util.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219
  1. /*
  2. * Wireless utility functions
  3. *
  4. * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
  5. */
  6. #include <linux/export.h>
  7. #include <linux/bitops.h>
  8. #include <linux/etherdevice.h>
  9. #include <linux/slab.h>
  10. #include <linux/crc32.h>
  11. #include <net/cfg80211.h>
  12. #include <net/ip.h>
  13. #include "core.h"
  14. struct ieee80211_rate *
  15. ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  16. u32 basic_rates, int bitrate)
  17. {
  18. struct ieee80211_rate *result = &sband->bitrates[0];
  19. int i;
  20. for (i = 0; i < sband->n_bitrates; i++) {
  21. if (!(basic_rates & BIT(i)))
  22. continue;
  23. if (sband->bitrates[i].bitrate > bitrate)
  24. continue;
  25. result = &sband->bitrates[i];
  26. }
  27. return result;
  28. }
  29. EXPORT_SYMBOL(ieee80211_get_response_rate);
  30. int ieee80211_channel_to_frequency(int chan, enum ieee80211_band band)
  31. {
  32. /* see 802.11 17.3.8.3.2 and Annex J
  33. * there are overlapping channel numbers in 5GHz and 2GHz bands */
  34. if (band == IEEE80211_BAND_5GHZ) {
  35. if (chan >= 182 && chan <= 196)
  36. return 4000 + chan * 5;
  37. else
  38. return 5000 + chan * 5;
  39. } else { /* IEEE80211_BAND_2GHZ */
  40. if (chan == 14)
  41. return 2484;
  42. else if (chan < 14)
  43. return 2407 + chan * 5;
  44. else
  45. return 0; /* not supported */
  46. }
  47. }
  48. EXPORT_SYMBOL(ieee80211_channel_to_frequency);
  49. int ieee80211_frequency_to_channel(int freq)
  50. {
  51. /* see 802.11 17.3.8.3.2 and Annex J */
  52. if (freq == 2484)
  53. return 14;
  54. else if (freq < 2484)
  55. return (freq - 2407) / 5;
  56. else if (freq >= 4910 && freq <= 4980)
  57. return (freq - 4000) / 5;
  58. else
  59. return (freq - 5000) / 5;
  60. }
  61. EXPORT_SYMBOL(ieee80211_frequency_to_channel);
  62. struct ieee80211_channel *__ieee80211_get_channel(struct wiphy *wiphy,
  63. int freq)
  64. {
  65. enum ieee80211_band band;
  66. struct ieee80211_supported_band *sband;
  67. int i;
  68. for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
  69. sband = wiphy->bands[band];
  70. if (!sband)
  71. continue;
  72. for (i = 0; i < sband->n_channels; i++) {
  73. if (sband->channels[i].center_freq == freq)
  74. return &sband->channels[i];
  75. }
  76. }
  77. return NULL;
  78. }
  79. EXPORT_SYMBOL(__ieee80211_get_channel);
  80. static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
  81. enum ieee80211_band band)
  82. {
  83. int i, want;
  84. switch (band) {
  85. case IEEE80211_BAND_5GHZ:
  86. want = 3;
  87. for (i = 0; i < sband->n_bitrates; i++) {
  88. if (sband->bitrates[i].bitrate == 60 ||
  89. sband->bitrates[i].bitrate == 120 ||
  90. sband->bitrates[i].bitrate == 240) {
  91. sband->bitrates[i].flags |=
  92. IEEE80211_RATE_MANDATORY_A;
  93. want--;
  94. }
  95. }
  96. WARN_ON(want);
  97. break;
  98. case IEEE80211_BAND_2GHZ:
  99. want = 7;
  100. for (i = 0; i < sband->n_bitrates; i++) {
  101. if (sband->bitrates[i].bitrate == 10) {
  102. sband->bitrates[i].flags |=
  103. IEEE80211_RATE_MANDATORY_B |
  104. IEEE80211_RATE_MANDATORY_G;
  105. want--;
  106. }
  107. if (sband->bitrates[i].bitrate == 20 ||
  108. sband->bitrates[i].bitrate == 55 ||
  109. sband->bitrates[i].bitrate == 110 ||
  110. sband->bitrates[i].bitrate == 60 ||
  111. sband->bitrates[i].bitrate == 120 ||
  112. sband->bitrates[i].bitrate == 240) {
  113. sband->bitrates[i].flags |=
  114. IEEE80211_RATE_MANDATORY_G;
  115. want--;
  116. }
  117. if (sband->bitrates[i].bitrate != 10 &&
  118. sband->bitrates[i].bitrate != 20 &&
  119. sband->bitrates[i].bitrate != 55 &&
  120. sband->bitrates[i].bitrate != 110)
  121. sband->bitrates[i].flags |=
  122. IEEE80211_RATE_ERP_G;
  123. }
  124. WARN_ON(want != 0 && want != 3 && want != 6);
  125. break;
  126. case IEEE80211_NUM_BANDS:
  127. WARN_ON(1);
  128. break;
  129. }
  130. }
  131. void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
  132. {
  133. enum ieee80211_band band;
  134. for (band = 0; band < IEEE80211_NUM_BANDS; band++)
  135. if (wiphy->bands[band])
  136. set_mandatory_flags_band(wiphy->bands[band], band);
  137. }
  138. bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
  139. {
  140. int i;
  141. for (i = 0; i < wiphy->n_cipher_suites; i++)
  142. if (cipher == wiphy->cipher_suites[i])
  143. return true;
  144. return false;
  145. }
  146. int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
