fsi.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472
  1. /*
  2. * Fifo-attached Serial Interface (FSI) support for SH7724
  3. *
  4. * Copyright (C) 2009 Renesas Solutions Corp.
  5. * Kuninori Morimoto <morimoto.kuninori@renesas.com>
  6. *
  7. * Based on ssi.c
  8. * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/delay.h>
  15. #include <linux/pm_runtime.h>
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <sound/soc.h>
  20. #include <sound/sh_fsi.h>
  21. /* PortA/PortB register */
  22. #define REG_DO_FMT 0x0000
  23. #define REG_DOFF_CTL 0x0004
  24. #define REG_DOFF_ST 0x0008
  25. #define REG_DI_FMT 0x000C
  26. #define REG_DIFF_CTL 0x0010
  27. #define REG_DIFF_ST 0x0014
  28. #define REG_CKG1 0x0018
  29. #define REG_CKG2 0x001C
  30. #define REG_DIDT 0x0020
  31. #define REG_DODT 0x0024
  32. #define REG_MUTE_ST 0x0028
  33. #define REG_OUT_SEL 0x0030
  34. /* master register */
  35. #define MST_CLK_RST 0x0210
  36. #define MST_SOFT_RST 0x0214
  37. #define MST_FIFO_SZ 0x0218
  38. /* core register (depend on FSI version) */
  39. #define A_MST_CTLR 0x0180
  40. #define B_MST_CTLR 0x01A0
  41. #define CPU_INT_ST 0x01F4
  42. #define CPU_IEMSK 0x01F8
  43. #define CPU_IMSK 0x01FC
  44. #define INT_ST 0x0200
  45. #define IEMSK 0x0204
  46. #define IMSK 0x0208
  47. /* DO_FMT */
  48. /* DI_FMT */
  49. #define CR_BWS_24 (0x0 << 20) /* FSI2 */
  50. #define CR_BWS_16 (0x1 << 20) /* FSI2 */
  51. #define CR_BWS_20 (0x2 << 20) /* FSI2 */
  52. #define CR_DTMD_PCM (0x0 << 8) /* FSI2 */
  53. #define CR_DTMD_SPDIF_PCM (0x1 << 8) /* FSI2 */
  54. #define CR_DTMD_SPDIF_STREAM (0x2 << 8) /* FSI2 */
  55. #define CR_MONO (0x0 << 4)
  56. #define CR_MONO_D (0x1 << 4)
  57. #define CR_PCM (0x2 << 4)
  58. #define CR_I2S (0x3 << 4)
  59. #define CR_TDM (0x4 << 4)
  60. #define CR_TDM_D (0x5 << 4)
  61. /* DOFF_CTL */
  62. /* DIFF_CTL */
  63. #define IRQ_HALF 0x00100000
  64. #define FIFO_CLR 0x00000001
  65. /* DOFF_ST */
  66. #define ERR_OVER 0x00000010
  67. #define ERR_UNDER 0x00000001
  68. #define ST_ERR (ERR_OVER | ERR_UNDER)
  69. /* CKG1 */
  70. #define ACKMD_MASK 0x00007000
  71. #define BPFMD_MASK 0x00000700
  72. #define DIMD (1 << 4)
  73. #define DOMD (1 << 0)
  74. /* A/B MST_CTLR */
  75. #define BP (1 << 4) /* Fix the signal of Biphase output */
  76. #define SE (1 << 0) /* Fix the master clock */
  77. /* CLK_RST */
  78. #define CRB (1 << 4)
  79. #define CRA (1 << 0)
  80. /* IO SHIFT / MACRO */
  81. #define BI_SHIFT 12
  82. #define BO_SHIFT 8
  83. #define AI_SHIFT 4
  84. #define AO_SHIFT 0
  85. #define AB_IO(param, shift) (param << shift)
  86. /* SOFT_RST */
  87. #define PBSR (1 << 12) /* Port B Software Reset */
  88. #define PASR (1 << 8) /* Port A Software Reset */
  89. #define IR (1 << 4) /* Interrupt Reset */
  90. #define FSISR (1 << 0) /* Software Reset */
  91. /* OUT_SEL (FSI2) */
  92. #define DMMD (1 << 4) /* SPDIF output timing 0: Biphase only */
  93. /* 1: Biphase and serial */
  94. /* FIFO_SZ */
  95. #define FIFO_SZ_MASK 0x7
  96. #define FSI_RATES SNDRV_PCM_RATE_8000_96000
  97. #define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)
  98. typedef int (*set_rate_func)(struct device *dev, int is_porta, int rate, int enable);
  99. /*
  100. * FSI driver use below type name for variable
  101. *
  102. * xxx_num : number of data
  103. * xxx_pos : position of data
  104. * xxx_capa : capacity of data
  105. */
  106. /*
  107. * period/frame/sample image
  108. *
  109. * ex) PCM (2ch)
  110. *
  111. * period pos period pos
  112. * [n] [n + 1]
  113. * |<-------------------- period--------------------->|
  114. * ==|============================================ ... =|==
  115. * | |
  116. * ||<----- frame ----->|<------ frame ----->| ... |
  117. * |+--------------------+--------------------+- ... |
  118. * ||[ sample ][ sample ]|[ sample ][ sample ]| ... |
  119. * |+--------------------+--------------------+- ... |
  120. * ==|============================================ ... =|==
  121. */
  122. /*
  123. * FSI FIFO image
  124. *
  125. * | |
  126. * | |
  127. * | [ sample ] |
  128. * | [ sample ] |
  129. * | [ sample ] |
  130. * | [ sample ] |
  131. * --> go to codecs
  132. */
  133. /*
  134. * struct
  135. */
  136. struct fsi_stream {
  137. struct snd_pcm_substream *substream;
  138. int fifo_sample_capa; /* sample capacity of FSI FIFO */
  139. int buff_sample_capa; /* sample capacity of ALSA buffer */
  140. int buff_sample_pos; /* sample position of ALSA buffer */
  141. int period_samples; /* sample number / 1 period */
  142. int period_pos; /* current period position */
  143. int uerr_num;
  144. int oerr_num;
  145. };
  146. struct fsi_priv {
  147. void __iomem *base;
  148. struct fsi_master *master;
  149. struct fsi_stream playback;
  150. struct fsi_stream capture;
  151. u32 do_fmt;
  152. u32 di_fmt;
  153. int chan_num:16;
  154. int clk_master:1;
  155. int spdif:1;
  156. long rate;
  157. };
  158. struct fsi_core {
  159. int ver;
  160. u32 int_st;
  161. u32 iemsk;
  162. u32 imsk;
  163. u32 a_mclk;
  164. u32 b_mclk;
  165. };
  166. struct fsi_master {
  167. void __iomem *base;
