af_iucv.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431
  1. /*
  2. * IUCV protocol stack for Linux on zSeries
  3. *
  4. * Copyright IBM Corp. 2006, 2009
  5. *
  6. * Author(s): Jennifer Hunt <jenhunt@us.ibm.com>
  7. * Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
  8. * PM functions:
  9. * Ursula Braun <ursula.braun@de.ibm.com>
  10. */
  11. #define KMSG_COMPONENT "af_iucv"
  12. #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  13. #include <linux/module.h>
  14. #include <linux/types.h>
  15. #include <linux/list.h>
  16. #include <linux/errno.h>
  17. #include <linux/kernel.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/init.h>
  22. #include <linux/poll.h>
  23. #include <net/sock.h>
  24. #include <asm/ebcdic.h>
  25. #include <asm/cpcmd.h>
  26. #include <linux/kmod.h>
  27. #include <net/iucv/af_iucv.h>
  28. #define VERSION "1.2"
  29. static char iucv_userid[80];
  30. static const struct proto_ops iucv_sock_ops;
  31. static struct proto iucv_proto = {
  32. .name = "AF_IUCV",
  33. .owner = THIS_MODULE,
  34. .obj_size = sizeof(struct iucv_sock),
  35. };
  36. static struct iucv_interface *pr_iucv;
  37. /* special AF_IUCV IPRM messages */
  38. static const u8 iprm_shutdown[8] =
  39. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01};
  40. #define TRGCLS_SIZE (sizeof(((struct iucv_message *)0)->class))
  41. /* macros to set/get socket control buffer at correct offset */
  42. #define CB_TAG(skb) ((skb)->cb) /* iucv message tag */
  43. #define CB_TAG_LEN (sizeof(((struct iucv_message *) 0)->tag))
  44. #define CB_TRGCLS(skb) ((skb)->cb + CB_TAG_LEN) /* iucv msg target class */
  45. #define CB_TRGCLS_LEN (TRGCLS_SIZE)
  46. #define __iucv_sock_wait(sk, condition, timeo, ret) \
  47. do { \
  48. DEFINE_WAIT(__wait); \
  49. long __timeo = timeo; \
  50. ret = 0; \
  51. prepare_to_wait(sk_sleep(sk), &__wait, TASK_INTERRUPTIBLE); \
  52. while (!(condition)) { \
  53. if (!__timeo) { \
  54. ret = -EAGAIN; \
  55. break; \
  56. } \
  57. if (signal_pending(current)) { \
  58. ret = sock_intr_errno(__timeo); \
  59. break; \
  60. } \
  61. release_sock(sk); \
  62. __timeo = schedule_timeout(__timeo); \
  63. lock_sock(sk); \
  64. ret = sock_error(sk); \
  65. if (ret) \
  66. break; \
  67. } \
  68. finish_wait(sk_sleep(sk), &__wait); \
  69. } while (0)
  70. #define iucv_sock_wait(sk, condition, timeo) \
  71. ({ \
  72. int __ret = 0; \
  73. if (!(condition)) \
  74. __iucv_sock_wait(sk, condition, timeo, __ret); \
  75. __ret; \
  76. })
  77. static void iucv_sock_kill(struct sock *sk);
  78. static void iucv_sock_close(struct sock *sk);
  79. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  80. struct packet_type *pt, struct net_device *orig_dev);
  81. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  82. struct sk_buff *skb, u8 flags);
  83. static void afiucv_hs_callback_txnotify(struct sk_buff *, enum iucv_tx_notify);
  84. /* Call Back functions */
  85. static void iucv_callback_rx(struct iucv_path *, struct iucv_message *);
  86. static void iucv_callback_txdone(struct iucv_path *, struct iucv_message *);
  87. static void iucv_callback_connack(struct iucv_path *, u8 ipuser[16]);
  88. static int iucv_callback_connreq(struct iucv_path *, u8 ipvmid[8],
  89. u8 ipuser[16]);
  90. static void iucv_callback_connrej(struct iucv_path *, u8 ipuser[16]);
  91. static void iucv_callback_shutdown(struct iucv_path *, u8 ipuser[16]);
  92. static struct iucv_sock_list iucv_sk_list = {
  93. .lock = __RW_LOCK_UNLOCKED(iucv_sk_list.lock),
  94. .autobind_name = ATOMIC_INIT(0)
  95. };
  96. static struct iucv_handler af_iucv_handler = {
  97. .path_pending = iucv_callback_connreq,
  98. .path_complete = iucv_callback_connack,
  99. .path_severed = iucv_callback_connrej,
  100. .message_pending = iucv_callback_rx,
  101. .message_complete = iucv_callback_txdone,
  102. .path_quiesced = iucv_callback_shutdown,
  103. };
  104. static inline void high_nmcpy(unsigned char *dst, char *src)
  105. {
  106. memcpy(dst, src, 8);
  107. }
  108. static inline void low_nmcpy(unsigned char *dst, char *src)
  109. {
  110. memcpy(&dst[8], src, 8);
  111. }
  112. static int afiucv_pm_prepare(struct device *dev)
  113. {
  114. #ifdef CONFIG_PM_DEBUG
  115. printk(KERN_WARNING "afiucv_pm_prepare\n");
  116. #endif
  117. return 0;
  118. }
  119. static void afiucv_pm_complete(struct device *dev)
  120. {
  121. #ifdef CONFIG_PM_DEBUG
  122. printk(KERN_WARNING "afiucv_pm_complete\n");
  123. #endif
  124. }
  125. /**
  126. * afiucv_pm_freeze() - Freeze PM callback
  127. * @dev: AFIUCV dummy device
  128. *
  129. * Sever all established IUCV communication pathes
  130. */
  131. static int afiucv_pm_freeze(struct device *dev)
  132. {
  133. struct iucv_sock *iucv;
  134. struct sock *sk;
  135. struct hlist_node *node;
  136. int err = 0;
  137. #ifdef CONFIG_PM_DEBUG
  138. printk(KERN_WARNING "afiucv_pm_freeze\n");
  139. #endif
  140. read_lock(&iucv_sk_list.lock);
  141. sk_for_each(sk, node, &iucv_sk_list.head) {
  142. iucv = iucv_sk(sk);
  143. skb_queue_purge(&iucv->send_skb_q);
  144. skb_queue_purge(&iucv->backlog_skb_q);
  145. switch (sk->sk_state) {
  146. case IUCV_SEVERED:
  147. case IUCV_DISCONN:
  148. case IUCV_CLOSING:
  149. case IUCV_CONNECTED:
  150. if (iucv->path) {
  151. err = pr_iucv->path_sever(iucv->path, NULL);
  152. iucv_path_free(iucv->path);
  153. iucv->path = NULL;
  154. }
  155. break;
  156. case IUCV_OPEN:
  157. case IUCV_BOUND:
  158. case IUCV_LISTEN:
  159. case IUCV_CLOSED:
  160. default:
  161. break;
  162. }
  163. }
  164. read_unlock(&iucv_sk_list.lock);
  165. return err;
  166. }
  167. /**
  168. * afiucv_pm_restore_thaw() - Thaw and restore PM callback
  169. * @dev: AFIUCV dummy device
  170. *
  171. * socket clean up after freeze
  172. */
  173. static int afiucv_pm_restore_thaw(struct device *dev)
  174. {
  175. struct sock *sk;
  176. struct hlist_node *node;
  177. #ifdef CONFIG_PM_DEBUG
  178. printk(KERN_WARNING "afiucv_pm_restore_thaw\n");
  179. #endif
  180. read_lock(&iucv_sk_list.lock);
  181. sk_for_each(sk, node, &iucv_sk_list.head) {
  182. switch (sk->sk_state) {
  183. case IUCV_CONNECTED:
  184. sk->sk_err = EPIPE;
  185. sk->sk_state = IUCV_DISCONN;
  186. sk->sk_state_change(sk);
  187. break;
  188. case IUCV_DISCONN:
  189. case IUCV_SEVERED:
  190. case IUCV_CLOSING:
  191. case IUCV_LISTEN:
  192. case IUCV_BOUND:
  193. case IUCV_OPEN:
  194. default:
  195. break;
  196. }
  197. }
  198. read_unlock(&iucv_sk_list.lock);
  199. return 0;
  200. }
  201. static const struct dev_pm_ops afiucv_pm_ops = {
  202. .prepare = afiucv_pm_prepare,
  203. .complete = afiucv_pm_complete,
  204. .freeze = afiucv_pm_freeze,
  205. .thaw = afiucv_pm_restore_thaw,
  206. .restore = afiucv_pm_restore_thaw,
  207. };
  208. static struct device_driver af_iucv_driver = {
  209. .owner = THIS_MODULE,
  210. .name = "afiucv",
  211. .bus = NULL,
  212. .pm = &afiucv_pm_ops,
  213. };
  214. /* dummy device used as trigger for PM functions */
  215. static struct device *af_iucv_dev;
  216. /**
  217. * iucv_msg_length() - Returns the length of an iucv message.
  218. * @msg: Pointer to struct iucv_message, MUST NOT be NULL
  219. *
  220. * The function returns the length of the specified iucv message @msg of data
  221. * stored in a buffer and of data stored in the parameter list (PRMDATA).
  222. *
  223. * For IUCV_IPRMDATA, AF_IUCV uses the following convention to transport socket
  224. * data:
  225. * PRMDATA[0..6] socket data (max 7 bytes);
  226. * PRMDATA[7] socket data length value (len is 0xff - PRMDATA[7])
  227. *
  228. * The socket data length is computed by subtracting the socket data length
  229. * value from 0xFF.
  230. * If the socket data len is greater 7, then PRMDATA can be used for special
  231. * notifications (see iucv_sock_shutdown); and further,
  232. * if the socket data len is > 7, the function returns 8.
  233. *
  234. * Use this function to allocate socket buffers to store iucv message data.
  235. */
  236. static inline size_t iucv_msg_length(struct iucv_message *msg)
  237. {
  238. size_t datalen;
  239. if (msg->flags & IUCV_IPRMDATA) {
  240. datalen = 0xff - msg->rmmsg[7];
  241. return (datalen < 8) ? datalen : 8;
  242. }
  243. return msg->length;
  244. }
  245. /**
  246. * iucv_sock_in_state() - check for specific states
  247. * @sk: sock structure
  248. * @state: first iucv sk state
  249. * @state: second iucv sk state
  250. *
  251. * Returns true if the socket in either in the first or second state.
  252. */
  253. static int iucv_sock_in_state(struct sock *sk, int state, int state2)
  254. {
  255. return (sk->sk_state == state || sk->sk_state == state2);
  256. }
  257. /**
  258. * iucv_below_msglim() - function to check if messages can be sent
  259. * @sk: sock structure
  260. *
  261. * Returns true if the send queue length is lower than the message limit.
  262. * Always returns true if the socket is not connected (no iucv path for
  263. * checking the message limit).
