messenger.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587
  1. #include <linux/ceph/ceph_debug.h>
  2. #include <linux/crc32c.h>
  3. #include <linux/ctype.h>
  4. #include <linux/highmem.h>
  5. #include <linux/inet.h>
  6. #include <linux/kthread.h>
  7. #include <linux/net.h>
  8. #include <linux/slab.h>
  9. #include <linux/socket.h>
  10. #include <linux/string.h>
  11. #include <linux/bio.h>
  12. #include <linux/blkdev.h>
  13. #include <linux/dns_resolver.h>
  14. #include <net/tcp.h>
  15. #include <linux/ceph/libceph.h>
  16. #include <linux/ceph/messenger.h>
  17. #include <linux/ceph/decode.h>
  18. #include <linux/ceph/pagelist.h>
  19. #include <linux/export.h>
  20. /*
  21. * Ceph uses the messenger to exchange ceph_msg messages with other
  22. * hosts in the system. The messenger provides ordered and reliable
  23. * delivery. We tolerate TCP disconnects by reconnecting (with
  24. * exponential backoff) in the case of a fault (disconnection, bad
  25. * crc, protocol error). Acks allow sent messages to be discarded by
  26. * the sender.
  27. */
  28. /* static tag bytes (protocol control messages) */
  29. static char tag_msg = CEPH_MSGR_TAG_MSG;
  30. static char tag_ack = CEPH_MSGR_TAG_ACK;
  31. static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
  32. #ifdef CONFIG_LOCKDEP
  33. static struct lock_class_key socket_class;
  34. #endif
  35. static void queue_con(struct ceph_connection *con);
  36. static void con_work(struct work_struct *);
  37. static void ceph_fault(struct ceph_connection *con);
  38. /*
  39. * nicely render a sockaddr as a string.
  40. */
  41. #define MAX_ADDR_STR 20
  42. #define MAX_ADDR_STR_LEN 60
  43. static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
  44. static DEFINE_SPINLOCK(addr_str_lock);
  45. static int last_addr_str;
  46. const char *ceph_pr_addr(const struct sockaddr_storage *ss)
  47. {
  48. int i;
  49. char *s;
  50. struct sockaddr_in *in4 = (void *)ss;
  51. struct sockaddr_in6 *in6 = (void *)ss;
  52. spin_lock(&addr_str_lock);
  53. i = last_addr_str++;
  54. if (last_addr_str == MAX_ADDR_STR)
  55. last_addr_str = 0;
  56. spin_unlock(&addr_str_lock);
  57. s = addr_str[i];
  58. switch (ss->ss_family) {
  59. case AF_INET:
  60. snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
  61. (unsigned int)ntohs(in4->sin_port));
  62. break;
  63. case AF_INET6:
  64. snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
  65. (unsigned int)ntohs(in6->sin6_port));
  66. break;
  67. default:
  68. snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %d)",
  69. (int)ss->ss_family);
  70. }
  71. return s;
  72. }
  73. EXPORT_SYMBOL(ceph_pr_addr);
  74. static void encode_my_addr(struct ceph_messenger *msgr)
  75. {
  76. memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
  77. ceph_encode_addr(&msgr->my_enc_addr);
  78. }
  79. /*
  80. * work queue for all reading and writing to/from the socket.
  81. */
  82. struct workqueue_struct *ceph_msgr_wq;
  83. int ceph_msgr_init(void)
  84. {
  85. ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
  86. if (!ceph_msgr_wq) {
  87. pr_err("msgr_init failed to create workqueue\n");
  88. return -ENOMEM;
  89. }
  90. return 0;
  91. }
  92. EXPORT_SYMBOL(ceph_msgr_init);
  93. void ceph_msgr_exit(void)
  94. {
  95. destroy_workqueue(ceph_msgr_wq);
  96. }
  97. EXPORT_SYMBOL(ceph_msgr_exit);
  98. void ceph_msgr_flush(void)
  99. {
  100. flush_workqueue(ceph_msgr_wq);
  101. }
  102. EXPORT_SYMBOL(ceph_msgr_flush);
  103. /*
  104. * socket callback functions
  105. */
  106. /* data available on socket, or listen socket received a connect */
  107. static void ceph_data_ready(struct sock *sk, int count_unused)
  108. {
  109. struct ceph_connection *con =
  110. (struct ceph_connection *)sk->sk_user_data;
  111. if (sk->sk_state != TCP_CLOSE_WAIT) {
  112. dout("ceph_data_ready on %p state = %lu, queueing work\n",
  113. con, con->state);
  114. queue_con(con);
  115. }
  116. }
  117. /* socket has buffer space for writing */
  118. static void ceph_write_space(struct sock *sk)
  119. {
  120. struct ceph_connection *con =
  121. (struct ceph_connection *)sk->sk_user_data;
  122. /* only queue to workqueue if there is data we want to write. */
  123. if (test_bit(WRITE_PENDING, &con->state)) {
  124. dout("ceph_write_space %p queueing write work\n", con);
  125. queue_con(con);
  126. } else {
  127. dout("ceph_write_space %p nothing to write\n", con);
  128. }
  129. /* since we have our own write_space, clear the SOCK_NOSPACE flag */
  130. clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  131. }
  132. /* socket's state has changed */
  133. static void ceph_state_change(struct sock *sk)
  134. {
  135. struct ceph_connection *con =
  136. (struct ceph_connection *)sk->sk_user_data;
  137. dout("ceph_state_change %p state = %lu sk_state = %u\n",
  138. con, con->state, sk->sk_state);
  139. if (test_bit(CLOSED, &con->state))
  140. return;
  141. switch (sk->sk_state) {
  142. case TCP_CLOSE:
  143. dout("ceph_state_change TCP_CLOSE\n");
  144. case TCP_CLOSE_WAIT:
  145. dout("ceph_state_change TCP_CLOSE_WAIT\n");
  146. if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
  147. if (test_bit(CONNECTING, &con->state))
  148. con->error_msg = "connection failed";
  149. else
  150. con->error_msg = "socket closed";
  151. queue_con(con);
  152. }
  153. break;
  154. case TCP_ESTABLISHED:
  155. dout("ceph_state_change TCP_ESTABLISHED\n");
  156. queue_con(con);
  157. break;
  158. }
  159. }
  160. /*
  161. * set up socket callbacks
  162. */
  163. static void set_sock_callbacks(struct socket *sock,
  164. struct ceph_connection *con)
  165. {
  166. struct sock *sk = sock->sk;
  167. sk->sk_user_data = (void *)con;
  168. sk->sk_data_ready = ceph_data_ready;
  169. sk->sk_write_space = ceph_write_space;
  170. sk->sk_state_change = ceph_state_change;
  171. }
  172. /*
  173. * socket helpers
  174. */
  175. /*
  176. * initiate connection to a remote socket.
  177. */
  178. static struct socket *ceph_tcp_connect(struct ceph_connection *con)
  179. {
  180. struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
  181. struct socket *sock;
  182. int ret;
  183. BUG_ON(con->sock);
  184. ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
  185. IPPROTO_TCP, &sock);
  186. if (ret)
  187. return ERR_PTR(ret);
  188. con->sock = sock;
  189. sock->sk->sk_allocation = GFP_NOFS;
  190. #ifdef CONFIG_LOCKDEP
  191. lockdep_set_class(&sock->sk->sk_lock, &socket_class);
  192. #endif
  193. set_sock_callbacks(sock, con);
  194. dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
  195. ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
  196. O_NONBLOCK);
  197. if (ret == -EINPROGRESS) {
  198. dout("connect %s EINPROGRESS sk_state = %u\n",
  199. ceph_pr_addr(&con->peer_addr.in_addr),
  200. sock->sk->sk_state);
  201. ret = 0;
  202. }
  203. if (ret < 0) {
  204. pr_err("connect %s error %d\n",
  205. ceph_pr_addr(&con->peer_addr.in_addr), ret);
  206. sock_release(sock);
  207. con->sock = NULL;
  208. con->error_msg = "connect error";
  209. }
  210. if (ret < 0)
  211. return ERR_PTR(ret);
  212. return sock;
  213. }
  214. static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
  215. {
  216. struct kvec iov = {buf, len};
  217. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  218. int r;
  219. r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
  220. if (r == -EAGAIN)
  221. r = 0;
  222. return r;
  223. }
  224. /*
  225. * write something. @more is true if caller will be sending more data
  226. * shortly.
  227. */
  228. static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
  229. size_t kvlen, size_t len, int more)
  230. {
  231. struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
  232. int r;
  233. if (more)
  234. msg.msg_flags |= MSG_MORE;
  235. else
  236. msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
  237. r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
  238. if (r == -EAGAIN)
  239. r = 0;
  240. return r;
  241. }
  242. /*
  243. * Shutdown/close the socket for the given connection.
