ipmi_si_intf.c 89 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589
  1. /*
  2. * ipmi_si.c
  3. *
  4. * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
  5. * BT).
  6. *
  7. * Author: MontaVista Software, Inc.
  8. * Corey Minyard <minyard@mvista.com>
  9. * source@mvista.com
  10. *
  11. * Copyright 2002 MontaVista Software Inc.
  12. * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
  13. *
  14. * This program is free software; you can redistribute it and/or modify it
  15. * under the terms of the GNU General Public License as published by the
  16. * Free Software Foundation; either version 2 of the License, or (at your
  17. * option) any later version.
  18. *
  19. *
  20. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  21. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  22. * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  23. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  24. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  25. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  26. * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  27. * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  28. * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  29. * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  30. *
  31. * You should have received a copy of the GNU General Public License along
  32. * with this program; if not, write to the Free Software Foundation, Inc.,
  33. * 675 Mass Ave, Cambridge, MA 02139, USA.
  34. */
  35. /*
  36. * This file holds the "policy" for the interface to the SMI state
  37. * machine. It does the configuration, handles timers and interrupts,
  38. * and drives the real SMI state machine.
  39. */
  40. #include <linux/module.h>
  41. #include <linux/moduleparam.h>
  42. #include <asm/system.h>
  43. #include <linux/sched.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/timer.h>
  46. #include <linux/errno.h>
  47. #include <linux/spinlock.h>
  48. #include <linux/slab.h>
  49. #include <linux/delay.h>
  50. #include <linux/list.h>
  51. #include <linux/pci.h>
  52. #include <linux/ioport.h>
  53. #include <linux/notifier.h>
  54. #include <linux/mutex.h>
  55. #include <linux/kthread.h>
  56. #include <asm/irq.h>
  57. #include <linux/interrupt.h>
  58. #include <linux/rcupdate.h>
  59. #include <linux/ipmi.h>
  60. #include <linux/ipmi_smi.h>
  61. #include <asm/io.h>
  62. #include "ipmi_si_sm.h"
  63. #include <linux/init.h>
  64. #include <linux/dmi.h>
  65. #include <linux/string.h>
  66. #include <linux/ctype.h>
  67. #include <linux/pnp.h>
  68. #include <linux/of_device.h>
  69. #include <linux/of_platform.h>
  70. #include <linux/of_address.h>
  71. #include <linux/of_irq.h>
  72. #define PFX "ipmi_si: "
  73. /* Measure times between events in the driver. */
  74. #undef DEBUG_TIMING
  75. /* Call every 10 ms. */
  76. #define SI_TIMEOUT_TIME_USEC 10000
  77. #define SI_USEC_PER_JIFFY (1000000/HZ)
  78. #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
  79. #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
  80. short timeout */
  81. enum si_intf_state {
  82. SI_NORMAL,
  83. SI_GETTING_FLAGS,
  84. SI_GETTING_EVENTS,
  85. SI_CLEARING_FLAGS,
  86. SI_CLEARING_FLAGS_THEN_SET_IRQ,
  87. SI_GETTING_MESSAGES,
  88. SI_ENABLE_INTERRUPTS1,
  89. SI_ENABLE_INTERRUPTS2,
  90. SI_DISABLE_INTERRUPTS1,
  91. SI_DISABLE_INTERRUPTS2
  92. /* FIXME - add watchdog stuff. */
  93. };
  94. /* Some BT-specific defines we need here. */
  95. #define IPMI_BT_INTMASK_REG 2
  96. #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
  97. #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
  98. enum si_type {
  99. SI_KCS, SI_SMIC, SI_BT
  100. };
  101. static char *si_to_str[] = { "kcs", "smic", "bt" };
  102. static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
  103. "ACPI", "SMBIOS", "PCI",
  104. "device-tree", "default" };
  105. #define DEVICE_NAME "ipmi_si"
  106. static struct platform_driver ipmi_driver;
  107. /*
  108. * Indexes into stats[] in smi_info below.
  109. */
  110. enum si_stat_indexes {
  111. /*
  112. * Number of times the driver requested a timer while an operation
  113. * was in progress.
  114. */
  115. SI_STAT_short_timeouts = 0,
  116. /*
  117. * Number of times the driver requested a timer while nothing was in
  118. * progress.
  119. */
  120. SI_STAT_long_timeouts,
  121. /* Number of times the interface was idle while being polled. */
  122. SI_STAT_idles,
  123. /* Number of interrupts the driver handled. */
  124. SI_STAT_interrupts,
  125. /* Number of time the driver got an ATTN from the hardware. */
  126. SI_STAT_attentions,
  127. /* Number of times the driver requested flags from the hardware. */
  128. SI_STAT_flag_fetches,
  129. /* Number of times the hardware didn't follow the state machine. */
  130. SI_STAT_hosed_count,
  131. /* Number of completed messages. */
  132. SI_STAT_complete_transactions,
  133. /* Number of IPMI events received from the hardware. */
  134. SI_STAT_events,
  135. /* Number of watchdog pretimeouts. */
  136. SI_STAT_watchdog_pretimeouts,
  137. /* Number of asyncronous messages received. */
  138. SI_STAT_incoming_messages,
  139. /* This *must* remain last, add new values above this. */
  140. SI_NUM_STATS
  141. };
  142. struct smi_info {
  143. int intf_num;
  144. ipmi_smi_t intf;
  145. struct si_sm_data *si_sm;
  146. struct si_sm_handlers *handlers;
  147. enum si_type si_type;
  148. spinlock_t si_lock;
  149. spinlock_t msg_lock;
  150. struct list_head xmit_msgs;
  151. struct list_head hp_xmit_msgs;
  152. struct ipmi_smi_msg *curr_msg;
  153. enum si_intf_state si_state;
  154. /*
  155. * Used to handle the various types of I/O that can occur with
  156. * IPMI
  157. */
  158. struct si_sm_io io;
  159. int (*io_setup)(struct smi_info *info);
  160. void (*io_cleanup)(struct smi_info *info);
  161. int (*irq_setup)(struct smi_info *info);
  162. void (*irq_cleanup)(struct smi_info *info);
  163. unsigned int io_size;
  164. enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
  165. void (*addr_source_cleanup)(struct smi_info *info);
  166. void *addr_source_data;
  167. /*
  168. * Per-OEM handler, called from handle_flags(). Returns 1
  169. * when handle_flags() needs to be re-run or 0 indicating it
  170. * set si_state itself.
  171. */
  172. int (*oem_data_avail_handler)(struct smi_info *smi_info);
  173. /*
  174. * Flags from the last GET_MSG_FLAGS command, used when an ATTN
  175. * is set to hold the flags until we are done handling everything
  176. * from the flags.
  177. */
  178. #define RECEIVE_MSG_AVAIL 0x01
  179. #define EVENT_MSG_BUFFER_FULL 0x02
  180. #define WDT_PRE_TIMEOUT_INT 0x08
  181. #define OEM0_DATA_AVAIL 0x20
  182. #define OEM1_DATA_AVAIL 0x40
  183. #define OEM2_DATA_AVAIL 0x80
  184. #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
  185. OEM1_DATA_AVAIL | \
  186. OEM2_DATA_AVAIL)
  187. unsigned char msg_flags;
  188. /* Does the BMC have an event buffer? */
  189. char has_event_buffer;
  190. /*
  191. * If set to true, this will request events the next time the
  192. * state machine is idle.
  193. */
  194. atomic_t req_events;
  195. /*
  196. * If true, run the state machine to completion on every send
  197. * call. Generally used after a panic to make sure stuff goes
  198. * out.
  199. */
  200. int run_to_completion;
  201. /* The I/O port of an SI interface. */
  202. int port;
  203. /*
  204. * The space between start addresses of the two ports. For
  205. * instance, if the first port is 0xca2 and the spacing is 4, then
  206. * the second port is 0xca6.
  207. */
  208. unsigned int spacing;
  209. /* zero if no irq; */
  210. int irq;
  211. /* The timer for this si. */
  212. struct timer_list si_timer;
  213. /* The time (in jiffies) the last timeout occurred at. */
  214. unsigned long last_timeout_jiffies;
  215. /* Used to gracefully stop the timer without race conditions. */
  216. atomic_t stop_operation;
  217. /*
  218. * The driver will disable interrupts when it gets into a
  219. * situation where it cannot handle messages due to lack of
  220. * memory. Once that situation clears up, it will re-enable
  221. * interrupts.
  222. */
  223. int interrupt_disabled;
  224. /* From the get device id response... */
  225. struct ipmi_device_id device_id;
  226. /* Driver model stuff. */
  227. struct device *dev;
  228. struct platform_device *pdev;
  229. /*
  230. * True if we allocated the device, false if it came from
  231. * someplace else (like PCI).
  232. */
  233. int dev_registered;
  234. /* Slave address, could be reported from DMI. */
  235. unsigned char slave_addr;
  236. /* Counters and things for the proc filesystem. */
  237. atomic_t stats[SI_NUM_STATS];
  238. struct task_struct *thread;
  239. struct list_head link;
  240. union ipmi_smi_info_union addr_info;
  241. };
  242. #define smi_inc_stat(smi, stat) \
  243. atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
  244. #define smi_get_stat(smi, stat) \
  245. ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
  246. #define SI_MAX_PARMS 4
  247. static int force_kipmid[SI_MAX_PARMS];
  248. static int num_force_kipmid;
  249. #ifdef CONFIG_PCI
  250. static int pci_registered;
  251. #endif
  252. #ifdef CONFIG_ACPI
  253. static int pnp_registered;
  254. #endif
  255. static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
  256. static int num_max_busy_us;
  257. static int unload_when_empty = 1;
  258. static int add_smi(struct smi_info *smi);
  259. static int try_smi_init(struct smi_info *smi);
  260. static void cleanup_one_si(struct smi_info *to_clean);
  261. static void cleanup_ipmi_si(void);
  262. static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
  263. static int register_xaction_notifier(struct notifier_block *nb)
  264. {
  265. return atomic_notifier_chain_register(&xaction_notifier_list, nb);
  266. }
  267. static void deliver_recv_msg(struct smi_info *smi_info,
  268. struct ipmi_smi_msg *msg)
  269. {
  270. /* Deliver the message to the upper layer with the lock
  271. released. */
  272. if (smi_info->run_to_completion) {
  273. ipmi_smi_msg_received(smi_info->intf, msg);
  274. } else {
  275. spin_unlock(&(smi_info->si_lock));
  276. ipmi_smi_msg_received(smi_info->intf, msg);
  277. spin_lock(&(smi_info->si_lock));
  278. }
  279. }
  280. static void return_hosed_msg(struct smi_info *smi_info, int cCode)
  281. {
  282. struct ipmi_smi_msg *msg = smi_info->curr_msg;
  283. if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
  284. cCode = IPMI_ERR_UNSPECIFIED;
  285. /* else use it as is */
  286. /* Make it a response */
  287. msg->rsp[0] = msg->data[0] | 4;
  288. msg->rsp[1] = msg->data[1];
  289. msg->rsp[2] = cCode;
  290. msg->rsp_size = 3;
  291. smi_info->curr_msg = NULL;
  292. deliver_recv_msg(smi_info, msg);
  293. }
  294. static enum si_sm_result start_next_msg(struct smi_info *smi_info)
  295. {
  296. int rv;
  297. struct list_head *entry = NULL;
  298. #ifdef DEBUG_TIMING
  299. struct timeval t;
  300. #endif
  301. /*
  302. * No need to save flags, we aleady have interrupts off and we
  303. * already hold the SMI lock.
  304. */
  305. if (!smi_info->run_to_completion)
  306. spin_lock(&(smi_info->msg_lock));
  307. /* Pick the high priority queue first. */
  308. if (!list_empty(&(smi_info->hp_xmit_msgs))) {
  309. entry = smi_info->hp_xmit_msgs.next;
  310. } else if (!list_empty(&(smi_info->xmit_msgs))) {
  311. entry = smi_info->xmit_msgs.next;
  312. }
  313. if (!entry) {
  314. smi_info->curr_msg = NULL;
  315. rv = SI_SM_IDLE;
  316. } else {
  317. int err;
  318. list_del(entry);
  319. smi_info->curr_msg = list_entry(entry,
  320. struct ipmi_smi_msg,
  321. link);
  322. #ifdef DEBUG_TIMING
  323. do_gettimeofday(&t);
  324. printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  325. #endif
  326. err = atomic_notifier_call_chain(&xaction_notifier_list,
  327. 0, smi_info);
  328. if (err & NOTIFY_STOP_MASK) {
  329. rv = SI_SM_CALL_WITHOUT_DELAY;
  330. goto out;
  331. }
  332. err = smi_info->handlers->start_transaction(
  333. smi_info->si_sm,
  334. smi_info->curr_msg->data,
  335. smi_info->curr_msg->data_size);
  336. if (err)
  337. return_hosed_msg(smi_info, err);
  338. rv = SI_SM_CALL_WITHOUT_DELAY;
  339. }
  340. out:
  341. if (!smi_info->run_to_completion)
  342. spin_unlock(&(smi_info->msg_lock));
  343. return rv;
  344. }
  345. static void start_enable_irq(struct smi_info *smi_info)
  346. {
  347. unsigned char msg[2];
  348. /*
  349. * If we are enabling interrupts, we have to tell the
  350. * BMC to use them.
  351. */
  352. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  353. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  354. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  355. smi_info->si_state = SI_ENABLE_INTERRUPTS1;
  356. }
  357. static void start_disable_irq(struct smi_info *smi_info)
  358. {
  359. unsigned char msg[2];
  360. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  361. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  362. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  363. smi_info->si_state = SI_DISABLE_INTERRUPTS1;
  364. }
  365. static void start_clear_flags(struct smi_info *smi_info)
  366. {
  367. unsigned char msg[3];
  368. /* Make sure the watchdog pre-timeout flag is not set at startup. */
  369. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  370. msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
  371. msg[2] = WDT_PRE_TIMEOUT_INT;
  372. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
  373. smi_info->si_state = SI_CLEARING_FLAGS;
  374. }
  375. /*
  376. * When we have a situtaion where we run out of memory and cannot
  377. * allocate messages, we just leave them in the BMC and run the system
  378. * polled until we can allocate some memory. Once we have some
  379. * memory, we will re-enable the interrupt.