  147. struct key_params *params, int key_idx,
  148. bool pairwise, const u8 *mac_addr)
  149. {
  150. if (key_idx > 5)
  151. return -EINVAL;
  152. if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
  153. return -EINVAL;
  154. if (pairwise && !mac_addr)
  155. return -EINVAL;
  156. /*
  157. * Disallow pairwise keys with non-zero index unless it's WEP
  158. * or a vendor specific cipher (because current deployments use
  159. * pairwise WEP keys with non-zero indices and for vendor specific
  160. * ciphers this should be validated in the driver or hardware level
  161. * - but 802.11i clearly specifies to use zero)
  162. */
  163. if (pairwise && key_idx &&
  164. ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
  165. (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
  166. (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
  167. return -EINVAL;
  168. switch (params->cipher) {
  169. case WLAN_CIPHER_SUITE_WEP40:
  170. if (params->key_len != WLAN_KEY_LEN_WEP40)
  171. return -EINVAL;
  172. break;
  173. case WLAN_CIPHER_SUITE_TKIP:
  174. if (params->key_len != WLAN_KEY_LEN_TKIP)
  175. return -EINVAL;
  176. break;
  177. case WLAN_CIPHER_SUITE_CCMP:
  178. if (params->key_len != WLAN_KEY_LEN_CCMP)
  179. return -EINVAL;
  180. break;
  181. case WLAN_CIPHER_SUITE_WEP104:
  182. if (params->key_len != WLAN_KEY_LEN_WEP104)
  183. return -EINVAL;
  184. break;
  185. case WLAN_CIPHER_SUITE_AES_CMAC:
  186. if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
  187. return -EINVAL;
  188. break;
  189. default:
  190. /*
  191. * We don't know anything about this algorithm,
  192. * allow using it -- but the driver must check
  193. * all parameters! We still check below whether
  194. * or not the driver supports this algorithm,
  195. * of course.
  196. */
  197. break;
  198. }
  199. if (params->seq) {
  200. switch (params->cipher) {
  201. case WLAN_CIPHER_SUITE_WEP40:
  202. case WLAN_CIPHER_SUITE_WEP104:
  203. /* These ciphers do not use key sequence */
  204. return -EINVAL;
  205. case WLAN_CIPHER_SUITE_TKIP:
  206. case WLAN_CIPHER_SUITE_CCMP:
  207. case WLAN_CIPHER_SUITE_AES_CMAC:
  208. if (params->seq_len != 6)
  209. return -EINVAL;
  210. break;
  211. }
  212. }
  213. if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
  214. return -EINVAL;
  215. return 0;
  216. }
  217. /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
  218. /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
  219. const unsigned char rfc1042_header[] __aligned(2) =
  220. { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
  221. EXPORT_SYMBOL(rfc1042_header);
  222. /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
  223. const unsigned char bridge_tunnel_header[] __aligned(2) =
  224. { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
  225. EXPORT_SYMBOL(bridge_tunnel_header);
  226. unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
  227. {
  228. unsigned int hdrlen = 24;
  229. if (ieee80211_is_data(fc)) {
  230. if (ieee80211_has_a4(fc))
  231. hdrlen = 30;
  232. if (ieee80211_is_data_qos(fc)) {
  233. hdrlen += IEEE80211_QOS_CTL_LEN;
  234. if (ieee80211_has_order(fc))
  235. hdrlen += IEEE80211_HT_CTL_LEN;
  236. }
  237. goto out;
  238. }
  239. if (ieee80211_is_ctl(fc)) {
  240. /*
  241. * ACK and CTS are 10 bytes, all others 16. To see how
  242. * to get this condition consider
  243. * subtype mask: 0b0000000011110000 (0x00F0)
  244. * ACK subtype: 0b0000000011010000 (0x00D0)
  245. * CTS subtype: 0b0000000011000000 (0x00C0)
  246. * bits that matter: ^^^ (0x00E0)
  247. * value of those: 0b0000000011000000 (0x00C0)
  248. */
  249. if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
  250. hdrlen = 10;
  251. else
  252. hdrlen = 16;
  253. }
  254. out:
  255. return hdrlen;
  256. }
  257. EXPORT_SYMBOL(ieee80211_hdrlen);
  258. unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
  259. {
  260. const struct ieee80211_hdr *hdr =
  261. (const struct ieee80211_hdr *)skb->data;
  262. unsigned int hdrlen;
  263. if (unlikely(skb->len < 10))
  264. return 0;
  265. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  266. if (unlikely(hdrlen > skb->len))
  267. return 0;
  268. return hdrlen;
  269. }
  270. EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
  271. static int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
  272. {
  273. int ae = meshhdr->flags & MESH_FLAGS_AE;
  274. /* 7.1.3.5a.2 */
  275. switch (ae) {
  276. case 0:
  277. return 6;
  278. case MESH_FLAGS_AE_A4:
