layout.h"
  14. #include "init.h"
  15. #include "kern_util.h"
  16. #include "mem.h"
  17. #include "os.h"
  18. #include "proc_mm.h"
  19. #include "ptrace_user.h"
  20. #include "registers.h"
  21. #include "skas.h"
  22. #include "skas_ptrace.h"
  23. #include "sysdep/stub.h"
  24. int is_skas_winch(int pid, int fd, void *data)
  25. {
  26. return pid == getpgrp();
  27. }
  28. static int ptrace_dump_regs(int pid)
  29. {
  30. unsigned long regs[MAX_REG_NR];
  31. int i;
  32. if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
  33. return -errno;
  34. printk(UM_KERN_ERR "Stub registers -\n");
  35. for (i = 0; i < ARRAY_SIZE(regs); i++)
  36. printk(UM_KERN_ERR "\t%d - %lx\n", i, regs[i]);
  37. return 0;
  38. }
  39. /*
  40. * Signals that are OK to receive in the stub - we'll just continue it.
  41. * SIGWINCH will happen when UML is inside a detached screen.
  42. */
  43. #define STUB_SIG_MASK ((1 << SIGVTALRM) | (1 << SIGWINCH))
  44. /* Signals that the stub will finish with - anything else is an error */
  45. #define STUB_DONE_MASK (1 << SIGTRAP)
  46. void wait_stub_done(int pid)
  47. {
  48. int n, status, err;
  49. while (1) {
  50. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  51. if ((n < 0) || !WIFSTOPPED(status))
  52. goto bad_wait;
  53. if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
  54. break;
  55. err = ptrace(PTRACE_CONT, pid, 0, 0);
  56. if (err) {
  57. printk(UM_KERN_ERR "wait_stub_done : continue failed, "
  58. "errno = %d\n", errno);
  59. fatal_sigsegv();
  60. }
  61. }
  62. if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
  63. return;
  64. bad_wait:
  65. err = ptrace_dump_regs(pid);
  66. if (err)
  67. printk(UM_KERN_ERR "Failed to get registers from stub, "
  68. "errno = %d\n", -err);
  69. printk(UM_KERN_ERR "wait_stub_done : failed to wait for SIGTRAP, "
  70. "pid = %d, n = %d, errno = %d, status = 0x%x\n", pid, n, errno,
  71. status);
  72. fatal_sigsegv();
  73. }
  74. extern unsigned long current_stub_stack(void);
  75. static void get_skas_faultinfo(int pid, struct faultinfo *fi)
  76. {
  77. int err;
  78. if (ptrace_faultinfo) {
  79. err = ptrace(PTRACE_FAULTINFO, pid, 0, fi);
  80. if (err) {
  81. printk(UM_KERN_ERR "get_skas_faultinfo - "
  82. "PTRACE_FAULTINFO failed, errno = %d\n", errno);
  83. fatal_sigsegv();
  84. }
  85. /* Special handling for i386, which has different structs */
  86. if (sizeof(struct ptrace_faultinfo) < sizeof(struct faultinfo))
  87. memset((char *)fi + sizeof(struct ptrace_faultinfo), 0,
  88. sizeof(struct faultinfo) -
  89. sizeof(struct ptrace_faultinfo));
  90. }
  91. else {
  92. unsigned long fpregs[FP_SIZE];
  93. err = get_fp_registers(pid, fpregs);
  94. if (err < 0) {
  95. printk(UM_KERN_ERR "save_fp_registers returned %d\n",
  96. err);
  97. fatal_sigsegv();
  98. }
  99. err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
  100. if (err) {
  101. printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
  102. "errno = %d\n", pid, errno);
  103. fatal_sigsegv();
  104. }
  105. wait_stub_done(pid);
  106. /*
  107. * faultinfo is prepared by the stub-segv-handler at start of
  108. * the stub stack page. We just have to copy it.