  380. */
  381. static inline void disable_si_irq(struct smi_info *smi_info)
  382. {
  383. if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
  384. start_disable_irq(smi_info);
  385. smi_info->interrupt_disabled = 1;
  386. if (!atomic_read(&smi_info->stop_operation))
  387. mod_timer(&smi_info->si_timer,
  388. jiffies + SI_TIMEOUT_JIFFIES);
  389. }
  390. }
  391. static inline void enable_si_irq(struct smi_info *smi_info)
  392. {
  393. if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
  394. start_enable_irq(smi_info);
  395. smi_info->interrupt_disabled = 0;
  396. }
  397. }
  398. static void handle_flags(struct smi_info *smi_info)
  399. {
  400. retry:
  401. if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
  402. /* Watchdog pre-timeout */
  403. smi_inc_stat(smi_info, watchdog_pretimeouts);
  404. start_clear_flags(smi_info);
  405. smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
  406. spin_unlock(&(smi_info->si_lock));
  407. ipmi_smi_watchdog_pretimeout(smi_info->intf);
  408. spin_lock(&(smi_info->si_lock));
  409. } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
  410. /* Messages available. */
  411. smi_info->curr_msg = ipmi_alloc_smi_msg();
  412. if (!smi_info->curr_msg) {
  413. disable_si_irq(smi_info);
  414. smi_info->si_state = SI_NORMAL;
  415. return;
  416. }
  417. enable_si_irq(smi_info);
  418. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  419. smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
  420. smi_info->curr_msg->data_size = 2;
  421. smi_info->handlers->start_transaction(
  422. smi_info->si_sm,
  423. smi_info->curr_msg->data,
  424. smi_info->curr_msg->data_size);
  425. smi_info->si_state = SI_GETTING_MESSAGES;
  426. } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
  427. /* Events available. */
  428. smi_info->curr_msg = ipmi_alloc_smi_msg();
  429. if (!smi_info->curr_msg) {
  430. disable_si_irq(smi_info);
  431. smi_info->si_state = SI_NORMAL;
  432. return;
  433. }
  434. enable_si_irq(smi_info);
  435. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  436. smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
  437. smi_info->curr_msg->data_size = 2;
  438. smi_info->handlers->start_transaction(
  439. smi_info->si_sm,
  440. smi_info->curr_msg->data,
  441. smi_info->curr_msg->data_size);
  442. smi_info->si_state = SI_GETTING_EVENTS;
  443. } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
  444. smi_info->oem_data_avail_handler) {
  445. if (smi_info->oem_data_avail_handler(smi_info))
  446. goto retry;
  447. } else
  448. smi_info->si_state = SI_NORMAL;
  449. }
  450. static void handle_transaction_done(struct smi_info *smi_info)
  451. {
  452. struct ipmi_smi_msg *msg;
  453. #ifdef DEBUG_TIMING
  454. struct timeval t;
  455. do_gettimeofday(&t);
  456. printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  457. #endif
  458. switch (smi_info->si_state) {
  459. case SI_NORMAL:
  460. if (!smi_info->curr_msg)
  461. break;
  462. smi_info->curr_msg->rsp_size
  463. = smi_info->handlers->get_result(
  464. smi_info->si_sm,
  465. smi_info->curr_msg->rsp,
  466. IPMI_MAX_MSG_LENGTH);
  467. /*
  468. * Do this here becase deliver_recv_msg() releases the
  469. * lock, and a new message can be put in during the
  470. * time the lock is released.
  471. */
  472. msg = smi_info->curr_msg;
  473. smi_info->curr_msg = NULL;
  474. deliver_recv_msg(smi_info, msg);
  475. break;
  476. case SI_GETTING_FLAGS:
  477. {
  478. unsigned char msg[4];
  479. unsigned int len;
  480. /* We got the flags from the SMI, now handle them. */
  481. len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  482. if (msg[2] != 0) {
  483. /* Error fetching flags, just give up for now. */
  484. smi_info->si_state = SI_NORMAL;
  485. } else if (len < 4) {
  486. /*
  487. * Hmm, no flags. That's technically illegal, but
  488. * don't use uninitialized data.
  489. */
  490. smi_info->si_state = SI_NORMAL;
  491. } else {
  492. smi_info->msg_flags = msg[3];
  493. handle_flags(smi_info);
  494. }
  495. break;
  496. }
  497. case SI_CLEARING_FLAGS:
  498. case SI_CLEARING_FLAGS_THEN_SET_IRQ:
  499. {
  500. unsigned char msg[3];
  501. /* We cleared the flags. */
  502. smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
  503. if (msg[2] != 0) {
  504. /* Error clearing flags */
  505. dev_warn(smi_info->dev,
  506. "Error clearing flags: %2.2x\n", msg[2]);
  507. }
  508. if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
  509. start_enable_irq(smi_info);
  510. else
  511. smi_info->si_state = SI_NORMAL;
  512. break;
  513. }
  514. case SI_GETTING_EVENTS:
  515. {
  516. smi_info->curr_msg->rsp_size
  517. = smi_info->handlers->get_result(
  518. smi_info->si_sm,
  519. smi_info->curr_msg->rsp,
  520. IPMI_MAX_MSG_LENGTH);
  521. /*
  522. * Do this here becase deliver_recv_msg() releases the
  523. * lock, and a new message can be put in during the
  524. * time the lock is released.
  525. */
  526. msg = smi_info->curr_msg;
  527. smi_info->curr_msg = NULL;
  528. if (msg->rsp[2] != 0) {
  529. /* Error getting event, probably done. */
  530. msg->done(msg);
  531. /* Take off the event flag. */
  532. smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
  533. handle_flags(smi_info);
  534. } else {
  535. smi_inc_stat(smi_info, events);
  536. /*
  537. * Do this before we deliver the message
  538. * because delivering the message releases the
  539. * lock and something else can mess with the
  540. * state.
  541. */
  542. handle_flags(smi_info);
  543. deliver_recv_msg(smi_info, msg);
  544. }
  545. break;
  546. }
  547. case SI_GETTING_MESSAGES:
  548. {
  549. smi_info->curr_msg->rsp_size
  550. = smi_info->handlers->get_result(
  551. smi_info->si_sm,
  552. smi_info->curr_msg->rsp,
  553. IPMI_MAX_MSG_LENGTH);
  554. /*
  555. * Do this here becase deliver_recv_msg() releases the
  556. * lock, and a new message can be put in during the
  557. * time the lock is released.
  558. */
  559. msg = smi_info->curr_msg;
  560. smi_info->curr_msg = NULL;
  561. if (msg->rsp[2] != 0) {
  562. /* Error getting event, probably done. */
  563. msg->done(msg);
  564. /* Take off the msg flag. */
  565. smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
  566. handle_flags(smi_info);
  567. } else {
  568. smi_inc_stat(smi_info, incoming_messages);
  569. /*
  570. * Do this before we deliver the message
  571. * because delivering the message releases the
  572. * lock and something else can mess with the
  573. * state.
  574. */
  575. handle_flags(smi_info);
  576. deliver_recv_msg(smi_info, msg);
  577. }
  578. break;
  579. }
  580. case SI_ENABLE_INTERRUPTS1:
  581. {
  582. unsigned char msg[4];
  583. /* We got the flags from the SMI, now handle them. */
  584. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  585. if (msg[2] != 0) {
  586. dev_warn(smi_info->dev, "Could not enable interrupts"
  587. ", failed get, using polled mode.\n");
  588. smi_info->si_state = SI_NORMAL;
  589. } else {
  590. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  591. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  592. msg[2] = (msg[3] |
  593. IPMI_BMC_RCV_MSG_INTR |
  594. IPMI_BMC_EVT_MSG_INTR);
  595. smi_info->handlers->start_transaction(
  596. smi_info->si_sm, msg, 3);
  597. smi_info->si_state = SI_ENABLE_INTERRUPTS2;
  598. }
  599. break;
  600. }
  601. case SI_ENABLE_INTERRUPTS2:
  602. {
  603. unsigned char msg[4];
  604. /* We got the flags from the SMI, now handle them. */
  605. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  606. if (msg[2] != 0)
  607. dev_warn(smi_info->dev, "Could not enable interrupts"
  608. ", failed set, using polled mode.\n");
  609. else
  610. smi_info->interrupt_disabled = 0;
  611. smi_info->si_state = SI_NORMAL;
  612. break;
  613. }
  614. case SI_DISABLE_INTERRUPTS1:
  615. {
  616. unsigned char msg[4];
  617. /* We got the flags from the SMI, now handle them. */
  618. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  619. if (msg[2] != 0) {
  620. dev_warn(smi_info->dev, "Could not disable interrupts"
  621. ", failed get.\n");
  622. smi_info->si_state = SI_NORMAL;
  623. } else {
  624. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  625. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  626. msg[2] = (msg[3] &
  627. ~(IPMI_BMC_RCV_MSG_INTR |
  628. IPMI_BMC_EVT_MSG_INTR));
  629. smi_info->handlers->start_transaction(
  630. smi_info->si_sm, msg, 3);
  631. smi_info->si_state = SI_DISABLE_INTERRUPTS2;
  632. }
  633. break;
  634. }
  635. case SI_DISABLE_INTERRUPTS2:
  636. {
  637. unsigned char msg[4];
  638. /* We got the flags from the SMI, now handle them. */
  639. smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
  640. if (msg[2] != 0) {
  641. dev_warn(smi_info->dev, "Could not disable interrupts"
  642. ", failed set.\n");
  643. }
  644. smi_info->si_state = SI_NORMAL;
  645. break;
  646. }
  647. }
  648. }
  649. /*
  650. * Called on timeouts and events. Timeouts should pass the elapsed
  651. * time, interrupts should pass in zero. Must be called with
  652. * si_lock held and interrupts disabled.
  653. */
  654. static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
  655. int time)
  656. {
  657. enum si_sm_result si_sm_result;
  658. restart:
  659. /*
  660. * There used to be a loop here that waited a little while
  661. * (around 25us) before giving up. That turned out to be
  662. * pointless, the minimum delays I was seeing were in the 300us
  663. * range, which is far too long to wait in an interrupt. So
  664. * we just run until the state machine tells us something
  665. * happened or it needs a delay.
  666. */
  667. si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
  668. time = 0;
  669. while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
  670. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  671. if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
  672. smi_inc_stat(smi_info, complete_transactions);
  673. handle_transaction_done(smi_info);
  674. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  675. } else if (si_sm_result == SI_SM_HOSED) {
  676. smi_inc_stat(smi_info, hosed_count);
  677. /*
  678. * Do the before return_hosed_msg, because that
  679. * releases the lock.
  680. */
  681. smi_info->si_state = SI_NORMAL;
  682. if (smi_info->curr_msg != NULL) {
  683. /*
  684. * If we were handling a user message, format
  685. * a response to send to the upper layer to
  686. * tell it about the error.
  687. */
  688. return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
  689. }
  690. si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
  691. }
  692. /*
  693. * We prefer handling attn over new messages. But don't do
  694. * this if there is not yet an upper layer to handle anything.
  695. */
  696. if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
  697. unsigned char msg[2];
  698. smi_inc_stat(smi_info, attentions);
  699. /*
  700. * Got a attn, send down a get message flags to see
  701. * what's causing it. It would be better to handle
  702. * this in the upper layer, but due to the way
  703. * interrupts work with the SMI, that's not really
  704. * possible.
  705. */
  706. msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
  707. msg[1] = IPMI_GET_MSG_FLAGS_CMD;
  708. smi_info->handlers->start_transaction(
  709. smi_info->si_sm, msg, 2);
  710. smi_info->si_state = SI_GETTING_FLAGS;
  711. goto restart;
  712. }
  713. /* If we are currently idle, try to start the next message. */
  714. if (si_sm_result == SI_SM_IDLE) {
  715. smi_inc_stat(smi_info, idles);
  716. si_sm_result = start_next_msg(smi_info);
  717. if (si_sm_result != SI_SM_IDLE)
  718. goto restart;
  719. }
  720. if ((si_sm_result == SI_SM_IDLE)
  721. && (atomic_read(&smi_info->req_events))) {
  722. /*
  723. * We are idle and the upper layer requested that I fetch
  724. * events, so do so.
  725. */
  726. atomic_set(&smi_info->req_events, 0);
  727. smi_info->curr_msg = ipmi_alloc_smi_msg();
  728. if (!smi_info->curr_msg)
  729. goto out;
  730. smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
  731. smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
  732. smi_info->curr_msg->data_size = 2;
  733. smi_info->handlers->start_transaction(
  734. smi_info->si_sm,
  735. smi_info->curr_msg->data,
  736. smi_info->curr_msg->data_size);
  737. smi_info->si_state = SI_GETTING_EVENTS;
  738. goto restart;
  739. }
  740. out:
  741. return si_sm_result;
  742. }
  743. static void sender(void *send_info,
  744. struct ipmi_smi_msg *msg,
  745. int priority)
  746. {
  747. struct smi_info *smi_info = send_info;
  748. enum si_sm_result result;
  749. unsigned long flags;
  750. #ifdef DEBUG_TIMING
  751. struct timeval t;
  752. #endif
  753. if (atomic_read(&smi_info->stop_operation)) {
  754. msg->rsp[0] = msg->data[0] | 4;
  755. msg->rsp[1] = msg->data[1];
  756. msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
  757. msg->rsp_size = 3;
  758. deliver_recv_msg(smi_info, msg);
  759. return;
  760. }
  761. #ifdef DEBUG_TIMING
  762. do_gettimeofday(&t);
  763. printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  764. #endif
  765. /*
  766. * last_timeout_jiffies is updated here to avoid
  767. * smi_timeout() handler passing very large time_diff
  768. * value to smi_event_handler() that causes
  769. * the send command to abort.
  770. */
  771. smi_info->last_timeout_jiffies = jiffies;
  772. mod_timer(&smi_info->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
  773. if (smi_info->thread)
  774. wake_up_process(smi_info->thread);
  775. if (smi_info->run_to_completion) {
  776. /*
  777. * If we are running to completion, then throw it in
  778. * the list and run transactions until everything is
  779. * clear. Priority doesn't matter here.
  780. */
  781. /*
  782. * Run to completion means we are single-threaded, no
  783. * need for locks.