  279. return 12;
  280. case MESH_FLAGS_AE_A5_A6:
  281. return 18;
  282. case (MESH_FLAGS_AE_A4 | MESH_FLAGS_AE_A5_A6):
  283. return 24;
  284. default:
  285. return 6;
  286. }
  287. }
  288. int ieee80211_data_to_8023(struct sk_buff *skb, const u8 *addr,
  289. enum nl80211_iftype iftype)
  290. {
  291. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  292. u16 hdrlen, ethertype;
  293. u8 *payload;
  294. u8 dst[ETH_ALEN];
  295. u8 src[ETH_ALEN] __aligned(2);
  296. if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
  297. return -1;
  298. hdrlen = ieee80211_hdrlen(hdr->frame_control);
  299. /* convert IEEE 802.11 header + possible LLC headers into Ethernet
  300. * header
  301. * IEEE 802.11 address fields:
  302. * ToDS FromDS Addr1 Addr2 Addr3 Addr4
  303. * 0 0 DA SA BSSID n/a
  304. * 0 1 DA BSSID SA n/a
  305. * 1 0 BSSID SA DA n/a
  306. * 1 1 RA TA DA SA
  307. */
  308. memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
  309. memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
  310. switch (hdr->frame_control &
  311. cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
  312. case cpu_to_le16(IEEE80211_FCTL_TODS):
  313. if (unlikely(iftype != NL80211_IFTYPE_AP &&
  314. iftype != NL80211_IFTYPE_AP_VLAN &&
  315. iftype != NL80211_IFTYPE_P2P_GO))
  316. return -1;
  317. break;
  318. case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
  319. if (unlikely(iftype != NL80211_IFTYPE_WDS &&
  320. iftype != NL80211_IFTYPE_MESH_POINT &&
  321. iftype != NL80211_IFTYPE_AP_VLAN &&
  322. iftype != NL80211_IFTYPE_STATION))
  323. return -1;
  324. if (iftype == NL80211_IFTYPE_MESH_POINT) {
  325. struct ieee80211s_hdr *meshdr =
  326. (struct ieee80211s_hdr *) (skb->data + hdrlen);
  327. /* make sure meshdr->flags is on the linear part */
  328. if (!pskb_may_pull(skb, hdrlen + 1))
  329. return -1;
  330. if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
  331. skb_copy_bits(skb, hdrlen +
  332. offsetof(struct ieee80211s_hdr, eaddr1),
  333. dst, ETH_ALEN);
  334. skb_copy_bits(skb, hdrlen +
  335. offsetof(struct ieee80211s_hdr, eaddr2),
  336. src, ETH_ALEN);
  337. }
  338. hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
  339. }
  340. break;
  341. case cpu_to_le16(IEEE80211_FCTL_FROMDS):
  342. if ((iftype != NL80211_IFTYPE_STATION &&
  343. iftype != NL80211_IFTYPE_P2P_CLIENT &&
  344. iftype != NL80211_IFTYPE_MESH_POINT) ||
  345. (is_multicast_ether_addr(dst) &&
  346. !compare_ether_addr(src, addr)))
  347. return -1;
  348. if (iftype == NL80211_IFTYPE_MESH_POINT) {
  349. struct ieee80211s_hdr *meshdr =
  350. (struct ieee80211s_hdr *) (skb->data + hdrlen);
  351. /* make sure meshdr->flags is on the linear part */
  352. if (!pskb_may_pull(skb, hdrlen + 1))
  353. return -1;
  354. if (meshdr->flags & MESH_FLAGS_AE_A4)
  355. skb_copy_bits(skb, hdrlen +
  356. offsetof(struct ieee80211s_hdr, eaddr1),
  357. src, ETH_ALEN);
  358. hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
  359. }
  360. break;
  361. case cpu_to_le16(0):
  362. if (iftype != NL80211_IFTYPE_ADHOC &&
  363. iftype != NL80211_IFTYPE_STATION)
  364. return -1;
  365. break;
  366. }
  367. if (!pskb_may_pull(skb, hdrlen + 8))
  368. return -1;
  369. payload = skb->data + hdrlen;
  370. ethertype = (payload[6] << 8) | payload[7];
  371. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  372. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  373. compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
  374. /* remove RFC1042 or Bridge-Tunnel encapsulation and
  375. * replace EtherType */
  376. skb_pull(skb, hdrlen + 6);
  377. memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
  378. memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
  379. } else {
  380. struct ethhdr *ehdr;
  381. __be16 len;
  382. skb_pull(skb, hdrlen);
  383. len = htons(skb->len);
  384. ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
  385. memcpy(ehdr->h_dest, dst, ETH_ALEN);
  386. memcpy(ehdr->h_source, src, ETH_ALEN);
  387. ehdr->h_proto = len;
  388. }
  389. return 0;
  390. }
  391. EXPORT_SYMBOL(ieee80211_data_to_8023);
  392. int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
  393. enum nl80211_iftype iftype, u8 *bssid, bool qos)
  394. {
  395. struct ieee80211_hdr hdr;
  396. u16 hdrlen, ethertype;
  397. __le16 fc;
  398. const u8 *encaps_data;
  399. int encaps_len, skip_header_bytes;
  400. int nh_pos, h_pos;
  401. int head_need;
  402. if (unlikely(skb->len < ETH_HLEN))
  403. return -EINVAL;