  244. */
  245. static int con_close_socket(struct ceph_connection *con)
  246. {
  247. int rc;
  248. dout("con_close_socket on %p sock %p\n", con, con->sock);
  249. if (!con->sock)
  250. return 0;
  251. set_bit(SOCK_CLOSED, &con->state);
  252. rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
  253. sock_release(con->sock);
  254. con->sock = NULL;
  255. clear_bit(SOCK_CLOSED, &con->state);
  256. return rc;
  257. }
  258. /*
  259. * Reset a connection. Discard all incoming and outgoing messages
  260. * and clear *_seq state.
  261. */
  262. static void ceph_msg_remove(struct ceph_msg *msg)
  263. {
  264. list_del_init(&msg->list_head);
  265. ceph_msg_put(msg);
  266. }
  267. static void ceph_msg_remove_list(struct list_head *head)
  268. {
  269. while (!list_empty(head)) {
  270. struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
  271. list_head);
  272. ceph_msg_remove(msg);
  273. }
  274. }
  275. static void reset_connection(struct ceph_connection *con)
  276. {
  277. /* reset connection, out_queue, msg_ and connect_seq */
  278. /* discard existing out_queue and msg_seq */
  279. ceph_msg_remove_list(&con->out_queue);
  280. ceph_msg_remove_list(&con->out_sent);
  281. if (con->in_msg) {
  282. ceph_msg_put(con->in_msg);
  283. con->in_msg = NULL;
  284. }
  285. con->connect_seq = 0;
  286. con->out_seq = 0;
  287. if (con->out_msg) {
  288. ceph_msg_put(con->out_msg);
  289. con->out_msg = NULL;
  290. }
  291. con->in_seq = 0;
  292. con->in_seq_acked = 0;
  293. }
  294. /*
  295. * mark a peer down. drop any open connections.
  296. */
  297. void ceph_con_close(struct ceph_connection *con)
  298. {
  299. dout("con_close %p peer %s\n", con,
  300. ceph_pr_addr(&con->peer_addr.in_addr));
  301. set_bit(CLOSED, &con->state); /* in case there's queued work */
  302. clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
  303. clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
  304. clear_bit(KEEPALIVE_PENDING, &con->state);
  305. clear_bit(WRITE_PENDING, &con->state);
  306. mutex_lock(&con->mutex);
  307. reset_connection(con);
  308. con->peer_global_seq = 0;
  309. cancel_delayed_work(&con->work);
  310. mutex_unlock(&con->mutex);
  311. queue_con(con);
  312. }
  313. EXPORT_SYMBOL(ceph_con_close);
  314. /*
  315. * Reopen a closed connection, with a new peer address.
  316. */
  317. void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
  318. {
  319. dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
  320. set_bit(OPENING, &con->state);
  321. clear_bit(CLOSED, &con->state);
  322. memcpy(&con->peer_addr, addr, sizeof(*addr));
  323. con->delay = 0; /* reset backoff memory */
  324. queue_con(con);
  325. }
  326. EXPORT_SYMBOL(ceph_con_open);
  327. /*
  328. * return true if this connection ever successfully opened
  329. */
  330. bool ceph_con_opened(struct ceph_connection *con)
  331. {
  332. return con->connect_seq > 0;
  333. }
  334. /*
  335. * generic get/put
  336. */
  337. struct ceph_connection *ceph_con_get(struct ceph_connection *con)
  338. {
  339. dout("con_get %p nref = %d -> %d\n", con,
  340. atomic_read(&con->nref), atomic_read(&con->nref) + 1);
  341. if (atomic_inc_not_zero(&con->nref))
  342. return con;
  343. return NULL;
  344. }
  345. void ceph_con_put(struct ceph_connection *con)
  346. {
  347. dout("con_put %p nref = %d -> %d\n", con,
  348. atomic_read(&con->nref), atomic_read(&con->nref) - 1);
  349. BUG_ON(atomic_read(&con->nref) == 0);
  350. if (atomic_dec_and_test(&con->nref)) {
  351. BUG_ON(con->sock);
  352. kfree(con);
  353. }
  354. }
  355. /*
  356. * initialize a new connection.
  357. */
  358. void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
  359. {
  360. dout("con_init %p\n", con);
  361. memset(con, 0, sizeof(*con));
  362. atomic_set(&con->nref, 1);
  363. con->msgr = msgr;
  364. mutex_init(&con->mutex);
  365. INIT_LIST_HEAD(&con->out_queue);
  366. INIT_LIST_HEAD(&con->out_sent);
  367. INIT_DELAYED_WORK(&con->work, con_work);
  368. }
  369. EXPORT_SYMBOL(ceph_con_init);
  370. /*
  371. * We maintain a global counter to order connection attempts. Get
  372. * a unique seq greater than @gt.
  373. */
  374. static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
  375. {
  376. u32 ret;
  377. spin_lock(&msgr->global_seq_lock);
  378. if (msgr->global_seq < gt)
  379. msgr->global_seq = gt;
  380. ret = ++msgr->global_seq;
  381. spin_unlock(&msgr->global_seq_lock);
  382. return ret;
  383. }
  384. /*
  385. * Prepare footer for currently outgoing message, and finish things
  386. * off. Assumes out_kvec* are already valid.. we just add on to the end.
  387. */
  388. static void prepare_write_message_footer(struct ceph_connection *con, int v)
  389. {
  390. struct ceph_msg *m = con->out_msg;
  391. dout("prepare_write_message_footer %p\n", con);
  392. con->out_kvec_is_msg = true;
  393. con->out_kvec[v].iov_base = &m->footer;
  394. con->out_kvec[v].iov_len = sizeof(m->footer);
  395. con->out_kvec_bytes += sizeof(m->footer);
  396. con->out_kvec_left++;
  397. con->out_more = m->more_to_follow;
  398. con->out_msg_done = true;
  399. }
  400. /*
  401. * Prepare headers for the next outgoing message.
  402. */
  403. static void prepare_write_message(struct ceph_connection *con)
  404. {
  405. struct ceph_msg *m;
  406. int v = 0;
  407. con->out_kvec_bytes = 0;
  408. con->out_kvec_is_msg = true;
  409. con->out_msg_done = false;
  410. /* Sneak an ack in there first? If we can get it into the same
  411. * TCP packet that's a good thing. */
  412. if (con->in_seq > con->in_seq_acked) {
  413. con->in_seq_acked = con->in_seq;
  414. con->out_kvec[v].iov_base = &tag_ack;
  415. con->out_kvec[v++].iov_len = 1;
  416. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  417. con->out_kvec[v].iov_base = &con->out_temp_ack;
  418. con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
  419. con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
  420. }
  421. m = list_first_entry(&con->out_queue,
  422. struct ceph_msg, list_head);
  423. con->out_msg = m;
  424. /* put message on sent list */
  425. ceph_msg_get(m);
  426. list_move_tail(&m->list_head, &con->out_sent);
  427. /*
  428. * only assign outgoing seq # if we haven't sent this message
  429. * yet. if it is requeued, resend with it's original seq.
  430. */
  431. if (m->needs_out_seq) {
  432. m->hdr.seq = cpu_to_le64(++con->out_seq);
  433. m->needs_out_seq = false;
  434. }
  435. dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
  436. m, con->out_seq, le16_to_cpu(m->hdr.type),
  437. le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
  438. le32_to_cpu(m->hdr.data_len),
  439. m->nr_pages);
  440. BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
  441. /* tag + hdr + front + middle */
  442. con->out_kvec[v].iov_base = &tag_msg;
  443. con->out_kvec[v++].iov_len = 1;
  444. con->out_kvec[v].iov_base = &m->hdr;
  445. con->out_kvec[v++].iov_len = sizeof(m->hdr);
  446. con->out_kvec[v++] = m->front;
  447. if (m->middle)
  448. con->out_kvec[v++] = m->middle->vec;
  449. con->out_kvec_left = v;
  450. con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
  451. (m->middle ? m->middle->vec.iov_len : 0);
  452. con->out_kvec_cur = con->out_kvec;
  453. /* fill in crc (except data pages), footer */
  454. con->out_msg->hdr.crc =
  455. cpu_to_le32(crc32c(0, (void *)&m->hdr,
  456. sizeof(m->hdr) - sizeof(m->hdr.crc)));
  457. con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
  458. con->out_msg->footer.front_crc =
  459. cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
  460. if (m->middle)
  461. con->out_msg->footer.middle_crc =
  462. cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
  463. m->middle->vec.iov_len));
  464. else
  465. con->out_msg->footer.middle_crc = 0;
  466. con->out_msg->footer.data_crc = 0;
  467. dout("prepare_write_message front_crc %u data_crc %u\n",
  468. le32_to_cpu(con->out_msg->footer.front_crc),
  469. le32_to_cpu(con->out_msg->footer.middle_crc));
  470. /* is there a data payload? */
  471. if (le32_to_cpu(m->hdr.data_len) > 0) {
  472. /* initialize page iterator */
  473. con->out_msg_pos.page = 0;
  474. if (m->pages)
  475. con->out_msg_pos.page_pos = m->page_alignment;
  476. else
  477. con->out_msg_pos.page_pos = 0;
  478. con->out_msg_pos.data_pos = 0;
  479. con->out_msg_pos.did_page_crc = 0;
  480. con->out_more = 1; /* data + footer will follow */
  481. } else {
  482. /* no, queue up footer too and be done */
  483. prepare_write_message_footer(con, v);
  484. }
  485. set_bit(WRITE_PENDING, &con->state);
  486. }
  487. /*
  488. * Prepare an ack.