  168. int irq;
  169. struct fsi_priv fsia;
  170. struct fsi_priv fsib;
  171. struct fsi_core *core;
  172. struct sh_fsi_platform_info *info;
  173. spinlock_t lock;
  174. };
  175. /*
  176. * basic read write function
  177. */
  178. static void __fsi_reg_write(u32 __iomem *reg, u32 data)
  179. {
  180. /* valid data area is 24bit */
  181. data &= 0x00ffffff;
  182. __raw_writel(data, reg);
  183. }
  184. static u32 __fsi_reg_read(u32 __iomem *reg)
  185. {
  186. return __raw_readl(reg);
  187. }
  188. static void __fsi_reg_mask_set(u32 __iomem *reg, u32 mask, u32 data)
  189. {
  190. u32 val = __fsi_reg_read(reg);
  191. val &= ~mask;
  192. val |= data & mask;
  193. __fsi_reg_write(reg, val);
  194. }
  195. #define fsi_reg_write(p, r, d)\
  196. __fsi_reg_write((u32)(p->base + REG_##r), d)
  197. #define fsi_reg_read(p, r)\
  198. __fsi_reg_read((u32)(p->base + REG_##r))
  199. #define fsi_reg_mask_set(p, r, m, d)\
  200. __fsi_reg_mask_set((u32)(p->base + REG_##r), m, d)
  201. #define fsi_master_read(p, r) _fsi_master_read(p, MST_##r)
  202. #define fsi_core_read(p, r) _fsi_master_read(p, p->core->r)
  203. static u32 _fsi_master_read(struct fsi_master *master, u32 reg)
  204. {
  205. u32 ret;
  206. unsigned long flags;
  207. spin_lock_irqsave(&master->lock, flags);
  208. ret = __fsi_reg_read(master->base + reg);
  209. spin_unlock_irqrestore(&master->lock, flags);
  210. return ret;
  211. }
  212. #define fsi_master_mask_set(p, r, m, d) _fsi_master_mask_set(p, MST_##r, m, d)
  213. #define fsi_core_mask_set(p, r, m, d) _fsi_master_mask_set(p, p->core->r, m, d)
  214. static void _fsi_master_mask_set(struct fsi_master *master,
  215. u32 reg, u32 mask, u32 data)
  216. {
  217. unsigned long flags;
  218. spin_lock_irqsave(&master->lock, flags);
  219. __fsi_reg_mask_set(master->base + reg, mask, data);
  220. spin_unlock_irqrestore(&master->lock, flags);
  221. }
  222. /*
  223. * basic function
  224. */
  225. static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
  226. {
  227. return fsi->master;
  228. }
  229. static int fsi_is_clk_master(struct fsi_priv *fsi)
  230. {
  231. return fsi->clk_master;
  232. }
  233. static int fsi_is_port_a(struct fsi_priv *fsi)
  234. {
  235. return fsi->master->base == fsi->base;
  236. }
  237. static int fsi_is_spdif(struct fsi_priv *fsi)
  238. {
  239. return fsi->spdif;
  240. }
  241. static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
  242. {
  243. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  244. return rtd->cpu_dai;
  245. }
  246. static struct fsi_priv *fsi_get_priv_frm_dai(struct snd_soc_dai *dai)
  247. {
  248. struct fsi_master *master = snd_soc_dai_get_drvdata(dai);
  249. if (dai->id == 0)
  250. return &master->fsia;
  251. else
  252. return &master->fsib;
  253. }
  254. static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
  255. {
  256. return fsi_get_priv_frm_dai(fsi_get_dai(substream));
  257. }
  258. static set_rate_func fsi_get_info_set_rate(struct fsi_master *master)
  259. {
  260. if (!master->info)
  261. return NULL;
  262. return master->info->set_rate;
  263. }
  264. static u32 fsi_get_info_flags(struct fsi_priv *fsi)
  265. {
  266. int is_porta = fsi_is_port_a(fsi);
  267. struct fsi_master *master = fsi_get_master(fsi);
  268. if (!master->info)
  269. return 0;
  270. return is_porta ? master->info->porta_flags :
  271. master->info->portb_flags;
  272. }
  273. static inline int fsi_stream_is_play(int stream)
  274. {
  275. return stream == SNDRV_PCM_STREAM_PLAYBACK;
  276. }
  277. static inline int fsi_is_play(struct snd_pcm_substream *substream)
  278. {
  279. return fsi_stream_is_play(substream->stream);
  280. }
  281. static inline struct fsi_stream *fsi_get_stream(struct fsi_priv *fsi,
  282. int is_play)
  283. {
  284. return is_play ? &fsi->playback : &fsi->capture;
  285. }
  286. static u32 fsi_get_port_shift(struct fsi_priv *fsi, int is_play)
  287. {
  288. int is_porta = fsi_is_port_a(fsi);
  289. u32 shift;
  290. if (is_porta)
  291. shift = is_play ? AO_SHIFT : AI_SHIFT;
  292. else
  293. shift = is_play ? BO_SHIFT : BI_SHIFT;
  294. return shift;
  295. }
  296. static int fsi_frame2sample(struct fsi_priv *fsi, int frames)
  297. {
  298. return frames * fsi->chan_num;
  299. }
  300. static int fsi_sample2frame(struct fsi_priv *fsi, int samples)
  301. {
  302. return samples / fsi->chan_num;
  303. }
  304. static int fsi_stream_is_working(struct fsi_priv *fsi,
  305. int is_play)
  306. {
  307. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  308. struct fsi_master *master = fsi_get_master(fsi);
  309. unsigned long flags;
  310. int ret;
  311. spin_lock_irqsave(&master->lock, flags);
  312. ret = !!io->substream;
  313. spin_unlock_irqrestore(&master->lock, flags);
  314. return ret;
  315. }
  316. static void fsi_stream_push(struct fsi_priv *fsi,
  317. int is_play,
  318. struct snd_pcm_substream *substream)
  319. {
  320. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  321. struct snd_pcm_runtime *runtime = substream->runtime;
  322. struct fsi_master *master = fsi_get_master(fsi);
  323. unsigned long flags;