  784. */
  785. list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
  786. result = smi_event_handler(smi_info, 0);
  787. while (result != SI_SM_IDLE) {
  788. udelay(SI_SHORT_TIMEOUT_USEC);
  789. result = smi_event_handler(smi_info,
  790. SI_SHORT_TIMEOUT_USEC);
  791. }
  792. return;
  793. }
  794. spin_lock_irqsave(&smi_info->msg_lock, flags);
  795. if (priority > 0)
  796. list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
  797. else
  798. list_add_tail(&msg->link, &smi_info->xmit_msgs);
  799. spin_unlock_irqrestore(&smi_info->msg_lock, flags);
  800. spin_lock_irqsave(&smi_info->si_lock, flags);
  801. if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
  802. start_next_msg(smi_info);
  803. smi_event_handler(smi_info, 0);
  804. }
  805. spin_unlock_irqrestore(&smi_info->si_lock, flags);
  806. }
  807. static void set_run_to_completion(void *send_info, int i_run_to_completion)
  808. {
  809. struct smi_info *smi_info = send_info;
  810. enum si_sm_result result;
  811. smi_info->run_to_completion = i_run_to_completion;
  812. if (i_run_to_completion) {
  813. result = smi_event_handler(smi_info, 0);
  814. while (result != SI_SM_IDLE) {
  815. udelay(SI_SHORT_TIMEOUT_USEC);
  816. result = smi_event_handler(smi_info,
  817. SI_SHORT_TIMEOUT_USEC);
  818. }
  819. }
  820. }
  821. /*
  822. * Use -1 in the nsec value of the busy waiting timespec to tell that
  823. * we are spinning in kipmid looking for something and not delaying
  824. * between checks
  825. */
  826. static inline void ipmi_si_set_not_busy(struct timespec *ts)
  827. {
  828. ts->tv_nsec = -1;
  829. }
  830. static inline int ipmi_si_is_busy(struct timespec *ts)
  831. {
  832. return ts->tv_nsec != -1;
  833. }
  834. static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
  835. const struct smi_info *smi_info,
  836. struct timespec *busy_until)
  837. {
  838. unsigned int max_busy_us = 0;
  839. if (smi_info->intf_num < num_max_busy_us)
  840. max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
  841. if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
  842. ipmi_si_set_not_busy(busy_until);
  843. else if (!ipmi_si_is_busy(busy_until)) {
  844. getnstimeofday(busy_until);
  845. timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
  846. } else {
  847. struct timespec now;
  848. getnstimeofday(&now);
  849. if (unlikely(timespec_compare(&now, busy_until) > 0)) {
  850. ipmi_si_set_not_busy(busy_until);
  851. return 0;
  852. }
  853. }
  854. return 1;
  855. }
  856. /*
  857. * A busy-waiting loop for speeding up IPMI operation.
  858. *
  859. * Lousy hardware makes this hard. This is only enabled for systems
  860. * that are not BT and do not have interrupts. It starts spinning
  861. * when an operation is complete or until max_busy tells it to stop
  862. * (if that is enabled). See the paragraph on kimid_max_busy_us in
  863. * Documentation/IPMI.txt for details.
  864. */
  865. static int ipmi_thread(void *data)
  866. {
  867. struct smi_info *smi_info = data;
  868. unsigned long flags;
  869. enum si_sm_result smi_result;
  870. struct timespec busy_until;
  871. ipmi_si_set_not_busy(&busy_until);
  872. set_user_nice(current, 19);
  873. while (!kthread_should_stop()) {
  874. int busy_wait;
  875. spin_lock_irqsave(&(smi_info->si_lock), flags);
  876. smi_result = smi_event_handler(smi_info, 0);
  877. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  878. busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
  879. &busy_until);
  880. if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
  881. ; /* do nothing */
  882. else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
  883. schedule();
  884. else if (smi_result == SI_SM_IDLE)
  885. schedule_timeout_interruptible(100);
  886. else
  887. schedule_timeout_interruptible(1);
  888. }
  889. return 0;
  890. }
  891. static void poll(void *send_info)
  892. {
  893. struct smi_info *smi_info = send_info;
  894. unsigned long flags;
  895. /*
  896. * Make sure there is some delay in the poll loop so we can
  897. * drive time forward and timeout things.
  898. */
  899. udelay(10);
  900. spin_lock_irqsave(&smi_info->si_lock, flags);
  901. smi_event_handler(smi_info, 10);
  902. spin_unlock_irqrestore(&smi_info->si_lock, flags);
  903. }
  904. static void request_events(void *send_info)
  905. {
  906. struct smi_info *smi_info = send_info;
  907. if (atomic_read(&smi_info->stop_operation) ||
  908. !smi_info->has_event_buffer)
  909. return;
  910. atomic_set(&smi_info->req_events, 1);
  911. }
  912. static int initialized;
  913. static void smi_timeout(unsigned long data)
  914. {
  915. struct smi_info *smi_info = (struct smi_info *) data;
  916. enum si_sm_result smi_result;
  917. unsigned long flags;
  918. unsigned long jiffies_now;
  919. long time_diff;
  920. long timeout;
  921. #ifdef DEBUG_TIMING
  922. struct timeval t;
  923. #endif
  924. spin_lock_irqsave(&(smi_info->si_lock), flags);
  925. #ifdef DEBUG_TIMING
  926. do_gettimeofday(&t);
  927. printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  928. #endif
  929. jiffies_now = jiffies;
  930. time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
  931. * SI_USEC_PER_JIFFY);
  932. smi_result = smi_event_handler(smi_info, time_diff);
  933. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  934. smi_info->last_timeout_jiffies = jiffies_now;
  935. if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
  936. /* Running with interrupts, only do long timeouts. */
  937. timeout = jiffies + SI_TIMEOUT_JIFFIES;
  938. smi_inc_stat(smi_info, long_timeouts);
  939. goto do_mod_timer;
  940. }
  941. /*
  942. * If the state machine asks for a short delay, then shorten
  943. * the timer timeout.
  944. */
  945. if (smi_result == SI_SM_CALL_WITH_DELAY) {
  946. smi_inc_stat(smi_info, short_timeouts);
  947. timeout = jiffies + 1;
  948. } else {
  949. smi_inc_stat(smi_info, long_timeouts);
  950. timeout = jiffies + SI_TIMEOUT_JIFFIES;
  951. }
  952. do_mod_timer:
  953. if (smi_result != SI_SM_IDLE)
  954. mod_timer(&(smi_info->si_timer), timeout);
  955. }
  956. static irqreturn_t si_irq_handler(int irq, void *data)
  957. {
  958. struct smi_info *smi_info = data;
  959. unsigned long flags;
  960. #ifdef DEBUG_TIMING
  961. struct timeval t;
  962. #endif
  963. spin_lock_irqsave(&(smi_info->si_lock), flags);
  964. smi_inc_stat(smi_info, interrupts);
  965. #ifdef DEBUG_TIMING
  966. do_gettimeofday(&t);
  967. printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  968. #endif
  969. smi_event_handler(smi_info, 0);
  970. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  971. return IRQ_HANDLED;
  972. }
  973. static irqreturn_t si_bt_irq_handler(int irq, void *data)
  974. {
  975. struct smi_info *smi_info = data;
  976. /* We need to clear the IRQ flag for the BT interface. */
  977. smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
  978. IPMI_BT_INTMASK_CLEAR_IRQ_BIT
  979. | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
  980. return si_irq_handler(irq, data);
  981. }
  982. static int smi_start_processing(void *send_info,
  983. ipmi_smi_t intf)
  984. {
  985. struct smi_info *new_smi = send_info;
  986. int enable = 0;
  987. new_smi->intf = intf;
  988. /* Try to claim any interrupts. */
  989. if (new_smi->irq_setup)
  990. new_smi->irq_setup(new_smi);
  991. /* Set up the timer that drives the interface. */
  992. setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
  993. new_smi->last_timeout_jiffies = jiffies;
  994. mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
  995. /*
  996. * Check if the user forcefully enabled the daemon.
  997. */
  998. if (new_smi->intf_num < num_force_kipmid)
  999. enable = force_kipmid[new_smi->intf_num];
  1000. /*
  1001. * The BT interface is efficient enough to not need a thread,
  1002. * and there is no need for a thread if we have interrupts.
  1003. */
  1004. else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
  1005. enable = 1;
  1006. if (enable) {
  1007. new_smi->thread = kthread_run(ipmi_thread, new_smi,
  1008. "kipmi%d", new_smi->intf_num);
  1009. if (IS_ERR(new_smi->thread)) {
  1010. dev_notice(new_smi->dev, "Could not start"
  1011. " kernel thread due to error %ld, only using"
  1012. " timers to drive the interface\n",
  1013. PTR_ERR(new_smi->thread));
  1014. new_smi->thread = NULL;
  1015. }
  1016. }
  1017. return 0;
  1018. }
  1019. static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
  1020. {
  1021. struct smi_info *smi = send_info;
  1022. data->addr_src = smi->addr_source;
  1023. data->dev = smi->dev;
  1024. data->addr_info = smi->addr_info;
  1025. get_device(smi->dev);
  1026. return 0;
  1027. }
  1028. static void set_maintenance_mode(void *send_info, int enable)
  1029. {
  1030. struct smi_info *smi_info = send_info;
  1031. if (!enable)
  1032. atomic_set(&smi_info->req_events, 0);
  1033. }
  1034. static struct ipmi_smi_handlers handlers = {
  1035. .owner = THIS_MODULE,
  1036. .start_processing = smi_start_processing,
  1037. .get_smi_info = get_smi_info,
  1038. .sender = sender,
  1039. .request_events = request_events,
  1040. .set_maintenance_mode = set_maintenance_mode,
  1041. .set_run_to_completion = set_run_to_completion,
  1042. .poll = poll,
  1043. };
  1044. /*
  1045. * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
  1046. * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
  1047. */
  1048. static LIST_HEAD(smi_infos);
  1049. static DEFINE_MUTEX(smi_infos_lock);
  1050. static int smi_num; /* Used to sequence the SMIs */
  1051. #define DEFAULT_REGSPACING 1
  1052. #define DEFAULT_REGSIZE 1
  1053. static bool si_trydefaults = 1;
  1054. static char *si_type[SI_MAX_PARMS];
  1055. #define MAX_SI_TYPE_STR 30
  1056. static char si_type_str[MAX_SI_TYPE_STR];
  1057. static unsigned long addrs[SI_MAX_PARMS];
  1058. static unsigned int num_addrs;
  1059. static unsigned int ports[SI_MAX_PARMS];
  1060. static unsigned int num_ports;
  1061. static int irqs[SI_MAX_PARMS];
  1062. static unsigned int num_irqs;
  1063. static int regspacings[SI_MAX_PARMS];
  1064. static unsigned int num_regspacings;
  1065. static int regsizes[SI_MAX_PARMS];
  1066. static unsigned int num_regsizes;
  1067. static int regshifts[SI_MAX_PARMS];
  1068. static unsigned int num_regshifts;
  1069. static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
  1070. static unsigned int num_slave_addrs;
  1071. #define IPMI_IO_ADDR_SPACE 0
  1072. #define IPMI_MEM_ADDR_SPACE 1
  1073. static char *addr_space_to_str[] = { "i/o", "mem" };
  1074. static int hotmod_handler(const char *val, struct kernel_param *kp);
  1075. module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
  1076. MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
  1077. " Documentation/IPMI.txt in the kernel sources for the"
  1078. " gory details.");
  1079. module_param_named(trydefaults, si_trydefaults, bool, 0);
  1080. MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
  1081. " default scan of the KCS and SMIC interface at the standard"
  1082. " address");
  1083. module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
  1084. MODULE_PARM_DESC(type, "Defines the type of each interface, each"
  1085. " interface separated by commas. The types are 'kcs',"
  1086. " 'smic', and 'bt'. For example si_type=kcs,bt will set"
  1087. " the first interface to kcs and the second to bt");
  1088. module_param_array(addrs, ulong, &num_addrs, 0);
  1089. MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
  1090. " addresses separated by commas. Only use if an interface"
  1091. " is in memory. Otherwise, set it to zero or leave"
  1092. " it blank.");
  1093. module_param_array(ports, uint, &num_ports, 0);
  1094. MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
  1095. " addresses separated by commas. Only use if an interface"
  1096. " is a port. Otherwise, set it to zero or leave"
  1097. " it blank.");
  1098. module_param_array(irqs, int, &num_irqs, 0);
  1099. MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
  1100. " addresses separated by commas. Only use if an interface"
  1101. " has an interrupt. Otherwise, set it to zero or leave"
  1102. " it blank.");
  1103. module_param_array(regspacings, int, &num_regspacings, 0);
  1104. MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
  1105. " and each successive register used by the interface. For"
  1106. " instance, if the start address is 0xca2 and the spacing"
  1107. " is 2, then the second address is at 0xca4. Defaults"
  1108. " to 1.");
  1109. module_param_array(regsizes, int, &num_regsizes, 0);
  1110. MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
  1111. " This should generally be 1, 2, 4, or 8 for an 8-bit,"
  1112. " 16-bit, 32-bit, or 64-bit register. Use this if you"
  1113. " the 8-bit IPMI register has to be read from a larger"
  1114. " register.");
  1115. module_param_array(regshifts, int, &num_regshifts, 0);
  1116. MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
  1117. " IPMI register, in bits. For instance, if the data"
  1118. " is read from a 32-bit word and the IPMI data is in"
  1119. " bit 8-15, then the shift would be 8");
  1120. module_param_array(slave_addrs, int, &num_slave_addrs, 0);
  1121. MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
  1122. " the controller. Normally this is 0x20, but can be"
  1123. " overridden by this parm. This is an array indexed"
  1124. " by interface number.");
  1125. module_param_array(force_kipmid, int, &num_force_kipmid, 0);
  1126. MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
  1127. " disabled(0). Normally the IPMI driver auto-detects"
  1128. " this, but the value may be overridden by this parm.");
  1129. module_param(unload_when_empty, int, 0);
  1130. MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
  1131. " specified or found, default is 1. Setting to 0"
  1132. " is useful for hot add of devices using hotmod.");
  1133. module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
  1134. MODULE_PARM_DESC(kipmid_max_busy_us,
  1135. "Max time (in microseconds) to busy-wait for IPMI data before"
  1136. " sleeping. 0 (default) means to wait forever. Set to 100-500"
  1137. " if kipmid is using up a lot of CPU time.");
  1138. static void std_irq_cleanup(struct smi_info *info)
  1139. {
  1140. if (info->si_type == SI_BT)
  1141. /* Disable the interrupt in the BT interface. */
  1142. info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
  1143. free_irq(info->irq, info);
  1144. }
  1145. static int std_irq_setup(struct smi_info *info)
  1146. {
  1147. int rv;
  1148. if (!info->irq)
  1149. return 0;
  1150. if (info->si_type == SI_BT) {
  1151. rv = request_irq(info->irq,
  1152. si_bt_irq_handler,
  1153. IRQF_SHARED | IRQF_DISABLED,
  1154. DEVICE_NAME,
  1155. info);
  1156. if (!rv)
  1157. /* Enable the interrupt in the BT interface. */
  1158. info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
  1159. IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
  1160. } else
  1161. rv = request_irq(info->irq,
  1162. si_irq_handler,
  1163. IRQF_SHARED | IRQF_DISABLED,
  1164. DEVICE_NAME,
  1165. info);
  1166. if (rv) {
  1167. dev_warn(info->dev, "%s unable to claim interrupt %d,"
  1168. " running polled\n",
  1169. DEVICE_NAME, info->irq);
  1170. info->irq = 0;
  1171. } else {
  1172. info->irq_cleanup = std_irq_cleanup;
  1173. dev_info(info->dev, "Using irq %d\n", info->irq);
  1174. }
  1175. return rv;
  1176. }
  1177. static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
  1178. {
  1179. unsigned int addr = io->addr_data;
  1180. return inb(addr + (offset * io->regspacing));
  1181. }
  1182. static void port_outb(struct si_sm_io *io, unsigned int offset,
  1183. unsigned char b)
  1184. {
  1185. unsigned int addr = io->addr_data;
  1186. outb(b, addr + (offset * io->regspacing));
  1187. }
  1188. static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
  1189. {
  1190. unsigned int addr = io->addr_data;
  1191. return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
  1192. }
  1193. static void port_outw(struct si_sm_io *io, unsigned int offset,
  1194. unsigned char b)
  1195. {
  1196. unsigned int addr = io->addr_data;
  1197. outw(b << io->regshift, addr + (offset * io->regspacing));
  1198. }
  1199. static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
  1200. {
  1201. unsigned int addr = io->addr_data;
  1202. return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
  1203. }
  1204. static void port_outl(struct si_sm_io *io, unsigned int offset,
  1205. unsigned char b)
  1206. {
  1207. unsigned int addr = io->addr_data;
  1208. outl(b << io->regshift, addr+(offset * io->regspacing));
  1209. }
  1210. static void port_cleanup(struct smi_info *info)
  1211. {
  1212. unsigned int addr = info->io.addr_data;
  1213. int idx;
  1214. if (addr) {
  1215. for (idx = 0; idx < info->io_size; idx++)
  1216. release_region(addr + idx * info->io.regspacing,
  1217. info->io.regsize);
  1218. }
  1219. }
  1220. static int port_setup(struct smi_info *info)
  1221. {
  1222. unsigned int addr = info->io.addr_data;
  1223. int idx;
  1224. if (!addr)
  1225. return -ENODEV;
  1226. info->io_cleanup = port_cleanup;
  1227. /*
  1228. * Figure out the actual inb/inw/inl/etc routine to use based
  1229. * upon the register size.