  489. */
  490. static void prepare_write_ack(struct ceph_connection *con)
  491. {
  492. dout("prepare_write_ack %p %llu -> %llu\n", con,
  493. con->in_seq_acked, con->in_seq);
  494. con->in_seq_acked = con->in_seq;
  495. con->out_kvec[0].iov_base = &tag_ack;
  496. con->out_kvec[0].iov_len = 1;
  497. con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
  498. con->out_kvec[1].iov_base = &con->out_temp_ack;
  499. con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
  500. con->out_kvec_left = 2;
  501. con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
  502. con->out_kvec_cur = con->out_kvec;
  503. con->out_more = 1; /* more will follow.. eventually.. */
  504. set_bit(WRITE_PENDING, &con->state);
  505. }
  506. /*
  507. * Prepare to write keepalive byte.
  508. */
  509. static void prepare_write_keepalive(struct ceph_connection *con)
  510. {
  511. dout("prepare_write_keepalive %p\n", con);
  512. con->out_kvec[0].iov_base = &tag_keepalive;
  513. con->out_kvec[0].iov_len = 1;
  514. con->out_kvec_left = 1;
  515. con->out_kvec_bytes = 1;
  516. con->out_kvec_cur = con->out_kvec;
  517. set_bit(WRITE_PENDING, &con->state);
  518. }
  519. /*
  520. * Connection negotiation.
  521. */
  522. static int prepare_connect_authorizer(struct ceph_connection *con)
  523. {
  524. void *auth_buf;
  525. int auth_len = 0;
  526. int auth_protocol = 0;
  527. mutex_unlock(&con->mutex);
  528. if (con->ops->get_authorizer)
  529. con->ops->get_authorizer(con, &auth_buf, &auth_len,
  530. &auth_protocol, &con->auth_reply_buf,
  531. &con->auth_reply_buf_len,
  532. con->auth_retry);
  533. mutex_lock(&con->mutex);
  534. if (test_bit(CLOSED, &con->state) ||
  535. test_bit(OPENING, &con->state))
  536. return -EAGAIN;
  537. con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
  538. con->out_connect.authorizer_len = cpu_to_le32(auth_len);
  539. if (auth_len) {
  540. con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
  541. con->out_kvec[con->out_kvec_left].iov_len = auth_len;
  542. con->out_kvec_left++;
  543. con->out_kvec_bytes += auth_len;
  544. }
  545. return 0;
  546. }
  547. /*
  548. * We connected to a peer and are saying hello.
  549. */
  550. static void prepare_write_banner(struct ceph_messenger *msgr,
  551. struct ceph_connection *con)
  552. {
  553. int len = strlen(CEPH_BANNER);
  554. con->out_kvec[0].iov_base = CEPH_BANNER;
  555. con->out_kvec[0].iov_len = len;
  556. con->out_kvec[1].iov_base = &msgr->my_enc_addr;
  557. con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
  558. con->out_kvec_left = 2;
  559. con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
  560. con->out_kvec_cur = con->out_kvec;
  561. con->out_more = 0;
  562. set_bit(WRITE_PENDING, &con->state);
  563. }
  564. static int prepare_write_connect(struct ceph_messenger *msgr,
  565. struct ceph_connection *con,
  566. int after_banner)
  567. {
  568. unsigned global_seq = get_global_seq(con->msgr, 0);
  569. int proto;
  570. switch (con->peer_name.type) {
  571. case CEPH_ENTITY_TYPE_MON:
  572. proto = CEPH_MONC_PROTOCOL;
  573. break;
  574. case CEPH_ENTITY_TYPE_OSD:
  575. proto = CEPH_OSDC_PROTOCOL;
  576. break;
  577. case CEPH_ENTITY_TYPE_MDS:
  578. proto = CEPH_MDSC_PROTOCOL;
  579. break;
  580. default:
  581. BUG();
  582. }
  583. dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
  584. con->connect_seq, global_seq, proto);
  585. con->out_connect.features = cpu_to_le64(msgr->supported_features);
  586. con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
  587. con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
  588. con->out_connect.global_seq = cpu_to_le32(global_seq);
  589. con->out_connect.protocol_version = cpu_to_le32(proto);
  590. con->out_connect.flags = 0;
  591. if (!after_banner) {
  592. con->out_kvec_left = 0;
  593. con->out_kvec_bytes = 0;
  594. }
  595. con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
  596. con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
  597. con->out_kvec_left++;
  598. con->out_kvec_bytes += sizeof(con->out_connect);
  599. con->out_kvec_cur = con->out_kvec;
  600. con->out_more = 0;
  601. set_bit(WRITE_PENDING, &con->state);
  602. return prepare_connect_authorizer(con);
  603. }
  604. /*
  605. * write as much of pending kvecs to the socket as we can.
  606. * 1 -> done
  607. * 0 -> socket full, but more to do
  608. * <0 -> error
  609. */
  610. static int write_partial_kvec(struct ceph_connection *con)
  611. {
  612. int ret;
  613. dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
  614. while (con->out_kvec_bytes > 0) {
  615. ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
  616. con->out_kvec_left, con->out_kvec_bytes,
  617. con->out_more);
  618. if (ret <= 0)
  619. goto out;
  620. con->out_kvec_bytes -= ret;
  621. if (con->out_kvec_bytes == 0)
  622. break; /* done */
  623. while (ret > 0) {
  624. if (ret >= con->out_kvec_cur->iov_len) {
  625. ret -= con->out_kvec_cur->iov_len;
  626. con->out_kvec_cur++;
  627. con->out_kvec_left--;
  628. } else {
  629. con->out_kvec_cur->iov_len -= ret;
  630. con->out_kvec_cur->iov_base += ret;
  631. ret = 0;
  632. break;
  633. }
  634. }
  635. }
  636. con->out_kvec_left = 0;
  637. con->out_kvec_is_msg = false;
  638. ret = 1;
  639. out:
  640. dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
  641. con->out_kvec_bytes, con->out_kvec_left, ret);
  642. return ret; /* done! */
  643. }
  644. #ifdef CONFIG_BLOCK
  645. static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
  646. {
  647. if (!bio) {
  648. *iter = NULL;
  649. *seg = 0;
  650. return;
  651. }
  652. *iter = bio;
  653. *seg = bio->bi_idx;
  654. }
  655. static void iter_bio_next(struct bio **bio_iter, int *seg)
  656. {
  657. if (*bio_iter == NULL)
  658. return;
  659. BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
  660. (*seg)++;
  661. if (*seg == (*bio_iter)->bi_vcnt)
  662. init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
  663. }
  664. #endif
  665. /*
  666. * Write as much message data payload as we can. If we finish, queue
  667. * up the footer.
  668. * 1 -> done, footer is now queued in out_kvec[].
  669. * 0 -> socket full, but more to do
  670. * <0 -> error
  671. */
  672. static int write_partial_msg_pages(struct ceph_connection *con)
  673. {
  674. struct ceph_msg *msg = con->out_msg;
  675. unsigned data_len = le32_to_cpu(msg->hdr.data_len);
  676. size_t len;
  677. int crc = con->msgr->nocrc;
  678. int ret;
  679. int total_max_write;
  680. int in_trail = 0;
  681. size_t trail_len = (msg->trail ? msg->trail->length : 0);
  682. dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
  683. con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
  684. con->out_msg_pos.page_pos);
  685. #ifdef CONFIG_BLOCK
  686. if (msg->bio && !msg->bio_iter)
  687. init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
  688. #endif
  689. while (data_len > con->out_msg_pos.data_pos) {
  690. struct page *page = NULL;
  691. void *kaddr = NULL;
  692. int max_write = PAGE_SIZE;
  693. int page_shift = 0;
  694. total_max_write = data_len - trail_len -
  695. con->out_msg_pos.data_pos;
  696. /*
  697. * if we are calculating the data crc (the default), we need
  698. * to map the page. if our pages[] has been revoked, use the
  699. * zero page.