  264. */
  265. static inline int iucv_below_msglim(struct sock *sk)
  266. {
  267. struct iucv_sock *iucv = iucv_sk(sk);
  268. if (sk->sk_state != IUCV_CONNECTED)
  269. return 1;
  270. if (iucv->transport == AF_IUCV_TRANS_IUCV)
  271. return (skb_queue_len(&iucv->send_skb_q) < iucv->path->msglim);
  272. else
  273. return ((atomic_read(&iucv->msg_sent) < iucv->msglimit_peer) &&
  274. (atomic_read(&iucv->pendings) <= 0));
  275. }
  276. /**
  277. * iucv_sock_wake_msglim() - Wake up thread waiting on msg limit
  278. */
  279. static void iucv_sock_wake_msglim(struct sock *sk)
  280. {
  281. struct socket_wq *wq;
  282. rcu_read_lock();
  283. wq = rcu_dereference(sk->sk_wq);
  284. if (wq_has_sleeper(wq))
  285. wake_up_interruptible_all(&wq->wait);
  286. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  287. rcu_read_unlock();
  288. }
  289. /**
  290. * afiucv_hs_send() - send a message through HiperSockets transport
  291. */
  292. static int afiucv_hs_send(struct iucv_message *imsg, struct sock *sock,
  293. struct sk_buff *skb, u8 flags)
  294. {
  295. struct net *net = sock_net(sock);
  296. struct iucv_sock *iucv = iucv_sk(sock);
  297. struct af_iucv_trans_hdr *phs_hdr;
  298. struct sk_buff *nskb;
  299. int err, confirm_recv = 0;
  300. memset(skb->head, 0, ETH_HLEN);
  301. phs_hdr = (struct af_iucv_trans_hdr *)skb_push(skb,
  302. sizeof(struct af_iucv_trans_hdr));
  303. skb_reset_mac_header(skb);
  304. skb_reset_network_header(skb);
  305. skb_push(skb, ETH_HLEN);
  306. skb_reset_mac_header(skb);
  307. memset(phs_hdr, 0, sizeof(struct af_iucv_trans_hdr));
  308. phs_hdr->magic = ETH_P_AF_IUCV;
  309. phs_hdr->version = 1;
  310. phs_hdr->flags = flags;
  311. if (flags == AF_IUCV_FLAG_SYN)
  312. phs_hdr->window = iucv->msglimit;
  313. else if ((flags == AF_IUCV_FLAG_WIN) || !flags) {
  314. confirm_recv = atomic_read(&iucv->msg_recv);
  315. phs_hdr->window = confirm_recv;
  316. if (confirm_recv)
  317. phs_hdr->flags = phs_hdr->flags | AF_IUCV_FLAG_WIN;
  318. }
  319. memcpy(phs_hdr->destUserID, iucv->dst_user_id, 8);
  320. memcpy(phs_hdr->destAppName, iucv->dst_name, 8);
  321. memcpy(phs_hdr->srcUserID, iucv->src_user_id, 8);
  322. memcpy(phs_hdr->srcAppName, iucv->src_name, 8);
  323. ASCEBC(phs_hdr->destUserID, sizeof(phs_hdr->destUserID));
  324. ASCEBC(phs_hdr->destAppName, sizeof(phs_hdr->destAppName));
  325. ASCEBC(phs_hdr->srcUserID, sizeof(phs_hdr->srcUserID));
  326. ASCEBC(phs_hdr->srcAppName, sizeof(phs_hdr->srcAppName));
  327. if (imsg)
  328. memcpy(&phs_hdr->iucv_hdr, imsg, sizeof(struct iucv_message));
  329. rcu_read_lock();
  330. skb->dev = dev_get_by_index_rcu(net, sock->sk_bound_dev_if);
  331. rcu_read_unlock();
  332. if (!skb->dev)
  333. return -ENODEV;
  334. if (!(skb->dev->flags & IFF_UP))
  335. return -ENETDOWN;
  336. if (skb->len > skb->dev->mtu) {
  337. if (sock->sk_type == SOCK_SEQPACKET)
  338. return -EMSGSIZE;
  339. else
  340. skb_trim(skb, skb->dev->mtu);
  341. }
  342. skb->protocol = ETH_P_AF_IUCV;
  343. skb_shinfo(skb)->tx_flags |= SKBTX_DRV_NEEDS_SK_REF;
  344. nskb = skb_clone(skb, GFP_ATOMIC);
  345. if (!nskb)
  346. return -ENOMEM;
  347. skb_queue_tail(&iucv->send_skb_q, nskb);
  348. err = dev_queue_xmit(skb);
  349. if (err) {
  350. skb_unlink(nskb, &iucv->send_skb_q);
  351. kfree_skb(nskb);
  352. } else {
  353. atomic_sub(confirm_recv, &iucv->msg_recv);
  354. WARN_ON(atomic_read(&iucv->msg_recv) < 0);
  355. }
  356. return err;
  357. }
  358. /* Timers */
  359. static void iucv_sock_timeout(unsigned long arg)
  360. {
  361. struct sock *sk = (struct sock *)arg;
  362. bh_lock_sock(sk);
  363. sk->sk_err = ETIMEDOUT;
  364. sk->sk_state_change(sk);
  365. bh_unlock_sock(sk);
  366. iucv_sock_kill(sk);
  367. sock_put(sk);
  368. }
  369. static void iucv_sock_clear_timer(struct sock *sk)
  370. {
  371. sk_stop_timer(sk, &sk->sk_timer);
  372. }
  373. static struct sock *__iucv_get_sock_by_name(char *nm)
  374. {
  375. struct sock *sk;
  376. struct hlist_node *node;
  377. sk_for_each(sk, node, &iucv_sk_list.head)
  378. if (!memcmp(&iucv_sk(sk)->src_name, nm, 8))
  379. return sk;
  380. return NULL;
  381. }
  382. static void iucv_sock_destruct(struct sock *sk)
  383. {
  384. skb_queue_purge(&sk->sk_receive_queue);
  385. skb_queue_purge(&sk->sk_write_queue);
  386. }
  387. /* Cleanup Listen */
  388. static void iucv_sock_cleanup_listen(struct sock *parent)
  389. {
  390. struct sock *sk;
  391. /* Close non-accepted connections */
  392. while ((sk = iucv_accept_dequeue(parent, NULL))) {
  393. iucv_sock_close(sk);
  394. iucv_sock_kill(sk);
  395. }
  396. parent->sk_state = IUCV_CLOSED;
  397. }
  398. /* Kill socket (only if zapped and orphaned) */
  399. static void iucv_sock_kill(struct sock *sk)
  400. {
  401. if (!sock_flag(sk, SOCK_ZAPPED) || sk->sk_socket)
  402. return;
  403. iucv_sock_unlink(&iucv_sk_list, sk);
  404. sock_set_flag(sk, SOCK_DEAD);
  405. sock_put(sk);
  406. }
  407. /* Close an IUCV socket */
  408. static void iucv_sock_close(struct sock *sk)
  409. {
  410. unsigned char user_data[16];
  411. struct iucv_sock *iucv = iucv_sk(sk);
  412. unsigned long timeo;
  413. int err, blen;
  414. struct sk_buff *skb;
  415. iucv_sock_clear_timer(sk);
  416. lock_sock(sk);
  417. switch (sk->sk_state) {
  418. case IUCV_LISTEN:
  419. iucv_sock_cleanup_listen(sk);
  420. break;
  421. case IUCV_CONNECTED:
  422. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  423. /* send fin */
  424. blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  425. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  426. if (skb) {
  427. skb_reserve(skb,
  428. sizeof(struct af_iucv_trans_hdr) +
  429. ETH_HLEN);
  430. err = afiucv_hs_send(NULL, sk, skb,
  431. AF_IUCV_FLAG_FIN);
  432. }
  433. sk->sk_state = IUCV_DISCONN;
  434. sk->sk_state_change(sk);
  435. }
  436. case IUCV_DISCONN:
  437. sk->sk_state = IUCV_CLOSING;
  438. sk->sk_state_change(sk);
  439. if (!skb_queue_empty(&iucv->send_skb_q)) {
  440. if (sock_flag(sk, SOCK_LINGER) && sk->sk_lingertime)
  441. timeo = sk->sk_lingertime;
  442. else
  443. timeo = IUCV_DISCONN_TIMEOUT;
  444. iucv_sock_wait(sk,
  445. iucv_sock_in_state(sk, IUCV_CLOSED, 0),
  446. timeo);
  447. }
  448. case IUCV_CLOSING: /* fall through */
  449. sk->sk_state = IUCV_CLOSED;
  450. sk->sk_state_change(sk);
  451. if (iucv->path) {
  452. low_nmcpy(user_data, iucv->src_name);
  453. high_nmcpy(user_data, iucv->dst_name);
  454. ASCEBC(user_data, sizeof(user_data));
  455. pr_iucv->path_sever(iucv->path, user_data);
  456. iucv_path_free(iucv->path);
  457. iucv->path = NULL;
  458. }
  459. sk->sk_err = ECONNRESET;
  460. sk->sk_state_change(sk);
  461. skb_queue_purge(&iucv->send_skb_q);
  462. skb_queue_purge(&iucv->backlog_skb_q);
  463. break;
  464. default:
  465. /* nothing to do here */
  466. break;
  467. }
  468. /* mark socket for deletion by iucv_sock_kill() */
  469. sock_set_flag(sk, SOCK_ZAPPED);
  470. release_sock(sk);
  471. }
  472. static void iucv_sock_init(struct sock *sk, struct sock *parent)
  473. {
  474. if (parent)
  475. sk->sk_type = parent->sk_type;
  476. }
  477. static struct sock *iucv_sock_alloc(struct socket *sock, int proto, gfp_t prio)
  478. {
  479. struct sock *sk;
  480. struct iucv_sock *iucv;
  481. sk = sk_alloc(&init_net, PF_IUCV, prio, &iucv_proto);
  482. if (!sk)
  483. return NULL;
  484. iucv = iucv_sk(sk);
  485. sock_init_data(sock, sk);
  486. INIT_LIST_HEAD(&iucv->accept_q);
  487. spin_lock_init(&iucv->accept_q_lock);
  488. skb_queue_head_init(&iucv->send_skb_q);
  489. INIT_LIST_HEAD(&iucv->message_q.list);
  490. spin_lock_init(&iucv->message_q.lock);
  491. skb_queue_head_init(&iucv->backlog_skb_q);
  492. iucv->send_tag = 0;
  493. atomic_set(&iucv->pendings, 0);
  494. iucv->flags = 0;
  495. iucv->msglimit = 0;
  496. atomic_set(&iucv->msg_sent, 0);
  497. atomic_set(&iucv->msg_recv, 0);
  498. iucv->path = NULL;
  499. iucv->sk_txnotify = afiucv_hs_callback_txnotify;
  500. memset(&iucv->src_user_id , 0, 32);
  501. if (pr_iucv)
  502. iucv->transport = AF_IUCV_TRANS_IUCV;
  503. else
  504. iucv->transport = AF_IUCV_TRANS_HIPER;
  505. sk->sk_destruct = iucv_sock_destruct;
  506. sk->sk_sndtimeo = IUCV_CONN_TIMEOUT;
  507. sk->sk_allocation = GFP_DMA;
  508. sock_reset_flag(sk, SOCK_ZAPPED);
  509. sk->sk_protocol = proto;
  510. sk->sk_state = IUCV_OPEN;
  511. setup_timer(&sk->sk_timer, iucv_sock_timeout, (unsigned long)sk);
  512. iucv_sock_link(&iucv_sk_list, sk);
  513. return sk;
  514. }
  515. /* Create an IUCV socket */
  516. static int iucv_sock_create(struct net *net, struct socket *sock, int protocol,
  517. int kern)
  518. {
  519. struct sock *sk;
  520. if (protocol && protocol != PF_IUCV)
  521. return -EPROTONOSUPPORT;
  522. sock->state = SS_UNCONNECTED;
  523. switch (sock->type) {
  524. case SOCK_STREAM:
  525. sock->ops = &iucv_sock_ops;
  526. break;
  527. case SOCK_SEQPACKET:
  528. /* currently, proto ops can handle both sk types */