  324. spin_lock_irqsave(&master->lock, flags);
  325. io->substream = substream;
  326. io->buff_sample_capa = fsi_frame2sample(fsi, runtime->buffer_size);
  327. io->buff_sample_pos = 0;
  328. io->period_samples = fsi_frame2sample(fsi, runtime->period_size);
  329. io->period_pos = 0;
  330. io->oerr_num = -1; /* ignore 1st err */
  331. io->uerr_num = -1; /* ignore 1st err */
  332. spin_unlock_irqrestore(&master->lock, flags);
  333. }
  334. static void fsi_stream_pop(struct fsi_priv *fsi, int is_play)
  335. {
  336. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  337. struct snd_soc_dai *dai = fsi_get_dai(io->substream);
  338. struct fsi_master *master = fsi_get_master(fsi);
  339. unsigned long flags;
  340. spin_lock_irqsave(&master->lock, flags);
  341. if (io->oerr_num > 0)
  342. dev_err(dai->dev, "over_run = %d\n", io->oerr_num);
  343. if (io->uerr_num > 0)
  344. dev_err(dai->dev, "under_run = %d\n", io->uerr_num);
  345. io->substream = NULL;
  346. io->buff_sample_capa = 0;
  347. io->buff_sample_pos = 0;
  348. io->period_samples = 0;
  349. io->period_pos = 0;
  350. io->oerr_num = 0;
  351. io->uerr_num = 0;
  352. spin_unlock_irqrestore(&master->lock, flags);
  353. }
  354. static int fsi_get_current_fifo_samples(struct fsi_priv *fsi, int is_play)
  355. {
  356. u32 status;
  357. int frames;
  358. status = is_play ?
  359. fsi_reg_read(fsi, DOFF_ST) :
  360. fsi_reg_read(fsi, DIFF_ST);
  361. frames = 0x1ff & (status >> 8);
  362. return fsi_frame2sample(fsi, frames);
  363. }
  364. static void fsi_count_fifo_err(struct fsi_priv *fsi)
  365. {
  366. u32 ostatus = fsi_reg_read(fsi, DOFF_ST);
  367. u32 istatus = fsi_reg_read(fsi, DIFF_ST);
  368. if (ostatus & ERR_OVER)
  369. fsi->playback.oerr_num++;
  370. if (ostatus & ERR_UNDER)
  371. fsi->playback.uerr_num++;
  372. if (istatus & ERR_OVER)
  373. fsi->capture.oerr_num++;
  374. if (istatus & ERR_UNDER)
  375. fsi->capture.uerr_num++;
  376. fsi_reg_write(fsi, DOFF_ST, 0);
  377. fsi_reg_write(fsi, DIFF_ST, 0);
  378. }
  379. /*
  380. * dma function
  381. */
  382. static u8 *fsi_dma_get_area(struct fsi_priv *fsi, int stream)
  383. {
  384. int is_play = fsi_stream_is_play(stream);
  385. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  386. struct snd_pcm_runtime *runtime = io->substream->runtime;
  387. return runtime->dma_area +
  388. samples_to_bytes(runtime, io->buff_sample_pos);
  389. }
  390. static void fsi_dma_soft_push16(struct fsi_priv *fsi, int num)
  391. {
  392. u16 *start;
  393. int i;
  394. start = (u16 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_PLAYBACK);
  395. for (i = 0; i < num; i++)
  396. fsi_reg_write(fsi, DODT, ((u32)*(start + i) << 8));
  397. }
  398. static void fsi_dma_soft_pop16(struct fsi_priv *fsi, int num)
  399. {
  400. u16 *start;
  401. int i;
  402. start = (u16 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_CAPTURE);
  403. for (i = 0; i < num; i++)
  404. *(start + i) = (u16)(fsi_reg_read(fsi, DIDT) >> 8);
  405. }
  406. static void fsi_dma_soft_push32(struct fsi_priv *fsi, int num)
  407. {
  408. u32 *start;
  409. int i;
  410. start = (u32 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_PLAYBACK);
  411. for (i = 0; i < num; i++)
  412. fsi_reg_write(fsi, DODT, *(start + i));
  413. }
  414. static void fsi_dma_soft_pop32(struct fsi_priv *fsi, int num)
  415. {
  416. u32 *start;
  417. int i;
  418. start = (u32 *)fsi_dma_get_area(fsi, SNDRV_PCM_STREAM_CAPTURE);
  419. for (i = 0; i < num; i++)
  420. *(start + i) = fsi_reg_read(fsi, DIDT);
  421. }
  422. /*
  423. * irq function
  424. */
  425. static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
  426. {
  427. u32 data = AB_IO(1, fsi_get_port_shift(fsi, is_play));
  428. struct fsi_master *master = fsi_get_master(fsi);
  429. fsi_core_mask_set(master, imsk, data, data);
  430. fsi_core_mask_set(master, iemsk, data, data);
  431. }
  432. static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
  433. {
  434. u32 data = AB_IO(1, fsi_get_port_shift(fsi, is_play));
  435. struct fsi_master *master = fsi_get_master(fsi);
  436. fsi_core_mask_set(master, imsk, data, 0);
  437. fsi_core_mask_set(master, iemsk, data, 0);
  438. }
  439. static u32 fsi_irq_get_status(struct fsi_master *master)
  440. {
  441. return fsi_core_read(master, int_st);
  442. }
  443. static void fsi_irq_clear_status(struct fsi_priv *fsi)
  444. {
  445. u32 data = 0;
  446. struct fsi_master *master = fsi_get_master(fsi);
  447. data |= AB_IO(1, fsi_get_port_shift(fsi, 0));
  448. data |= AB_IO(1, fsi_get_port_shift(fsi, 1));
  449. /* clear interrupt factor */
  450. fsi_core_mask_set(master, int_st, data, 0);
  451. }
  452. /*
  453. * SPDIF master clock function
  454. *
  455. * These functions are used later FSI2
  456. */
  457. static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
  458. {
  459. struct fsi_master *master = fsi_get_master(fsi);
  460. u32 mask, val;
  461. if (master->core->ver < 2) {
  462. pr_err("fsi: register access err (%s)\n", __func__);
  463. return;
  464. }
  465. mask = BP | SE;
  466. val = enable ? mask : 0;
  467. fsi_is_port_a(fsi) ?