  700. */
  701. /* have we reached the trail part of the data? */
  702. if (con->out_msg_pos.data_pos >= data_len - trail_len) {
  703. in_trail = 1;
  704. total_max_write = data_len - con->out_msg_pos.data_pos;
  705. page = list_first_entry(&msg->trail->head,
  706. struct page, lru);
  707. if (crc)
  708. kaddr = kmap(page);
  709. max_write = PAGE_SIZE;
  710. } else if (msg->pages) {
  711. page = msg->pages[con->out_msg_pos.page];
  712. if (crc)
  713. kaddr = kmap(page);
  714. } else if (msg->pagelist) {
  715. page = list_first_entry(&msg->pagelist->head,
  716. struct page, lru);
  717. if (crc)
  718. kaddr = kmap(page);
  719. #ifdef CONFIG_BLOCK
  720. } else if (msg->bio) {
  721. struct bio_vec *bv;
  722. bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
  723. page = bv->bv_page;
  724. page_shift = bv->bv_offset;
  725. if (crc)
  726. kaddr = kmap(page) + page_shift;
  727. max_write = bv->bv_len;
  728. #endif
  729. } else {
  730. page = con->msgr->zero_page;
  731. if (crc)
  732. kaddr = page_address(con->msgr->zero_page);
  733. }
  734. len = min_t(int, max_write - con->out_msg_pos.page_pos,
  735. total_max_write);
  736. if (crc && !con->out_msg_pos.did_page_crc) {
  737. void *base = kaddr + con->out_msg_pos.page_pos;
  738. u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
  739. BUG_ON(kaddr == NULL);
  740. con->out_msg->footer.data_crc =
  741. cpu_to_le32(crc32c(tmpcrc, base, len));
  742. con->out_msg_pos.did_page_crc = 1;
  743. }
  744. ret = kernel_sendpage(con->sock, page,
  745. con->out_msg_pos.page_pos + page_shift,
  746. len,
  747. MSG_DONTWAIT | MSG_NOSIGNAL |
  748. MSG_MORE);
  749. if (crc &&
  750. (msg->pages || msg->pagelist || msg->bio || in_trail))
  751. kunmap(page);
  752. if (ret == -EAGAIN)
  753. ret = 0;
  754. if (ret <= 0)
  755. goto out;
  756. con->out_msg_pos.data_pos += ret;
  757. con->out_msg_pos.page_pos += ret;
  758. if (ret == len) {
  759. con->out_msg_pos.page_pos = 0;
  760. con->out_msg_pos.page++;
  761. con->out_msg_pos.did_page_crc = 0;
  762. if (in_trail)
  763. list_move_tail(&page->lru,
  764. &msg->trail->head);
  765. else if (msg->pagelist)
  766. list_move_tail(&page->lru,
  767. &msg->pagelist->head);
  768. #ifdef CONFIG_BLOCK
  769. else if (msg->bio)
  770. iter_bio_next(&msg->bio_iter, &msg->bio_seg);
  771. #endif
  772. }
  773. }
  774. dout("write_partial_msg_pages %p msg %p done\n", con, msg);
  775. /* prepare and queue up footer, too */
  776. if (!crc)
  777. con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
  778. con->out_kvec_bytes = 0;
  779. con->out_kvec_left = 0;
  780. con->out_kvec_cur = con->out_kvec;
  781. prepare_write_message_footer(con, 0);
  782. ret = 1;
  783. out:
  784. return ret;
  785. }
  786. /*
  787. * write some zeros
  788. */
  789. static int write_partial_skip(struct ceph_connection *con)
  790. {
  791. int ret;
  792. while (con->out_skip > 0) {
  793. struct kvec iov = {
  794. .iov_base = page_address(con->msgr->zero_page),
  795. .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
  796. };
  797. ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
  798. if (ret <= 0)
  799. goto out;
  800. con->out_skip -= ret;
  801. }
  802. ret = 1;
  803. out:
  804. return ret;
  805. }
  806. /*
  807. * Prepare to read connection handshake, or an ack.
  808. */
  809. static void prepare_read_banner(struct ceph_connection *con)
  810. {
  811. dout("prepare_read_banner %p\n", con);
  812. con->in_base_pos = 0;
  813. }
  814. static void prepare_read_connect(struct ceph_connection *con)
  815. {
  816. dout("prepare_read_connect %p\n", con);
  817. con->in_base_pos = 0;
  818. }
  819. static void prepare_read_ack(struct ceph_connection *con)
  820. {
  821. dout("prepare_read_ack %p\n", con);
  822. con->in_base_pos = 0;
  823. }
  824. static void prepare_read_tag(struct ceph_connection *con)
  825. {
  826. dout("prepare_read_tag %p\n", con);
  827. con->in_base_pos = 0;
  828. con->in_tag = CEPH_MSGR_TAG_READY;
  829. }
  830. /*
  831. * Prepare to read a message.
  832. */
  833. static int prepare_read_message(struct ceph_connection *con)
  834. {
  835. dout("prepare_read_message %p\n", con);
  836. BUG_ON(con->in_msg != NULL);
  837. con->in_base_pos = 0;
  838. con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
  839. return 0;
  840. }
  841. static int read_partial(struct ceph_connection *con,
  842. int *to, int size, void *object)
  843. {
  844. *to += size;
  845. while (con->in_base_pos < *to) {
  846. int left = *to - con->in_base_pos;
  847. int have = size - left;
  848. int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
  849. if (ret <= 0)
  850. return ret;
  851. con->in_base_pos += ret;
  852. }
  853. return 1;
  854. }
  855. /*
  856. * Read all or part of the connect-side handshake on a new connection
  857. */
  858. static int read_partial_banner(struct ceph_connection *con)
  859. {
  860. int ret, to = 0;
  861. dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
  862. /* peer's banner */
  863. ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
  864. if (ret <= 0)
  865. goto out;
  866. ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
  867. &con->actual_peer_addr);
  868. if (ret <= 0)
  869. goto out;
  870. ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
  871. &con->peer_addr_for_me);
  872. if (ret <= 0)
  873. goto out;
  874. out:
  875. return ret;
  876. }
  877. static int read_partial_connect(struct ceph_connection *con)
  878. {
  879. int ret, to = 0;
  880. dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
  881. ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
  882. if (ret <= 0)
  883. goto out;
  884. ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
  885. con->auth_reply_buf);
  886. if (ret <= 0)
  887. goto out;
  888. dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
  889. con, (int)con->in_reply.tag,
  890. le32_to_cpu(con->in_reply.connect_seq),
  891. le32_to_cpu(con->in_reply.global_seq));
  892. out:
  893. return ret;
  894. }
  895. /*
  896. * Verify the hello banner looks okay.
  897. */
  898. static int verify_hello(struct ceph_connection *con)
  899. {
  900. if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
  901. pr_err("connect to %s got bad banner\n",
  902. ceph_pr_addr(&con->peer_addr.in_addr));
  903. con->error_msg = "protocol error, bad banner";
  904. return -1;
  905. }
  906. return 0;
  907. }
  908. static bool addr_is_blank(struct sockaddr_storage *ss)
  909. {
  910. switch (ss->ss_family) {
  911. case AF_INET:
  912. return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
  913. case AF_INET6:
  914. return
  915. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
  916. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
  917. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
  918. ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
  919. }
  920. return false;
  921. }
  922. static int addr_port(struct sockaddr_storage *ss)
  923. {
  924. switch (ss->ss_family) {
  925. case AF_INET:
  926. return ntohs(((struct sockaddr_in *)ss)->sin_port);
  927. case AF_INET6:
  928. return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
  929. }
  930. return 0;
  931. }
  932. static void addr_set_port(struct sockaddr_storage *ss, int p)
  933. {
  934. switch (ss->ss_family) {
  935. case AF_INET:
  936. ((struct sockaddr_in *)ss)->sin_port = htons(p);
  937. break;
  938. case AF_INET6:
  939. ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
  940. break;
  941. }
  942. }
  943. /*
  944. * Unlike other *_pton function semantics, zero indicates success.
  945. */
  946. static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
  947. char delim, const char **ipend)
  948. {
  949. struct sockaddr_in *in4 = (void *)ss;
  950. struct sockaddr_in6 *in6 = (void *)ss;
  951. memset(ss, 0, sizeof(*ss));
  952. if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
  953. ss->ss_family = AF_INET;
  954. return 0;
  955. }
  956. if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
  957. ss->ss_family = AF_INET6;
  958. return 0;
  959. }
  960. return -EINVAL;
  961. }
  962. /*
  963. * Extract hostname string and resolve using kernel DNS facility.
  964. */
  965. #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
  966. static int ceph_dns_resolve_name(const char *name, size_t namelen,
  967. struct sockaddr_storage *ss, char delim, const char **ipend)
  968. {
  969. const char *end, *delim_p;
  970. char *colon_p, *ip_addr = NULL;
  971. int ip_len, ret;
  972. /*
  973. * The end of the hostname occurs immediately preceding the delimiter or
  974. * the port marker (':') where the delimiter takes precedence.