  1230. */
  1231. switch (info->io.regsize) {
  1232. case 1:
  1233. info->io.inputb = port_inb;
  1234. info->io.outputb = port_outb;
  1235. break;
  1236. case 2:
  1237. info->io.inputb = port_inw;
  1238. info->io.outputb = port_outw;
  1239. break;
  1240. case 4:
  1241. info->io.inputb = port_inl;
  1242. info->io.outputb = port_outl;
  1243. break;
  1244. default:
  1245. dev_warn(info->dev, "Invalid register size: %d\n",
  1246. info->io.regsize);
  1247. return -EINVAL;
  1248. }
  1249. /*
  1250. * Some BIOSes reserve disjoint I/O regions in their ACPI
  1251. * tables. This causes problems when trying to register the
  1252. * entire I/O region. Therefore we must register each I/O
  1253. * port separately.
  1254. */
  1255. for (idx = 0; idx < info->io_size; idx++) {
  1256. if (request_region(addr + idx * info->io.regspacing,
  1257. info->io.regsize, DEVICE_NAME) == NULL) {
  1258. /* Undo allocations */
  1259. while (idx--) {
  1260. release_region(addr + idx * info->io.regspacing,
  1261. info->io.regsize);
  1262. }
  1263. return -EIO;
  1264. }
  1265. }
  1266. return 0;
  1267. }
  1268. static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
  1269. {
  1270. return readb((io->addr)+(offset * io->regspacing));
  1271. }
  1272. static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
  1273. unsigned char b)
  1274. {
  1275. writeb(b, (io->addr)+(offset * io->regspacing));
  1276. }
  1277. static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
  1278. {
  1279. return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1280. & 0xff;
  1281. }
  1282. static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
  1283. unsigned char b)
  1284. {
  1285. writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1286. }
  1287. static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
  1288. {
  1289. return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1290. & 0xff;
  1291. }
  1292. static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
  1293. unsigned char b)
  1294. {
  1295. writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1296. }
  1297. #ifdef readq
  1298. static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
  1299. {
  1300. return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
  1301. & 0xff;
  1302. }
  1303. static void mem_outq(struct si_sm_io *io, unsigned int offset,
  1304. unsigned char b)
  1305. {
  1306. writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
  1307. }
  1308. #endif
  1309. static void mem_cleanup(struct smi_info *info)
  1310. {
  1311. unsigned long addr = info->io.addr_data;
  1312. int mapsize;
  1313. if (info->io.addr) {
  1314. iounmap(info->io.addr);
  1315. mapsize = ((info->io_size * info->io.regspacing)
  1316. - (info->io.regspacing - info->io.regsize));
  1317. release_mem_region(addr, mapsize);
  1318. }
  1319. }
  1320. static int mem_setup(struct smi_info *info)
  1321. {
  1322. unsigned long addr = info->io.addr_data;
  1323. int mapsize;
  1324. if (!addr)
  1325. return -ENODEV;
  1326. info->io_cleanup = mem_cleanup;
  1327. /*
  1328. * Figure out the actual readb/readw/readl/etc routine to use based
  1329. * upon the register size.
  1330. */
  1331. switch (info->io.regsize) {
  1332. case 1:
  1333. info->io.inputb = intf_mem_inb;
  1334. info->io.outputb = intf_mem_outb;
  1335. break;
  1336. case 2:
  1337. info->io.inputb = intf_mem_inw;
  1338. info->io.outputb = intf_mem_outw;
  1339. break;
  1340. case 4:
  1341. info->io.inputb = intf_mem_inl;
  1342. info->io.outputb = intf_mem_outl;
  1343. break;
  1344. #ifdef readq
  1345. case 8:
  1346. info->io.inputb = mem_inq;
  1347. info->io.outputb = mem_outq;
  1348. break;
  1349. #endif
  1350. default:
  1351. dev_warn(info->dev, "Invalid register size: %d\n",
  1352. info->io.regsize);
  1353. return -EINVAL;
  1354. }
  1355. /*
  1356. * Calculate the total amount of memory to claim. This is an
  1357. * unusual looking calculation, but it avoids claiming any
  1358. * more memory than it has to. It will claim everything
  1359. * between the first address to the end of the last full
  1360. * register.
  1361. */
  1362. mapsize = ((info->io_size * info->io.regspacing)
  1363. - (info->io.regspacing - info->io.regsize));
  1364. if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
  1365. return -EIO;
  1366. info->io.addr = ioremap(addr, mapsize);
  1367. if (info->io.addr == NULL) {
  1368. release_mem_region(addr, mapsize);
  1369. return -EIO;
  1370. }
  1371. return 0;
  1372. }
  1373. /*
  1374. * Parms come in as <op1>[:op2[:op3...]]. ops are:
  1375. * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
  1376. * Options are:
  1377. * rsp=<regspacing>
  1378. * rsi=<regsize>
  1379. * rsh=<regshift>
  1380. * irq=<irq>
  1381. * ipmb=<ipmb addr>
  1382. */
  1383. enum hotmod_op { HM_ADD, HM_REMOVE };
  1384. struct hotmod_vals {
  1385. char *name;
  1386. int val;
  1387. };
  1388. static struct hotmod_vals hotmod_ops[] = {
  1389. { "add", HM_ADD },
  1390. { "remove", HM_REMOVE },
  1391. { NULL }
  1392. };
  1393. static struct hotmod_vals hotmod_si[] = {
  1394. { "kcs", SI_KCS },
  1395. { "smic", SI_SMIC },
  1396. { "bt", SI_BT },
  1397. { NULL }
  1398. };
  1399. static struct hotmod_vals hotmod_as[] = {
  1400. { "mem", IPMI_MEM_ADDR_SPACE },
  1401. { "i/o", IPMI_IO_ADDR_SPACE },
  1402. { NULL }
  1403. };
  1404. static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
  1405. {
  1406. char *s;
  1407. int i;
  1408. s = strchr(*curr, ',');
  1409. if (!s) {
  1410. printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
  1411. return -EINVAL;
  1412. }
  1413. *s = '\0';
  1414. s++;
  1415. for (i = 0; hotmod_ops[i].name; i++) {
  1416. if (strcmp(*curr, v[i].name) == 0) {
  1417. *val = v[i].val;
  1418. *curr = s;
  1419. return 0;
  1420. }
  1421. }
  1422. printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
  1423. return -EINVAL;
  1424. }
  1425. static int check_hotmod_int_op(const char *curr, const char *option,
  1426. const char *name, int *val)
  1427. {
  1428. char *n;
  1429. if (strcmp(curr, name) == 0) {
  1430. if (!option) {
  1431. printk(KERN_WARNING PFX
  1432. "No option given for '%s'\n",
  1433. curr);
  1434. return -EINVAL;
  1435. }
  1436. *val = simple_strtoul(option, &n, 0);
  1437. if ((*n != '\0') || (*option == '\0')) {
  1438. printk(KERN_WARNING PFX
  1439. "Bad option given for '%s'\n",
  1440. curr);
  1441. return -EINVAL;
  1442. }
  1443. return 1;
  1444. }
  1445. return 0;
  1446. }
  1447. static struct smi_info *smi_info_alloc(void)
  1448. {
  1449. struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
  1450. if (info) {
  1451. spin_lock_init(&info->si_lock);
  1452. spin_lock_init(&info->msg_lock);
  1453. }
  1454. return info;
  1455. }
  1456. static int hotmod_handler(const char *val, struct kernel_param *kp)
  1457. {
  1458. char *str = kstrdup(val, GFP_KERNEL);
  1459. int rv;
  1460. char *next, *curr, *s, *n, *o;
  1461. enum hotmod_op op;
  1462. enum si_type si_type;
  1463. int addr_space;
  1464. unsigned long addr;
  1465. int regspacing;
  1466. int regsize;
  1467. int regshift;
  1468. int irq;
  1469. int ipmb;
  1470. int ival;
  1471. int len;
  1472. struct smi_info *info;
  1473. if (!str)
  1474. return -ENOMEM;
  1475. /* Kill any trailing spaces, as we can get a "\n" from echo. */
  1476. len = strlen(str);
  1477. ival = len - 1;
  1478. while ((ival >= 0) && isspace(str[ival])) {
  1479. str[ival] = '\0';
  1480. ival--;
  1481. }
  1482. for (curr = str; curr; curr = next) {
  1483. regspacing = 1;
  1484. regsize = 1;
  1485. regshift = 0;
  1486. irq = 0;
  1487. ipmb = 0; /* Choose the default if not specified */
  1488. next = strchr(curr, ':');
  1489. if (next) {
  1490. *next = '\0';
  1491. next++;
  1492. }
  1493. rv = parse_str(hotmod_ops, &ival, "operation", &curr);
  1494. if (rv)
  1495. break;
  1496. op = ival;
  1497. rv = parse_str(hotmod_si, &ival, "interface type", &curr);
  1498. if (rv)
  1499. break;
  1500. si_type = ival;
  1501. rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
  1502. if (rv)
  1503. break;
  1504. s = strchr(curr, ',');
  1505. if (s) {
  1506. *s = '\0';
  1507. s++;
  1508. }
  1509. addr = simple_strtoul(curr, &n, 0);
  1510. if ((*n != '\0') || (*curr == '\0')) {
  1511. printk(KERN_WARNING PFX "Invalid hotmod address"
  1512. " '%s'\n", curr);
  1513. break;
  1514. }
  1515. while (s) {
  1516. curr = s;
  1517. s = strchr(curr, ',');
  1518. if (s) {
  1519. *s = '\0';
  1520. s++;
  1521. }
  1522. o = strchr(curr, '=');
  1523. if (o) {
  1524. *o = '\0';
  1525. o++;
  1526. }
  1527. rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
  1528. if (rv < 0)
  1529. goto out;
  1530. else if (rv)
  1531. continue;
  1532. rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
  1533. if (rv < 0)
  1534. goto out;
  1535. else if (rv)
  1536. continue;
  1537. rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
  1538. if (rv < 0)
  1539. goto out;
  1540. else if (rv)
  1541. continue;
  1542. rv = check_hotmod_int_op(curr, o, "irq", &irq);
  1543. if (rv < 0)
  1544. goto out;
  1545. else if (rv)
  1546. continue;
  1547. rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
  1548. if (rv < 0)
  1549. goto out;
  1550. else if (rv)
  1551. continue;
  1552. rv = -EINVAL;
  1553. printk(KERN_WARNING PFX
  1554. "Invalid hotmod option '%s'\n",
  1555. curr);
  1556. goto out;
  1557. }
  1558. if (op == HM_ADD) {
  1559. info = smi_info_alloc();
  1560. if (!info) {
  1561. rv = -ENOMEM;
  1562. goto out;
  1563. }
  1564. info->addr_source = SI_HOTMOD;
  1565. info->si_type = si_type;
  1566. info->io.addr_data = addr;
  1567. info->io.addr_type = addr_space;
  1568. if (addr_space == IPMI_MEM_ADDR_SPACE)
  1569. info->io_setup = mem_setup;
  1570. else
  1571. info->io_setup = port_setup;
  1572. info->io.addr = NULL;
  1573. info->io.regspacing = regspacing;
  1574. if (!info->io.regspacing)
  1575. info->io.regspacing = DEFAULT_REGSPACING;
  1576. info->io.regsize = regsize;
  1577. if (!info->io.regsize)
  1578. info->io.regsize = DEFAULT_REGSPACING;
  1579. info->io.regshift = regshift;
  1580. info->irq = irq;
  1581. if (info->irq)
  1582. info->irq_setup = std_irq_setup;
  1583. info->slave_addr = ipmb;
  1584. if (!add_smi(info)) {
  1585. if (try_smi_init(info))
  1586. cleanup_one_si(info);
  1587. } else {
  1588. kfree(info);
  1589. }
  1590. } else {
  1591. /* remove */
  1592. struct smi_info *e, *tmp_e;
  1593. mutex_lock(&smi_infos_lock);
  1594. list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
  1595. if (e->io.addr_type != addr_space)
  1596. continue;
  1597. if (e->si_type != si_type)
  1598. continue;
  1599. if (e->io.addr_data == addr)
  1600. cleanup_one_si(e);
  1601. }
  1602. mutex_unlock(&smi_infos_lock);
  1603. }
  1604. }
  1605. rv = len;
  1606. out:
  1607. kfree(str);
  1608. return rv;
  1609. }
  1610. static int __devinit hardcode_find_bmc(void)
  1611. {
  1612. int ret = -ENODEV;
  1613. int i;
  1614. struct smi_info *info;
  1615. for (i = 0; i < SI_MAX_PARMS; i++) {
  1616. if (!ports[i] && !addrs[i])
  1617. continue;
  1618. info = smi_info_alloc();
  1619. if (!info)
  1620. return -ENOMEM;
  1621. info->addr_source = SI_HARDCODED;
  1622. printk(KERN_INFO PFX "probing via hardcoded address\n");
  1623. if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
  1624. info->si_type = SI_KCS;
  1625. } else if (strcmp(si_type[i], "smic") == 0) {
  1626. info->si_type = SI_SMIC;
  1627. } else if (strcmp(si_type[i], "bt") == 0) {
  1628. info->si_type = SI_BT;
  1629. } else {
  1630. printk(KERN_WARNING PFX "Interface type specified "
  1631. "for interface %d, was invalid: %s\n",
  1632. i, si_type[i]);
  1633. kfree(info);
  1634. continue;
  1635. }
  1636. if (ports[i]) {
  1637. /* An I/O port */
  1638. info->io_setup = port_setup;
  1639. info->io.addr_data = ports[i];
  1640. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1641. } else if (addrs[i]) {
  1642. /* A memory port */
  1643. info->io_setup = mem_setup;
  1644. info->io.addr_data = addrs[i];
  1645. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1646. } else {
  1647. printk(KERN_WARNING PFX "Interface type specified "
  1648. "for interface %d, but port and address were "
  1649. "not set or set to zero.\n", i);
  1650. kfree(info);
  1651. continue;
  1652. }
  1653. info->io.addr = NULL;
  1654. info->io.regspacing = regspacings[i];
  1655. if (!info->io.regspacing)
  1656. info->io.regspacing = DEFAULT_REGSPACING;
  1657. info->io.regsize = regsizes[i];
  1658. if (!info->io.regsize)
  1659. info->io.regsize = DEFAULT_REGSPACING;
  1660. info->io.regshift = regshifts[i];
  1661. info->irq = irqs[i];
  1662. if (info->irq)
  1663. info->irq_setup = std_irq_setup;
  1664. info->slave_addr = slave_addrs[i];
  1665. if (!add_smi(info)) {
  1666. if (try_smi_init(info))
  1667. cleanup_one_si(info);
  1668. ret = 0;
  1669. } else {
  1670. kfree(info);
  1671. }
  1672. }
  1673. return ret;
  1674. }
  1675. #ifdef CONFIG_ACPI
  1676. #include <linux/acpi.h>
  1677. /*
  1678. * Once we get an ACPI failure, we don't try any more, because we go
  1679. * through the tables sequentially. Once we don't find a table, there
  1680. * are no more.