  529. sock->ops = &iucv_sock_ops;
  530. break;
  531. default:
  532. return -ESOCKTNOSUPPORT;
  533. }
  534. sk = iucv_sock_alloc(sock, protocol, GFP_KERNEL);
  535. if (!sk)
  536. return -ENOMEM;
  537. iucv_sock_init(sk, NULL);
  538. return 0;
  539. }
  540. void iucv_sock_link(struct iucv_sock_list *l, struct sock *sk)
  541. {
  542. write_lock_bh(&l->lock);
  543. sk_add_node(sk, &l->head);
  544. write_unlock_bh(&l->lock);
  545. }
  546. void iucv_sock_unlink(struct iucv_sock_list *l, struct sock *sk)
  547. {
  548. write_lock_bh(&l->lock);
  549. sk_del_node_init(sk);
  550. write_unlock_bh(&l->lock);
  551. }
  552. void iucv_accept_enqueue(struct sock *parent, struct sock *sk)
  553. {
  554. unsigned long flags;
  555. struct iucv_sock *par = iucv_sk(parent);
  556. sock_hold(sk);
  557. spin_lock_irqsave(&par->accept_q_lock, flags);
  558. list_add_tail(&iucv_sk(sk)->accept_q, &par->accept_q);
  559. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  560. iucv_sk(sk)->parent = parent;
  561. sk_acceptq_added(parent);
  562. }
  563. void iucv_accept_unlink(struct sock *sk)
  564. {
  565. unsigned long flags;
  566. struct iucv_sock *par = iucv_sk(iucv_sk(sk)->parent);
  567. spin_lock_irqsave(&par->accept_q_lock, flags);
  568. list_del_init(&iucv_sk(sk)->accept_q);
  569. spin_unlock_irqrestore(&par->accept_q_lock, flags);
  570. sk_acceptq_removed(iucv_sk(sk)->parent);
  571. iucv_sk(sk)->parent = NULL;
  572. sock_put(sk);
  573. }
  574. struct sock *iucv_accept_dequeue(struct sock *parent, struct socket *newsock)
  575. {
  576. struct iucv_sock *isk, *n;
  577. struct sock *sk;
  578. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  579. sk = (struct sock *) isk;
  580. lock_sock(sk);
  581. if (sk->sk_state == IUCV_CLOSED) {
  582. iucv_accept_unlink(sk);
  583. release_sock(sk);
  584. continue;
  585. }
  586. if (sk->sk_state == IUCV_CONNECTED ||
  587. sk->sk_state == IUCV_SEVERED ||
  588. sk->sk_state == IUCV_DISCONN || /* due to PM restore */
  589. !newsock) {
  590. iucv_accept_unlink(sk);
  591. if (newsock)
  592. sock_graft(sk, newsock);
  593. if (sk->sk_state == IUCV_SEVERED)
  594. sk->sk_state = IUCV_DISCONN;
  595. release_sock(sk);
  596. return sk;
  597. }
  598. release_sock(sk);
  599. }
  600. return NULL;
  601. }
  602. /* Bind an unbound socket */
  603. static int iucv_sock_bind(struct socket *sock, struct sockaddr *addr,
  604. int addr_len)
  605. {
  606. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  607. struct sock *sk = sock->sk;
  608. struct iucv_sock *iucv;
  609. int err = 0;
  610. struct net_device *dev;
  611. char uid[9];
  612. /* Verify the input sockaddr */
  613. if (!addr || addr->sa_family != AF_IUCV)
  614. return -EINVAL;
  615. lock_sock(sk);
  616. if (sk->sk_state != IUCV_OPEN) {
  617. err = -EBADFD;
  618. goto done;
  619. }
  620. write_lock_bh(&iucv_sk_list.lock);
  621. iucv = iucv_sk(sk);
  622. if (__iucv_get_sock_by_name(sa->siucv_name)) {
  623. err = -EADDRINUSE;
  624. goto done_unlock;
  625. }
  626. if (iucv->path)
  627. goto done_unlock;
  628. /* Bind the socket */
  629. if (pr_iucv)
  630. if (!memcmp(sa->siucv_user_id, iucv_userid, 8))
  631. goto vm_bind; /* VM IUCV transport */
  632. /* try hiper transport */
  633. memcpy(uid, sa->siucv_user_id, sizeof(uid));
  634. ASCEBC(uid, 8);
  635. rcu_read_lock();
  636. for_each_netdev_rcu(&init_net, dev) {
  637. if (!memcmp(dev->perm_addr, uid, 8)) {
  638. memcpy(iucv->src_name, sa->siucv_name, 8);
  639. memcpy(iucv->src_user_id, sa->siucv_user_id, 8);
  640. sock->sk->sk_bound_dev_if = dev->ifindex;
  641. sk->sk_state = IUCV_BOUND;
  642. iucv->transport = AF_IUCV_TRANS_HIPER;
  643. if (!iucv->msglimit)
  644. iucv->msglimit = IUCV_HIPER_MSGLIM_DEFAULT;
  645. rcu_read_unlock();
  646. goto done_unlock;
  647. }
  648. }
  649. rcu_read_unlock();
  650. vm_bind:
  651. if (pr_iucv) {
  652. /* use local userid for backward compat */
  653. memcpy(iucv->src_name, sa->siucv_name, 8);
  654. memcpy(iucv->src_user_id, iucv_userid, 8);
  655. sk->sk_state = IUCV_BOUND;
  656. iucv->transport = AF_IUCV_TRANS_IUCV;
  657. if (!iucv->msglimit)
  658. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  659. goto done_unlock;
  660. }
  661. /* found no dev to bind */
  662. err = -ENODEV;
  663. done_unlock:
  664. /* Release the socket list lock */
  665. write_unlock_bh(&iucv_sk_list.lock);
  666. done:
  667. release_sock(sk);
  668. return err;
  669. }
  670. /* Automatically bind an unbound socket */
  671. static int iucv_sock_autobind(struct sock *sk)
  672. {
  673. struct iucv_sock *iucv = iucv_sk(sk);
  674. char query_buffer[80];
  675. char name[12];
  676. int err = 0;
  677. /* Set the userid and name */
  678. cpcmd("QUERY USERID", query_buffer, sizeof(query_buffer), &err);
  679. if (unlikely(err))
  680. return -EPROTO;
  681. memcpy(iucv->src_user_id, query_buffer, 8);
  682. write_lock_bh(&iucv_sk_list.lock);
  683. sprintf(name, "%08x", atomic_inc_return(&iucv_sk_list.autobind_name));
  684. while (__iucv_get_sock_by_name(name)) {
  685. sprintf(name, "%08x",
  686. atomic_inc_return(&iucv_sk_list.autobind_name));
  687. }
  688. write_unlock_bh(&iucv_sk_list.lock);
  689. memcpy(&iucv->src_name, name, 8);
  690. if (!iucv->msglimit)
  691. iucv->msglimit = IUCV_QUEUELEN_DEFAULT;
  692. return err;
  693. }
  694. static int afiucv_hs_connect(struct socket *sock)
  695. {
  696. struct sock *sk = sock->sk;
  697. struct sk_buff *skb;
  698. int blen = sizeof(struct af_iucv_trans_hdr) + ETH_HLEN;
  699. int err = 0;
  700. /* send syn */
  701. skb = sock_alloc_send_skb(sk, blen, 1, &err);
  702. if (!skb) {
  703. err = -ENOMEM;
  704. goto done;
  705. }
  706. skb->dev = NULL;
  707. skb_reserve(skb, blen);
  708. err = afiucv_hs_send(NULL, sk, skb, AF_IUCV_FLAG_SYN);
  709. done:
  710. return err;
  711. }
  712. static int afiucv_path_connect(struct socket *sock, struct sockaddr *addr)
  713. {
  714. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  715. struct sock *sk = sock->sk;
  716. struct iucv_sock *iucv = iucv_sk(sk);
  717. unsigned char user_data[16];
  718. int err;
  719. high_nmcpy(user_data, sa->siucv_name);
  720. low_nmcpy(user_data, iucv->src_name);
  721. ASCEBC(user_data, sizeof(user_data));
  722. /* Create path. */
  723. iucv->path = iucv_path_alloc(iucv->msglimit,
  724. IUCV_IPRMDATA, GFP_KERNEL);
  725. if (!iucv->path) {
  726. err = -ENOMEM;
  727. goto done;
  728. }
  729. err = pr_iucv->path_connect(iucv->path, &af_iucv_handler,
  730. sa->siucv_user_id, NULL, user_data,
  731. sk);
  732. if (err) {
  733. iucv_path_free(iucv->path);
  734. iucv->path = NULL;
  735. switch (err) {
  736. case 0x0b: /* Target communicator is not logged on */
  737. err = -ENETUNREACH;
  738. break;
  739. case 0x0d: /* Max connections for this guest exceeded */
  740. case 0x0e: /* Max connections for target guest exceeded */
  741. err = -EAGAIN;
  742. break;
  743. case 0x0f: /* Missing IUCV authorization */
  744. err = -EACCES;
  745. break;
  746. default:
  747. err = -ECONNREFUSED;
  748. break;
  749. }
  750. }
  751. done:
  752. return err;
  753. }
  754. /* Connect an unconnected socket */
  755. static int iucv_sock_connect(struct socket *sock, struct sockaddr *addr,
  756. int alen, int flags)
  757. {
  758. struct sockaddr_iucv *sa = (struct sockaddr_iucv *) addr;
  759. struct sock *sk = sock->sk;
  760. struct iucv_sock *iucv = iucv_sk(sk);
  761. int err;
  762. if (addr->sa_family != AF_IUCV || alen < sizeof(struct sockaddr_iucv))
  763. return -EINVAL;
  764. if (sk->sk_state != IUCV_OPEN && sk->sk_state != IUCV_BOUND)
  765. return -EBADFD;
  766. if (sk->sk_state == IUCV_OPEN &&
  767. iucv->transport == AF_IUCV_TRANS_HIPER)
  768. return -EBADFD; /* explicit bind required */
  769. if (sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_SEQPACKET)
  770. return -EINVAL;
  771. if (sk->sk_state == IUCV_OPEN) {
  772. err = iucv_sock_autobind(sk);
  773. if (unlikely(err))
  774. return err;
  775. }
  776. lock_sock(sk);
  777. /* Set the destination information */
  778. memcpy(iucv->dst_user_id, sa->siucv_user_id, 8);
  779. memcpy(iucv->dst_name, sa->siucv_name, 8);
  780. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  781. err = afiucv_hs_connect(sock);
  782. else
  783. err = afiucv_path_connect(sock, addr);
  784. if (err)
  785. goto done;
  786. if (sk->sk_state != IUCV_CONNECTED)
  787. err = iucv_sock_wait(sk, iucv_sock_in_state(sk, IUCV_CONNECTED,
  788. IUCV_DISCONN),
  789. sock_sndtimeo(sk, flags & O_NONBLOCK));
  790. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_CLOSED)
  791. err = -ECONNREFUSED;
  792. if (err && iucv->transport == AF_IUCV_TRANS_IUCV) {
  793. pr_iucv->path_sever(iucv->path, NULL);
  794. iucv_path_free(iucv->path);
  795. iucv->path = NULL;
  796. }
  797. done:
  798. release_sock(sk);
  799. return err;
  800. }
  801. /* Move a socket into listening state. */