  468. fsi_core_mask_set(master, a_mclk, mask, val) :
  469. fsi_core_mask_set(master, b_mclk, mask, val);
  470. }
  471. /*
  472. * clock function
  473. */
  474. static int fsi_set_master_clk(struct device *dev, struct fsi_priv *fsi,
  475. long rate, int enable)
  476. {
  477. struct fsi_master *master = fsi_get_master(fsi);
  478. set_rate_func set_rate = fsi_get_info_set_rate(master);
  479. int fsi_ver = master->core->ver;
  480. int ret;
  481. ret = set_rate(dev, fsi_is_port_a(fsi), rate, enable);
  482. if (ret < 0) /* error */
  483. return ret;
  484. if (!enable)
  485. return 0;
  486. if (ret > 0) {
  487. u32 data = 0;
  488. switch (ret & SH_FSI_ACKMD_MASK) {
  489. default:
  490. /* FALL THROUGH */
  491. case SH_FSI_ACKMD_512:
  492. data |= (0x0 << 12);
  493. break;
  494. case SH_FSI_ACKMD_256:
  495. data |= (0x1 << 12);
  496. break;
  497. case SH_FSI_ACKMD_128:
  498. data |= (0x2 << 12);
  499. break;
  500. case SH_FSI_ACKMD_64:
  501. data |= (0x3 << 12);
  502. break;
  503. case SH_FSI_ACKMD_32:
  504. if (fsi_ver < 2)
  505. dev_err(dev, "unsupported ACKMD\n");
  506. else
  507. data |= (0x4 << 12);
  508. break;
  509. }
  510. switch (ret & SH_FSI_BPFMD_MASK) {
  511. default:
  512. /* FALL THROUGH */
  513. case SH_FSI_BPFMD_32:
  514. data |= (0x0 << 8);
  515. break;
  516. case SH_FSI_BPFMD_64:
  517. data |= (0x1 << 8);
  518. break;
  519. case SH_FSI_BPFMD_128:
  520. data |= (0x2 << 8);
  521. break;
  522. case SH_FSI_BPFMD_256:
  523. data |= (0x3 << 8);
  524. break;
  525. case SH_FSI_BPFMD_512:
  526. data |= (0x4 << 8);
  527. break;
  528. case SH_FSI_BPFMD_16:
  529. if (fsi_ver < 2)
  530. dev_err(dev, "unsupported ACKMD\n");
  531. else
  532. data |= (0x7 << 8);
  533. break;
  534. }
  535. fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
  536. udelay(10);
  537. ret = 0;
  538. }
  539. return ret;
  540. }
  541. #define fsi_port_start(f, i) __fsi_port_clk_ctrl(f, i, 1)
  542. #define fsi_port_stop(f, i) __fsi_port_clk_ctrl(f, i, 0)
  543. static void __fsi_port_clk_ctrl(struct fsi_priv *fsi, int is_play, int enable)
  544. {
  545. struct fsi_master *master = fsi_get_master(fsi);
  546. u32 clk = fsi_is_port_a(fsi) ? CRA : CRB;
  547. if (enable)
  548. fsi_irq_enable(fsi, is_play);
  549. else
  550. fsi_irq_disable(fsi, is_play);
  551. if (fsi_is_clk_master(fsi))
  552. fsi_master_mask_set(master, CLK_RST, clk, (enable) ? clk : 0);
  553. }
  554. /*
  555. * ctrl function
  556. */
  557. static void fsi_fifo_init(struct fsi_priv *fsi,
  558. int is_play,
  559. struct device *dev)
  560. {
  561. struct fsi_master *master = fsi_get_master(fsi);
  562. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  563. u32 shift, i;
  564. int frame_capa;
  565. /* get on-chip RAM capacity */
  566. shift = fsi_master_read(master, FIFO_SZ);
  567. shift >>= fsi_get_port_shift(fsi, is_play);
  568. shift &= FIFO_SZ_MASK;
  569. frame_capa = 256 << shift;
  570. dev_dbg(dev, "fifo = %d words\n", frame_capa);
  571. /*
  572. * The maximum number of sample data varies depending
  573. * on the number of channels selected for the format.
  574. *
  575. * FIFOs are used in 4-channel units in 3-channel mode
  576. * and in 8-channel units in 5- to 7-channel mode
  577. * meaning that more FIFOs than the required size of DPRAM
  578. * are used.