  404. nh_pos = skb_network_header(skb) - skb->data;
  405. h_pos = skb_transport_header(skb) - skb->data;
  406. /* convert Ethernet header to proper 802.11 header (based on
  407. * operation mode) */
  408. ethertype = (skb->data[12] << 8) | skb->data[13];
  409. fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
  410. switch (iftype) {
  411. case NL80211_IFTYPE_AP:
  412. case NL80211_IFTYPE_AP_VLAN:
  413. case NL80211_IFTYPE_P2P_GO:
  414. fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
  415. /* DA BSSID SA */
  416. memcpy(hdr.addr1, skb->data, ETH_ALEN);
  417. memcpy(hdr.addr2, addr, ETH_ALEN);
  418. memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
  419. hdrlen = 24;
  420. break;
  421. case NL80211_IFTYPE_STATION:
  422. case NL80211_IFTYPE_P2P_CLIENT:
  423. fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
  424. /* BSSID SA DA */
  425. memcpy(hdr.addr1, bssid, ETH_ALEN);
  426. memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
  427. memcpy(hdr.addr3, skb->data, ETH_ALEN);
  428. hdrlen = 24;
  429. break;
  430. case NL80211_IFTYPE_ADHOC:
  431. /* DA SA BSSID */
  432. memcpy(hdr.addr1, skb->data, ETH_ALEN);
  433. memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
  434. memcpy(hdr.addr3, bssid, ETH_ALEN);
  435. hdrlen = 24;
  436. break;
  437. default:
  438. return -EOPNOTSUPP;
  439. }
  440. if (qos) {
  441. fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
  442. hdrlen += 2;
  443. }
  444. hdr.frame_control = fc;
  445. hdr.duration_id = 0;
  446. hdr.seq_ctrl = 0;
  447. skip_header_bytes = ETH_HLEN;
  448. if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
  449. encaps_data = bridge_tunnel_header;
  450. encaps_len = sizeof(bridge_tunnel_header);
  451. skip_header_bytes -= 2;
  452. } else if (ethertype > 0x600) {
  453. encaps_data = rfc1042_header;
  454. encaps_len = sizeof(rfc1042_header);
  455. skip_header_bytes -= 2;
  456. } else {
  457. encaps_data = NULL;
  458. encaps_len = 0;
  459. }
  460. skb_pull(skb, skip_header_bytes);
  461. nh_pos -= skip_header_bytes;
  462. h_pos -= skip_header_bytes;
  463. head_need = hdrlen + encaps_len - skb_headroom(skb);
  464. if (head_need > 0 || skb_cloned(skb)) {
  465. head_need = max(head_need, 0);
  466. if (head_need)
  467. skb_orphan(skb);
  468. if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
  469. return -ENOMEM;
  470. skb->truesize += head_need;
  471. }
  472. if (encaps_data) {
  473. memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
  474. nh_pos += encaps_len;
  475. h_pos += encaps_len;
  476. }
  477. memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
  478. nh_pos += hdrlen;
  479. h_pos += hdrlen;
  480. /* Update skb pointers to various headers since this modified frame
  481. * is going to go through Linux networking code that may potentially
  482. * need things like pointer to IP header. */
  483. skb_set_mac_header(skb, 0);
  484. skb_set_network_header(skb, nh_pos);
  485. skb_set_transport_header(skb, h_pos);
  486. return 0;
  487. }
  488. EXPORT_SYMBOL(ieee80211_data_from_8023);
  489. void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
  490. const u8 *addr, enum nl80211_iftype iftype,
  491. const unsigned int extra_headroom,
  492. bool has_80211_header)
  493. {
  494. struct sk_buff *frame = NULL;
  495. u16 ethertype;
  496. u8 *payload;
  497. const struct ethhdr *eth;
  498. int remaining, err;
  499. u8 dst[ETH_ALEN], src[ETH_ALEN];
  500. if (has_80211_header) {
  501. err = ieee80211_data_to_8023(skb, addr, iftype);
  502. if (err)
  503. goto out;
  504. /* skip the wrapping header */
  505. eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
  506. if (!eth)
  507. goto out;
  508. } else {
  509. eth = (struct ethhdr *) skb->data;
  510. }
  511. while (skb != frame) {
  512. u8 padding;
  513. __be16 len = eth->h_proto;
  514. unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
  515. remaining = skb->len;
  516. memcpy(dst, eth->h_dest, ETH_ALEN);
  517. memcpy(src, eth->h_source, ETH_ALEN);
  518. padding = (4 - subframe_len) & 0x3;
  519. /* the last MSDU has no padding */
  520. if (subframe_len > remaining)
  521. goto purge;
  522. skb_pull(skb, sizeof(struct ethhdr));
  523. /* reuse skb for the last subframe */
  524. if (remaining <= subframe_len + padding)
  525. frame = skb;
  526. else {
  527. unsigned int hlen = ALIGN(extra_headroom, 4);
  528. /*
  529. * Allocate and reserve two bytes more for payload
  530. * alignment since sizeof(struct ethhdr) is 14.