  802. static int iucv_sock_listen(struct socket *sock, int backlog)
  803. {
  804. struct sock *sk = sock->sk;
  805. int err;
  806. lock_sock(sk);
  807. err = -EINVAL;
  808. if (sk->sk_state != IUCV_BOUND)
  809. goto done;
  810. if (sock->type != SOCK_STREAM && sock->type != SOCK_SEQPACKET)
  811. goto done;
  812. sk->sk_max_ack_backlog = backlog;
  813. sk->sk_ack_backlog = 0;
  814. sk->sk_state = IUCV_LISTEN;
  815. err = 0;
  816. done:
  817. release_sock(sk);
  818. return err;
  819. }
  820. /* Accept a pending connection */
  821. static int iucv_sock_accept(struct socket *sock, struct socket *newsock,
  822. int flags)
  823. {
  824. DECLARE_WAITQUEUE(wait, current);
  825. struct sock *sk = sock->sk, *nsk;
  826. long timeo;
  827. int err = 0;
  828. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  829. if (sk->sk_state != IUCV_LISTEN) {
  830. err = -EBADFD;
  831. goto done;
  832. }
  833. timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
  834. /* Wait for an incoming connection */
  835. add_wait_queue_exclusive(sk_sleep(sk), &wait);
  836. while (!(nsk = iucv_accept_dequeue(sk, newsock))) {
  837. set_current_state(TASK_INTERRUPTIBLE);
  838. if (!timeo) {
  839. err = -EAGAIN;
  840. break;
  841. }
  842. release_sock(sk);
  843. timeo = schedule_timeout(timeo);
  844. lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
  845. if (sk->sk_state != IUCV_LISTEN) {
  846. err = -EBADFD;
  847. break;
  848. }
  849. if (signal_pending(current)) {
  850. err = sock_intr_errno(timeo);
  851. break;
  852. }
  853. }
  854. set_current_state(TASK_RUNNING);
  855. remove_wait_queue(sk_sleep(sk), &wait);
  856. if (err)
  857. goto done;
  858. newsock->state = SS_CONNECTED;
  859. done:
  860. release_sock(sk);
  861. return err;
  862. }
  863. static int iucv_sock_getname(struct socket *sock, struct sockaddr *addr,
  864. int *len, int peer)
  865. {
  866. struct sockaddr_iucv *siucv = (struct sockaddr_iucv *) addr;
  867. struct sock *sk = sock->sk;
  868. struct iucv_sock *iucv = iucv_sk(sk);
  869. addr->sa_family = AF_IUCV;
  870. *len = sizeof(struct sockaddr_iucv);
  871. if (peer) {
  872. memcpy(siucv->siucv_user_id, iucv->dst_user_id, 8);
  873. memcpy(siucv->siucv_name, iucv->dst_name, 8);
  874. } else {
  875. memcpy(siucv->siucv_user_id, iucv->src_user_id, 8);
  876. memcpy(siucv->siucv_name, iucv->src_name, 8);
  877. }
  878. memset(&siucv->siucv_port, 0, sizeof(siucv->siucv_port));
  879. memset(&siucv->siucv_addr, 0, sizeof(siucv->siucv_addr));
  880. memset(&siucv->siucv_nodeid, 0, sizeof(siucv->siucv_nodeid));
  881. return 0;
  882. }
  883. /**
  884. * iucv_send_iprm() - Send socket data in parameter list of an iucv message.
  885. * @path: IUCV path
  886. * @msg: Pointer to a struct iucv_message
  887. * @skb: The socket data to send, skb->len MUST BE <= 7
  888. *
  889. * Send the socket data in the parameter list in the iucv message
  890. * (IUCV_IPRMDATA). The socket data is stored at index 0 to 6 in the parameter
  891. * list and the socket data len at index 7 (last byte).
  892. * See also iucv_msg_length().
  893. *
  894. * Returns the error code from the iucv_message_send() call.
  895. */
  896. static int iucv_send_iprm(struct iucv_path *path, struct iucv_message *msg,
  897. struct sk_buff *skb)
  898. {
  899. u8 prmdata[8];
  900. memcpy(prmdata, (void *) skb->data, skb->len);
  901. prmdata[7] = 0xff - (u8) skb->len;
  902. return pr_iucv->message_send(path, msg, IUCV_IPRMDATA, 0,
  903. (void *) prmdata, 8);
  904. }
  905. static int iucv_sock_sendmsg(struct kiocb *iocb, struct socket *sock,
  906. struct msghdr *msg, size_t len)
  907. {
  908. struct sock *sk = sock->sk;
  909. struct iucv_sock *iucv = iucv_sk(sk);
  910. struct sk_buff *skb;
  911. struct iucv_message txmsg;
  912. struct cmsghdr *cmsg;
  913. int cmsg_done;
  914. long timeo;
  915. char user_id[9];
  916. char appl_id[9];
  917. int err;
  918. int noblock = msg->msg_flags & MSG_DONTWAIT;
  919. err = sock_error(sk);
  920. if (err)
  921. return err;
  922. if (msg->msg_flags & MSG_OOB)
  923. return -EOPNOTSUPP;
  924. /* SOCK_SEQPACKET: we do not support segmented records */
  925. if (sk->sk_type == SOCK_SEQPACKET && !(msg->msg_flags & MSG_EOR))
  926. return -EOPNOTSUPP;
  927. lock_sock(sk);
  928. if (sk->sk_shutdown & SEND_SHUTDOWN) {
  929. err = -EPIPE;
  930. goto out;
  931. }
  932. /* Return if the socket is not in connected state */
  933. if (sk->sk_state != IUCV_CONNECTED) {
  934. err = -ENOTCONN;
  935. goto out;
  936. }
  937. /* initialize defaults */
  938. cmsg_done = 0; /* check for duplicate headers */
  939. txmsg.class = 0;
  940. /* iterate over control messages */
  941. for (cmsg = CMSG_FIRSTHDR(msg); cmsg;
  942. cmsg = CMSG_NXTHDR(msg, cmsg)) {
  943. if (!CMSG_OK(msg, cmsg)) {
  944. err = -EINVAL;
  945. goto out;
  946. }
  947. if (cmsg->cmsg_level != SOL_IUCV)
  948. continue;
  949. if (cmsg->cmsg_type & cmsg_done) {
  950. err = -EINVAL;
  951. goto out;
  952. }
  953. cmsg_done |= cmsg->cmsg_type;
  954. switch (cmsg->cmsg_type) {
  955. case SCM_IUCV_TRGCLS:
  956. if (cmsg->cmsg_len != CMSG_LEN(TRGCLS_SIZE)) {
  957. err = -EINVAL;
  958. goto out;
  959. }
  960. /* set iucv message target class */
  961. memcpy(&txmsg.class,
  962. (void *) CMSG_DATA(cmsg), TRGCLS_SIZE);
  963. break;
  964. default:
  965. err = -EINVAL;
  966. goto out;
  967. break;
  968. }
  969. }
  970. /* allocate one skb for each iucv message:
  971. * this is fine for SOCK_SEQPACKET (unless we want to support
  972. * segmented records using the MSG_EOR flag), but
  973. * for SOCK_STREAM we might want to improve it in future */
  974. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  975. skb = sock_alloc_send_skb(sk,
  976. len + sizeof(struct af_iucv_trans_hdr) + ETH_HLEN,
  977. noblock, &err);
  978. else
  979. skb = sock_alloc_send_skb(sk, len, noblock, &err);
  980. if (!skb)
  981. goto out;
  982. if (iucv->transport == AF_IUCV_TRANS_HIPER)
  983. skb_reserve(skb, sizeof(struct af_iucv_trans_hdr) + ETH_HLEN);
  984. if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) {
  985. err = -EFAULT;
  986. goto fail;
  987. }
  988. /* wait if outstanding messages for iucv path has reached */
  989. timeo = sock_sndtimeo(sk, noblock);
  990. err = iucv_sock_wait(sk, iucv_below_msglim(sk), timeo);
  991. if (err)
  992. goto fail;
  993. /* return -ECONNRESET if the socket is no longer connected */
  994. if (sk->sk_state != IUCV_CONNECTED) {
  995. err = -ECONNRESET;
  996. goto fail;
  997. }
  998. /* increment and save iucv message tag for msg_completion cbk */
  999. txmsg.tag = iucv->send_tag++;
  1000. memcpy(CB_TAG(skb), &txmsg.tag, CB_TAG_LEN);
  1001. if (iucv->transport == AF_IUCV_TRANS_HIPER) {
  1002. atomic_inc(&iucv->msg_sent);
  1003. err = afiucv_hs_send(&txmsg, sk, skb, 0);
  1004. if (err) {
  1005. atomic_dec(&iucv->msg_sent);
  1006. goto fail;
  1007. }
  1008. goto release;
  1009. }
  1010. skb_queue_tail(&iucv->send_skb_q, skb);
  1011. if (((iucv->path->flags & IUCV_IPRMDATA) & iucv->flags)
  1012. && skb->len <= 7) {
  1013. err = iucv_send_iprm(iucv->path, &txmsg, skb);
  1014. /* on success: there is no message_complete callback
  1015. * for an IPRMDATA msg; remove skb from send queue */
  1016. if (err == 0) {
  1017. skb_unlink(skb, &iucv->send_skb_q);
  1018. kfree_skb(skb);
  1019. }
  1020. /* this error should never happen since the
  1021. * IUCV_IPRMDATA path flag is set... sever path */
  1022. if (err == 0x15) {
  1023. pr_iucv->path_sever(iucv->path, NULL);
  1024. skb_unlink(skb, &iucv->send_skb_q);
  1025. err = -EPIPE;
  1026. goto fail;
  1027. }
  1028. } else
  1029. err = pr_iucv->message_send(iucv->path, &txmsg, 0, 0,
  1030. (void *) skb->data, skb->len);
  1031. if (err) {
  1032. if (err == 3) {
  1033. user_id[8] = 0;
  1034. memcpy(user_id, iucv->dst_user_id, 8);
  1035. appl_id[8] = 0;
  1036. memcpy(appl_id, iucv->dst_name, 8);
  1037. pr_err("Application %s on z/VM guest %s"
  1038. " exceeds message limit\n",
  1039. appl_id, user_id);
  1040. err = -EAGAIN;
  1041. } else
  1042. err = -EPIPE;
  1043. skb_unlink(skb, &iucv->send_skb_q);
  1044. goto fail;
  1045. }
  1046. release:
  1047. release_sock(sk);
  1048. return len;
  1049. fail:
  1050. kfree_skb(skb);
  1051. out:
  1052. release_sock(sk);
  1053. return err;
  1054. }
  1055. /* iucv_fragment_skb() - Fragment a single IUCV message into multiple skb's
  1056. *
  1057. * Locking: must be called with message_q.lock held
  1058. */
  1059. static int iucv_fragment_skb(struct sock *sk, struct sk_buff *skb, int len)
  1060. {
  1061. int dataleft, size, copied = 0;
  1062. struct sk_buff *nskb;
  1063. dataleft = len;
  1064. while (dataleft) {
  1065. if (dataleft >= sk->sk_rcvbuf / 4)
  1066. size = sk->sk_rcvbuf / 4;
  1067. else
  1068. size = dataleft;
  1069. nskb = alloc_skb(size, GFP_ATOMIC | GFP_DMA);
  1070. if (!nskb)
  1071. return -ENOMEM;
  1072. /* copy target class to control buffer of new skb */