  1681. */
  1682. static int acpi_failure;
  1683. /* For GPE-type interrupts. */
  1684. static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
  1685. u32 gpe_number, void *context)
  1686. {
  1687. struct smi_info *smi_info = context;
  1688. unsigned long flags;
  1689. #ifdef DEBUG_TIMING
  1690. struct timeval t;
  1691. #endif
  1692. spin_lock_irqsave(&(smi_info->si_lock), flags);
  1693. smi_inc_stat(smi_info, interrupts);
  1694. #ifdef DEBUG_TIMING
  1695. do_gettimeofday(&t);
  1696. printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
  1697. #endif
  1698. smi_event_handler(smi_info, 0);
  1699. spin_unlock_irqrestore(&(smi_info->si_lock), flags);
  1700. return ACPI_INTERRUPT_HANDLED;
  1701. }
  1702. static void acpi_gpe_irq_cleanup(struct smi_info *info)
  1703. {
  1704. if (!info->irq)
  1705. return;
  1706. acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
  1707. }
  1708. static int acpi_gpe_irq_setup(struct smi_info *info)
  1709. {
  1710. acpi_status status;
  1711. if (!info->irq)
  1712. return 0;
  1713. /* FIXME - is level triggered right? */
  1714. status = acpi_install_gpe_handler(NULL,
  1715. info->irq,
  1716. ACPI_GPE_LEVEL_TRIGGERED,
  1717. &ipmi_acpi_gpe,
  1718. info);
  1719. if (status != AE_OK) {
  1720. dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
  1721. " running polled\n", DEVICE_NAME, info->irq);
  1722. info->irq = 0;
  1723. return -EINVAL;
  1724. } else {
  1725. info->irq_cleanup = acpi_gpe_irq_cleanup;
  1726. dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
  1727. return 0;
  1728. }
  1729. }
  1730. /*
  1731. * Defined at
  1732. * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
  1733. */
  1734. struct SPMITable {
  1735. s8 Signature[4];
  1736. u32 Length;
  1737. u8 Revision;
  1738. u8 Checksum;
  1739. s8 OEMID[6];
  1740. s8 OEMTableID[8];
  1741. s8 OEMRevision[4];
  1742. s8 CreatorID[4];
  1743. s8 CreatorRevision[4];
  1744. u8 InterfaceType;
  1745. u8 IPMIlegacy;
  1746. s16 SpecificationRevision;
  1747. /*
  1748. * Bit 0 - SCI interrupt supported
  1749. * Bit 1 - I/O APIC/SAPIC
  1750. */
  1751. u8 InterruptType;
  1752. /*
  1753. * If bit 0 of InterruptType is set, then this is the SCI
  1754. * interrupt in the GPEx_STS register.
  1755. */
  1756. u8 GPE;
  1757. s16 Reserved;
  1758. /*
  1759. * If bit 1 of InterruptType is set, then this is the I/O
  1760. * APIC/SAPIC interrupt.
  1761. */
  1762. u32 GlobalSystemInterrupt;
  1763. /* The actual register address. */
  1764. struct acpi_generic_address addr;
  1765. u8 UID[4];
  1766. s8 spmi_id[1]; /* A '\0' terminated array starts here. */
  1767. };
  1768. static int __devinit try_init_spmi(struct SPMITable *spmi)
  1769. {
  1770. struct smi_info *info;
  1771. if (spmi->IPMIlegacy != 1) {
  1772. printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
  1773. return -ENODEV;
  1774. }
  1775. info = smi_info_alloc();
  1776. if (!info) {
  1777. printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
  1778. return -ENOMEM;
  1779. }
  1780. info->addr_source = SI_SPMI;
  1781. printk(KERN_INFO PFX "probing via SPMI\n");
  1782. /* Figure out the interface type. */
  1783. switch (spmi->InterfaceType) {
  1784. case 1: /* KCS */
  1785. info->si_type = SI_KCS;
  1786. break;
  1787. case 2: /* SMIC */
  1788. info->si_type = SI_SMIC;
  1789. break;
  1790. case 3: /* BT */
  1791. info->si_type = SI_BT;
  1792. break;
  1793. default:
  1794. printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
  1795. spmi->InterfaceType);
  1796. kfree(info);
  1797. return -EIO;
  1798. }
  1799. if (spmi->InterruptType & 1) {
  1800. /* We've got a GPE interrupt. */
  1801. info->irq = spmi->GPE;
  1802. info->irq_setup = acpi_gpe_irq_setup;
  1803. } else if (spmi->InterruptType & 2) {
  1804. /* We've got an APIC/SAPIC interrupt. */
  1805. info->irq = spmi->GlobalSystemInterrupt;
  1806. info->irq_setup = std_irq_setup;
  1807. } else {
  1808. /* Use the default interrupt setting. */
  1809. info->irq = 0;
  1810. info->irq_setup = NULL;
  1811. }
  1812. if (spmi->addr.bit_width) {
  1813. /* A (hopefully) properly formed register bit width. */
  1814. info->io.regspacing = spmi->addr.bit_width / 8;
  1815. } else {
  1816. info->io.regspacing = DEFAULT_REGSPACING;
  1817. }
  1818. info->io.regsize = info->io.regspacing;
  1819. info->io.regshift = spmi->addr.bit_offset;
  1820. if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
  1821. info->io_setup = mem_setup;
  1822. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1823. } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
  1824. info->io_setup = port_setup;
  1825. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1826. } else {
  1827. kfree(info);
  1828. printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
  1829. return -EIO;
  1830. }
  1831. info->io.addr_data = spmi->addr.address;
  1832. pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
  1833. (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
  1834. info->io.addr_data, info->io.regsize, info->io.regspacing,
  1835. info->irq);
  1836. if (add_smi(info))
  1837. kfree(info);
  1838. return 0;
  1839. }
  1840. static void __devinit spmi_find_bmc(void)
  1841. {
  1842. acpi_status status;
  1843. struct SPMITable *spmi;
  1844. int i;
  1845. if (acpi_disabled)
  1846. return;
  1847. if (acpi_failure)
  1848. return;
  1849. for (i = 0; ; i++) {
  1850. status = acpi_get_table(ACPI_SIG_SPMI, i+1,
  1851. (struct acpi_table_header **)&spmi);
  1852. if (status != AE_OK)
  1853. return;
  1854. try_init_spmi(spmi);
  1855. }
  1856. }
  1857. static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
  1858. const struct pnp_device_id *dev_id)
  1859. {
  1860. struct acpi_device *acpi_dev;
  1861. struct smi_info *info;
  1862. struct resource *res, *res_second;
  1863. acpi_handle handle;
  1864. acpi_status status;
  1865. unsigned long long tmp;
  1866. acpi_dev = pnp_acpi_device(dev);
  1867. if (!acpi_dev)
  1868. return -ENODEV;
  1869. info = smi_info_alloc();
  1870. if (!info)
  1871. return -ENOMEM;
  1872. info->addr_source = SI_ACPI;
  1873. printk(KERN_INFO PFX "probing via ACPI\n");
  1874. handle = acpi_dev->handle;
  1875. info->addr_info.acpi_info.acpi_handle = handle;
  1876. /* _IFT tells us the interface type: KCS, BT, etc */
  1877. status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
  1878. if (ACPI_FAILURE(status))
  1879. goto err_free;
  1880. switch (tmp) {
  1881. case 1:
  1882. info->si_type = SI_KCS;
  1883. break;
  1884. case 2:
  1885. info->si_type = SI_SMIC;
  1886. break;
  1887. case 3:
  1888. info->si_type = SI_BT;
  1889. break;
  1890. default:
  1891. dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
  1892. goto err_free;
  1893. }
  1894. res = pnp_get_resource(dev, IORESOURCE_IO, 0);
  1895. if (res) {
  1896. info->io_setup = port_setup;
  1897. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  1898. } else {
  1899. res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
  1900. if (res) {
  1901. info->io_setup = mem_setup;
  1902. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  1903. }
  1904. }
  1905. if (!res) {
  1906. dev_err(&dev->dev, "no I/O or memory address\n");
  1907. goto err_free;
  1908. }
  1909. info->io.addr_data = res->start;
  1910. info->io.regspacing = DEFAULT_REGSPACING;
  1911. res_second = pnp_get_resource(dev,
  1912. (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
  1913. IORESOURCE_IO : IORESOURCE_MEM,
  1914. 1);
  1915. if (res_second) {
  1916. if (res_second->start > info->io.addr_data)
  1917. info->io.regspacing = res_second->start - info->io.addr_data;
  1918. }
  1919. info->io.regsize = DEFAULT_REGSPACING;
  1920. info->io.regshift = 0;
  1921. /* If _GPE exists, use it; otherwise use standard interrupts */
  1922. status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
  1923. if (ACPI_SUCCESS(status)) {
  1924. info->irq = tmp;
  1925. info->irq_setup = acpi_gpe_irq_setup;
  1926. } else if (pnp_irq_valid(dev, 0)) {
  1927. info->irq = pnp_irq(dev, 0);
  1928. info->irq_setup = std_irq_setup;
  1929. }
  1930. info->dev = &dev->dev;
  1931. pnp_set_drvdata(dev, info);
  1932. dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
  1933. res, info->io.regsize, info->io.regspacing,
  1934. info->irq);
  1935. if (add_smi(info))
  1936. goto err_free;
  1937. return 0;
  1938. err_free:
  1939. kfree(info);
  1940. return -EINVAL;
  1941. }
  1942. static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
  1943. {
  1944. struct smi_info *info = pnp_get_drvdata(dev);
  1945. cleanup_one_si(info);
  1946. }
  1947. static const struct pnp_device_id pnp_dev_table[] = {
  1948. {"IPI0001", 0},
  1949. {"", 0},
  1950. };
  1951. static struct pnp_driver ipmi_pnp_driver = {
  1952. .name = DEVICE_NAME,
  1953. .probe = ipmi_pnp_probe,
  1954. .remove = __devexit_p(ipmi_pnp_remove),
  1955. .id_table = pnp_dev_table,
  1956. };
  1957. #endif
  1958. #ifdef CONFIG_DMI
  1959. struct dmi_ipmi_data {
  1960. u8 type;
  1961. u8 addr_space;
  1962. unsigned long base_addr;
  1963. u8 irq;
  1964. u8 offset;
  1965. u8 slave_addr;
  1966. };
  1967. static int __devinit decode_dmi(const struct dmi_header *dm,
  1968. struct dmi_ipmi_data *dmi)
  1969. {
  1970. const u8 *data = (const u8 *)dm;
  1971. unsigned long base_addr;
  1972. u8 reg_spacing;
  1973. u8 len = dm->length;
  1974. dmi->type = data[4];
  1975. memcpy(&base_addr, data+8, sizeof(unsigned long));
  1976. if (len >= 0x11) {
  1977. if (base_addr & 1) {
  1978. /* I/O */
  1979. base_addr &= 0xFFFE;
  1980. dmi->addr_space = IPMI_IO_ADDR_SPACE;
  1981. } else
  1982. /* Memory */
  1983. dmi->addr_space = IPMI_MEM_ADDR_SPACE;
  1984. /* If bit 4 of byte 0x10 is set, then the lsb for the address
  1985. is odd. */
  1986. dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
  1987. dmi->irq = data[0x11];
  1988. /* The top two bits of byte 0x10 hold the register spacing. */
  1989. reg_spacing = (data[0x10] & 0xC0) >> 6;
  1990. switch (reg_spacing) {
  1991. case 0x00: /* Byte boundaries */
  1992. dmi->offset = 1;
  1993. break;
  1994. case 0x01: /* 32-bit boundaries */
  1995. dmi->offset = 4;
  1996. break;
  1997. case 0x02: /* 16-byte boundaries */
  1998. dmi->offset = 16;
  1999. break;
  2000. default:
  2001. /* Some other interface, just ignore it. */
  2002. return -EIO;
  2003. }
  2004. } else {
  2005. /* Old DMI spec. */
  2006. /*
  2007. * Note that technically, the lower bit of the base
  2008. * address should be 1 if the address is I/O and 0 if
  2009. * the address is in memory. So many systems get that
  2010. * wrong (and all that I have seen are I/O) so we just
  2011. * ignore that bit and assume I/O. Systems that use
  2012. * memory should use the newer spec, anyway.