  975. */
  976. delim_p = memchr(name, delim, namelen);
  977. colon_p = memchr(name, ':', namelen);
  978. if (delim_p && colon_p)
  979. end = delim_p < colon_p ? delim_p : colon_p;
  980. else if (!delim_p && colon_p)
  981. end = colon_p;
  982. else {
  983. end = delim_p;
  984. if (!end) /* case: hostname:/ */
  985. end = name + namelen;
  986. }
  987. if (end <= name)
  988. return -EINVAL;
  989. /* do dns_resolve upcall */
  990. ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
  991. if (ip_len > 0)
  992. ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
  993. else
  994. ret = -ESRCH;
  995. kfree(ip_addr);
  996. *ipend = end;
  997. pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
  998. ret, ret ? "failed" : ceph_pr_addr(ss));
  999. return ret;
  1000. }
  1001. #else
  1002. static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
  1003. struct sockaddr_storage *ss, char delim, const char **ipend)
  1004. {
  1005. return -EINVAL;
  1006. }
  1007. #endif
  1008. /*
  1009. * Parse a server name (IP or hostname). If a valid IP address is not found
  1010. * then try to extract a hostname to resolve using userspace DNS upcall.
  1011. */
  1012. static int ceph_parse_server_name(const char *name, size_t namelen,
  1013. struct sockaddr_storage *ss, char delim, const char **ipend)
  1014. {
  1015. int ret;
  1016. ret = ceph_pton(name, namelen, ss, delim, ipend);
  1017. if (ret)
  1018. ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
  1019. return ret;
  1020. }
  1021. /*
  1022. * Parse an ip[:port] list into an addr array. Use the default
  1023. * monitor port if a port isn't specified.
  1024. */
  1025. int ceph_parse_ips(const char *c, const char *end,
  1026. struct ceph_entity_addr *addr,
  1027. int max_count, int *count)
  1028. {
  1029. int i, ret = -EINVAL;
  1030. const char *p = c;
  1031. dout("parse_ips on '%.*s'\n", (int)(end-c), c);
  1032. for (i = 0; i < max_count; i++) {
  1033. const char *ipend;
  1034. struct sockaddr_storage *ss = &addr[i].in_addr;
  1035. int port;
  1036. char delim = ',';
  1037. if (*p == '[') {
  1038. delim = ']';
  1039. p++;
  1040. }
  1041. ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
  1042. if (ret)
  1043. goto bad;
  1044. ret = -EINVAL;
  1045. p = ipend;
  1046. if (delim == ']') {
  1047. if (*p != ']') {
  1048. dout("missing matching ']'\n");
  1049. goto bad;
  1050. }
  1051. p++;
  1052. }
  1053. /* port? */
  1054. if (p < end && *p == ':') {
  1055. port = 0;
  1056. p++;
  1057. while (p < end && *p >= '0' && *p <= '9') {
  1058. port = (port * 10) + (*p - '0');
  1059. p++;
  1060. }
  1061. if (port > 65535 || port == 0)
  1062. goto bad;
  1063. } else {
  1064. port = CEPH_MON_PORT;
  1065. }
  1066. addr_set_port(ss, port);
  1067. dout("parse_ips got %s\n", ceph_pr_addr(ss));
  1068. if (p == end)
  1069. break;
  1070. if (*p != ',')
  1071. goto bad;
  1072. p++;
  1073. }
  1074. if (p != end)
  1075. goto bad;
  1076. if (count)
  1077. *count = i + 1;
  1078. return 0;
  1079. bad:
  1080. pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
  1081. return ret;
  1082. }
  1083. EXPORT_SYMBOL(ceph_parse_ips);
  1084. static int process_banner(struct ceph_connection *con)
  1085. {
  1086. dout("process_banner on %p\n", con);
  1087. if (verify_hello(con) < 0)
  1088. return -1;
  1089. ceph_decode_addr(&con->actual_peer_addr);
  1090. ceph_decode_addr(&con->peer_addr_for_me);
  1091. /*
  1092. * Make sure the other end is who we wanted. note that the other
  1093. * end may not yet know their ip address, so if it's 0.0.0.0, give
  1094. * them the benefit of the doubt.
  1095. */
  1096. if (memcmp(&con->peer_addr, &con->actual_peer_addr,
  1097. sizeof(con->peer_addr)) != 0 &&
  1098. !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
  1099. con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
  1100. pr_warning("wrong peer, want %s/%d, got %s/%d\n",
  1101. ceph_pr_addr(&con->peer_addr.in_addr),
  1102. (int)le32_to_cpu(con->peer_addr.nonce),
  1103. ceph_pr_addr(&con->actual_peer_addr.in_addr),
  1104. (int)le32_to_cpu(con->actual_peer_addr.nonce));
  1105. con->error_msg = "wrong peer at address";
  1106. return -1;
  1107. }
  1108. /*
  1109. * did we learn our address?
  1110. */
  1111. if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
  1112. int port = addr_port(&con->msgr->inst.addr.in_addr);
  1113. memcpy(&con->msgr->inst.addr.in_addr,
  1114. &con->peer_addr_for_me.in_addr,
  1115. sizeof(con->peer_addr_for_me.in_addr));
  1116. addr_set_port(&con->msgr->inst.addr.in_addr, port);
  1117. encode_my_addr(con->msgr);
  1118. dout("process_banner learned my addr is %s\n",
  1119. ceph_pr_addr(&con->msgr->inst.addr.in_addr));
  1120. }
  1121. set_bit(NEGOTIATING, &con->state);
  1122. prepare_read_connect(con);
  1123. return 0;
  1124. }
  1125. static void fail_protocol(struct ceph_connection *con)
  1126. {
  1127. reset_connection(con);
  1128. set_bit(CLOSED, &con->state); /* in case there's queued work */
  1129. mutex_unlock(&con->mutex);
  1130. if (con->ops->bad_proto)
  1131. con->ops->bad_proto(con);
  1132. mutex_lock(&con->mutex);
  1133. }
  1134. static int process_connect(struct ceph_connection *con)
  1135. {
  1136. u64 sup_feat = con->msgr->supported_features;
  1137. u64 req_feat = con->msgr->required_features;
  1138. u64 server_feat = le64_to_cpu(con->in_reply.features);
  1139. int ret;
  1140. dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
  1141. switch (con->in_reply.tag) {
  1142. case CEPH_MSGR_TAG_FEATURES:
  1143. pr_err("%s%lld %s feature set mismatch,"
  1144. " my %llx < server's %llx, missing %llx\n",
  1145. ENTITY_NAME(con->peer_name),
  1146. ceph_pr_addr(&con->peer_addr.in_addr),
  1147. sup_feat, server_feat, server_feat & ~sup_feat);
  1148. con->error_msg = "missing required protocol features";
  1149. fail_protocol(con);
  1150. return -1;
  1151. case CEPH_MSGR_TAG_BADPROTOVER:
  1152. pr_err("%s%lld %s protocol version mismatch,"
  1153. " my %d != server's %d\n",
  1154. ENTITY_NAME(con->peer_name),
  1155. ceph_pr_addr(&con->peer_addr.in_addr),
  1156. le32_to_cpu(con->out_connect.protocol_version),
  1157. le32_to_cpu(con->in_reply.protocol_version));
  1158. con->error_msg = "protocol version mismatch";
  1159. fail_protocol(con);
  1160. return -1;
  1161. case CEPH_MSGR_TAG_BADAUTHORIZER:
  1162. con->auth_retry++;
  1163. dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
  1164. con->auth_retry);
  1165. if (con->auth_retry == 2) {
  1166. con->error_msg = "connect authorization failure";
  1167. return -1;
  1168. }
  1169. con->auth_retry = 1;
  1170. ret = prepare_write_connect(con->msgr, con, 0);
  1171. if (ret < 0)
  1172. return ret;
  1173. prepare_read_connect(con);
  1174. break;
  1175. case CEPH_MSGR_TAG_RESETSESSION:
  1176. /*
  1177. * If we connected with a large connect_seq but the peer
  1178. * has no record of a session with us (no connection, or
  1179. * connect_seq == 0), they will send RESETSESION to indicate
  1180. * that they must have reset their session, and may have
  1181. * dropped messages.
  1182. */
  1183. dout("process_connect got RESET peer seq %u\n",
  1184. le32_to_cpu(con->in_connect.connect_seq));
  1185. pr_err("%s%lld %s connection reset\n",
  1186. ENTITY_NAME(con->peer_name),
  1187. ceph_pr_addr(&con->peer_addr.in_addr));
  1188. reset_connection(con);
  1189. prepare_write_connect(con->msgr, con, 0);
  1190. prepare_read_connect(con);
  1191. /* Tell ceph about it. */
  1192. mutex_unlock(&con->mutex);
  1193. pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
  1194. if (con->ops->peer_reset)
  1195. con->ops->peer_reset(con);
  1196. mutex_lock(&con->mutex);
  1197. if (test_bit(CLOSED, &con->state) ||
  1198. test_bit(OPENING, &con->state))
  1199. return -EAGAIN;
  1200. break;
  1201. case CEPH_MSGR_TAG_RETRY_SESSION:
  1202. /*
  1203. * If we sent a smaller connect_seq than the peer has, try
  1204. * again with a larger value.