  1073. memcpy(CB_TRGCLS(nskb), CB_TRGCLS(skb), CB_TRGCLS_LEN);
  1074. /* copy data fragment */
  1075. memcpy(nskb->data, skb->data + copied, size);
  1076. copied += size;
  1077. dataleft -= size;
  1078. skb_reset_transport_header(nskb);
  1079. skb_reset_network_header(nskb);
  1080. nskb->len = size;
  1081. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, nskb);
  1082. }
  1083. return 0;
  1084. }
  1085. /* iucv_process_message() - Receive a single outstanding IUCV message
  1086. *
  1087. * Locking: must be called with message_q.lock held
  1088. */
  1089. static void iucv_process_message(struct sock *sk, struct sk_buff *skb,
  1090. struct iucv_path *path,
  1091. struct iucv_message *msg)
  1092. {
  1093. int rc;
  1094. unsigned int len;
  1095. len = iucv_msg_length(msg);
  1096. /* store msg target class in the second 4 bytes of skb ctrl buffer */
  1097. /* Note: the first 4 bytes are reserved for msg tag */
  1098. memcpy(CB_TRGCLS(skb), &msg->class, CB_TRGCLS_LEN);
  1099. /* check for special IPRM messages (e.g. iucv_sock_shutdown) */
  1100. if ((msg->flags & IUCV_IPRMDATA) && len > 7) {
  1101. if (memcmp(msg->rmmsg, iprm_shutdown, 8) == 0) {
  1102. skb->data = NULL;
  1103. skb->len = 0;
  1104. }
  1105. } else {
  1106. rc = pr_iucv->message_receive(path, msg,
  1107. msg->flags & IUCV_IPRMDATA,
  1108. skb->data, len, NULL);
  1109. if (rc) {
  1110. kfree_skb(skb);
  1111. return;
  1112. }
  1113. /* we need to fragment iucv messages for SOCK_STREAM only;
  1114. * for SOCK_SEQPACKET, it is only relevant if we support
  1115. * record segmentation using MSG_EOR (see also recvmsg()) */
  1116. if (sk->sk_type == SOCK_STREAM &&
  1117. skb->truesize >= sk->sk_rcvbuf / 4) {
  1118. rc = iucv_fragment_skb(sk, skb, len);
  1119. kfree_skb(skb);
  1120. skb = NULL;
  1121. if (rc) {
  1122. pr_iucv->path_sever(path, NULL);
  1123. return;
  1124. }
  1125. skb = skb_dequeue(&iucv_sk(sk)->backlog_skb_q);
  1126. } else {
  1127. skb_reset_transport_header(skb);
  1128. skb_reset_network_header(skb);
  1129. skb->len = len;
  1130. }
  1131. }
  1132. if (sock_queue_rcv_skb(sk, skb))
  1133. skb_queue_head(&iucv_sk(sk)->backlog_skb_q, skb);
  1134. }
  1135. /* iucv_process_message_q() - Process outstanding IUCV messages
  1136. *
  1137. * Locking: must be called with message_q.lock held
  1138. */
  1139. static void iucv_process_message_q(struct sock *sk)
  1140. {
  1141. struct iucv_sock *iucv = iucv_sk(sk);
  1142. struct sk_buff *skb;
  1143. struct sock_msg_q *p, *n;
  1144. list_for_each_entry_safe(p, n, &iucv->message_q.list, list) {
  1145. skb = alloc_skb(iucv_msg_length(&p->msg), GFP_ATOMIC | GFP_DMA);
  1146. if (!skb)
  1147. break;
  1148. iucv_process_message(sk, skb, p->path, &p->msg);
  1149. list_del(&p->list);
  1150. kfree(p);
  1151. if (!skb_queue_empty(&iucv->backlog_skb_q))
  1152. break;
  1153. }
  1154. }
  1155. static int iucv_sock_recvmsg(struct kiocb *iocb, struct socket *sock,
  1156. struct msghdr *msg, size_t len, int flags)
  1157. {
  1158. int noblock = flags & MSG_DONTWAIT;
  1159. struct sock *sk = sock->sk;
  1160. struct iucv_sock *iucv = iucv_sk(sk);
  1161. unsigned int copied, rlen;
  1162. struct sk_buff *skb, *rskb, *cskb, *sskb;
  1163. int blen;
  1164. int err = 0;
  1165. if ((sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED) &&
  1166. skb_queue_empty(&iucv->backlog_skb_q) &&
  1167. skb_queue_empty(&sk->sk_receive_queue) &&
  1168. list_empty(&iucv->message_q.list))
  1169. return 0;
  1170. if (flags & (MSG_OOB))
  1171. return -EOPNOTSUPP;
  1172. /* receive/dequeue next skb:
  1173. * the function understands MSG_PEEK and, thus, does not dequeue skb */
  1174. skb = skb_recv_datagram(sk, flags, noblock, &err);
  1175. if (!skb) {
  1176. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1177. return 0;
  1178. return err;
  1179. }
  1180. rlen = skb->len; /* real length of skb */
  1181. copied = min_t(unsigned int, rlen, len);
  1182. cskb = skb;
  1183. if (skb_copy_datagram_iovec(cskb, 0, msg->msg_iov, copied)) {
  1184. if (!(flags & MSG_PEEK))
  1185. skb_queue_head(&sk->sk_receive_queue, skb);
  1186. return -EFAULT;
  1187. }
  1188. /* SOCK_SEQPACKET: set MSG_TRUNC if recv buf size is too small */
  1189. if (sk->sk_type == SOCK_SEQPACKET) {
  1190. if (copied < rlen)
  1191. msg->msg_flags |= MSG_TRUNC;
  1192. /* each iucv message contains a complete record */
  1193. msg->msg_flags |= MSG_EOR;
  1194. }
  1195. /* create control message to store iucv msg target class:
  1196. * get the trgcls from the control buffer of the skb due to
  1197. * fragmentation of original iucv message. */
  1198. err = put_cmsg(msg, SOL_IUCV, SCM_IUCV_TRGCLS,
  1199. CB_TRGCLS_LEN, CB_TRGCLS(skb));
  1200. if (err) {
  1201. if (!(flags & MSG_PEEK))
  1202. skb_queue_head(&sk->sk_receive_queue, skb);
  1203. return err;
  1204. }
  1205. /* Mark read part of skb as used */
  1206. if (!(flags & MSG_PEEK)) {
  1207. /* SOCK_STREAM: re-queue skb if it contains unreceived data */
  1208. if (sk->sk_type == SOCK_STREAM) {
  1209. skb_pull(skb, copied);
  1210. if (skb->len) {
  1211. skb_queue_head(&sk->sk_receive_queue, skb);
  1212. goto done;
  1213. }
  1214. }
  1215. kfree_skb(skb);
  1216. atomic_inc(&iucv->msg_recv);
  1217. /* Queue backlog skbs */
  1218. spin_lock_bh(&iucv->message_q.lock);
  1219. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1220. while (rskb) {
  1221. if (sock_queue_rcv_skb(sk, rskb)) {
  1222. skb_queue_head(&iucv->backlog_skb_q,
  1223. rskb);
  1224. break;
  1225. } else {
  1226. rskb = skb_dequeue(&iucv->backlog_skb_q);
  1227. }
  1228. }
  1229. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1230. if (!list_empty(&iucv->message_q.list))
  1231. iucv_process_message_q(sk);
  1232. if (atomic_read(&iucv->msg_recv) >=
  1233. iucv->msglimit / 2) {
  1234. /* send WIN to peer */
  1235. blen = sizeof(struct af_iucv_trans_hdr) +
  1236. ETH_HLEN;
  1237. sskb = sock_alloc_send_skb(sk, blen, 1, &err);
  1238. if (sskb) {
  1239. skb_reserve(sskb,
  1240. sizeof(struct af_iucv_trans_hdr)
  1241. + ETH_HLEN);
  1242. err = afiucv_hs_send(NULL, sk, sskb,
  1243. AF_IUCV_FLAG_WIN);
  1244. }
  1245. if (err) {
  1246. sk->sk_state = IUCV_DISCONN;
  1247. sk->sk_state_change(sk);
  1248. }
  1249. }
  1250. }
  1251. spin_unlock_bh(&iucv->message_q.lock);
  1252. }
  1253. done:
  1254. /* SOCK_SEQPACKET: return real length if MSG_TRUNC is set */
  1255. if (sk->sk_type == SOCK_SEQPACKET && (flags & MSG_TRUNC))
  1256. copied = rlen;
  1257. return copied;
  1258. }
  1259. static inline unsigned int iucv_accept_poll(struct sock *parent)
  1260. {
  1261. struct iucv_sock *isk, *n;
  1262. struct sock *sk;
  1263. list_for_each_entry_safe(isk, n, &iucv_sk(parent)->accept_q, accept_q) {
  1264. sk = (struct sock *) isk;
  1265. if (sk->sk_state == IUCV_CONNECTED)
  1266. return POLLIN | POLLRDNORM;
  1267. }
  1268. return 0;
  1269. }
  1270. unsigned int iucv_sock_poll(struct file *file, struct socket *sock,
  1271. poll_table *wait)
  1272. {
  1273. struct sock *sk = sock->sk;
  1274. unsigned int mask = 0;
  1275. sock_poll_wait(file, sk_sleep(sk), wait);
  1276. if (sk->sk_state == IUCV_LISTEN)
  1277. return iucv_accept_poll(sk);
  1278. if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
  1279. mask |= POLLERR;
  1280. if (sk->sk_shutdown & RCV_SHUTDOWN)
  1281. mask |= POLLRDHUP;
  1282. if (sk->sk_shutdown == SHUTDOWN_MASK)
  1283. mask |= POLLHUP;
  1284. if (!skb_queue_empty(&sk->sk_receive_queue) ||
  1285. (sk->sk_shutdown & RCV_SHUTDOWN))
  1286. mask |= POLLIN | POLLRDNORM;
  1287. if (sk->sk_state == IUCV_CLOSED)
  1288. mask |= POLLHUP;
  1289. if (sk->sk_state == IUCV_DISCONN || sk->sk_state == IUCV_SEVERED)
  1290. mask |= POLLIN;
  1291. if (sock_writeable(sk))
  1292. mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
  1293. else
  1294. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1295. return mask;
  1296. }
  1297. static int iucv_sock_shutdown(struct socket *sock, int how)
  1298. {
  1299. struct sock *sk = sock->sk;
  1300. struct iucv_sock *iucv = iucv_sk(sk);
  1301. struct iucv_message txmsg;
  1302. int err = 0;
  1303. how++;
  1304. if ((how & ~SHUTDOWN_MASK) || !how)
  1305. return -EINVAL;
  1306. lock_sock(sk);
  1307. switch (sk->sk_state) {
  1308. case IUCV_DISCONN:
  1309. case IUCV_CLOSING:
  1310. case IUCV_SEVERED:
  1311. case IUCV_CLOSED:
  1312. err = -ENOTCONN;
  1313. goto fail;
  1314. default:
  1315. sk->sk_shutdown |= how;
  1316. break;
  1317. }
  1318. if (how == SEND_SHUTDOWN || how == SHUTDOWN_MASK) {
  1319. txmsg.class = 0;
  1320. txmsg.tag = 0;
  1321. err = pr_iucv->message_send(iucv->path, &txmsg, IUCV_IPRMDATA,
  1322. 0, (void *) iprm_shutdown, 8);
  1323. if (err) {
  1324. switch (err) {
  1325. case 1:
  1326. err = -ENOTCONN;
  1327. break;
  1328. case 2:
  1329. err = -ECONNRESET;
  1330. break;
  1331. default:
  1332. err = -ENOTCONN;
  1333. break;