  2013. */
  2014. dmi->base_addr = base_addr & 0xfffe;
  2015. dmi->addr_space = IPMI_IO_ADDR_SPACE;
  2016. dmi->offset = 1;
  2017. }
  2018. dmi->slave_addr = data[6];
  2019. return 0;
  2020. }
  2021. static void __devinit try_init_dmi(struct dmi_ipmi_data *ipmi_data)
  2022. {
  2023. struct smi_info *info;
  2024. info = smi_info_alloc();
  2025. if (!info) {
  2026. printk(KERN_ERR PFX "Could not allocate SI data\n");
  2027. return;
  2028. }
  2029. info->addr_source = SI_SMBIOS;
  2030. printk(KERN_INFO PFX "probing via SMBIOS\n");
  2031. switch (ipmi_data->type) {
  2032. case 0x01: /* KCS */
  2033. info->si_type = SI_KCS;
  2034. break;
  2035. case 0x02: /* SMIC */
  2036. info->si_type = SI_SMIC;
  2037. break;
  2038. case 0x03: /* BT */
  2039. info->si_type = SI_BT;
  2040. break;
  2041. default:
  2042. kfree(info);
  2043. return;
  2044. }
  2045. switch (ipmi_data->addr_space) {
  2046. case IPMI_MEM_ADDR_SPACE:
  2047. info->io_setup = mem_setup;
  2048. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2049. break;
  2050. case IPMI_IO_ADDR_SPACE:
  2051. info->io_setup = port_setup;
  2052. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2053. break;
  2054. default:
  2055. kfree(info);
  2056. printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
  2057. ipmi_data->addr_space);
  2058. return;
  2059. }
  2060. info->io.addr_data = ipmi_data->base_addr;
  2061. info->io.regspacing = ipmi_data->offset;
  2062. if (!info->io.regspacing)
  2063. info->io.regspacing = DEFAULT_REGSPACING;
  2064. info->io.regsize = DEFAULT_REGSPACING;
  2065. info->io.regshift = 0;
  2066. info->slave_addr = ipmi_data->slave_addr;
  2067. info->irq = ipmi_data->irq;
  2068. if (info->irq)
  2069. info->irq_setup = std_irq_setup;
  2070. pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
  2071. (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
  2072. info->io.addr_data, info->io.regsize, info->io.regspacing,
  2073. info->irq);
  2074. if (add_smi(info))
  2075. kfree(info);
  2076. }
  2077. static void __devinit dmi_find_bmc(void)
  2078. {
  2079. const struct dmi_device *dev = NULL;
  2080. struct dmi_ipmi_data data;
  2081. int rv;
  2082. while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
  2083. memset(&data, 0, sizeof(data));
  2084. rv = decode_dmi((const struct dmi_header *) dev->device_data,
  2085. &data);
  2086. if (!rv)
  2087. try_init_dmi(&data);
  2088. }
  2089. }
  2090. #endif /* CONFIG_DMI */
  2091. #ifdef CONFIG_PCI
  2092. #define PCI_ERMC_CLASSCODE 0x0C0700
  2093. #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
  2094. #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
  2095. #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
  2096. #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
  2097. #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
  2098. #define PCI_HP_VENDOR_ID 0x103C
  2099. #define PCI_MMC_DEVICE_ID 0x121A
  2100. #define PCI_MMC_ADDR_CW 0x10
  2101. static void ipmi_pci_cleanup(struct smi_info *info)
  2102. {
  2103. struct pci_dev *pdev = info->addr_source_data;
  2104. pci_disable_device(pdev);
  2105. }
  2106. static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
  2107. const struct pci_device_id *ent)
  2108. {
  2109. int rv;
  2110. int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
  2111. struct smi_info *info;
  2112. info = smi_info_alloc();
  2113. if (!info)
  2114. return -ENOMEM;
  2115. info->addr_source = SI_PCI;
  2116. dev_info(&pdev->dev, "probing via PCI");
  2117. switch (class_type) {
  2118. case PCI_ERMC_CLASSCODE_TYPE_SMIC:
  2119. info->si_type = SI_SMIC;
  2120. break;
  2121. case PCI_ERMC_CLASSCODE_TYPE_KCS:
  2122. info->si_type = SI_KCS;
  2123. break;
  2124. case PCI_ERMC_CLASSCODE_TYPE_BT:
  2125. info->si_type = SI_BT;
  2126. break;
  2127. default:
  2128. kfree(info);
  2129. dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
  2130. return -ENOMEM;
  2131. }
  2132. rv = pci_enable_device(pdev);
  2133. if (rv) {
  2134. dev_err(&pdev->dev, "couldn't enable PCI device\n");
  2135. kfree(info);
  2136. return rv;
  2137. }
  2138. info->addr_source_cleanup = ipmi_pci_cleanup;
  2139. info->addr_source_data = pdev;
  2140. if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
  2141. info->io_setup = port_setup;
  2142. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2143. } else {
  2144. info->io_setup = mem_setup;
  2145. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2146. }
  2147. info->io.addr_data = pci_resource_start(pdev, 0);
  2148. info->io.regspacing = DEFAULT_REGSPACING;
  2149. info->io.regsize = DEFAULT_REGSPACING;
  2150. info->io.regshift = 0;
  2151. info->irq = pdev->irq;
  2152. if (info->irq)
  2153. info->irq_setup = std_irq_setup;
  2154. info->dev = &pdev->dev;
  2155. pci_set_drvdata(pdev, info);
  2156. dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
  2157. &pdev->resource[0], info->io.regsize, info->io.regspacing,
  2158. info->irq);
  2159. if (add_smi(info))
  2160. kfree(info);
  2161. return 0;
  2162. }
  2163. static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
  2164. {
  2165. struct smi_info *info = pci_get_drvdata(pdev);
  2166. cleanup_one_si(info);
  2167. }
  2168. #ifdef CONFIG_PM
  2169. static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
  2170. {
  2171. return 0;
  2172. }
  2173. static int ipmi_pci_resume(struct pci_dev *pdev)
  2174. {
  2175. return 0;
  2176. }
  2177. #endif
  2178. static struct pci_device_id ipmi_pci_devices[] = {
  2179. { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
  2180. { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
  2181. { 0, }
  2182. };
  2183. MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
  2184. static struct pci_driver ipmi_pci_driver = {
  2185. .name = DEVICE_NAME,
  2186. .id_table = ipmi_pci_devices,
  2187. .probe = ipmi_pci_probe,
  2188. .remove = __devexit_p(ipmi_pci_remove),
  2189. #ifdef CONFIG_PM
  2190. .suspend = ipmi_pci_suspend,
  2191. .resume = ipmi_pci_resume,
  2192. #endif
  2193. };
  2194. #endif /* CONFIG_PCI */
  2195. static struct of_device_id ipmi_match[];
  2196. static int __devinit ipmi_probe(struct platform_device *dev)
  2197. {
  2198. #ifdef CONFIG_OF
  2199. const struct of_device_id *match;
  2200. struct smi_info *info;
  2201. struct resource resource;
  2202. const __be32 *regsize, *regspacing, *regshift;
  2203. struct device_node *np = dev->dev.of_node;
  2204. int ret;
  2205. int proplen;
  2206. dev_info(&dev->dev, "probing via device tree\n");
  2207. match = of_match_device(ipmi_match, &dev->dev);
  2208. if (!match)
  2209. return -EINVAL;
  2210. ret = of_address_to_resource(np, 0, &resource);
  2211. if (ret) {
  2212. dev_warn(&dev->dev, PFX "invalid address from OF\n");
  2213. return ret;
  2214. }
  2215. regsize = of_get_property(np, "reg-size", &proplen);
  2216. if (regsize && proplen != 4) {
  2217. dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
  2218. return -EINVAL;
  2219. }
  2220. regspacing = of_get_property(np, "reg-spacing", &proplen);
  2221. if (regspacing && proplen != 4) {
  2222. dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
  2223. return -EINVAL;
  2224. }
  2225. regshift = of_get_property(np, "reg-shift", &proplen);
  2226. if (regshift && proplen != 4) {
  2227. dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
  2228. return -EINVAL;
  2229. }
  2230. info = smi_info_alloc();
  2231. if (!info) {
  2232. dev_err(&dev->dev,
  2233. "could not allocate memory for OF probe\n");
  2234. return -ENOMEM;
  2235. }
  2236. info->si_type = (enum si_type) match->data;
  2237. info->addr_source = SI_DEVICETREE;
  2238. info->irq_setup = std_irq_setup;
  2239. if (resource.flags & IORESOURCE_IO) {
  2240. info->io_setup = port_setup;
  2241. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2242. } else {
  2243. info->io_setup = mem_setup;
  2244. info->io.addr_type = IPMI_MEM_ADDR_SPACE;
  2245. }
  2246. info->io.addr_data = resource.start;
  2247. info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
  2248. info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
  2249. info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
  2250. info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
  2251. info->dev = &dev->dev;
  2252. dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
  2253. info->io.addr_data, info->io.regsize, info->io.regspacing,
  2254. info->irq);
  2255. dev_set_drvdata(&dev->dev, info);
  2256. if (add_smi(info)) {
  2257. kfree(info);
  2258. return -EBUSY;
  2259. }
  2260. #endif
  2261. return 0;
  2262. }
  2263. static int __devexit ipmi_remove(struct platform_device *dev)
  2264. {
  2265. #ifdef CONFIG_OF
  2266. cleanup_one_si(dev_get_drvdata(&dev->dev));
  2267. #endif
  2268. return 0;
  2269. }
  2270. static struct of_device_id ipmi_match[] =
  2271. {
  2272. { .type = "ipmi", .compatible = "ipmi-kcs",
  2273. .data = (void *)(unsigned long) SI_KCS },
  2274. { .type = "ipmi", .compatible = "ipmi-smic",
  2275. .data = (void *)(unsigned long) SI_SMIC },
  2276. { .type = "ipmi", .compatible = "ipmi-bt",
  2277. .data = (void *)(unsigned long) SI_BT },
  2278. {},
  2279. };
  2280. static struct platform_driver ipmi_driver = {
  2281. .driver = {
  2282. .name = DEVICE_NAME,
  2283. .owner = THIS_MODULE,
  2284. .of_match_table = ipmi_match,
  2285. },
  2286. .probe = ipmi_probe,
  2287. .remove = __devexit_p(ipmi_remove),
  2288. };
  2289. static int wait_for_msg_done(struct smi_info *smi_info)
  2290. {
  2291. enum si_sm_result smi_result;
  2292. smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
  2293. for (;;) {
  2294. if (smi_result == SI_SM_CALL_WITH_DELAY ||
  2295. smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
  2296. schedule_timeout_uninterruptible(1);
  2297. smi_result = smi_info->handlers->event(
  2298. smi_info->si_sm, 100);
  2299. } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
  2300. smi_result = smi_info->handlers->event(
  2301. smi_info->si_sm, 0);
  2302. } else
  2303. break;
  2304. }
  2305. if (smi_result == SI_SM_HOSED)
  2306. /*
  2307. * We couldn't get the state machine to run, so whatever's at
  2308. * the port is probably not an IPMI SMI interface.
  2309. */
  2310. return -ENODEV;
  2311. return 0;
  2312. }
  2313. static int try_get_dev_id(struct smi_info *smi_info)
  2314. {
  2315. unsigned char msg[2];
  2316. unsigned char *resp;
  2317. unsigned long resp_len;
  2318. int rv = 0;
  2319. resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
  2320. if (!resp)
  2321. return -ENOMEM;
  2322. /*
  2323. * Do a Get Device ID command, since it comes back with some
  2324. * useful info.