  531. */
  532. frame = dev_alloc_skb(hlen + subframe_len + 2);
  533. if (!frame)
  534. goto purge;
  535. skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
  536. memcpy(skb_put(frame, ntohs(len)), skb->data,
  537. ntohs(len));
  538. eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
  539. padding);
  540. if (!eth) {
  541. dev_kfree_skb(frame);
  542. goto purge;
  543. }
  544. }
  545. skb_reset_network_header(frame);
  546. frame->dev = skb->dev;
  547. frame->priority = skb->priority;
  548. payload = frame->data;
  549. ethertype = (payload[6] << 8) | payload[7];
  550. if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
  551. ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
  552. compare_ether_addr(payload,
  553. bridge_tunnel_header) == 0)) {
  554. /* remove RFC1042 or Bridge-Tunnel
  555. * encapsulation and replace EtherType */
  556. skb_pull(frame, 6);
  557. memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
  558. memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
  559. } else {
  560. memcpy(skb_push(frame, sizeof(__be16)), &len,
  561. sizeof(__be16));
  562. memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
  563. memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
  564. }
  565. __skb_queue_tail(list, frame);
  566. }
  567. return;
  568. purge:
  569. __skb_queue_purge(list);
  570. out:
  571. dev_kfree_skb(skb);
  572. }
  573. EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
  574. /* Given a data frame determine the 802.1p/1d tag to use. */
  575. unsigned int cfg80211_classify8021d(struct sk_buff *skb)
  576. {
  577. unsigned int dscp;
  578. /* skb->priority values from 256->263 are magic values to
  579. * directly indicate a specific 802.1d priority. This is used
  580. * to allow 802.1d priority to be passed directly in from VLAN
  581. * tags, etc.
  582. */
  583. if (skb->priority >= 256 && skb->priority <= 263)
  584. return skb->priority - 256;
  585. switch (skb->protocol) {
  586. case htons(ETH_P_IP):
  587. dscp = ip_hdr(skb)->tos & 0xfc;
  588. break;
  589. default:
  590. return 0;
  591. }
  592. return dscp >> 5;
  593. }
  594. EXPORT_SYMBOL(cfg80211_classify8021d);
  595. const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
  596. {
  597. u8 *end, *pos;
  598. pos = bss->information_elements;
  599. if (pos == NULL)
  600. return NULL;
  601. end = pos + bss->len_information_elements;
  602. while (pos + 1 < end) {
  603. if (pos + 2 + pos[1] > end)
  604. break;
  605. if (pos[0] == ie)
  606. return pos;
  607. pos += 2 + pos[1];
  608. }
  609. return NULL;
  610. }
  611. EXPORT_SYMBOL(ieee80211_bss_get_ie);
  612. void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
  613. {
  614. struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
  615. struct net_device *dev = wdev->netdev;
  616. int i;
  617. if (!wdev->connect_keys)
  618. return;
  619. for (i = 0; i < 6; i++) {
  620. if (!wdev->connect_keys->params[i].cipher)
  621. continue;
  622. if (rdev->ops->add_key(wdev->wiphy, dev, i, false, NULL,
  623. &wdev->connect_keys->params[i])) {
  624. netdev_err(dev, "failed to set key %d\n", i);
  625. continue;
  626. }
  627. if (wdev->connect_keys->def == i)
  628. if (rdev->ops->set_default_key(wdev->wiphy, dev,
  629. i, true, true)) {
  630. netdev_err(dev, "failed to set defkey %d\n", i);
  631. continue;
  632. }
  633. if (wdev->connect_keys->defmgmt == i)
  634. if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i))
  635. netdev_err(dev, "failed to set mgtdef %d\n", i);
  636. }
  637. kfree(wdev->connect_keys);
  638. wdev->connect_keys = NULL;
  639. }
  640. static void cfg80211_process_wdev_events(struct wireless_dev *wdev)
  641. {
  642. struct cfg80211_event *ev;
  643. unsigned long flags;
  644. const u8 *bssid = NULL;
  645. spin_lock_irqsave(&wdev->event_lock, flags);
  646. while (!list_empty(&wdev->event_list)) {
  647. ev = list_first_entry(&wdev->event_list,
  648. struct cfg80211_event, list);
  649. list_del(&ev->list);
  650. spin_unlock_irqrestore(&wdev->event_lock, flags);
  651. wdev_lock(wdev);
  652. switch (ev->type) {
  653. case EVENT_CONNECT_RESULT:
  654. if (!is_zero_ether_addr(ev->cr.bssid))
  655. bssid = ev->cr.bssid;
  656. __cfg80211_connect_result(
  657. wdev->netdev, bssid,
  658. ev->cr.req_ie, ev->cr.req_ie_len,
  659. ev->cr.resp_ie, ev->cr.resp_ie_len,
  660. ev->cr.status,
  661. ev->cr.status == WLAN_STATUS_SUCCESS,
  662. NULL);
  663. break;
  664. case EVENT_ROAMED:
  665. __cfg80211_roamed(wdev, ev->rm.channel, ev->rm.bssid,
  666. ev->rm.req_ie, ev->rm.req_ie_len,
  667. ev->rm.resp_ie, ev->rm.resp_ie_len);
  668. break;
  669. case EVENT_DISCONNECTED:
  670. __cfg80211_disconnected(wdev->netdev,
  671. ev->dc.ie, ev->dc.ie_len,
  672. ev->dc.reason, true);
  673. break;
  674. case EVENT_IBSS_JOINED:
  675. __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
  676. break;
  677. }
  678. wdev_unlock(wdev);
  679. kfree(ev);
  680. spin_lock_irqsave(&wdev->event_lock, flags);
  681. }
  682. spin_unlock_irqrestore(&wdev->event_lock, flags);
  683. }
  684. void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
  685. {
  686. struct wireless_dev *wdev;
  687. ASSERT_RTNL();
  688. ASSERT_RDEV_LOCK(rdev);
  689. mutex_lock(&rdev->devlist_mtx);
  690. list_for_each_entry(wdev, &rdev->netdev_list, list)
  691. cfg80211_process_wdev_events(wdev);
  692. mutex_unlock(&rdev->devlist_mtx);
  693. }
  694. int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
  695. struct net_device *dev, enum nl80211_iftype ntype,
  696. u32 *flags, struct vif_params *params)
  697. {
  698. int err;
  699. enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
  700. ASSERT_RDEV_LOCK(rdev);
  701. /* don't support changing VLANs, you just re-create them */
  702. if (otype == NL80211_IFTYPE_AP_VLAN)
  703. return -EOPNOTSUPP;
  704. if (!rdev->ops->change_virtual_intf ||
  705. !(rdev->wiphy.interface_modes & (1 << ntype)))
  706. return -EOPNOTSUPP;
  707. /* if it's part of a bridge, reject changing type to station/ibss */
  708. if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
  709. (ntype == NL80211_IFTYPE_ADHOC ||
  710. ntype == NL80211_IFTYPE_STATION ||
  711. ntype == NL80211_IFTYPE_P2P_CLIENT))
  712. return -EBUSY;
  713. if (ntype != otype) {
  714. err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr,
  715. ntype);
  716. if (err)
  717. return err;
  718. dev->ieee80211_ptr->use_4addr = false;
  719. dev->ieee80211_ptr->mesh_id_up_len = 0;
  720. switch (otype) {
  721. case NL80211_IFTYPE_ADHOC:
  722. cfg80211_leave_ibss(rdev, dev, false);
  723. break;
  724. case NL80211_IFTYPE_STATION:
  725. case NL80211_IFTYPE_P2P_CLIENT:
  726. cfg80211_disconnect(rdev, dev,
  727. WLAN_REASON_DEAUTH_LEAVING, true);
  728. break;
  729. case NL80211_IFTYPE_MESH_POINT:
  730. /* mesh should be handled? */
  731. break;
  732. default:
  733. break;
  734. }
  735. cfg80211_process_rdev_events(rdev);
  736. }
  737. err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev,
  738. ntype, flags, params);
  739. WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
  740. if (!err && params && params->use_4addr != -1)
  741. dev->ieee80211_ptr->use_4addr = params->use_4addr;
  742. if (!err) {
  743. dev->priv_flags &= ~IFF_DONT_BRIDGE;
  744. switch (ntype) {
  745. case NL80211_IFTYPE_STATION:
  746. if (dev->ieee80211_ptr->use_4addr)
  747. break;
  748. /* fall through */
  749. case NL80211_IFTYPE_P2P_CLIENT:
  750. case NL80211_IFTYPE_ADHOC:
  751. dev->priv_flags |= IFF_DONT_BRIDGE;
  752. break;
  753. case NL80211_IFTYPE_P2P_GO:
  754. case NL80211_IFTYPE_AP:
  755. case NL80211_IFTYPE_AP_VLAN:
  756. case NL80211_IFTYPE_WDS:
  757. case NL80211_IFTYPE_MESH_POINT:
  758. /* bridging OK */
  759. break;
  760. case NL80211_IFTYPE_MONITOR:
  761. /* monitor can't bridge anyway */
  762. break;
  763. case NL80211_IFTYPE_UNSPECIFIED:
  764. case NUM_NL80211_IFTYPES:
  765. /* not happening */
  766. break;
  767. }
  768. }
  769. return err;
  770. }
  771. u16 cfg80211_calculate_bitrate(struct rate_info *rate)
  772. {
  773. int modulation, streams, bitrate;
  774. if (!(rate->flags & RATE_INFO_FLAGS_MCS))
  775. return rate->legacy;
  776. /* the formula below does only work for MCS values smaller than 32 */
  777. if (rate->mcs >= 32)
  778. return 0;