  1334. }
  1335. }
  1336. }
  1337. if (how == RCV_SHUTDOWN || how == SHUTDOWN_MASK) {
  1338. err = pr_iucv->path_quiesce(iucv->path, NULL);
  1339. if (err)
  1340. err = -ENOTCONN;
  1341. skb_queue_purge(&sk->sk_receive_queue);
  1342. }
  1343. /* Wake up anyone sleeping in poll */
  1344. sk->sk_state_change(sk);
  1345. fail:
  1346. release_sock(sk);
  1347. return err;
  1348. }
  1349. static int iucv_sock_release(struct socket *sock)
  1350. {
  1351. struct sock *sk = sock->sk;
  1352. int err = 0;
  1353. if (!sk)
  1354. return 0;
  1355. iucv_sock_close(sk);
  1356. /* Unregister with IUCV base support */
  1357. if (iucv_sk(sk)->path) {
  1358. pr_iucv->path_sever(iucv_sk(sk)->path, NULL);
  1359. iucv_path_free(iucv_sk(sk)->path);
  1360. iucv_sk(sk)->path = NULL;
  1361. }
  1362. sock_orphan(sk);
  1363. iucv_sock_kill(sk);
  1364. return err;
  1365. }
  1366. /* getsockopt and setsockopt */
  1367. static int iucv_sock_setsockopt(struct socket *sock, int level, int optname,
  1368. char __user *optval, unsigned int optlen)
  1369. {
  1370. struct sock *sk = sock->sk;
  1371. struct iucv_sock *iucv = iucv_sk(sk);
  1372. int val;
  1373. int rc;
  1374. if (level != SOL_IUCV)
  1375. return -ENOPROTOOPT;
  1376. if (optlen < sizeof(int))
  1377. return -EINVAL;
  1378. if (get_user(val, (int __user *) optval))
  1379. return -EFAULT;
  1380. rc = 0;
  1381. lock_sock(sk);
  1382. switch (optname) {
  1383. case SO_IPRMDATA_MSG:
  1384. if (val)
  1385. iucv->flags |= IUCV_IPRMDATA;
  1386. else
  1387. iucv->flags &= ~IUCV_IPRMDATA;
  1388. break;
  1389. case SO_MSGLIMIT:
  1390. switch (sk->sk_state) {
  1391. case IUCV_OPEN:
  1392. case IUCV_BOUND:
  1393. if (val < 1 || val > (u16)(~0))
  1394. rc = -EINVAL;
  1395. else
  1396. iucv->msglimit = val;
  1397. break;
  1398. default:
  1399. rc = -EINVAL;
  1400. break;
  1401. }
  1402. break;
  1403. default:
  1404. rc = -ENOPROTOOPT;
  1405. break;
  1406. }
  1407. release_sock(sk);
  1408. return rc;
  1409. }
  1410. static int iucv_sock_getsockopt(struct socket *sock, int level, int optname,
  1411. char __user *optval, int __user *optlen)
  1412. {
  1413. struct sock *sk = sock->sk;
  1414. struct iucv_sock *iucv = iucv_sk(sk);
  1415. int val, len;
  1416. if (level != SOL_IUCV)
  1417. return -ENOPROTOOPT;
  1418. if (get_user(len, optlen))
  1419. return -EFAULT;
  1420. if (len < 0)
  1421. return -EINVAL;
  1422. len = min_t(unsigned int, len, sizeof(int));
  1423. switch (optname) {
  1424. case SO_IPRMDATA_MSG:
  1425. val = (iucv->flags & IUCV_IPRMDATA) ? 1 : 0;
  1426. break;
  1427. case SO_MSGLIMIT:
  1428. lock_sock(sk);
  1429. val = (iucv->path != NULL) ? iucv->path->msglim /* connected */
  1430. : iucv->msglimit; /* default */
  1431. release_sock(sk);
  1432. break;
  1433. default:
  1434. return -ENOPROTOOPT;
  1435. }
  1436. if (put_user(len, optlen))
  1437. return -EFAULT;
  1438. if (copy_to_user(optval, &val, len))
  1439. return -EFAULT;
  1440. return 0;
  1441. }
  1442. /* Callback wrappers - called from iucv base support */
  1443. static int iucv_callback_connreq(struct iucv_path *path,
  1444. u8 ipvmid[8], u8 ipuser[16])
  1445. {
  1446. unsigned char user_data[16];
  1447. unsigned char nuser_data[16];
  1448. unsigned char src_name[8];
  1449. struct hlist_node *node;
  1450. struct sock *sk, *nsk;
  1451. struct iucv_sock *iucv, *niucv;
  1452. int err;
  1453. memcpy(src_name, ipuser, 8);
  1454. EBCASC(src_name, 8);
  1455. /* Find out if this path belongs to af_iucv. */
  1456. read_lock(&iucv_sk_list.lock);
  1457. iucv = NULL;
  1458. sk = NULL;
  1459. sk_for_each(sk, node, &iucv_sk_list.head)
  1460. if (sk->sk_state == IUCV_LISTEN &&
  1461. !memcmp(&iucv_sk(sk)->src_name, src_name, 8)) {
  1462. /*
  1463. * Found a listening socket with
  1464. * src_name == ipuser[0-7].
  1465. */
  1466. iucv = iucv_sk(sk);
  1467. break;
  1468. }
  1469. read_unlock(&iucv_sk_list.lock);
  1470. if (!iucv)
  1471. /* No socket found, not one of our paths. */
  1472. return -EINVAL;
  1473. bh_lock_sock(sk);
  1474. /* Check if parent socket is listening */
  1475. low_nmcpy(user_data, iucv->src_name);
  1476. high_nmcpy(user_data, iucv->dst_name);
  1477. ASCEBC(user_data, sizeof(user_data));
  1478. if (sk->sk_state != IUCV_LISTEN) {
  1479. err = pr_iucv->path_sever(path, user_data);
  1480. iucv_path_free(path);
  1481. goto fail;
  1482. }
  1483. /* Check for backlog size */
  1484. if (sk_acceptq_is_full(sk)) {
  1485. err = pr_iucv->path_sever(path, user_data);
  1486. iucv_path_free(path);
  1487. goto fail;
  1488. }
  1489. /* Create the new socket */
  1490. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1491. if (!nsk) {
  1492. err = pr_iucv->path_sever(path, user_data);
  1493. iucv_path_free(path);
  1494. goto fail;
  1495. }
  1496. niucv = iucv_sk(nsk);
  1497. iucv_sock_init(nsk, sk);
  1498. /* Set the new iucv_sock */
  1499. memcpy(niucv->dst_name, ipuser + 8, 8);
  1500. EBCASC(niucv->dst_name, 8);
  1501. memcpy(niucv->dst_user_id, ipvmid, 8);
  1502. memcpy(niucv->src_name, iucv->src_name, 8);
  1503. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1504. niucv->path = path;
  1505. /* Call iucv_accept */
  1506. high_nmcpy(nuser_data, ipuser + 8);
  1507. memcpy(nuser_data + 8, niucv->src_name, 8);
  1508. ASCEBC(nuser_data + 8, 8);
  1509. /* set message limit for path based on msglimit of accepting socket */
  1510. niucv->msglimit = iucv->msglimit;
  1511. path->msglim = iucv->msglimit;
  1512. err = pr_iucv->path_accept(path, &af_iucv_handler, nuser_data, nsk);
  1513. if (err) {
  1514. err = pr_iucv->path_sever(path, user_data);
  1515. iucv_path_free(path);
  1516. iucv_sock_kill(nsk);
  1517. goto fail;
  1518. }
  1519. iucv_accept_enqueue(sk, nsk);
  1520. /* Wake up accept */
  1521. nsk->sk_state = IUCV_CONNECTED;
  1522. sk->sk_data_ready(sk, 1);
  1523. err = 0;
  1524. fail:
  1525. bh_unlock_sock(sk);
  1526. return 0;
  1527. }
  1528. static void iucv_callback_connack(struct iucv_path *path, u8 ipuser[16])
  1529. {
  1530. struct sock *sk = path->private;
  1531. sk->sk_state = IUCV_CONNECTED;
  1532. sk->sk_state_change(sk);
  1533. }
  1534. static void iucv_callback_rx(struct iucv_path *path, struct iucv_message *msg)
  1535. {
  1536. struct sock *sk = path->private;
  1537. struct iucv_sock *iucv = iucv_sk(sk);
  1538. struct sk_buff *skb;
  1539. struct sock_msg_q *save_msg;
  1540. int len;
  1541. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1542. pr_iucv->message_reject(path, msg);
  1543. return;
  1544. }
  1545. spin_lock(&iucv->message_q.lock);
  1546. if (!list_empty(&iucv->message_q.list) ||
  1547. !skb_queue_empty(&iucv->backlog_skb_q))
  1548. goto save_message;
  1549. len = atomic_read(&sk->sk_rmem_alloc);
  1550. len += SKB_TRUESIZE(iucv_msg_length(msg));
  1551. if (len > sk->sk_rcvbuf)
  1552. goto save_message;
  1553. skb = alloc_skb(iucv_msg_length(msg), GFP_ATOMIC | GFP_DMA);
  1554. if (!skb)
  1555. goto save_message;
  1556. iucv_process_message(sk, skb, path, msg);
  1557. goto out_unlock;
  1558. save_message:
  1559. save_msg = kzalloc(sizeof(struct sock_msg_q), GFP_ATOMIC | GFP_DMA);
  1560. if (!save_msg)
  1561. goto out_unlock;
  1562. save_msg->path = path;
  1563. save_msg->msg = *msg;
  1564. list_add_tail(&save_msg->list, &iucv->message_q.list);
  1565. out_unlock:
  1566. spin_unlock(&iucv->message_q.lock);
  1567. }
  1568. static void iucv_callback_txdone(struct iucv_path *path,
  1569. struct iucv_message *msg)
  1570. {
  1571. struct sock *sk = path->private;
  1572. struct sk_buff *this = NULL;
  1573. struct sk_buff_head *list = &iucv_sk(sk)->send_skb_q;
  1574. struct sk_buff *list_skb = list->next;
  1575. unsigned long flags;
  1576. if (!skb_queue_empty(list)) {
  1577. spin_lock_irqsave(&list->lock, flags);
  1578. while (list_skb != (struct sk_buff *)list) {
  1579. if (!memcmp(&msg->tag, CB_TAG(list_skb), CB_TAG_LEN)) {
  1580. this = list_skb;
  1581. break;
  1582. }
  1583. list_skb = list_skb->next;
  1584. }
  1585. if (this)
  1586. __skb_unlink(this, list);
  1587. spin_unlock_irqrestore(&list->lock, flags);
  1588. if (this) {
  1589. kfree_skb(this);
  1590. /* wake up any process waiting for sending */
  1591. iucv_sock_wake_msglim(sk);
  1592. }
  1593. }
  1594. BUG_ON(!this);
  1595. if (sk->sk_state == IUCV_CLOSING) {
  1596. if (skb_queue_empty(&iucv_sk(sk)->send_skb_q)) {
  1597. sk->sk_state = IUCV_CLOSED;
  1598. sk->sk_state_change(sk);
  1599. }
  1600. }
  1601. }
  1602. static void iucv_callback_connrej(struct iucv_path *path, u8 ipuser[16])
  1603. {
  1604. struct sock *sk = path->private;
  1605. if (!list_empty(&iucv_sk(sk)->accept_q))
  1606. sk->sk_state = IUCV_SEVERED;
  1607. else
  1608. sk->sk_state = IUCV_DISCONN;
  1609. sk->sk_state_change(sk);
  1610. }
  1611. /* called if the other communication side shuts down its RECV direction;
  1612. * in turn, the callback sets SEND_SHUTDOWN to disable sending of data.