  109. */
  110. memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
  111. err = put_fp_registers(pid, fpregs);
  112. if (err < 0) {
  113. printk(UM_KERN_ERR "put_fp_registers returned %d\n",
  114. err);
  115. fatal_sigsegv();
  116. }
  117. }
  118. }
  119. static void handle_segv(int pid, struct uml_pt_regs * regs)
  120. {
  121. get_skas_faultinfo(pid, &regs->faultinfo);
  122. segv(regs->faultinfo, 0, 1, NULL);
  123. }
  124. /*
  125. * To use the same value of using_sysemu as the caller, ask it that value
  126. * (in local_using_sysemu
  127. */
  128. static void handle_trap(int pid, struct uml_pt_regs *regs,
  129. int local_using_sysemu)
  130. {
  131. int err, status;
  132. if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
  133. fatal_sigsegv();
  134. /* Mark this as a syscall */
  135. UPT_SYSCALL_NR(regs) = PT_SYSCALL_NR(regs->gp);
  136. if (!local_using_sysemu)
  137. {
  138. err = ptrace(PTRACE_POKEUSER, pid, PT_SYSCALL_NR_OFFSET,
  139. __NR_getpid);
  140. if (err < 0) {
  141. printk(UM_KERN_ERR "handle_trap - nullifying syscall "
  142. "failed, errno = %d\n", errno);
  143. fatal_sigsegv();
  144. }
  145. err = ptrace(PTRACE_SYSCALL, pid, 0, 0);
  146. if (err < 0) {
  147. printk(UM_KERN_ERR "handle_trap - continuing to end of "
  148. "syscall failed, errno = %d\n", errno);
  149. fatal_sigsegv();
  150. }
  151. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  152. if ((err < 0) || !WIFSTOPPED(status) ||
  153. (WSTOPSIG(status) != SIGTRAP + 0x80)) {
  154. err = ptrace_dump_regs(pid);
  155. if (err)
  156. printk(UM_KERN_ERR "Failed to get registers "
  157. "from process, errno = %d\n", -err);
  158. printk(UM_KERN_ERR "handle_trap - failed to wait at "
  159. "end of syscall, errno = %d, status = %d\n",
  160. errno, status);
  161. fatal_sigsegv();
  162. }
  163. }
  164. handle_syscall(regs);
  165. }
  166. extern int __syscall_stub_start;
  167. static int userspace_tramp(void *stack)
  168. {
  169. void *addr;
  170. int err;
  171. ptrace(PTRACE_TRACEME, 0, 0, 0);
  172. signal(SIGTERM, SIG_DFL);
  173. signal(SIGWINCH, SIG_IGN);
  174. err = set_interval();
  175. if (err) {
  176. printk(UM_KERN_ERR "userspace_tramp - setting timer failed, "
  177. "errno = %d\n", err);
  178. exit(1);
  179. }
  180. if (!proc_mm) {
  181. /*
  182. * This has a pte, but it can't be mapped in with the usual
  183. * tlb_flush mechanism because this is part of that mechanism
  184. */
  185. int fd;
  186. unsigned long long offset;
  187. fd = phys_mapping(to_phys(&__syscall_stub_start), &offset);
  188. addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
  189. PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
  190. if (addr == MAP_FAILED) {
  191. printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, "
  192. "errno = %d\n", STUB_CODE, errno);
  193. exit(1);
  194. }
  195. if (stack != NULL) {
  196. fd = phys_mapping(to_phys(stack), &offset);
  197. addr = mmap((void *) STUB_DATA,
  198. UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
  199. MAP_FIXED | MAP_SHARED, fd, offset);
  200. if (addr == MAP_FAILED) {
  201. printk(UM_KERN_ERR "mapping segfault stack "
  202. "at 0x%lx failed, errno = %d\n",
  203. STUB_DATA, errno);
  204. exit(1);
  205. }
  206. }
  207. }
  208. if (!ptrace_faultinfo && (stack != NULL)) {
  209. struct sigaction sa;
  210. unsigned long v = STUB_CODE +
  211. (unsigned long) stub_segv_handler -
  212. (unsigned long) &__syscall_stub_start;
  213. set_sigstack((void *) STUB_DATA, UM_KERN_PAGE_SIZE);