  1205. */
  1206. dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
  1207. le32_to_cpu(con->out_connect.connect_seq),
  1208. le32_to_cpu(con->in_connect.connect_seq));
  1209. con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
  1210. prepare_write_connect(con->msgr, con, 0);
  1211. prepare_read_connect(con);
  1212. break;
  1213. case CEPH_MSGR_TAG_RETRY_GLOBAL:
  1214. /*
  1215. * If we sent a smaller global_seq than the peer has, try
  1216. * again with a larger value.
  1217. */
  1218. dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
  1219. con->peer_global_seq,
  1220. le32_to_cpu(con->in_connect.global_seq));
  1221. get_global_seq(con->msgr,
  1222. le32_to_cpu(con->in_connect.global_seq));
  1223. prepare_write_connect(con->msgr, con, 0);
  1224. prepare_read_connect(con);
  1225. break;
  1226. case CEPH_MSGR_TAG_READY:
  1227. if (req_feat & ~server_feat) {
  1228. pr_err("%s%lld %s protocol feature mismatch,"
  1229. " my required %llx > server's %llx, need %llx\n",
  1230. ENTITY_NAME(con->peer_name),
  1231. ceph_pr_addr(&con->peer_addr.in_addr),
  1232. req_feat, server_feat, req_feat & ~server_feat);
  1233. con->error_msg = "missing required protocol features";
  1234. fail_protocol(con);
  1235. return -1;
  1236. }
  1237. clear_bit(CONNECTING, &con->state);
  1238. con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
  1239. con->connect_seq++;
  1240. con->peer_features = server_feat;
  1241. dout("process_connect got READY gseq %d cseq %d (%d)\n",
  1242. con->peer_global_seq,
  1243. le32_to_cpu(con->in_reply.connect_seq),
  1244. con->connect_seq);
  1245. WARN_ON(con->connect_seq !=
  1246. le32_to_cpu(con->in_reply.connect_seq));
  1247. if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
  1248. set_bit(LOSSYTX, &con->state);
  1249. prepare_read_tag(con);
  1250. break;
  1251. case CEPH_MSGR_TAG_WAIT:
  1252. /*
  1253. * If there is a connection race (we are opening
  1254. * connections to each other), one of us may just have
  1255. * to WAIT. This shouldn't happen if we are the
  1256. * client.
  1257. */
  1258. pr_err("process_connect got WAIT as client\n");
  1259. con->error_msg = "protocol error, got WAIT as client";
  1260. return -1;
  1261. default:
  1262. pr_err("connect protocol error, will retry\n");
  1263. con->error_msg = "protocol error, garbage tag during connect";
  1264. return -1;
  1265. }
  1266. return 0;
  1267. }
  1268. /*
  1269. * read (part of) an ack
  1270. */
  1271. static int read_partial_ack(struct ceph_connection *con)
  1272. {
  1273. int to = 0;
  1274. return read_partial(con, &to, sizeof(con->in_temp_ack),
  1275. &con->in_temp_ack);
  1276. }
  1277. /*
  1278. * We can finally discard anything that's been acked.
  1279. */
  1280. static void process_ack(struct ceph_connection *con)
  1281. {
  1282. struct ceph_msg *m;
  1283. u64 ack = le64_to_cpu(con->in_temp_ack);
  1284. u64 seq;
  1285. while (!list_empty(&con->out_sent)) {
  1286. m = list_first_entry(&con->out_sent, struct ceph_msg,
  1287. list_head);
  1288. seq = le64_to_cpu(m->hdr.seq);
  1289. if (seq > ack)
  1290. break;
  1291. dout("got ack for seq %llu type %d at %p\n", seq,
  1292. le16_to_cpu(m->hdr.type), m);
  1293. m->ack_stamp = jiffies;
  1294. ceph_msg_remove(m);
  1295. }
  1296. prepare_read_tag(con);
  1297. }
  1298. static int read_partial_message_section(struct ceph_connection *con,
  1299. struct kvec *section,
  1300. unsigned int sec_len, u32 *crc)
  1301. {
  1302. int ret, left;
  1303. BUG_ON(!section);
  1304. while (section->iov_len < sec_len) {
  1305. BUG_ON(section->iov_base == NULL);
  1306. left = sec_len - section->iov_len;
  1307. ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
  1308. section->iov_len, left);
  1309. if (ret <= 0)
  1310. return ret;
  1311. section->iov_len += ret;
  1312. if (section->iov_len == sec_len)
  1313. *crc = crc32c(0, section->iov_base,
  1314. section->iov_len);
  1315. }
  1316. return 1;
  1317. }
  1318. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  1319. struct ceph_msg_header *hdr,
  1320. int *skip);
  1321. static int read_partial_message_pages(struct ceph_connection *con,
  1322. struct page **pages,
  1323. unsigned data_len, int datacrc)
  1324. {
  1325. void *p;
  1326. int ret;
  1327. int left;
  1328. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1329. (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
  1330. /* (page) data */
  1331. BUG_ON(pages == NULL);
  1332. p = kmap(pages[con->in_msg_pos.page]);
  1333. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1334. left);
  1335. if (ret > 0 && datacrc)
  1336. con->in_data_crc =
  1337. crc32c(con->in_data_crc,
  1338. p + con->in_msg_pos.page_pos, ret);
  1339. kunmap(pages[con->in_msg_pos.page]);
  1340. if (ret <= 0)
  1341. return ret;
  1342. con->in_msg_pos.data_pos += ret;
  1343. con->in_msg_pos.page_pos += ret;
  1344. if (con->in_msg_pos.page_pos == PAGE_SIZE) {
  1345. con->in_msg_pos.page_pos = 0;
  1346. con->in_msg_pos.page++;
  1347. }
  1348. return ret;
  1349. }
  1350. #ifdef CONFIG_BLOCK
  1351. static int read_partial_message_bio(struct ceph_connection *con,
  1352. struct bio **bio_iter, int *bio_seg,
  1353. unsigned data_len, int datacrc)
  1354. {
  1355. struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
  1356. void *p;
  1357. int ret, left;
  1358. if (IS_ERR(bv))
  1359. return PTR_ERR(bv);
  1360. left = min((int)(data_len - con->in_msg_pos.data_pos),
  1361. (int)(bv->bv_len - con->in_msg_pos.page_pos));
  1362. p = kmap(bv->bv_page) + bv->bv_offset;
  1363. ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
  1364. left);
  1365. if (ret > 0 && datacrc)
  1366. con->in_data_crc =
  1367. crc32c(con->in_data_crc,
  1368. p + con->in_msg_pos.page_pos, ret);
  1369. kunmap(bv->bv_page);
  1370. if (ret <= 0)
  1371. return ret;
  1372. con->in_msg_pos.data_pos += ret;
  1373. con->in_msg_pos.page_pos += ret;
  1374. if (con->in_msg_pos.page_pos == bv->bv_len) {
  1375. con->in_msg_pos.page_pos = 0;
  1376. iter_bio_next(bio_iter, bio_seg);
  1377. }
  1378. return ret;
  1379. }
  1380. #endif
  1381. /*
  1382. * read (part of) a message.