  1613. */
  1614. static void iucv_callback_shutdown(struct iucv_path *path, u8 ipuser[16])
  1615. {
  1616. struct sock *sk = path->private;
  1617. bh_lock_sock(sk);
  1618. if (sk->sk_state != IUCV_CLOSED) {
  1619. sk->sk_shutdown |= SEND_SHUTDOWN;
  1620. sk->sk_state_change(sk);
  1621. }
  1622. bh_unlock_sock(sk);
  1623. }
  1624. /***************** HiperSockets transport callbacks ********************/
  1625. static void afiucv_swap_src_dest(struct sk_buff *skb)
  1626. {
  1627. struct af_iucv_trans_hdr *trans_hdr =
  1628. (struct af_iucv_trans_hdr *)skb->data;
  1629. char tmpID[8];
  1630. char tmpName[8];
  1631. ASCEBC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1632. ASCEBC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1633. ASCEBC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1634. ASCEBC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1635. memcpy(tmpID, trans_hdr->srcUserID, 8);
  1636. memcpy(tmpName, trans_hdr->srcAppName, 8);
  1637. memcpy(trans_hdr->srcUserID, trans_hdr->destUserID, 8);
  1638. memcpy(trans_hdr->srcAppName, trans_hdr->destAppName, 8);
  1639. memcpy(trans_hdr->destUserID, tmpID, 8);
  1640. memcpy(trans_hdr->destAppName, tmpName, 8);
  1641. skb_push(skb, ETH_HLEN);
  1642. memset(skb->data, 0, ETH_HLEN);
  1643. }
  1644. /**
  1645. * afiucv_hs_callback_syn - react on received SYN
  1646. **/
  1647. static int afiucv_hs_callback_syn(struct sock *sk, struct sk_buff *skb)
  1648. {
  1649. struct sock *nsk;
  1650. struct iucv_sock *iucv, *niucv;
  1651. struct af_iucv_trans_hdr *trans_hdr;
  1652. int err;
  1653. iucv = iucv_sk(sk);
  1654. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1655. if (!iucv) {
  1656. /* no sock - connection refused */
  1657. afiucv_swap_src_dest(skb);
  1658. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1659. err = dev_queue_xmit(skb);
  1660. goto out;
  1661. }
  1662. nsk = iucv_sock_alloc(NULL, sk->sk_type, GFP_ATOMIC);
  1663. bh_lock_sock(sk);
  1664. if ((sk->sk_state != IUCV_LISTEN) ||
  1665. sk_acceptq_is_full(sk) ||
  1666. !nsk) {
  1667. /* error on server socket - connection refused */
  1668. if (nsk)
  1669. sk_free(nsk);
  1670. afiucv_swap_src_dest(skb);
  1671. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN;
  1672. err = dev_queue_xmit(skb);
  1673. bh_unlock_sock(sk);
  1674. goto out;
  1675. }
  1676. niucv = iucv_sk(nsk);
  1677. iucv_sock_init(nsk, sk);
  1678. niucv->transport = AF_IUCV_TRANS_HIPER;
  1679. niucv->msglimit = iucv->msglimit;
  1680. if (!trans_hdr->window)
  1681. niucv->msglimit_peer = IUCV_HIPER_MSGLIM_DEFAULT;
  1682. else
  1683. niucv->msglimit_peer = trans_hdr->window;
  1684. memcpy(niucv->dst_name, trans_hdr->srcAppName, 8);
  1685. memcpy(niucv->dst_user_id, trans_hdr->srcUserID, 8);
  1686. memcpy(niucv->src_name, iucv->src_name, 8);
  1687. memcpy(niucv->src_user_id, iucv->src_user_id, 8);
  1688. nsk->sk_bound_dev_if = sk->sk_bound_dev_if;
  1689. afiucv_swap_src_dest(skb);
  1690. trans_hdr->flags = AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK;
  1691. trans_hdr->window = niucv->msglimit;
  1692. /* if receiver acks the xmit connection is established */
  1693. err = dev_queue_xmit(skb);
  1694. if (!err) {
  1695. iucv_accept_enqueue(sk, nsk);
  1696. nsk->sk_state = IUCV_CONNECTED;
  1697. sk->sk_data_ready(sk, 1);
  1698. } else
  1699. iucv_sock_kill(nsk);
  1700. bh_unlock_sock(sk);
  1701. out:
  1702. return NET_RX_SUCCESS;
  1703. }
  1704. /**
  1705. * afiucv_hs_callback_synack() - react on received SYN-ACK
  1706. **/
  1707. static int afiucv_hs_callback_synack(struct sock *sk, struct sk_buff *skb)
  1708. {
  1709. struct iucv_sock *iucv = iucv_sk(sk);
  1710. struct af_iucv_trans_hdr *trans_hdr =
  1711. (struct af_iucv_trans_hdr *)skb->data;
  1712. if (!iucv)
  1713. goto out;
  1714. if (sk->sk_state != IUCV_BOUND)
  1715. goto out;
  1716. bh_lock_sock(sk);
  1717. iucv->msglimit_peer = trans_hdr->window;
  1718. sk->sk_state = IUCV_CONNECTED;
  1719. sk->sk_state_change(sk);
  1720. bh_unlock_sock(sk);
  1721. out:
  1722. kfree_skb(skb);
  1723. return NET_RX_SUCCESS;
  1724. }
  1725. /**
  1726. * afiucv_hs_callback_synfin() - react on received SYN_FIN
  1727. **/
  1728. static int afiucv_hs_callback_synfin(struct sock *sk, struct sk_buff *skb)
  1729. {
  1730. struct iucv_sock *iucv = iucv_sk(sk);
  1731. if (!iucv)
  1732. goto out;
  1733. if (sk->sk_state != IUCV_BOUND)
  1734. goto out;
  1735. bh_lock_sock(sk);
  1736. sk->sk_state = IUCV_DISCONN;
  1737. sk->sk_state_change(sk);
  1738. bh_unlock_sock(sk);
  1739. out:
  1740. kfree_skb(skb);
  1741. return NET_RX_SUCCESS;
  1742. }
  1743. /**
  1744. * afiucv_hs_callback_fin() - react on received FIN
  1745. **/
  1746. static int afiucv_hs_callback_fin(struct sock *sk, struct sk_buff *skb)
  1747. {
  1748. struct iucv_sock *iucv = iucv_sk(sk);
  1749. /* other end of connection closed */
  1750. if (iucv) {
  1751. bh_lock_sock(sk);
  1752. if (!list_empty(&iucv->accept_q))
  1753. sk->sk_state = IUCV_SEVERED;
  1754. else
  1755. sk->sk_state = IUCV_DISCONN;
  1756. sk->sk_state_change(sk);
  1757. bh_unlock_sock(sk);
  1758. }
  1759. kfree_skb(skb);
  1760. return NET_RX_SUCCESS;
  1761. }
  1762. /**
  1763. * afiucv_hs_callback_win() - react on received WIN
  1764. **/
  1765. static int afiucv_hs_callback_win(struct sock *sk, struct sk_buff *skb)
  1766. {
  1767. struct iucv_sock *iucv = iucv_sk(sk);
  1768. struct af_iucv_trans_hdr *trans_hdr =
  1769. (struct af_iucv_trans_hdr *)skb->data;
  1770. if (!iucv)
  1771. return NET_RX_SUCCESS;
  1772. if (sk->sk_state != IUCV_CONNECTED)
  1773. return NET_RX_SUCCESS;
  1774. atomic_sub(trans_hdr->window, &iucv->msg_sent);
  1775. iucv_sock_wake_msglim(sk);
  1776. return NET_RX_SUCCESS;
  1777. }
  1778. /**
  1779. * afiucv_hs_callback_rx() - react on received data
  1780. **/
  1781. static int afiucv_hs_callback_rx(struct sock *sk, struct sk_buff *skb)
  1782. {
  1783. struct iucv_sock *iucv = iucv_sk(sk);
  1784. if (!iucv) {
  1785. kfree_skb(skb);
  1786. return NET_RX_SUCCESS;
  1787. }
  1788. if (sk->sk_state != IUCV_CONNECTED) {
  1789. kfree_skb(skb);
  1790. return NET_RX_SUCCESS;
  1791. }
  1792. /* write stuff from iucv_msg to skb cb */
  1793. if (skb->len <= sizeof(struct af_iucv_trans_hdr)) {
  1794. kfree_skb(skb);
  1795. return NET_RX_SUCCESS;
  1796. }
  1797. skb_pull(skb, sizeof(struct af_iucv_trans_hdr));
  1798. skb_reset_transport_header(skb);
  1799. skb_reset_network_header(skb);
  1800. spin_lock(&iucv->message_q.lock);
  1801. if (skb_queue_empty(&iucv->backlog_skb_q)) {
  1802. if (sock_queue_rcv_skb(sk, skb)) {
  1803. /* handle rcv queue full */
  1804. skb_queue_tail(&iucv->backlog_skb_q, skb);
  1805. }
  1806. } else
  1807. skb_queue_tail(&iucv_sk(sk)->backlog_skb_q, skb);
  1808. spin_unlock(&iucv->message_q.lock);
  1809. return NET_RX_SUCCESS;
  1810. }
  1811. /**
  1812. * afiucv_hs_rcv() - base function for arriving data through HiperSockets
  1813. * transport
  1814. * called from netif RX softirq
  1815. **/
  1816. static int afiucv_hs_rcv(struct sk_buff *skb, struct net_device *dev,
  1817. struct packet_type *pt, struct net_device *orig_dev)
  1818. {
  1819. struct hlist_node *node;
  1820. struct sock *sk;
  1821. struct iucv_sock *iucv;
  1822. struct af_iucv_trans_hdr *trans_hdr;
  1823. char nullstring[8];
  1824. int err = 0;
  1825. skb_pull(skb, ETH_HLEN);
  1826. trans_hdr = (struct af_iucv_trans_hdr *)skb->data;
  1827. EBCASC(trans_hdr->destAppName, sizeof(trans_hdr->destAppName));
  1828. EBCASC(trans_hdr->destUserID, sizeof(trans_hdr->destUserID));
  1829. EBCASC(trans_hdr->srcAppName, sizeof(trans_hdr->srcAppName));
  1830. EBCASC(trans_hdr->srcUserID, sizeof(trans_hdr->srcUserID));
  1831. memset(nullstring, 0, sizeof(nullstring));
  1832. iucv = NULL;
  1833. sk = NULL;
  1834. read_lock(&iucv_sk_list.lock);
  1835. sk_for_each(sk, node, &iucv_sk_list.head) {
  1836. if (trans_hdr->flags == AF_IUCV_FLAG_SYN) {
  1837. if ((!memcmp(&iucv_sk(sk)->src_name,
  1838. trans_hdr->destAppName, 8)) &&
  1839. (!memcmp(&iucv_sk(sk)->src_user_id,
  1840. trans_hdr->destUserID, 8)) &&
  1841. (!memcmp(&iucv_sk(sk)->dst_name, nullstring, 8)) &&
  1842. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1843. nullstring, 8))) {
  1844. iucv = iucv_sk(sk);
  1845. break;
  1846. }
  1847. } else {
  1848. if ((!memcmp(&iucv_sk(sk)->src_name,
  1849. trans_hdr->destAppName, 8)) &&
  1850. (!memcmp(&iucv_sk(sk)->src_user_id,
  1851. trans_hdr->destUserID, 8)) &&
  1852. (!memcmp(&iucv_sk(sk)->dst_name,
  1853. trans_hdr->srcAppName, 8)) &&
  1854. (!memcmp(&iucv_sk(sk)->dst_user_id,
  1855. trans_hdr->srcUserID, 8))) {
  1856. iucv = iucv_sk(sk);
  1857. break;
  1858. }
  1859. }
  1860. }
  1861. read_unlock(&iucv_sk_list.lock);
  1862. if (!iucv)
  1863. sk = NULL;
  1864. /* no sock
  1865. how should we send with no sock
  1866. 1) send without sock no send rc checking?