  214. sigemptyset(&sa.sa_mask);
  215. sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
  216. sa.sa_sigaction = (void *) v;
  217. sa.sa_restorer = NULL;
  218. if (sigaction(SIGSEGV, &sa, NULL) < 0) {
  219. printk(UM_KERN_ERR "userspace_tramp - setting SIGSEGV "
  220. "handler failed - errno = %d\n", errno);
  221. exit(1);
  222. }
  223. }
  224. kill(os_getpid(), SIGSTOP);
  225. return 0;
  226. }
  227. /* Each element set once, and only accessed by a single processor anyway */
  228. #undef NR_CPUS
  229. #define NR_CPUS 1
  230. int userspace_pid[NR_CPUS];
  231. int start_userspace(unsigned long stub_stack)
  232. {
  233. void *stack;
  234. unsigned long sp;
  235. int pid, status, n, flags, err;
  236. stack = mmap(NULL, UM_KERN_PAGE_SIZE,
  237. PROT_READ | PROT_WRITE | PROT_EXEC,
  238. MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  239. if (stack == MAP_FAILED) {
  240. err = -errno;
  241. printk(UM_KERN_ERR "start_userspace : mmap failed, "
  242. "errno = %d\n", errno);
  243. return err;
  244. }
  245. sp = (unsigned long) stack + UM_KERN_PAGE_SIZE - sizeof(void *);
  246. flags = CLONE_FILES;
  247. if (proc_mm)
  248. flags |= CLONE_VM;
  249. else
  250. flags |= SIGCHLD;
  251. pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
  252. if (pid < 0) {
  253. err = -errno;
  254. printk(UM_KERN_ERR "start_userspace : clone failed, "
  255. "errno = %d\n", errno);
  256. return err;
  257. }
  258. do {
  259. CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
  260. if (n < 0) {
  261. err = -errno;
  262. printk(UM_KERN_ERR "start_userspace : wait failed, "
  263. "errno = %d\n", errno);
  264. goto out_kill;
  265. }
  266. } while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGVTALRM));
  267. if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
  268. err = -EINVAL;
  269. printk(UM_KERN_ERR "start_userspace : expected SIGSTOP, got "
  270. "status = %d\n", status);
  271. goto out_kill;
  272. }
  273. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  274. (void *) PTRACE_O_TRACESYSGOOD) < 0) {
  275. err = -errno;
  276. printk(UM_KERN_ERR "start_userspace : PTRACE_OLDSETOPTIONS "
  277. "failed, errno = %d\n", errno);
  278. goto out_kill;
  279. }
  280. if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
  281. err = -errno;
  282. printk(UM_KERN_ERR "start_userspace : munmap failed, "
  283. "errno = %d\n", errno);
  284. goto out_kill;
  285. }
  286. return pid;
  287. out_kill:
  288. os_kill_ptraced_process(pid, 1);
  289. return err;
  290. }
  291. void userspace(struct uml_pt_regs *regs)
  292. {
  293. struct itimerval timer;
  294. unsigned long long nsecs, now;
  295. int err, status, op, pid = userspace_pid[0];
  296. /* To prevent races if using_sysemu changes under us.*/
  297. int local_using_sysemu;
  298. /* Handle any immediate reschedules or signals */
  299. interrupt_end();
  300. if (getitimer(ITIMER_VIRTUAL, &timer))
  301. printk(UM_KERN_ERR "Failed to get itimer, errno = %d\n", errno);
  302. nsecs = timer.it_value.tv_sec * UM_NSEC_PER_SEC +
  303. timer.it_value.tv_usec * UM_NSEC_PER_USEC;
  304. nsecs += os_nsecs();
  305. while (1) {
  306. /*
  307. * This can legitimately fail if the process loads a
  308. * bogus value into a segment register. It will
  309. * segfault and PTRACE_GETREGS will read that value
  310. * out of the process. However, PTRACE_SETREGS will
  311. * fail. In this case, there is nothing to do but
  312. * just kill the process.