  1383. */
  1384. static int read_partial_message(struct ceph_connection *con)
  1385. {
  1386. struct ceph_msg *m = con->in_msg;
  1387. int ret;
  1388. int to, left;
  1389. unsigned front_len, middle_len, data_len;
  1390. int datacrc = con->msgr->nocrc;
  1391. int skip;
  1392. u64 seq;
  1393. dout("read_partial_message con %p msg %p\n", con, m);
  1394. /* header */
  1395. while (con->in_base_pos < sizeof(con->in_hdr)) {
  1396. left = sizeof(con->in_hdr) - con->in_base_pos;
  1397. ret = ceph_tcp_recvmsg(con->sock,
  1398. (char *)&con->in_hdr + con->in_base_pos,
  1399. left);
  1400. if (ret <= 0)
  1401. return ret;
  1402. con->in_base_pos += ret;
  1403. if (con->in_base_pos == sizeof(con->in_hdr)) {
  1404. u32 crc = crc32c(0, (void *)&con->in_hdr,
  1405. sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
  1406. if (crc != le32_to_cpu(con->in_hdr.crc)) {
  1407. pr_err("read_partial_message bad hdr "
  1408. " crc %u != expected %u\n",
  1409. crc, con->in_hdr.crc);
  1410. return -EBADMSG;
  1411. }
  1412. }
  1413. }
  1414. front_len = le32_to_cpu(con->in_hdr.front_len);
  1415. if (front_len > CEPH_MSG_MAX_FRONT_LEN)
  1416. return -EIO;
  1417. middle_len = le32_to_cpu(con->in_hdr.middle_len);
  1418. if (middle_len > CEPH_MSG_MAX_DATA_LEN)
  1419. return -EIO;
  1420. data_len = le32_to_cpu(con->in_hdr.data_len);
  1421. if (data_len > CEPH_MSG_MAX_DATA_LEN)
  1422. return -EIO;
  1423. /* verify seq# */
  1424. seq = le64_to_cpu(con->in_hdr.seq);
  1425. if ((s64)seq - (s64)con->in_seq < 1) {
  1426. pr_info("skipping %s%lld %s seq %lld expected %lld\n",
  1427. ENTITY_NAME(con->peer_name),
  1428. ceph_pr_addr(&con->peer_addr.in_addr),
  1429. seq, con->in_seq + 1);
  1430. con->in_base_pos = -front_len - middle_len - data_len -
  1431. sizeof(m->footer);
  1432. con->in_tag = CEPH_MSGR_TAG_READY;
  1433. return 0;
  1434. } else if ((s64)seq - (s64)con->in_seq > 1) {
  1435. pr_err("read_partial_message bad seq %lld expected %lld\n",
  1436. seq, con->in_seq + 1);
  1437. con->error_msg = "bad message sequence # for incoming message";
  1438. return -EBADMSG;
  1439. }
  1440. /* allocate message? */
  1441. if (!con->in_msg) {
  1442. dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
  1443. con->in_hdr.front_len, con->in_hdr.data_len);
  1444. skip = 0;
  1445. con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
  1446. if (skip) {
  1447. /* skip this message */
  1448. dout("alloc_msg said skip message\n");
  1449. BUG_ON(con->in_msg);
  1450. con->in_base_pos = -front_len - middle_len - data_len -
  1451. sizeof(m->footer);
  1452. con->in_tag = CEPH_MSGR_TAG_READY;
  1453. con->in_seq++;
  1454. return 0;
  1455. }
  1456. if (!con->in_msg) {
  1457. con->error_msg =
  1458. "error allocating memory for incoming message";
  1459. return -ENOMEM;
  1460. }
  1461. m = con->in_msg;
  1462. m->front.iov_len = 0; /* haven't read it yet */
  1463. if (m->middle)
  1464. m->middle->vec.iov_len = 0;
  1465. con->in_msg_pos.page = 0;
  1466. if (m->pages)
  1467. con->in_msg_pos.page_pos = m->page_alignment;
  1468. else
  1469. con->in_msg_pos.page_pos = 0;
  1470. con->in_msg_pos.data_pos = 0;
  1471. }
  1472. /* front */
  1473. ret = read_partial_message_section(con, &m->front, front_len,
  1474. &con->in_front_crc);
  1475. if (ret <= 0)
  1476. return ret;
  1477. /* middle */
  1478. if (m->middle) {
  1479. ret = read_partial_message_section(con, &m->middle->vec,
  1480. middle_len,
  1481. &con->in_middle_crc);
  1482. if (ret <= 0)
  1483. return ret;
  1484. }
  1485. #ifdef CONFIG_BLOCK
  1486. if (m->bio && !m->bio_iter)
  1487. init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
  1488. #endif
  1489. /* (page) data */
  1490. while (con->in_msg_pos.data_pos < data_len) {
  1491. if (m->pages) {
  1492. ret = read_partial_message_pages(con, m->pages,
  1493. data_len, datacrc);
  1494. if (ret <= 0)
  1495. return ret;
  1496. #ifdef CONFIG_BLOCK
  1497. } else if (m->bio) {
  1498. ret = read_partial_message_bio(con,
  1499. &m->bio_iter, &m->bio_seg,
  1500. data_len, datacrc);
  1501. if (ret <= 0)
  1502. return ret;
  1503. #endif
  1504. } else {
  1505. BUG_ON(1);
  1506. }
  1507. }
  1508. /* footer */
  1509. to = sizeof(m->hdr) + sizeof(m->footer);
  1510. while (con->in_base_pos < to) {
  1511. left = to - con->in_base_pos;
  1512. ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
  1513. (con->in_base_pos - sizeof(m->hdr)),
  1514. left);
  1515. if (ret <= 0)
  1516. return ret;
  1517. con->in_base_pos += ret;
  1518. }
  1519. dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
  1520. m, front_len, m->footer.front_crc, middle_len,
  1521. m->footer.middle_crc, data_len, m->footer.data_crc);
  1522. /* crc ok? */
  1523. if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
  1524. pr_err("read_partial_message %p front crc %u != exp. %u\n",
  1525. m, con->in_front_crc, m->footer.front_crc);
  1526. return -EBADMSG;
  1527. }
  1528. if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
  1529. pr_err("read_partial_message %p middle crc %u != exp %u\n",
  1530. m, con->in_middle_crc, m->footer.middle_crc);
  1531. return -EBADMSG;
  1532. }
  1533. if (datacrc &&
  1534. (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
  1535. con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
  1536. pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
  1537. con->in_data_crc, le32_to_cpu(m->footer.data_crc));
  1538. return -EBADMSG;
  1539. }
  1540. return 1; /* done! */
  1541. }
  1542. /*
  1543. * Process message. This happens in the worker thread. The callback should
  1544. * be careful not to do anything that waits on other incoming messages or it
  1545. * may deadlock.
  1546. */
  1547. static void process_message(struct ceph_connection *con)
  1548. {
  1549. struct ceph_msg *msg;
  1550. msg = con->in_msg;
  1551. con->in_msg = NULL;
  1552. /* if first message, set peer_name */
  1553. if (con->peer_name.type == 0)
  1554. con->peer_name = msg->hdr.src;
  1555. con->in_seq++;
  1556. mutex_unlock(&con->mutex);
  1557. dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
  1558. msg, le64_to_cpu(msg->hdr.seq),
  1559. ENTITY_NAME(msg->hdr.src),
  1560. le16_to_cpu(msg->hdr.type),
  1561. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1562. le32_to_cpu(msg->hdr.front_len),
  1563. le32_to_cpu(msg->hdr.data_len),
  1564. con->in_front_crc, con->in_middle_crc, con->in_data_crc);
  1565. con->ops->dispatch(con, msg);
  1566. mutex_lock(&con->mutex);
  1567. prepare_read_tag(con);
  1568. }
  1569. /*
  1570. * Write something to the socket. Called in a worker thread when the
  1571. * socket appears to be writeable and we have something ready to send.
  1572. */
  1573. static int try_write(struct ceph_connection *con)
  1574. {
  1575. struct ceph_messenger *msgr = con->msgr;
  1576. int ret = 1;
  1577. dout("try_write start %p state %lu nref %d\n", con, con->state,
  1578. atomic_read(&con->nref));
  1579. more:
  1580. dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
  1581. /* open the socket first? */
  1582. if (con->sock == NULL) {
  1583. prepare_write_banner(msgr, con);
  1584. prepare_write_connect(msgr, con, 1);
  1585. prepare_read_banner(con);
  1586. set_bit(CONNECTING, &con->state);
  1587. clear_bit(NEGOTIATING, &con->state);
  1588. BUG_ON(con->in_msg);
  1589. con->in_tag = CEPH_MSGR_TAG_READY;
  1590. dout("try_write initiating connect on %p new state %lu\n",
  1591. con, con->state);
  1592. con->sock = ceph_tcp_connect(con);
  1593. if (IS_ERR(con->sock)) {
  1594. con->sock = NULL;
  1595. con->error_msg = "connect error";
  1596. ret = -1;
  1597. goto out;
  1598. }
  1599. }
  1600. more_kvec:
  1601. /* kvec data queued? */
  1602. if (con->out_skip) {
  1603. ret = write_partial_skip(con);
  1604. if (ret <= 0)
  1605. goto out;
  1606. }
  1607. if (con->out_kvec_left) {
  1608. ret = write_partial_kvec(con);
  1609. if (ret <= 0)
  1610. goto out;
  1611. }
  1612. /* msg pages? */
  1613. if (con->out_msg) {
  1614. if (con->out_msg_done) {
  1615. ceph_msg_put(con->out_msg);
  1616. con->out_msg = NULL; /* we're done with this one */
  1617. goto do_next;
  1618. }
  1619. ret = write_partial_msg_pages(con);
  1620. if (ret == 1)
  1621. goto more_kvec; /* we need to send the footer, too! */
  1622. if (ret == 0)
  1623. goto out;
  1624. if (ret < 0) {
  1625. dout("try_write write_partial_msg_pages err %d\n",
  1626. ret);
  1627. goto out;
  1628. }
  1629. }
  1630. do_next:
  1631. if (!test_bit(CONNECTING, &con->state)) {
  1632. /* is anything else pending? */
  1633. if (!list_empty(&con->out_queue)) {
  1634. prepare_write_message(con);
  1635. goto more;
  1636. }
  1637. if (con->in_seq > con->in_seq_acked) {
  1638. prepare_write_ack(con);
  1639. goto more;
  1640. }
  1641. if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
  1642. prepare_write_keepalive(con);
  1643. goto more;
  1644. }
  1645. }
  1646. /* Nothing to do! */
  1647. clear_bit(WRITE_PENDING, &con->state);
  1648. dout("try_write nothing else to write.\n");
  1649. ret = 0;
  1650. out:
  1651. dout("try_write done on %p ret %d\n", con, ret);
  1652. return ret;
  1653. }
  1654. /*
  1655. * Read what we can from the socket.