  579. *
  580. * ex) if 256 words of DP-RAM is connected
  581. * 1 channel: 256 (256 x 1 = 256)
  582. * 2 channels: 128 (128 x 2 = 256)
  583. * 3 channels: 64 ( 64 x 3 = 192)
  584. * 4 channels: 64 ( 64 x 4 = 256)
  585. * 5 channels: 32 ( 32 x 5 = 160)
  586. * 6 channels: 32 ( 32 x 6 = 192)
  587. * 7 channels: 32 ( 32 x 7 = 224)
  588. * 8 channels: 32 ( 32 x 8 = 256)
  589. */
  590. for (i = 1; i < fsi->chan_num; i <<= 1)
  591. frame_capa >>= 1;
  592. dev_dbg(dev, "%d channel %d store\n",
  593. fsi->chan_num, frame_capa);
  594. io->fifo_sample_capa = fsi_frame2sample(fsi, frame_capa);
  595. /*
  596. * set interrupt generation factor
  597. * clear FIFO
  598. */
  599. if (is_play) {
  600. fsi_reg_write(fsi, DOFF_CTL, IRQ_HALF);
  601. fsi_reg_mask_set(fsi, DOFF_CTL, FIFO_CLR, FIFO_CLR);
  602. } else {
  603. fsi_reg_write(fsi, DIFF_CTL, IRQ_HALF);
  604. fsi_reg_mask_set(fsi, DIFF_CTL, FIFO_CLR, FIFO_CLR);
  605. }
  606. }
  607. static int fsi_fifo_data_ctrl(struct fsi_priv *fsi, int stream)
  608. {
  609. struct snd_pcm_runtime *runtime;
  610. struct snd_pcm_substream *substream = NULL;
  611. int is_play = fsi_stream_is_play(stream);
  612. struct fsi_stream *io = fsi_get_stream(fsi, is_play);
  613. int sample_residues;
  614. int sample_width;
  615. int samples;
  616. int samples_max;
  617. int over_period;
  618. void (*fn)(struct fsi_priv *fsi, int size);
  619. if (!fsi ||
  620. !io->substream ||
  621. !io->substream->runtime)
  622. return -EINVAL;
  623. over_period = 0;
  624. substream = io->substream;
  625. runtime = substream->runtime;
  626. /* FSI FIFO has limit.
  627. * So, this driver can not send periods data at a time
  628. */
  629. if (io->buff_sample_pos >=
  630. io->period_samples * (io->period_pos + 1)) {
  631. over_period = 1;
  632. io->period_pos = (io->period_pos + 1) % runtime->periods;
  633. if (0 == io->period_pos)
  634. io->buff_sample_pos = 0;
  635. }
  636. /* get 1 sample data width */
  637. sample_width = samples_to_bytes(runtime, 1);
  638. /* get number of residue samples */
  639. sample_residues = io->buff_sample_capa - io->buff_sample_pos;
  640. if (is_play) {
  641. /*
  642. * for play-back
  643. *
  644. * samples_max : number of FSI fifo free samples space
  645. * samples : number of ALSA residue samples
  646. */
  647. samples_max = io->fifo_sample_capa;
  648. samples_max -= fsi_get_current_fifo_samples(fsi, is_play);
  649. samples = sample_residues;
  650. switch (sample_width) {
  651. case 2:
  652. fn = fsi_dma_soft_push16;
  653. break;
  654. case 4:
  655. fn = fsi_dma_soft_push32;
  656. break;
  657. default:
  658. return -EINVAL;
  659. }
  660. } else {
  661. /*
  662. * for capture
  663. *
  664. * samples_max : number of ALSA free samples space
  665. * samples : number of samples in FSI fifo
  666. */
  667. samples_max = sample_residues;
  668. samples = fsi_get_current_fifo_samples(fsi, is_play);
  669. switch (sample_width) {
  670. case 2:
  671. fn = fsi_dma_soft_pop16;
  672. break;
  673. case 4:
  674. fn = fsi_dma_soft_pop32;
  675. break;
  676. default:
  677. return -EINVAL;
  678. }
  679. }
  680. samples = min(samples, samples_max);
  681. fn(fsi, samples);
  682. /* update buff_sample_pos */
  683. io->buff_sample_pos += samples;
  684. if (over_period)
  685. snd_pcm_period_elapsed(substream);
  686. return 0;
  687. }
  688. static int fsi_data_pop(struct fsi_priv *fsi)
  689. {
  690. return fsi_fifo_data_ctrl(fsi, SNDRV_PCM_STREAM_CAPTURE);
  691. }
  692. static int fsi_data_push(struct fsi_priv *fsi)
  693. {
  694. return fsi_fifo_data_ctrl(fsi, SNDRV_PCM_STREAM_PLAYBACK);
  695. }
  696. static irqreturn_t fsi_interrupt(int irq, void *data)
  697. {
  698. struct fsi_master *master = data;
  699. u32 int_st = fsi_irq_get_status(master);
  700. /* clear irq status */
  701. fsi_master_mask_set(master, SOFT_RST, IR, 0);
  702. fsi_master_mask_set(master, SOFT_RST, IR, IR);
  703. if (int_st & AB_IO(1, AO_SHIFT))
  704. fsi_data_push(&master->fsia);
  705. if (int_st & AB_IO(1, BO_SHIFT))
  706. fsi_data_push(&master->fsib);
  707. if (int_st & AB_IO(1, AI_SHIFT))
  708. fsi_data_pop(&master->fsia);
  709. if (int_st & AB_IO(1, BI_SHIFT))
  710. fsi_data_pop(&master->fsib);
  711. fsi_count_fifo_err(&master->fsia);
  712. fsi_count_fifo_err(&master->fsib);
  713. fsi_irq_clear_status(&master->fsia);
  714. fsi_irq_clear_status(&master->fsib);
  715. return IRQ_HANDLED;
  716. }
  717. /*
  718. * dai ops
  719. */
  720. static int fsi_hw_startup(struct fsi_priv *fsi,
  721. int is_play,
  722. struct device *dev)
  723. {
  724. u32 flags = fsi_get_info_flags(fsi);
  725. u32 data = 0;
  726. pm_runtime_get_sync(dev);
  727. /* clock setting */
  728. if (fsi_is_clk_master(fsi))
  729. data = DIMD | DOMD;
  730. fsi_reg_mask_set(fsi, CKG1, (DIMD | DOMD), data);
  731. /* clock inversion (CKG2) */