  779. modulation = rate->mcs & 7;
  780. streams = (rate->mcs >> 3) + 1;
  781. bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
  782. 13500000 : 6500000;
  783. if (modulation < 4)
  784. bitrate *= (modulation + 1);
  785. else if (modulation == 4)
  786. bitrate *= (modulation + 2);
  787. else
  788. bitrate *= (modulation + 3);
  789. bitrate *= streams;
  790. if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
  791. bitrate = (bitrate / 9) * 10;
  792. /* do NOT round down here */
  793. return (bitrate + 50000) / 100000;
  794. }
  795. int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
  796. u32 beacon_int)
  797. {
  798. struct wireless_dev *wdev;
  799. int res = 0;
  800. if (!beacon_int)
  801. return -EINVAL;
  802. mutex_lock(&rdev->devlist_mtx);
  803. list_for_each_entry(wdev, &rdev->netdev_list, list) {
  804. if (!wdev->beacon_interval)
  805. continue;
  806. if (wdev->beacon_interval != beacon_int) {
  807. res = -EINVAL;
  808. break;
  809. }
  810. }
  811. mutex_unlock(&rdev->devlist_mtx);
  812. return res;
  813. }
  814. int cfg80211_can_change_interface(struct cfg80211_registered_device *rdev,
  815. struct wireless_dev *wdev,
  816. enum nl80211_iftype iftype)
  817. {
  818. struct wireless_dev *wdev_iter;
  819. int num[NUM_NL80211_IFTYPES];
  820. int total = 1;
  821. int i, j;
  822. ASSERT_RTNL();
  823. /* Always allow software iftypes */
  824. if (rdev->wiphy.software_iftypes & BIT(iftype))
  825. return 0;
  826. /*
  827. * Drivers will gradually all set this flag, until all
  828. * have it we only enforce for those that set it.
  829. */
  830. if (!(rdev->wiphy.flags & WIPHY_FLAG_ENFORCE_COMBINATIONS))
  831. return 0;
  832. memset(num, 0, sizeof(num));
  833. num[iftype] = 1;
  834. mutex_lock(&rdev->devlist_mtx);
  835. list_for_each_entry(wdev_iter, &rdev->netdev_list, list) {
  836. if (wdev_iter == wdev)
  837. continue;
  838. if (!netif_running(wdev_iter->netdev))
  839. continue;
  840. if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
  841. continue;
  842. num[wdev_iter->iftype]++;
  843. total++;
  844. }
  845. mutex_unlock(&rdev->devlist_mtx);
  846. for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) {
  847. const struct ieee80211_iface_combination *c;
  848. struct ieee80211_iface_limit *limits;
  849. c = &rdev->wiphy.iface_combinations[i];
  850. limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
  851. GFP_KERNEL);
  852. if (!limits)
  853. return -ENOMEM;
  854. if (total > c->max_interfaces)
  855. goto cont;
  856. for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
  857. if (rdev->wiphy.software_iftypes & BIT(iftype))
  858. continue;
  859. for (j = 0; j < c->n_limits; j++) {
  860. if (!(limits[j].types & iftype))
  861. continue;
  862. if (limits[j].max < num[iftype])
  863. goto cont;
  864. limits[j].max -= num[iftype];
  865. }
  866. }
  867. /* yay, it fits */
  868. kfree(limits);
  869. return 0;
  870. cont:
  871. kfree(limits);
  872. }
  873. return -EBUSY;
  874. }
  875. int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
  876. const u8 *rates, unsigned int n_rates,
  877. u32 *mask)
  878. {
  879. int i, j;
  880. if (!sband)
  881. return -EINVAL;
  882. if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
  883. return -EINVAL;
  884. *mask = 0;
  885. for (i = 0; i < n_rates; i++) {
  886. int rate = (rates[i] & 0x7f) * 5;
  887. bool found = false;
  888. for (j = 0; j < sband->n_bitrates; j++) {
  889. if (sband->bitrates[j].bitrate == rate) {
  890. found = true;
  891. *mask |= BIT(j);
  892. break;
  893. }
  894. }
  895. if (!found)
  896. return -EINVAL;
  897. }
  898. /*
  899. * mask must have at least one bit set here since we
  900. * didn't accept a 0-length rates array nor allowed
  901. * entries in the array that didn't exist
  902. */
  903. return 0;
  904. }
  905. u32 ieee802_11_parse_elems_crc(u8 *start, size_t len,
  906. struct ieee802_11_elems *elems,
  907. u64 filter, u32 crc)
  908. {
  909. size_t left = len;
  910. u8 *pos = start;
  911. bool calc_crc = filter != 0;
  912. memset(elems, 0, sizeof(*elems));
  913. elems->ie_start = start;
  914. elems->total_len = len;