  313. */
  314. if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp))
  315. fatal_sigsegv();
  316. if (put_fp_registers(pid, regs->fp))
  317. fatal_sigsegv();
  318. /* Now we set local_using_sysemu to be used for one loop */
  319. local_using_sysemu = get_using_sysemu();
  320. op = SELECT_PTRACE_OPERATION(local_using_sysemu,
  321. singlestepping(NULL));
  322. if (ptrace(op, pid, 0, 0)) {
  323. printk(UM_KERN_ERR "userspace - ptrace continue "
  324. "failed, op = %d, errno = %d\n", op, errno);
  325. fatal_sigsegv();
  326. }
  327. CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
  328. if (err < 0) {
  329. printk(UM_KERN_ERR "userspace - wait failed, "
  330. "errno = %d\n", errno);
  331. fatal_sigsegv();
  332. }
  333. regs->is_user = 1;
  334. if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
  335. printk(UM_KERN_ERR "userspace - PTRACE_GETREGS failed, "
  336. "errno = %d\n", errno);
  337. fatal_sigsegv();
  338. }
  339. if (get_fp_registers(pid, regs->fp)) {
  340. printk(UM_KERN_ERR "userspace - get_fp_registers failed, "
  341. "errno = %d\n", errno);
  342. fatal_sigsegv();
  343. }
  344. UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
  345. if (WIFSTOPPED(status)) {
  346. int sig = WSTOPSIG(status);
  347. switch (sig) {
  348. case SIGSEGV:
  349. if (PTRACE_FULL_FAULTINFO ||
  350. !ptrace_faultinfo) {
  351. get_skas_faultinfo(pid,
  352. &regs->faultinfo);
  353. (*sig_info[SIGSEGV])(SIGSEGV, regs);
  354. }
  355. else handle_segv(pid, regs);
  356. break;
  357. case SIGTRAP + 0x80:
  358. handle_trap(pid, regs, local_using_sysemu);
  359. break;
  360. case SIGTRAP:
  361. relay_signal(SIGTRAP, regs);
  362. break;
  363. case SIGVTALRM:
  364. now = os_nsecs();
  365. if (now < nsecs)
  366. break;
  367. block_signals();
  368. (*sig_info[sig])(sig, regs);
  369. unblock_signals();
  370. nsecs = timer.it_value.tv_sec *
  371. UM_NSEC_PER_SEC +
  372. timer.it_value.tv_usec *
  373. UM_NSEC_PER_USEC;
  374. nsecs += os_nsecs();
  375. break;
  376. case SIGIO:
  377. case SIGILL:
  378. case SIGBUS:
  379. case SIGFPE:
  380. case SIGWINCH:
  381. block_signals();
  382. (*sig_info[sig])(sig, regs);
  383. unblock_signals();
  384. break;
  385. default:
  386. printk(UM_KERN_ERR "userspace - child stopped "
  387. "with signal %d\n", sig);
  388. fatal_sigsegv();
  389. }
  390. pid = userspace_pid[0];
  391. interrupt_end();
  392. /* Avoid -ERESTARTSYS handling in host */
  393. if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
  394. PT_SYSCALL_NR(regs->gp) = -1;
  395. }
  396. }
  397. }
  398. static unsigned long thread_regs[MAX_REG_NR];
  399. static unsigned long thread_fp_regs[FP_SIZE];
  400. static int __init init_thread_regs(void)
  401. {
  402. get_safe_registers(thread_regs, thread_fp_regs);
  403. /* Set parent's instruction pointer to start of clone-stub */
  404. thread_regs[REGS_IP_INDEX] = STUB_CODE +
  405. (unsigned long) stub_clone_handler -
  406. (unsigned long) &__syscall_stub_start;
  407. thread_regs[REGS_SP_INDEX] = STUB_DATA + UM_KERN_PAGE_SIZE -
  408. sizeof(void *);
  409. #ifdef __SIGNAL_FRAMESIZE
  410. thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
  411. #endif
  412. return 0;
  413. }
  414. __initcall(init_thread_regs);
  415. int copy_context_skas0(unsigned long new_stack, int pid)
  416. {
  417. struct timeval tv = { .tv_sec = 0, .tv_usec = UM_USEC_PER_SEC / UM_HZ };
  418. int err;
  419. unsigned long current_stack = current_stub_stack();
  420. struct stub_data *data = (struct stub_data *) current_stack;
  421. struct stub_data *child_data = (struct stub_data *) new_stack;
  422. unsigned long long new_offset;
  423. int new_fd = phys_mapping(to_phys((void *)new_stack), &new_offset);
  424. /*
  425. * prepare offset and fd of child's stack as argument for parent's
  426. * and child's mmap2 calls
  427. */
  428. *data = ((struct stub_data) { .offset = MMAP_OFFSET(new_offset),
  429. .fd = new_fd,
  430. .timer = ((struct itimerval)
  431. { .it_value = tv,
  432. .it_interval = tv }) });
  433. err = ptrace_setregs(pid, thread_regs);
  434. if (err < 0) {
  435. err = -errno;
  436. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_SETREGS "
  437. "failed, pid = %d, errno = %d\n", pid, -err);
  438. return err;
  439. }
  440. err = put_fp_registers(pid, thread_fp_regs);
  441. if (err < 0) {
  442. printk(UM_KERN_ERR "copy_context_skas0 : put_fp_registers "
  443. "failed, pid = %d, err = %d\n", pid, err);
  444. return err;
  445. }
  446. /* set a well known return code for detection of child write failure */
  447. child_data->err = 12345678;
  448. /*
  449. * Wait, until parent has finished its work: read child's pid from
  450. * parent's stack, and check, if bad result.