  732. data = 0;
  733. if (SH_FSI_LRM_INV & flags)
  734. data |= 1 << 12;
  735. if (SH_FSI_BRM_INV & flags)
  736. data |= 1 << 8;
  737. if (SH_FSI_LRS_INV & flags)
  738. data |= 1 << 4;
  739. if (SH_FSI_BRS_INV & flags)
  740. data |= 1 << 0;
  741. fsi_reg_write(fsi, CKG2, data);
  742. /* set format */
  743. fsi_reg_write(fsi, DO_FMT, fsi->do_fmt);
  744. fsi_reg_write(fsi, DI_FMT, fsi->di_fmt);
  745. /* spdif ? */
  746. if (fsi_is_spdif(fsi)) {
  747. fsi_spdif_clk_ctrl(fsi, 1);
  748. fsi_reg_mask_set(fsi, OUT_SEL, DMMD, DMMD);
  749. }
  750. /* irq clear */
  751. fsi_irq_disable(fsi, is_play);
  752. fsi_irq_clear_status(fsi);
  753. /* fifo init */
  754. fsi_fifo_init(fsi, is_play, dev);
  755. return 0;
  756. }
  757. static void fsi_hw_shutdown(struct fsi_priv *fsi,
  758. int is_play,
  759. struct device *dev)
  760. {
  761. if (fsi_is_clk_master(fsi))
  762. fsi_set_master_clk(dev, fsi, fsi->rate, 0);
  763. pm_runtime_put_sync(dev);
  764. }
  765. static int fsi_dai_startup(struct snd_pcm_substream *substream,
  766. struct snd_soc_dai *dai)
  767. {
  768. struct fsi_priv *fsi = fsi_get_priv(substream);
  769. int is_play = fsi_is_play(substream);
  770. return fsi_hw_startup(fsi, is_play, dai->dev);
  771. }
  772. static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
  773. struct snd_soc_dai *dai)
  774. {
  775. struct fsi_priv *fsi = fsi_get_priv(substream);
  776. int is_play = fsi_is_play(substream);
  777. fsi_hw_shutdown(fsi, is_play, dai->dev);
  778. fsi->rate = 0;
  779. }
  780. static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
  781. struct snd_soc_dai *dai)
  782. {
  783. struct fsi_priv *fsi = fsi_get_priv(substream);
  784. int is_play = fsi_is_play(substream);
  785. int ret = 0;
  786. switch (cmd) {
  787. case SNDRV_PCM_TRIGGER_START:
  788. fsi_stream_push(fsi, is_play, substream);
  789. ret = is_play ? fsi_data_push(fsi) : fsi_data_pop(fsi);
  790. fsi_port_start(fsi, is_play);
  791. break;
  792. case SNDRV_PCM_TRIGGER_STOP:
  793. fsi_port_stop(fsi, is_play);
  794. fsi_stream_pop(fsi, is_play);
  795. break;
  796. }
  797. return ret;
  798. }
  799. static int fsi_set_fmt_dai(struct fsi_priv *fsi, unsigned int fmt)
  800. {
  801. u32 data = 0;
  802. switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
  803. case SND_SOC_DAIFMT_I2S:
  804. data = CR_I2S;
  805. fsi->chan_num = 2;
  806. break;
  807. case SND_SOC_DAIFMT_LEFT_J:
  808. data = CR_PCM;
  809. fsi->chan_num = 2;
  810. break;
  811. default:
  812. return -EINVAL;
  813. }
  814. fsi->do_fmt = data;
  815. fsi->di_fmt = data;
  816. return 0;
  817. }
  818. static int fsi_set_fmt_spdif(struct fsi_priv *fsi)
  819. {
  820. struct fsi_master *master = fsi_get_master(fsi);
  821. u32 data = 0;
  822. if (master->core->ver < 2)
  823. return -EINVAL;
  824. data = CR_BWS_16 | CR_DTMD_SPDIF_PCM | CR_PCM;
  825. fsi->chan_num = 2;
  826. fsi->spdif = 1;
  827. fsi->do_fmt = data;
  828. fsi->di_fmt = data;
  829. return 0;
  830. }
  831. static int fsi_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
  832. {
  833. struct fsi_priv *fsi = fsi_get_priv_frm_dai(dai);
  834. struct fsi_master *master = fsi_get_master(fsi);
  835. set_rate_func set_rate = fsi_get_info_set_rate(master);
  836. u32 flags = fsi_get_info_flags(fsi);
  837. int ret;
  838. /* set master/slave audio interface */
  839. switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
  840. case SND_SOC_DAIFMT_CBM_CFM:
  841. fsi->clk_master = 1;
  842. break;
  843. case SND_SOC_DAIFMT_CBS_CFS:
  844. break;
  845. default:
  846. return -EINVAL;
  847. }
  848. if (fsi_is_clk_master(fsi) && !set_rate) {
  849. dev_err(dai->dev, "platform doesn't have set_rate\n");
  850. return -EINVAL;
  851. }
  852. /* set format */
  853. switch (flags & SH_FSI_FMT_MASK) {
  854. case SH_FSI_FMT_DAI:
  855. ret = fsi_set_fmt_dai(fsi, fmt & SND_SOC_DAIFMT_FORMAT_MASK);
  856. break;
  857. case SH_FSI_FMT_SPDIF:
  858. ret = fsi_set_fmt_spdif(fsi);
  859. break;
  860. default:
  861. ret = -EINVAL;
  862. }
  863. return ret;
  864. }
  865. static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
  866. struct snd_pcm_hw_params *params,
  867. struct snd_soc_dai *dai)
  868. {
  869. struct fsi_priv *fsi = fsi_get_priv(substream);
  870. long rate = params_rate(params);
  871. int ret;
  872. if (!fsi_is_clk_master(fsi))
  873. return 0;
  874. ret = fsi_set_master_clk(dai->dev, fsi, rate, 1);
  875. if (ret < 0)
  876. return ret;
  877. fsi->rate = rate;
  878. return ret;
  879. }
  880. static struct snd_soc_dai_ops fsi_dai_ops = {
  881. .startup = fsi_dai_startup,
  882. .shutdown = fsi_dai_shutdown,
  883. .trigger = fsi_dai_trigger,
  884. .set_fmt = fsi_dai_set_fmt,
  885. .hw_params = fsi_dai_hw_params,
  886. };
  887. /*
  888. * pcm ops
  889. */
  890. static struct snd_pcm_hardware fsi_pcm_hardware = {