  915. while (left >= 2) {
  916. u8 id, elen;
  917. id = *pos++;
  918. elen = *pos++;
  919. left -= 2;
  920. if (elen > left)
  921. break;
  922. if (calc_crc && id < 64 && (filter & (1ULL << id)))
  923. crc = crc32_be(crc, pos - 2, elen + 2);
  924. switch (id) {
  925. case WLAN_EID_SSID:
  926. elems->ssid = pos;
  927. elems->ssid_len = elen;
  928. break;
  929. case WLAN_EID_SUPP_RATES:
  930. elems->supp_rates = pos;
  931. elems->supp_rates_len = elen;
  932. break;
  933. case WLAN_EID_FH_PARAMS:
  934. elems->fh_params = pos;
  935. elems->fh_params_len = elen;
  936. break;
  937. case WLAN_EID_DS_PARAMS:
  938. elems->ds_params = pos;
  939. elems->ds_params_len = elen;
  940. break;
  941. case WLAN_EID_CF_PARAMS:
  942. elems->cf_params = pos;
  943. elems->cf_params_len = elen;
  944. break;
  945. case WLAN_EID_TIM:
  946. if (elen >= sizeof(struct ieee80211_tim_ie)) {
  947. elems->tim = (void *)pos;
  948. elems->tim_len = elen;
  949. }
  950. break;
  951. case WLAN_EID_IBSS_PARAMS:
  952. elems->ibss_params = pos;
  953. elems->ibss_params_len = elen;
  954. break;
  955. case WLAN_EID_CHALLENGE:
  956. elems->challenge = pos;
  957. elems->challenge_len = elen;
  958. break;
  959. case WLAN_EID_VENDOR_SPECIFIC:
  960. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  961. pos[2] == 0xf2) {
  962. /* Microsoft OUI (00:50:F2) */
  963. if (calc_crc)
  964. crc = crc32_be(crc, pos - 2, elen + 2);
  965. if (pos[3] == 1) {
  966. /* OUI Type 1 - WPA IE */
  967. elems->wpa = pos;
  968. elems->wpa_len = elen;
  969. } else if (elen >= 5 && pos[3] == 2) {
  970. /* OUI Type 2 - WMM IE */
  971. if (pos[4] == 0) {
  972. elems->wmm_info = pos;
  973. elems->wmm_info_len = elen;
  974. } else if (pos[4] == 1) {
  975. elems->wmm_param = pos;
  976. elems->wmm_param_len = elen;
  977. }
  978. }
  979. }
  980. break;
  981. case WLAN_EID_RSN:
  982. elems->rsn = pos;
  983. elems->rsn_len = elen;
  984. break;
  985. case WLAN_EID_ERP_INFO:
  986. elems->erp_info = pos;
  987. elems->erp_info_len = elen;
  988. break;
  989. case WLAN_EID_EXT_SUPP_RATES:
  990. elems->ext_supp_rates = pos;
  991. elems->ext_supp_rates_len = elen;
  992. break;
  993. case WLAN_EID_HT_CAPABILITY:
  994. if (elen >= sizeof(struct ieee80211_ht_cap))
  995. elems->ht_cap_elem = (void *)pos;
  996. break;
  997. case WLAN_EID_HT_INFORMATION:
  998. if (elen >= sizeof(struct ieee80211_ht_info))
  999. elems->ht_info_elem = (void *)pos;
  1000. break;
  1001. case WLAN_EID_MESH_ID:
  1002. elems->mesh_id = pos;
  1003. elems->mesh_id_len = elen;
  1004. break;
  1005. case WLAN_EID_MESH_CONFIG:
  1006. if (elen >= sizeof(struct ieee80211_meshconf_ie))
  1007. elems->mesh_config = (void *)pos;
  1008. break;
  1009. case WLAN_EID_PEER_MGMT:
  1010. elems->peering = pos;
  1011. elems->peering_len = elen;
  1012. break;
  1013. case WLAN_EID_PREQ:
  1014. elems->preq = pos;
  1015. elems->preq_len = elen;
  1016. break;
  1017. case WLAN_EID_PREP:
  1018. elems->prep = pos;
  1019. elems->prep_len = elen;
  1020. break;
  1021. case WLAN_EID_PERR:
  1022. elems->perr = pos;
  1023. elems->perr_len = elen;
  1024. break;
  1025. case WLAN_EID_RANN:
  1026. if (elen >= sizeof(struct ieee80211_rann_ie))
  1027. elems->rann = (void *)pos;
  1028. break;
  1029. case WLAN_EID_CHANNEL_SWITCH:
  1030. elems->ch_switch_elem = pos;
  1031. elems->ch_switch_elem_len = elen;
  1032. break;
  1033. case WLAN_EID_QUIET:
  1034. if (!elems->quiet_elem) {
  1035. elems->quiet_elem = pos;
  1036. elems->quiet_elem_len = elen;
  1037. }
  1038. elems->num_of_quiet_elem++;
  1039. break;
  1040. case WLAN_EID_COUNTRY:
  1041. elems->country_elem = pos;
  1042. elems->country_elem_len = elen;
  1043. break;
  1044. case WLAN_EID_PWR_CONSTRAINT:
  1045. elems->pwr_constr_elem = pos;
  1046. elems->pwr_constr_elem_len = elen;
  1047. break;
  1048. case WLAN_EID_TIMEOUT_INTERVAL:
  1049. elems->timeout_int = pos;
  1050. elems->timeout_int_len = elen;
  1051. break;
  1052. default:
  1053. break;
  1054. }
  1055. left -= elen;
  1056. pos += elen;
  1057. }
  1058. return crc;
  1059. }
  1060. EXPORT_SYMBOL(ieee802_11_parse_elems_crc);