  451. */
  452. err = ptrace(PTRACE_CONT, pid, 0, 0);
  453. if (err) {
  454. err = -errno;
  455. printk(UM_KERN_ERR "Failed to continue new process, pid = %d, "
  456. "errno = %d\n", pid, errno);
  457. return err;
  458. }
  459. wait_stub_done(pid);
  460. pid = data->err;
  461. if (pid < 0) {
  462. printk(UM_KERN_ERR "copy_context_skas0 - stub-parent reports "
  463. "error %d\n", -pid);
  464. return pid;
  465. }
  466. /*
  467. * Wait, until child has finished too: read child's result from
  468. * child's stack and check it.
  469. */
  470. wait_stub_done(pid);
  471. if (child_data->err != STUB_DATA) {
  472. printk(UM_KERN_ERR "copy_context_skas0 - stub-child reports "
  473. "error %ld\n", child_data->err);
  474. err = child_data->err;
  475. goto out_kill;
  476. }
  477. if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
  478. (void *)PTRACE_O_TRACESYSGOOD) < 0) {
  479. err = -errno;
  480. printk(UM_KERN_ERR "copy_context_skas0 : PTRACE_OLDSETOPTIONS "
  481. "failed, errno = %d\n", errno);
  482. goto out_kill;
  483. }
  484. return pid;
  485. out_kill:
  486. os_kill_ptraced_process(pid, 1);
  487. return err;
  488. }
  489. /*
  490. * This is used only, if stub pages are needed, while proc_mm is
  491. * available. Opening /proc/mm creates a new mm_context, which lacks
  492. * the stub-pages. Thus, we map them using /proc/mm-fd
  493. */
  494. int map_stub_pages(int fd, unsigned long code, unsigned long data,
  495. unsigned long stack)
  496. {
  497. struct proc_mm_op mmop;
  498. int n;
  499. unsigned long long code_offset;
  500. int code_fd = phys_mapping(to_phys((void *) &__syscall_stub_start),
  501. &code_offset);
  502. mmop = ((struct proc_mm_op) { .op = MM_MMAP,
  503. .u =
  504. { .mmap =
  505. { .addr = code,
  506. .len = UM_KERN_PAGE_SIZE,
  507. .prot = PROT_EXEC,
  508. .flags = MAP_FIXED | MAP_PRIVATE,
  509. .fd = code_fd,
  510. .offset = code_offset
  511. } } });
  512. CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop)));
  513. if (n != sizeof(mmop)) {
  514. n = errno;
  515. printk(UM_KERN_ERR "mmap args - addr = 0x%lx, fd = %d, "
  516. "offset = %llx\n", code, code_fd,
  517. (unsigned long long) code_offset);
  518. printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for code "
  519. "failed, err = %d\n", n);
  520. return -n;
  521. }
  522. if (stack) {
  523. unsigned long long map_offset;
  524. int map_fd = phys_mapping(to_phys((void *)stack), &map_offset);
  525. mmop = ((struct proc_mm_op)
  526. { .op = MM_MMAP,
  527. .u =
  528. { .mmap =
  529. { .addr = data,
  530. .len = UM_KERN_PAGE_SIZE,
  531. .prot = PROT_READ | PROT_WRITE,
  532. .flags = MAP_FIXED | MAP_SHARED,
  533. .fd = map_fd,
  534. .offset = map_offset
  535. } } });
  536. CATCH_EINTR(n = write(fd, &mmop, sizeof(mmop)));
  537. if (n != sizeof(mmop)) {
  538. n = errno;
  539. printk(UM_KERN_ERR "map_stub_pages : /proc/mm map for "
  540. "data failed, err = %d\n", n);