  891. .info = SNDRV_PCM_INFO_INTERLEAVED |
  892. SNDRV_PCM_INFO_MMAP |
  893. SNDRV_PCM_INFO_MMAP_VALID |
  894. SNDRV_PCM_INFO_PAUSE,
  895. .formats = FSI_FMTS,
  896. .rates = FSI_RATES,
  897. .rate_min = 8000,
  898. .rate_max = 192000,
  899. .channels_min = 1,
  900. .channels_max = 2,
  901. .buffer_bytes_max = 64 * 1024,
  902. .period_bytes_min = 32,
  903. .period_bytes_max = 8192,
  904. .periods_min = 1,
  905. .periods_max = 32,
  906. .fifo_size = 256,
  907. };
  908. static int fsi_pcm_open(struct snd_pcm_substream *substream)
  909. {
  910. struct snd_pcm_runtime *runtime = substream->runtime;
  911. int ret = 0;
  912. snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);
  913. ret = snd_pcm_hw_constraint_integer(runtime,
  914. SNDRV_PCM_HW_PARAM_PERIODS);
  915. return ret;
  916. }
  917. static int fsi_hw_params(struct snd_pcm_substream *substream,
  918. struct snd_pcm_hw_params *hw_params)
  919. {
  920. return snd_pcm_lib_malloc_pages(substream,
  921. params_buffer_bytes(hw_params));
  922. }
  923. static int fsi_hw_free(struct snd_pcm_substream *substream)
  924. {
  925. return snd_pcm_lib_free_pages(substream);
  926. }
  927. static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
  928. {
  929. struct fsi_priv *fsi = fsi_get_priv(substream);
  930. struct fsi_stream *io = fsi_get_stream(fsi, fsi_is_play(substream));
  931. int samples_pos = io->buff_sample_pos - 1;
  932. if (samples_pos < 0)
  933. samples_pos = 0;
  934. return fsi_sample2frame(fsi, samples_pos);
  935. }
  936. static struct snd_pcm_ops fsi_pcm_ops = {
  937. .open = fsi_pcm_open,
  938. .ioctl = snd_pcm_lib_ioctl,
  939. .hw_params = fsi_hw_params,
  940. .hw_free = fsi_hw_free,
  941. .pointer = fsi_pointer,
  942. };
  943. /*
  944. * snd_soc_platform
  945. */
  946. #define PREALLOC_BUFFER (32 * 1024)
  947. #define PREALLOC_BUFFER_MAX (32 * 1024)
  948. static void fsi_pcm_free(struct snd_pcm *pcm)
  949. {
  950. snd_pcm_lib_preallocate_free_for_all(pcm);
  951. }
  952. static int fsi_pcm_new(struct snd_soc_pcm_runtime *rtd)
  953. {
  954. struct snd_pcm *pcm = rtd->pcm;
  955. /*
  956. * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
  957. * in MMAP mode (i.e. aplay -M)
  958. */
  959. return snd_pcm_lib_preallocate_pages_for_all(
  960. pcm,
  961. SNDRV_DMA_TYPE_CONTINUOUS,
  962. snd_dma_continuous_data(GFP_KERNEL),
  963. PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
  964. }
  965. /*
  966. * alsa struct
  967. */
  968. static struct snd_soc_dai_driver fsi_soc_dai[] = {
  969. {
  970. .name = "fsia-dai",
  971. .playback = {
  972. .rates = FSI_RATES,
  973. .formats = FSI_FMTS,
  974. .channels_min = 1,
  975. .channels_max = 8,
  976. },
  977. .capture = {
  978. .rates = FSI_RATES,
  979. .formats = FSI_FMTS,
  980. .channels_min = 1,
  981. .channels_max = 8,
  982. },
  983. .ops = &fsi_dai_ops,
  984. },
  985. {
  986. .name = "fsib-dai",
  987. .playback = {
  988. .rates = FSI_RATES,
  989. .formats = FSI_FMTS,
  990. .channels_min = 1,
  991. .channels_max = 8,
  992. },
  993. .capture = {
  994. .rates = FSI_RATES,
  995. .formats = FSI_FMTS,
  996. .channels_min = 1,
  997. .channels_max = 8,
  998. },
  999. .ops = &fsi_dai_ops,
  1000. },
  1001. };
  1002. static struct snd_soc_platform_driver fsi_soc_platform = {
  1003. .ops = &fsi_pcm_ops,
  1004. .pcm_new = fsi_pcm_new,
  1005. .pcm_free = fsi_pcm_free,
  1006. };
  1007. /*
  1008. * platform function
  1009. */
  1010. static int fsi_probe(struct platform_device *pdev)
  1011. {
  1012. struct fsi_master *master;
  1013. const struct platform_device_id *id_entry;
  1014. struct resource *res;
  1015. unsigned int irq;
  1016. int ret;
  1017. id_entry = pdev->id_entry;
  1018. if (!id_entry) {
  1019. dev_err(&pdev->dev, "unknown fsi device\n");
  1020. return -ENODEV;
  1021. }
  1022. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1023. irq = platform_get_irq(pdev, 0);
  1024. if (!res || (int)irq <= 0) {
  1025. dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
  1026. ret = -ENODEV;
  1027. goto exit;
  1028. }
  1029. master = kzalloc(sizeof(*master), GFP_KERNEL);
  1030. if (!master) {
  1031. dev_err(&pdev->dev, "Could not allocate master\n");
  1032. ret = -ENOMEM;
  1033. goto exit;
  1034. }
  1035. master->base = ioremap_nocache(res->start, resource_size(res));
  1036. if (!master->base) {
  1037. ret = -ENXIO;
  1038. dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
  1039. goto exit_kfree;
  1040. }
  1041. /* master setting */
  1042. master->irq = irq;
  1043. master->info = pdev->dev.platform_data;
  1044. master->core = (struct fsi_core *)id_entry->driver_data;
  1045. spin_lock_init(&master->lock);
  1046. /* FSI A setting */
  1047. master->fsia.base = master->base;
  1048. master->fsia.master = master;
  1049. /* FSI B setting */
  1050. master->fsib.base = master->base + 0x40;