  2325. */
  2326. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2327. msg[1] = IPMI_GET_DEVICE_ID_CMD;
  2328. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  2329. rv = wait_for_msg_done(smi_info);
  2330. if (rv)
  2331. goto out;
  2332. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2333. resp, IPMI_MAX_MSG_LENGTH);
  2334. /* Check and record info from the get device id, in case we need it. */
  2335. rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
  2336. out:
  2337. kfree(resp);
  2338. return rv;
  2339. }
  2340. static int try_enable_event_buffer(struct smi_info *smi_info)
  2341. {
  2342. unsigned char msg[3];
  2343. unsigned char *resp;
  2344. unsigned long resp_len;
  2345. int rv = 0;
  2346. resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
  2347. if (!resp)
  2348. return -ENOMEM;
  2349. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2350. msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
  2351. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
  2352. rv = wait_for_msg_done(smi_info);
  2353. if (rv) {
  2354. printk(KERN_WARNING PFX "Error getting response from get"
  2355. " global enables command, the event buffer is not"
  2356. " enabled.\n");
  2357. goto out;
  2358. }
  2359. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2360. resp, IPMI_MAX_MSG_LENGTH);
  2361. if (resp_len < 4 ||
  2362. resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
  2363. resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
  2364. resp[2] != 0) {
  2365. printk(KERN_WARNING PFX "Invalid return from get global"
  2366. " enables command, cannot enable the event buffer.\n");
  2367. rv = -EINVAL;
  2368. goto out;
  2369. }
  2370. if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
  2371. /* buffer is already enabled, nothing to do. */
  2372. goto out;
  2373. msg[0] = IPMI_NETFN_APP_REQUEST << 2;
  2374. msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
  2375. msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
  2376. smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
  2377. rv = wait_for_msg_done(smi_info);
  2378. if (rv) {
  2379. printk(KERN_WARNING PFX "Error getting response from set"
  2380. " global, enables command, the event buffer is not"
  2381. " enabled.\n");
  2382. goto out;
  2383. }
  2384. resp_len = smi_info->handlers->get_result(smi_info->si_sm,
  2385. resp, IPMI_MAX_MSG_LENGTH);
  2386. if (resp_len < 3 ||
  2387. resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
  2388. resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
  2389. printk(KERN_WARNING PFX "Invalid return from get global,"
  2390. "enables command, not enable the event buffer.\n");
  2391. rv = -EINVAL;
  2392. goto out;
  2393. }
  2394. if (resp[2] != 0)
  2395. /*
  2396. * An error when setting the event buffer bit means
  2397. * that the event buffer is not supported.
  2398. */
  2399. rv = -ENOENT;
  2400. out:
  2401. kfree(resp);
  2402. return rv;
  2403. }
  2404. static int smi_type_proc_show(struct seq_file *m, void *v)
  2405. {
  2406. struct smi_info *smi = m->private;
  2407. return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
  2408. }
  2409. static int smi_type_proc_open(struct inode *inode, struct file *file)
  2410. {
  2411. return single_open(file, smi_type_proc_show, PDE(inode)->data);
  2412. }
  2413. static const struct file_operations smi_type_proc_ops = {
  2414. .open = smi_type_proc_open,
  2415. .read = seq_read,
  2416. .llseek = seq_lseek,
  2417. .release = single_release,
  2418. };
  2419. static int smi_si_stats_proc_show(struct seq_file *m, void *v)
  2420. {
  2421. struct smi_info *smi = m->private;
  2422. seq_printf(m, "interrupts_enabled: %d\n",
  2423. smi->irq && !smi->interrupt_disabled);
  2424. seq_printf(m, "short_timeouts: %u\n",
  2425. smi_get_stat(smi, short_timeouts));
  2426. seq_printf(m, "long_timeouts: %u\n",
  2427. smi_get_stat(smi, long_timeouts));
  2428. seq_printf(m, "idles: %u\n",
  2429. smi_get_stat(smi, idles));
  2430. seq_printf(m, "interrupts: %u\n",
  2431. smi_get_stat(smi, interrupts));
  2432. seq_printf(m, "attentions: %u\n",
  2433. smi_get_stat(smi, attentions));
  2434. seq_printf(m, "flag_fetches: %u\n",
  2435. smi_get_stat(smi, flag_fetches));
  2436. seq_printf(m, "hosed_count: %u\n",
  2437. smi_get_stat(smi, hosed_count));
  2438. seq_printf(m, "complete_transactions: %u\n",
  2439. smi_get_stat(smi, complete_transactions));
  2440. seq_printf(m, "events: %u\n",
  2441. smi_get_stat(smi, events));
  2442. seq_printf(m, "watchdog_pretimeouts: %u\n",
  2443. smi_get_stat(smi, watchdog_pretimeouts));
  2444. seq_printf(m, "incoming_messages: %u\n",
  2445. smi_get_stat(smi, incoming_messages));
  2446. return 0;
  2447. }
  2448. static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
  2449. {
  2450. return single_open(file, smi_si_stats_proc_show, PDE(inode)->data);
  2451. }
  2452. static const struct file_operations smi_si_stats_proc_ops = {
  2453. .open = smi_si_stats_proc_open,
  2454. .read = seq_read,
  2455. .llseek = seq_lseek,
  2456. .release = single_release,
  2457. };
  2458. static int smi_params_proc_show(struct seq_file *m, void *v)
  2459. {
  2460. struct smi_info *smi = m->private;
  2461. return seq_printf(m,
  2462. "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
  2463. si_to_str[smi->si_type],
  2464. addr_space_to_str[smi->io.addr_type],
  2465. smi->io.addr_data,
  2466. smi->io.regspacing,
  2467. smi->io.regsize,
  2468. smi->io.regshift,
  2469. smi->irq,
  2470. smi->slave_addr);
  2471. }
  2472. static int smi_params_proc_open(struct inode *inode, struct file *file)
  2473. {
  2474. return single_open(file, smi_params_proc_show, PDE(inode)->data);
  2475. }
  2476. static const struct file_operations smi_params_proc_ops = {
  2477. .open = smi_params_proc_open,
  2478. .read = seq_read,
  2479. .llseek = seq_lseek,
  2480. .release = single_release,
  2481. };
  2482. /*
  2483. * oem_data_avail_to_receive_msg_avail
  2484. * @info - smi_info structure with msg_flags set
  2485. *
  2486. * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
  2487. * Returns 1 indicating need to re-run handle_flags().
  2488. */
  2489. static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
  2490. {
  2491. smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
  2492. RECEIVE_MSG_AVAIL);
  2493. return 1;
  2494. }
  2495. /*
  2496. * setup_dell_poweredge_oem_data_handler
  2497. * @info - smi_info.device_id must be populated
  2498. *
  2499. * Systems that match, but have firmware version < 1.40 may assert
  2500. * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
  2501. * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
  2502. * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
  2503. * as RECEIVE_MSG_AVAIL instead.
  2504. *
  2505. * As Dell has no plans to release IPMI 1.5 firmware that *ever*
  2506. * assert the OEM[012] bits, and if it did, the driver would have to
  2507. * change to handle that properly, we don't actually check for the
  2508. * firmware version.
  2509. * Device ID = 0x20 BMC on PowerEdge 8G servers
  2510. * Device Revision = 0x80
  2511. * Firmware Revision1 = 0x01 BMC version 1.40
  2512. * Firmware Revision2 = 0x40 BCD encoded
  2513. * IPMI Version = 0x51 IPMI 1.5
  2514. * Manufacturer ID = A2 02 00 Dell IANA
  2515. *
  2516. * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
  2517. * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
  2518. *
  2519. */
  2520. #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
  2521. #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
  2522. #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
  2523. #define DELL_IANA_MFR_ID 0x0002a2
  2524. static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
  2525. {
  2526. struct ipmi_device_id *id = &smi_info->device_id;
  2527. if (id->manufacturer_id == DELL_IANA_MFR_ID) {
  2528. if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
  2529. id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
  2530. id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
  2531. smi_info->oem_data_avail_handler =
  2532. oem_data_avail_to_receive_msg_avail;
  2533. } else if (ipmi_version_major(id) < 1 ||
  2534. (ipmi_version_major(id) == 1 &&
  2535. ipmi_version_minor(id) < 5)) {
  2536. smi_info->oem_data_avail_handler =
  2537. oem_data_avail_to_receive_msg_avail;
  2538. }
  2539. }
  2540. }
  2541. #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
  2542. static void return_hosed_msg_badsize(struct smi_info *smi_info)
  2543. {
  2544. struct ipmi_smi_msg *msg = smi_info->curr_msg;
  2545. /* Make it a response */
  2546. msg->rsp[0] = msg->data[0] | 4;
  2547. msg->rsp[1] = msg->data[1];
  2548. msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
  2549. msg->rsp_size = 3;
  2550. smi_info->curr_msg = NULL;
  2551. deliver_recv_msg(smi_info, msg);
  2552. }
  2553. /*
  2554. * dell_poweredge_bt_xaction_handler
  2555. * @info - smi_info.device_id must be populated
  2556. *
  2557. * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
  2558. * not respond to a Get SDR command if the length of the data
  2559. * requested is exactly 0x3A, which leads to command timeouts and no
  2560. * data returned. This intercepts such commands, and causes userspace
  2561. * callers to try again with a different-sized buffer, which succeeds.
  2562. */
  2563. #define STORAGE_NETFN 0x0A
  2564. #define STORAGE_CMD_GET_SDR 0x23
  2565. static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
  2566. unsigned long unused,
  2567. void *in)
  2568. {
  2569. struct smi_info *smi_info = in;
  2570. unsigned char *data = smi_info->curr_msg->data;
  2571. unsigned int size = smi_info->curr_msg->data_size;
  2572. if (size >= 8 &&
  2573. (data[0]>>2) == STORAGE_NETFN &&
  2574. data[1] == STORAGE_CMD_GET_SDR &&
  2575. data[7] == 0x3A) {
  2576. return_hosed_msg_badsize(smi_info);
  2577. return NOTIFY_STOP;
  2578. }
  2579. return NOTIFY_DONE;
  2580. }
  2581. static struct notifier_block dell_poweredge_bt_xaction_notifier = {
  2582. .notifier_call = dell_poweredge_bt_xaction_handler,
  2583. };
  2584. /*
  2585. * setup_dell_poweredge_bt_xaction_handler
  2586. * @info - smi_info.device_id must be filled in already
  2587. *
  2588. * Fills in smi_info.device_id.start_transaction_pre_hook
  2589. * when we know what function to use there.
  2590. */
  2591. static void
  2592. setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
  2593. {
  2594. struct ipmi_device_id *id = &smi_info->device_id;
  2595. if (id->manufacturer_id == DELL_IANA_MFR_ID &&
  2596. smi_info->si_type == SI_BT)
  2597. register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
  2598. }
  2599. /*
  2600. * setup_oem_data_handler
  2601. * @info - smi_info.device_id must be filled in already
  2602. *
  2603. * Fills in smi_info.device_id.oem_data_available_handler
  2604. * when we know what function to use there.
  2605. */
  2606. static void setup_oem_data_handler(struct smi_info *smi_info)
  2607. {
  2608. setup_dell_poweredge_oem_data_handler(smi_info);
  2609. }
  2610. static void setup_xaction_handlers(struct smi_info *smi_info)
  2611. {
  2612. setup_dell_poweredge_bt_xaction_handler(smi_info);
  2613. }
  2614. static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
  2615. {
  2616. if (smi_info->intf) {
  2617. /*
  2618. * The timer and thread are only running if the
  2619. * interface has been started up and registered.
  2620. */
  2621. if (smi_info->thread != NULL)
  2622. kthread_stop(smi_info->thread);
  2623. del_timer_sync(&smi_info->si_timer);
  2624. }
  2625. }
  2626. static __devinitdata struct ipmi_default_vals
  2627. {
  2628. int type;
  2629. int port;
  2630. } ipmi_defaults[] =
  2631. {
  2632. { .type = SI_KCS, .port = 0xca2 },
  2633. { .type = SI_SMIC, .port = 0xca9 },
  2634. { .type = SI_BT, .port = 0xe4 },
  2635. { .port = 0 }
  2636. };
  2637. static void __devinit default_find_bmc(void)
  2638. {
  2639. struct smi_info *info;
  2640. int i;
  2641. for (i = 0; ; i++) {
  2642. if (!ipmi_defaults[i].port)
  2643. break;
  2644. #ifdef CONFIG_PPC
  2645. if (check_legacy_ioport(ipmi_defaults[i].port))
  2646. continue;
  2647. #endif
  2648. info = smi_info_alloc();
  2649. if (!info)
  2650. return;
  2651. info->addr_source = SI_DEFAULT;
  2652. info->si_type = ipmi_defaults[i].type;
  2653. info->io_setup = port_setup;
  2654. info->io.addr_data = ipmi_defaults[i].port;
  2655. info->io.addr_type = IPMI_IO_ADDR_SPACE;
  2656. info->io.addr = NULL;
  2657. info->io.regspacing = DEFAULT_REGSPACING;
  2658. info->io.regsize = DEFAULT_REGSPACING;
  2659. info->io.regshift = 0;
  2660. if (add_smi(info) == 0) {
  2661. if ((try_smi_init(info)) == 0) {
  2662. /* Found one... */
  2663. printk(KERN_INFO PFX "Found default %s"
  2664. " state machine at %s address 0x%lx\n",
  2665. si_to_str[info->si_type],
  2666. addr_space_to_str[info->io.addr_type],
  2667. info->io.addr_data);
  2668. } else
  2669. cleanup_one_si(info);
  2670. } else {
  2671. kfree(info);
  2672. }
  2673. }
  2674. }
  2675. static int is_new_interface(struct smi_info *info)
  2676. {
  2677. struct smi_info *e;
  2678. list_for_each_entry(e, &smi_infos, link) {
  2679. if (e->io.addr_type != info->io.addr_type)
  2680. continue;
  2681. if (e->io.addr_data == info->io.addr_data)
  2682. return 0;
  2683. }
  2684. return 1;
  2685. }
  2686. static int add_smi(struct smi_info *new_smi)
  2687. {
  2688. int rv = 0;
  2689. printk(KERN_INFO PFX "Adding %s-specified %s state machine",
  2690. ipmi_addr_src_to_str[new_smi->addr_source],
  2691. si_to_str[new_smi->si_type]);
  2692. mutex_lock(&smi_infos_lock);
  2693. if (!is_new_interface(new_smi)) {
  2694. printk(KERN_CONT " duplicate interface\n");
  2695. rv = -EBUSY;
  2696. goto out_err;
  2697. }
  2698. printk(KERN_CONT "\n");
  2699. /* So we know not to free it unless we have allocated one. */
  2700. new_smi->intf = NULL;
  2701. new_smi->si_sm = NULL;
  2702. new_smi->handlers = NULL;
  2703. list_add_tail(&new_smi->link, &smi_infos);
  2704. out_err:
  2705. mutex_unlock(&smi_infos_lock);
  2706. return rv;
  2707. }
  2708. static int try_smi_init(struct smi_info *new_smi)
  2709. {
  2710. int rv = 0;
  2711. int i;
  2712. printk(KERN_INFO PFX "Trying %s-specified %s state"
  2713. " machine at %s address 0x%lx, slave address 0x%x,"
  2714. " irq %d\n",
  2715. ipmi_addr_src_to_str[new_smi->addr_source],
  2716. si_to_str[new_smi->si_type],
  2717. addr_space_to_str[new_smi->io.addr_type],
  2718. new_smi->io.addr_data,
  2719. new_smi->slave_addr, new_smi->irq);
  2720. switch (new_smi->si_type) {
  2721. case SI_KCS:
  2722. new_smi->handlers = &kcs_smi_handlers;
  2723. break;
  2724. case SI_SMIC:
  2725. new_smi->handlers = &smic_smi_handlers;
  2726. break;
  2727. case SI_BT:
  2728. new_smi->handlers = &bt_smi_handlers;
  2729. break;
  2730. default:
  2731. /* No support for anything else yet. */
  2732. rv = -EIO;
  2733. goto out_err;
  2734. }
  2735. /* Allocate the state machine's data and initialize it. */
  2736. new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
  2737. if (!new_smi->si_sm) {
  2738. printk(KERN_ERR PFX
  2739. "Could not allocate state machine memory\n");
  2740. rv = -ENOMEM;
  2741. goto out_err;
  2742. }
  2743. new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
  2744. &new_smi->io);
  2745. /* Now that we know the I/O size, we can set up the I/O. */
  2746. rv = new_smi->io_setup(new_smi);
  2747. if (rv) {
  2748. printk(KERN_ERR PFX "Could not set up I/O space\n");
  2749. goto out_err;
  2750. }
  2751. /* Do low-level detection first. */
  2752. if (new_smi->handlers->detect(new_smi->si_sm)) {
  2753. if (new_smi->addr_source)
  2754. printk(KERN_INFO PFX "Interface detection failed\n");
  2755. rv = -ENODEV;
  2756. goto out_err;
  2757. }
  2758. /*
  2759. * Attempt a get device id command. If it fails, we probably
  2760. * don't have a BMC here.