  541. return -n;
  542. }
  543. }
  544. return 0;
  545. }
  546. void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
  547. {
  548. (*buf)[0].JB_IP = (unsigned long) handler;
  549. (*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
  550. sizeof(void *);
  551. }
  552. #define INIT_JMP_NEW_THREAD 0
  553. #define INIT_JMP_CALLBACK 1
  554. #define INIT_JMP_HALT 2
  555. #define INIT_JMP_REBOOT 3
  556. void switch_threads(jmp_buf *me, jmp_buf *you)
  557. {
  558. if (UML_SETJMP(me) == 0)
  559. UML_LONGJMP(you, 1);
  560. }
  561. static jmp_buf initial_jmpbuf;
  562. /* XXX Make these percpu */
  563. static void (*cb_proc)(void *arg);
  564. static void *cb_arg;
  565. static jmp_buf *cb_back;
  566. int start_idle_thread(void *stack, jmp_buf *switch_buf)
  567. {
  568. int n;
  569. set_handler(SIGWINCH);
  570. /*
  571. * Can't use UML_SETJMP or UML_LONGJMP here because they save
  572. * and restore signals, with the possible side-effect of
  573. * trying to handle any signals which came when they were
  574. * blocked, which can't be done on this stack.
  575. * Signals must be blocked when jumping back here and restored
  576. * after returning to the jumper.
  577. */
  578. n = setjmp(initial_jmpbuf);
  579. switch (n) {
  580. case INIT_JMP_NEW_THREAD:
  581. (*switch_buf)[0].JB_IP = (unsigned long) new_thread_handler;
  582. (*switch_buf)[0].JB_SP = (unsigned long) stack +
  583. UM_THREAD_SIZE - sizeof(void *);
  584. break;
  585. case INIT_JMP_CALLBACK:
  586. (*cb_proc)(cb_arg);
  587. longjmp(*cb_back, 1);
  588. break;
  589. case INIT_JMP_HALT:
  590. kmalloc_ok = 0;
  591. return 0;
  592. case INIT_JMP_REBOOT:
  593. kmalloc_ok = 0;
  594. return 1;
  595. default:
  596. printk(UM_KERN_ERR "Bad sigsetjmp return in "
  597. "start_idle_thread - %d\n", n);
  598. fatal_sigsegv();
  599. }
  600. longjmp(*switch_buf, 1);
  601. }
  602. void initial_thread_cb_skas(void (*proc)(void *), void *arg)
  603. {
  604. jmp_buf here;
  605. cb_proc = proc;
  606. cb_arg = arg;
  607. cb_back = &here;
  608. block_signals();
  609. if (UML_SETJMP(&here) == 0)
  610. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
  611. unblock_signals();
  612. cb_proc = NULL;
  613. cb_arg = NULL;
  614. cb_back = NULL;
  615. }
  616. void halt_skas(void)
  617. {
  618. block_signals();
  619. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
  620. }
  621. void reboot_skas(void)
  622. {
  623. block_signals();
  624. UML_LONGJMP(&initial_jmpbuf, INIT_JMP_REBOOT);
  625. }
  626. void __switch_mm(struct mm_id *mm_idp)
  627. {
  628. int err;
  629. /* FIXME: need cpu pid in __switch_mm */
  630. if (proc_mm) {
  631. err = ptrace(PTRACE_SWITCH_MM, userspace_pid[0], 0,
  632. mm_idp->u.mm_fd);
  633. if (err) {
  634. printk(UM_KERN_ERR "__switch_mm - PTRACE_SWITCH_MM "
  635. "failed, errno = %d\n", errno);
  636. fatal_sigsegv();
  637. }
  638. }
  639. else userspace_pid[0] = mm_idp->u.pid;
  640. }