  1051. master->fsib.master = master;
  1052. pm_runtime_enable(&pdev->dev);
  1053. dev_set_drvdata(&pdev->dev, master);
  1054. ret = request_irq(irq, &fsi_interrupt, 0,
  1055. id_entry->name, master);
  1056. if (ret) {
  1057. dev_err(&pdev->dev, "irq request err\n");
  1058. goto exit_iounmap;
  1059. }
  1060. ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform);
  1061. if (ret < 0) {
  1062. dev_err(&pdev->dev, "cannot snd soc register\n");
  1063. goto exit_free_irq;
  1064. }
  1065. ret = snd_soc_register_dais(&pdev->dev, fsi_soc_dai,
  1066. ARRAY_SIZE(fsi_soc_dai));
  1067. if (ret < 0) {
  1068. dev_err(&pdev->dev, "cannot snd dai register\n");
  1069. goto exit_snd_soc;
  1070. }
  1071. return ret;
  1072. exit_snd_soc:
  1073. snd_soc_unregister_platform(&pdev->dev);
  1074. exit_free_irq:
  1075. free_irq(irq, master);
  1076. exit_iounmap:
  1077. iounmap(master->base);
  1078. pm_runtime_disable(&pdev->dev);
  1079. exit_kfree:
  1080. kfree(master);
  1081. master = NULL;
  1082. exit:
  1083. return ret;
  1084. }
  1085. static int fsi_remove(struct platform_device *pdev)
  1086. {
  1087. struct fsi_master *master;
  1088. master = dev_get_drvdata(&pdev->dev);
  1089. free_irq(master->irq, master);
  1090. pm_runtime_disable(&pdev->dev);
  1091. snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai));
  1092. snd_soc_unregister_platform(&pdev->dev);
  1093. iounmap(master->base);
  1094. kfree(master);
  1095. return 0;
  1096. }
  1097. static void __fsi_suspend(struct fsi_priv *fsi,
  1098. int is_play,
  1099. struct device *dev)
  1100. {
  1101. if (!fsi_stream_is_working(fsi, is_play))
  1102. return;
  1103. fsi_port_stop(fsi, is_play);
  1104. fsi_hw_shutdown(fsi, is_play, dev);
  1105. }
  1106. static void __fsi_resume(struct fsi_priv *fsi,
  1107. int is_play,
  1108. struct device *dev)
  1109. {
  1110. if (!fsi_stream_is_working(fsi, is_play))
  1111. return;
  1112. fsi_hw_startup(fsi, is_play, dev);
  1113. if (fsi_is_clk_master(fsi) && fsi->rate)
  1114. fsi_set_master_clk(dev, fsi, fsi->rate, 1);
  1115. fsi_port_start(fsi, is_play);
  1116. }
  1117. static int fsi_suspend(struct device *dev)
  1118. {
  1119. struct fsi_master *master = dev_get_drvdata(dev);
  1120. struct fsi_priv *fsia = &master->fsia;
  1121. struct fsi_priv *fsib = &master->fsib;
  1122. __fsi_suspend(fsia, 1, dev);
  1123. __fsi_suspend(fsia, 0, dev);
  1124. __fsi_suspend(fsib, 1, dev);
  1125. __fsi_suspend(fsib, 0, dev);
  1126. return 0;
  1127. }
  1128. static int fsi_resume(struct device *dev)
  1129. {
  1130. struct fsi_master *master = dev_get_drvdata(dev);
  1131. struct fsi_priv *fsia = &master->fsia;
  1132. struct fsi_priv *fsib = &master->fsib;
  1133. __fsi_resume(fsia, 1, dev);
  1134. __fsi_resume(fsia, 0, dev);
  1135. __fsi_resume(fsib, 1, dev);
  1136. __fsi_resume(fsib, 0, dev);
  1137. return 0;
  1138. }
  1139. static int fsi_runtime_nop(struct device *dev)
  1140. {
  1141. /* Runtime PM callback shared between ->runtime_suspend()
  1142. * and ->runtime_resume(). Simply returns success.
  1143. *
  1144. * This driver re-initializes all registers after
  1145. * pm_runtime_get_sync() anyway so there is no need
  1146. * to save and restore registers here.
  1147. */
  1148. return 0;
  1149. }
  1150. static struct dev_pm_ops fsi_pm_ops = {
  1151. .suspend = fsi_suspend,
  1152. .resume = fsi_resume,
  1153. .runtime_suspend = fsi_runtime_nop,
  1154. .runtime_resume = fsi_runtime_nop,
  1155. };
  1156. static struct fsi_core fsi1_core = {
  1157. .ver = 1,
  1158. /* Interrupt */
  1159. .int_st = INT_ST,
  1160. .iemsk = IEMSK,
  1161. .imsk = IMSK,
  1162. };
  1163. static struct fsi_core fsi2_core = {
  1164. .ver = 2,
  1165. /* Interrupt */
  1166. .int_st = CPU_INT_ST,
  1167. .iemsk = CPU_IEMSK,
  1168. .imsk = CPU_IMSK,
  1169. .a_mclk = A_MST_CTLR,
  1170. .b_mclk = B_MST_CTLR,
  1171. };
  1172. static struct platform_device_id fsi_id_table[] = {
  1173. { "sh_fsi", (kernel_ulong_t)&fsi1_core },
  1174. { "sh_fsi2", (kernel_ulong_t)&fsi2_core },
  1175. {},
  1176. };
  1177. MODULE_DEVICE_TABLE(platform, fsi_id_table);
  1178. static struct platform_driver fsi_driver = {
  1179. .driver = {
  1180. .name = "fsi-pcm-audio",
  1181. .pm = &fsi_pm_ops,
  1182. },
  1183. .probe = fsi_probe,
  1184. .remove = fsi_remove,
  1185. .id_table = fsi_id_table,
  1186. };
  1187. static int __init fsi_mobile_init(void)
  1188. {
  1189. return platform_driver_register(&fsi_driver);
  1190. }
  1191. static void __exit fsi_mobile_exit(void)
  1192. {
  1193. platform_driver_unregister(&fsi_driver);
  1194. }
  1195. module_init(fsi_mobile_init);
  1196. module_exit(fsi_mobile_exit);
  1197. MODULE_LICENSE("GPL");
  1198. MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
  1199. MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
  1200. MODULE_ALIAS("platform:fsi-pcm-audio");