  2761. */
  2762. rv = try_get_dev_id(new_smi);
  2763. if (rv) {
  2764. if (new_smi->addr_source)
  2765. printk(KERN_INFO PFX "There appears to be no BMC"
  2766. " at this location\n");
  2767. goto out_err;
  2768. }
  2769. setup_oem_data_handler(new_smi);
  2770. setup_xaction_handlers(new_smi);
  2771. INIT_LIST_HEAD(&(new_smi->xmit_msgs));
  2772. INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
  2773. new_smi->curr_msg = NULL;
  2774. atomic_set(&new_smi->req_events, 0);
  2775. new_smi->run_to_completion = 0;
  2776. for (i = 0; i < SI_NUM_STATS; i++)
  2777. atomic_set(&new_smi->stats[i], 0);
  2778. new_smi->interrupt_disabled = 1;
  2779. atomic_set(&new_smi->stop_operation, 0);
  2780. new_smi->intf_num = smi_num;
  2781. smi_num++;
  2782. rv = try_enable_event_buffer(new_smi);
  2783. if (rv == 0)
  2784. new_smi->has_event_buffer = 1;
  2785. /*
  2786. * Start clearing the flags before we enable interrupts or the
  2787. * timer to avoid racing with the timer.
  2788. */
  2789. start_clear_flags(new_smi);
  2790. /* IRQ is defined to be set when non-zero. */
  2791. if (new_smi->irq)
  2792. new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
  2793. if (!new_smi->dev) {
  2794. /*
  2795. * If we don't already have a device from something
  2796. * else (like PCI), then register a new one.
  2797. */
  2798. new_smi->pdev = platform_device_alloc("ipmi_si",
  2799. new_smi->intf_num);
  2800. if (!new_smi->pdev) {
  2801. printk(KERN_ERR PFX
  2802. "Unable to allocate platform device\n");
  2803. goto out_err;
  2804. }
  2805. new_smi->dev = &new_smi->pdev->dev;
  2806. new_smi->dev->driver = &ipmi_driver.driver;
  2807. rv = platform_device_add(new_smi->pdev);
  2808. if (rv) {
  2809. printk(KERN_ERR PFX
  2810. "Unable to register system interface device:"
  2811. " %d\n",
  2812. rv);
  2813. goto out_err;
  2814. }
  2815. new_smi->dev_registered = 1;
  2816. }
  2817. rv = ipmi_register_smi(&handlers,
  2818. new_smi,
  2819. &new_smi->device_id,
  2820. new_smi->dev,
  2821. "bmc",
  2822. new_smi->slave_addr);
  2823. if (rv) {
  2824. dev_err(new_smi->dev, "Unable to register device: error %d\n",
  2825. rv);
  2826. goto out_err_stop_timer;
  2827. }
  2828. rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
  2829. &smi_type_proc_ops,
  2830. new_smi);
  2831. if (rv) {
  2832. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2833. goto out_err_stop_timer;
  2834. }
  2835. rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
  2836. &smi_si_stats_proc_ops,
  2837. new_smi);
  2838. if (rv) {
  2839. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2840. goto out_err_stop_timer;
  2841. }
  2842. rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
  2843. &smi_params_proc_ops,
  2844. new_smi);
  2845. if (rv) {
  2846. dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
  2847. goto out_err_stop_timer;
  2848. }
  2849. dev_info(new_smi->dev, "IPMI %s interface initialized\n",
  2850. si_to_str[new_smi->si_type]);
  2851. return 0;
  2852. out_err_stop_timer:
  2853. atomic_inc(&new_smi->stop_operation);
  2854. wait_for_timer_and_thread(new_smi);
  2855. out_err:
  2856. new_smi->interrupt_disabled = 1;
  2857. if (new_smi->intf) {
  2858. ipmi_unregister_smi(new_smi->intf);
  2859. new_smi->intf = NULL;
  2860. }
  2861. if (new_smi->irq_cleanup) {
  2862. new_smi->irq_cleanup(new_smi);
  2863. new_smi->irq_cleanup = NULL;
  2864. }
  2865. /*
  2866. * Wait until we know that we are out of any interrupt
  2867. * handlers might have been running before we freed the
  2868. * interrupt.
  2869. */
  2870. synchronize_sched();
  2871. if (new_smi->si_sm) {
  2872. if (new_smi->handlers)
  2873. new_smi->handlers->cleanup(new_smi->si_sm);
  2874. kfree(new_smi->si_sm);
  2875. new_smi->si_sm = NULL;
  2876. }
  2877. if (new_smi->addr_source_cleanup) {
  2878. new_smi->addr_source_cleanup(new_smi);
  2879. new_smi->addr_source_cleanup = NULL;
  2880. }
  2881. if (new_smi->io_cleanup) {
  2882. new_smi->io_cleanup(new_smi);
  2883. new_smi->io_cleanup = NULL;
  2884. }
  2885. if (new_smi->dev_registered) {
  2886. platform_device_unregister(new_smi->pdev);
  2887. new_smi->dev_registered = 0;
  2888. }
  2889. return rv;
  2890. }
  2891. static int __devinit init_ipmi_si(void)
  2892. {
  2893. int i;
  2894. char *str;
  2895. int rv;
  2896. struct smi_info *e;
  2897. enum ipmi_addr_src type = SI_INVALID;
  2898. if (initialized)
  2899. return 0;
  2900. initialized = 1;
  2901. rv = platform_driver_register(&ipmi_driver);
  2902. if (rv) {
  2903. printk(KERN_ERR PFX "Unable to register driver: %d\n", rv);
  2904. return rv;
  2905. }
  2906. /* Parse out the si_type string into its components. */
  2907. str = si_type_str;
  2908. if (*str != '\0') {
  2909. for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
  2910. si_type[i] = str;
  2911. str = strchr(str, ',');
  2912. if (str) {
  2913. *str = '\0';
  2914. str++;
  2915. } else {
  2916. break;
  2917. }
  2918. }
  2919. }
  2920. printk(KERN_INFO "IPMI System Interface driver.\n");
  2921. /* If the user gave us a device, they presumably want us to use it */
  2922. if (!hardcode_find_bmc())
  2923. return 0;
  2924. #ifdef CONFIG_PCI
  2925. rv = pci_register_driver(&ipmi_pci_driver);
  2926. if (rv)
  2927. printk(KERN_ERR PFX "Unable to register PCI driver: %d\n", rv);
  2928. else
  2929. pci_registered = 1;
  2930. #endif
  2931. #ifdef CONFIG_ACPI
  2932. pnp_register_driver(&ipmi_pnp_driver);
  2933. pnp_registered = 1;
  2934. #endif
  2935. #ifdef CONFIG_DMI
  2936. dmi_find_bmc();
  2937. #endif
  2938. #ifdef CONFIG_ACPI
  2939. spmi_find_bmc();
  2940. #endif
  2941. /* We prefer devices with interrupts, but in the case of a machine
  2942. with multiple BMCs we assume that there will be several instances
  2943. of a given type so if we succeed in registering a type then also
  2944. try to register everything else of the same type */
  2945. mutex_lock(&smi_infos_lock);
  2946. list_for_each_entry(e, &smi_infos, link) {
  2947. /* Try to register a device if it has an IRQ and we either
  2948. haven't successfully registered a device yet or this
  2949. device has the same type as one we successfully registered */
  2950. if (e->irq && (!type || e->addr_source == type)) {
  2951. if (!try_smi_init(e)) {
  2952. type = e->addr_source;
  2953. }
  2954. }
  2955. }
  2956. /* type will only have been set if we successfully registered an si */
  2957. if (type) {
  2958. mutex_unlock(&smi_infos_lock);
  2959. return 0;
  2960. }
  2961. /* Fall back to the preferred device */
  2962. list_for_each_entry(e, &smi_infos, link) {
  2963. if (!e->irq && (!type || e->addr_source == type)) {
  2964. if (!try_smi_init(e)) {
  2965. type = e->addr_source;
  2966. }
  2967. }
  2968. }
  2969. mutex_unlock(&smi_infos_lock);
  2970. if (type)
  2971. return 0;
  2972. if (si_trydefaults) {
  2973. mutex_lock(&smi_infos_lock);
  2974. if (list_empty(&smi_infos)) {
  2975. /* No BMC was found, try defaults. */
  2976. mutex_unlock(&smi_infos_lock);
  2977. default_find_bmc();
  2978. } else
  2979. mutex_unlock(&smi_infos_lock);
  2980. }
  2981. mutex_lock(&smi_infos_lock);
  2982. if (unload_when_empty && list_empty(&smi_infos)) {
  2983. mutex_unlock(&smi_infos_lock);
  2984. cleanup_ipmi_si();
  2985. printk(KERN_WARNING PFX
  2986. "Unable to find any System Interface(s)\n");
  2987. return -ENODEV;
  2988. } else {
  2989. mutex_unlock(&smi_infos_lock);
  2990. return 0;
  2991. }
  2992. }
  2993. module_init(init_ipmi_si);
  2994. static void cleanup_one_si(struct smi_info *to_clean)
  2995. {
  2996. int rv = 0;
  2997. unsigned long flags;
  2998. if (!to_clean)
  2999. return;
  3000. list_del(&to_clean->link);
  3001. /* Tell the driver that we are shutting down. */
  3002. atomic_inc(&to_clean->stop_operation);
  3003. /*
  3004. * Make sure the timer and thread are stopped and will not run
  3005. * again.
  3006. */
  3007. wait_for_timer_and_thread(to_clean);
  3008. /*
  3009. * Timeouts are stopped, now make sure the interrupts are off
  3010. * for the device. A little tricky with locks to make sure
  3011. * there are no races.
  3012. */
  3013. spin_lock_irqsave(&to_clean->si_lock, flags);
  3014. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  3015. spin_unlock_irqrestore(&to_clean->si_lock, flags);
  3016. poll(to_clean);
  3017. schedule_timeout_uninterruptible(1);
  3018. spin_lock_irqsave(&to_clean->si_lock, flags);
  3019. }
  3020. disable_si_irq(to_clean);
  3021. spin_unlock_irqrestore(&to_clean->si_lock, flags);
  3022. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  3023. poll(to_clean);
  3024. schedule_timeout_uninterruptible(1);
  3025. }
  3026. /* Clean up interrupts and make sure that everything is done. */
  3027. if (to_clean->irq_cleanup)
  3028. to_clean->irq_cleanup(to_clean);
  3029. while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
  3030. poll(to_clean);
  3031. schedule_timeout_uninterruptible(1);
  3032. }
  3033. if (to_clean->intf)
  3034. rv = ipmi_unregister_smi(to_clean->intf);
  3035. if (rv) {
  3036. printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
  3037. rv);
  3038. }
  3039. if (to_clean->handlers)
  3040. to_clean->handlers->cleanup(to_clean->si_sm);
  3041. kfree(to_clean->si_sm);
  3042. if (to_clean->addr_source_cleanup)
  3043. to_clean->addr_source_cleanup(to_clean);
  3044. if (to_clean->io_cleanup)
  3045. to_clean->io_cleanup(to_clean);
  3046. if (to_clean->dev_registered)
  3047. platform_device_unregister(to_clean->pdev);
  3048. kfree(to_clean);
  3049. }
  3050. static void cleanup_ipmi_si(void)
  3051. {
  3052. struct smi_info *e, *tmp_e;
  3053. if (!initialized)
  3054. return;
  3055. #ifdef CONFIG_PCI
  3056. if (pci_registered)
  3057. pci_unregister_driver(&ipmi_pci_driver);
  3058. #endif
  3059. #ifdef CONFIG_ACPI
  3060. if (pnp_registered)
  3061. pnp_unregister_driver(&ipmi_pnp_driver);
  3062. #endif
  3063. platform_driver_unregister(&ipmi_driver);
  3064. mutex_lock(&smi_infos_lock);
  3065. list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
  3066. cleanup_one_si(e);
  3067. mutex_unlock(&smi_infos_lock);
  3068. }
  3069. module_exit(cleanup_ipmi_si);
  3070. MODULE_LICENSE("GPL");
  3071. MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
  3072. MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
  3073. " system interfaces.");