  1867. 2) introduce default sock to handle this cases
  1868. SYN -> send SYN|ACK in good case, send SYN|FIN in bad case
  1869. data -> send FIN
  1870. SYN|ACK, SYN|FIN, FIN -> no action? */
  1871. switch (trans_hdr->flags) {
  1872. case AF_IUCV_FLAG_SYN:
  1873. /* connect request */
  1874. err = afiucv_hs_callback_syn(sk, skb);
  1875. break;
  1876. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_ACK):
  1877. /* connect request confirmed */
  1878. err = afiucv_hs_callback_synack(sk, skb);
  1879. break;
  1880. case (AF_IUCV_FLAG_SYN | AF_IUCV_FLAG_FIN):
  1881. /* connect request refused */
  1882. err = afiucv_hs_callback_synfin(sk, skb);
  1883. break;
  1884. case (AF_IUCV_FLAG_FIN):
  1885. /* close request */
  1886. err = afiucv_hs_callback_fin(sk, skb);
  1887. break;
  1888. case (AF_IUCV_FLAG_WIN):
  1889. err = afiucv_hs_callback_win(sk, skb);
  1890. if (skb->len > sizeof(struct af_iucv_trans_hdr))
  1891. err = afiucv_hs_callback_rx(sk, skb);
  1892. else
  1893. kfree(skb);
  1894. break;
  1895. case 0:
  1896. /* plain data frame */
  1897. err = afiucv_hs_callback_rx(sk, skb);
  1898. break;
  1899. default:
  1900. ;
  1901. }
  1902. return err;
  1903. }
  1904. /**
  1905. * afiucv_hs_callback_txnotify() - handle send notifcations from HiperSockets
  1906. * transport
  1907. **/
  1908. static void afiucv_hs_callback_txnotify(struct sk_buff *skb,
  1909. enum iucv_tx_notify n)
  1910. {
  1911. struct sock *isk = skb->sk;
  1912. struct sock *sk = NULL;
  1913. struct iucv_sock *iucv = NULL;
  1914. struct sk_buff_head *list;
  1915. struct sk_buff *list_skb;
  1916. struct sk_buff *this = NULL;
  1917. unsigned long flags;
  1918. struct hlist_node *node;
  1919. read_lock(&iucv_sk_list.lock);
  1920. sk_for_each(sk, node, &iucv_sk_list.head)
  1921. if (sk == isk) {
  1922. iucv = iucv_sk(sk);
  1923. break;
  1924. }
  1925. read_unlock(&iucv_sk_list.lock);
  1926. if (!iucv)
  1927. return;
  1928. bh_lock_sock(sk);
  1929. list = &iucv->send_skb_q;
  1930. list_skb = list->next;
  1931. if (skb_queue_empty(list))
  1932. goto out_unlock;
  1933. spin_lock_irqsave(&list->lock, flags);
  1934. while (list_skb != (struct sk_buff *)list) {
  1935. if (skb_shinfo(list_skb) == skb_shinfo(skb)) {
  1936. this = list_skb;
  1937. switch (n) {
  1938. case TX_NOTIFY_OK:
  1939. __skb_unlink(this, list);
  1940. iucv_sock_wake_msglim(sk);
  1941. kfree_skb(this);
  1942. break;
  1943. case TX_NOTIFY_PENDING:
  1944. atomic_inc(&iucv->pendings);
  1945. break;
  1946. case TX_NOTIFY_DELAYED_OK:
  1947. __skb_unlink(this, list);
  1948. atomic_dec(&iucv->pendings);
  1949. if (atomic_read(&iucv->pendings) <= 0)
  1950. iucv_sock_wake_msglim(sk);
  1951. kfree_skb(this);
  1952. break;
  1953. case TX_NOTIFY_UNREACHABLE:
  1954. case TX_NOTIFY_DELAYED_UNREACHABLE:
  1955. case TX_NOTIFY_TPQFULL: /* not yet used */
  1956. case TX_NOTIFY_GENERALERROR:
  1957. case TX_NOTIFY_DELAYED_GENERALERROR:
  1958. __skb_unlink(this, list);
  1959. kfree_skb(this);
  1960. if (!list_empty(&iucv->accept_q))
  1961. sk->sk_state = IUCV_SEVERED;
  1962. else
  1963. sk->sk_state = IUCV_DISCONN;
  1964. sk->sk_state_change(sk);
  1965. break;
  1966. }
  1967. break;
  1968. }
  1969. list_skb = list_skb->next;
  1970. }
  1971. spin_unlock_irqrestore(&list->lock, flags);
  1972. out_unlock:
  1973. bh_unlock_sock(sk);
  1974. }
  1975. static const struct proto_ops iucv_sock_ops = {
  1976. .family = PF_IUCV,
  1977. .owner = THIS_MODULE,
  1978. .release = iucv_sock_release,
  1979. .bind = iucv_sock_bind,
  1980. .connect = iucv_sock_connect,
  1981. .listen = iucv_sock_listen,
  1982. .accept = iucv_sock_accept,
  1983. .getname = iucv_sock_getname,
  1984. .sendmsg = iucv_sock_sendmsg,
  1985. .recvmsg = iucv_sock_recvmsg,
  1986. .poll = iucv_sock_poll,
  1987. .ioctl = sock_no_ioctl,
  1988. .mmap = sock_no_mmap,
  1989. .socketpair = sock_no_socketpair,
  1990. .shutdown = iucv_sock_shutdown,
  1991. .setsockopt = iucv_sock_setsockopt,
  1992. .getsockopt = iucv_sock_getsockopt,
  1993. };
  1994. static const struct net_proto_family iucv_sock_family_ops = {
  1995. .family = AF_IUCV,
  1996. .owner = THIS_MODULE,
  1997. .create = iucv_sock_create,
  1998. };
  1999. static struct packet_type iucv_packet_type = {
  2000. .type = cpu_to_be16(ETH_P_AF_IUCV),
  2001. .func = afiucv_hs_rcv,
  2002. };
  2003. static int afiucv_iucv_init(void)
  2004. {
  2005. int err;
  2006. err = pr_iucv->iucv_register(&af_iucv_handler, 0);
  2007. if (err)
  2008. goto out;
  2009. /* establish dummy device */
  2010. af_iucv_driver.bus = pr_iucv->bus;
  2011. err = driver_register(&af_iucv_driver);
  2012. if (err)
  2013. goto out_iucv;
  2014. af_iucv_dev = kzalloc(sizeof(struct device), GFP_KERNEL);
  2015. if (!af_iucv_dev) {
  2016. err = -ENOMEM;
  2017. goto out_driver;
  2018. }
  2019. dev_set_name(af_iucv_dev, "af_iucv");
  2020. af_iucv_dev->bus = pr_iucv->bus;
  2021. af_iucv_dev->parent = pr_iucv->root;
  2022. af_iucv_dev->release = (void (*)(struct device *))kfree;
  2023. af_iucv_dev->driver = &af_iucv_driver;
  2024. err = device_register(af_iucv_dev);
  2025. if (err)
  2026. goto out_driver;
  2027. return 0;
  2028. out_driver:
  2029. driver_unregister(&af_iucv_driver);
  2030. out_iucv:
  2031. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2032. out:
  2033. return err;
  2034. }
  2035. static int __init afiucv_init(void)
  2036. {
  2037. int err;
  2038. if (MACHINE_IS_VM) {
  2039. cpcmd("QUERY USERID", iucv_userid, sizeof(iucv_userid), &err);
  2040. if (unlikely(err)) {
  2041. WARN_ON(err);
  2042. err = -EPROTONOSUPPORT;
  2043. goto out;
  2044. }
  2045. pr_iucv = try_then_request_module(symbol_get(iucv_if), "iucv");
  2046. if (!pr_iucv) {
  2047. printk(KERN_WARNING "iucv_if lookup failed\n");
  2048. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2049. }
  2050. } else {
  2051. memset(&iucv_userid, 0, sizeof(iucv_userid));
  2052. pr_iucv = NULL;
  2053. }
  2054. err = proto_register(&iucv_proto, 0);
  2055. if (err)
  2056. goto out;
  2057. err = sock_register(&iucv_sock_family_ops);
  2058. if (err)
  2059. goto out_proto;
  2060. if (pr_iucv) {
  2061. err = afiucv_iucv_init();
  2062. if (err)
  2063. goto out_sock;
  2064. }
  2065. dev_add_pack(&iucv_packet_type);
  2066. return 0;
  2067. out_sock:
  2068. sock_unregister(PF_IUCV);
  2069. out_proto:
  2070. proto_unregister(&iucv_proto);
  2071. out:
  2072. if (pr_iucv)
  2073. symbol_put(iucv_if);
  2074. return err;
  2075. }
  2076. static void __exit afiucv_exit(void)
  2077. {
  2078. if (pr_iucv) {
  2079. device_unregister(af_iucv_dev);
  2080. driver_unregister(&af_iucv_driver);
  2081. pr_iucv->iucv_unregister(&af_iucv_handler, 0);
  2082. symbol_put(iucv_if);
  2083. }
  2084. dev_remove_pack(&iucv_packet_type);
  2085. sock_unregister(PF_IUCV);
  2086. proto_unregister(&iucv_proto);
  2087. }
  2088. module_init(afiucv_init);
  2089. module_exit(afiucv_exit);
  2090. MODULE_AUTHOR("Jennifer Hunt <jenhunt@us.ibm.com>");
  2091. MODULE_DESCRIPTION("IUCV Sockets ver " VERSION);
  2092. MODULE_VERSION(VERSION);
  2093. MODULE_LICENSE("GPL");
  2094. MODULE_ALIAS_NETPROTO(PF_IUCV);