  1656. */
  1657. static int try_read(struct ceph_connection *con)
  1658. {
  1659. int ret = -1;
  1660. if (!con->sock)
  1661. return 0;
  1662. if (test_bit(STANDBY, &con->state))
  1663. return 0;
  1664. dout("try_read start on %p\n", con);
  1665. more:
  1666. dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
  1667. con->in_base_pos);
  1668. /*
  1669. * process_connect and process_message drop and re-take
  1670. * con->mutex. make sure we handle a racing close or reopen.
  1671. */
  1672. if (test_bit(CLOSED, &con->state) ||
  1673. test_bit(OPENING, &con->state)) {
  1674. ret = -EAGAIN;
  1675. goto out;
  1676. }
  1677. if (test_bit(CONNECTING, &con->state)) {
  1678. if (!test_bit(NEGOTIATING, &con->state)) {
  1679. dout("try_read connecting\n");
  1680. ret = read_partial_banner(con);
  1681. if (ret <= 0)
  1682. goto out;
  1683. ret = process_banner(con);
  1684. if (ret < 0)
  1685. goto out;
  1686. }
  1687. ret = read_partial_connect(con);
  1688. if (ret <= 0)
  1689. goto out;
  1690. ret = process_connect(con);
  1691. if (ret < 0)
  1692. goto out;
  1693. goto more;
  1694. }
  1695. if (con->in_base_pos < 0) {
  1696. /*
  1697. * skipping + discarding content.
  1698. *
  1699. * FIXME: there must be a better way to do this!
  1700. */
  1701. static char buf[1024];
  1702. int skip = min(1024, -con->in_base_pos);
  1703. dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
  1704. ret = ceph_tcp_recvmsg(con->sock, buf, skip);
  1705. if (ret <= 0)
  1706. goto out;
  1707. con->in_base_pos += ret;
  1708. if (con->in_base_pos)
  1709. goto more;
  1710. }
  1711. if (con->in_tag == CEPH_MSGR_TAG_READY) {
  1712. /*
  1713. * what's next?
  1714. */
  1715. ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
  1716. if (ret <= 0)
  1717. goto out;
  1718. dout("try_read got tag %d\n", (int)con->in_tag);
  1719. switch (con->in_tag) {
  1720. case CEPH_MSGR_TAG_MSG:
  1721. prepare_read_message(con);
  1722. break;
  1723. case CEPH_MSGR_TAG_ACK:
  1724. prepare_read_ack(con);
  1725. break;
  1726. case CEPH_MSGR_TAG_CLOSE:
  1727. set_bit(CLOSED, &con->state); /* fixme */
  1728. goto out;
  1729. default:
  1730. goto bad_tag;
  1731. }
  1732. }
  1733. if (con->in_tag == CEPH_MSGR_TAG_MSG) {
  1734. ret = read_partial_message(con);
  1735. if (ret <= 0) {
  1736. switch (ret) {
  1737. case -EBADMSG:
  1738. con->error_msg = "bad crc";
  1739. ret = -EIO;
  1740. break;
  1741. case -EIO:
  1742. con->error_msg = "io error";
  1743. break;
  1744. }
  1745. goto out;
  1746. }
  1747. if (con->in_tag == CEPH_MSGR_TAG_READY)
  1748. goto more;
  1749. process_message(con);
  1750. goto more;
  1751. }
  1752. if (con->in_tag == CEPH_MSGR_TAG_ACK) {
  1753. ret = read_partial_ack(con);
  1754. if (ret <= 0)
  1755. goto out;
  1756. process_ack(con);
  1757. goto more;
  1758. }
  1759. out:
  1760. dout("try_read done on %p ret %d\n", con, ret);
  1761. return ret;
  1762. bad_tag:
  1763. pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
  1764. con->error_msg = "protocol error, garbage tag";
  1765. ret = -1;
  1766. goto out;
  1767. }
  1768. /*
  1769. * Atomically queue work on a connection. Bump @con reference to
  1770. * avoid races with connection teardown.
  1771. */
  1772. static void queue_con(struct ceph_connection *con)
  1773. {
  1774. if (test_bit(DEAD, &con->state)) {
  1775. dout("queue_con %p ignoring: DEAD\n",
  1776. con);
  1777. return;
  1778. }
  1779. if (!con->ops->get(con)) {
  1780. dout("queue_con %p ref count 0\n", con);
  1781. return;
  1782. }
  1783. if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
  1784. dout("queue_con %p - already queued\n", con);
  1785. con->ops->put(con);
  1786. } else {
  1787. dout("queue_con %p\n", con);
  1788. }
  1789. }
  1790. /*
  1791. * Do some work on a connection. Drop a connection ref when we're done.
  1792. */
  1793. static void con_work(struct work_struct *work)
  1794. {
  1795. struct ceph_connection *con = container_of(work, struct ceph_connection,
  1796. work.work);
  1797. int ret;
  1798. mutex_lock(&con->mutex);
  1799. restart:
  1800. if (test_and_clear_bit(BACKOFF, &con->state)) {
  1801. dout("con_work %p backing off\n", con);
  1802. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1803. round_jiffies_relative(con->delay))) {
  1804. dout("con_work %p backoff %lu\n", con, con->delay);
  1805. mutex_unlock(&con->mutex);
  1806. return;
  1807. } else {
  1808. con->ops->put(con);
  1809. dout("con_work %p FAILED to back off %lu\n", con,
  1810. con->delay);
  1811. }
  1812. }
  1813. if (test_bit(STANDBY, &con->state)) {
  1814. dout("con_work %p STANDBY\n", con);
  1815. goto done;
  1816. }
  1817. if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
  1818. dout("con_work CLOSED\n");
  1819. con_close_socket(con);
  1820. goto done;
  1821. }
  1822. if (test_and_clear_bit(OPENING, &con->state)) {
  1823. /* reopen w/ new peer */
  1824. dout("con_work OPENING\n");
  1825. con_close_socket(con);
  1826. }
  1827. if (test_and_clear_bit(SOCK_CLOSED, &con->state))
  1828. goto fault;
  1829. ret = try_read(con);
  1830. if (ret == -EAGAIN)
  1831. goto restart;
  1832. if (ret < 0)
  1833. goto fault;
  1834. ret = try_write(con);
  1835. if (ret == -EAGAIN)
  1836. goto restart;
  1837. if (ret < 0)
  1838. goto fault;
  1839. done:
  1840. mutex_unlock(&con->mutex);
  1841. done_unlocked:
  1842. con->ops->put(con);
  1843. return;
  1844. fault:
  1845. mutex_unlock(&con->mutex);
  1846. ceph_fault(con); /* error/fault path */
  1847. goto done_unlocked;
  1848. }
  1849. /*
  1850. * Generic error/fault handler. A retry mechanism is used with
  1851. * exponential backoff
  1852. */
  1853. static void ceph_fault(struct ceph_connection *con)
  1854. {
  1855. pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
  1856. ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
  1857. dout("fault %p state %lu to peer %s\n",
  1858. con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
  1859. if (test_bit(LOSSYTX, &con->state)) {
  1860. dout("fault on LOSSYTX channel\n");
  1861. goto out;
  1862. }
  1863. mutex_lock(&con->mutex);
  1864. if (test_bit(CLOSED, &con->state))
  1865. goto out_unlock;
  1866. con_close_socket(con);
  1867. if (con->in_msg) {
  1868. ceph_msg_put(con->in_msg);
  1869. con->in_msg = NULL;
  1870. }
  1871. /* Requeue anything that hasn't been acked */
  1872. list_splice_init(&con->out_sent, &con->out_queue);
  1873. /* If there are no messages queued or keepalive pending, place
  1874. * the connection in a STANDBY state */
  1875. if (list_empty(&con->out_queue) &&
  1876. !test_bit(KEEPALIVE_PENDING, &con->state)) {
  1877. dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
  1878. clear_bit(WRITE_PENDING, &con->state);
  1879. set_bit(STANDBY, &con->state);
  1880. } else {
  1881. /* retry after a delay. */
  1882. if (con->delay == 0)
  1883. con->delay = BASE_DELAY_INTERVAL;
  1884. else if (con->delay < MAX_DELAY_INTERVAL)
  1885. con->delay *= 2;
  1886. con->ops->get(con);
  1887. if (queue_delayed_work(ceph_msgr_wq, &con->work,
  1888. round_jiffies_relative(con->delay))) {
  1889. dout("fault queued %p delay %lu\n", con, con->delay);
  1890. } else {
  1891. con->ops->put(con);
  1892. dout("fault failed to queue %p delay %lu, backoff\n",
  1893. con, con->delay);
  1894. /*
  1895. * In many cases we see a socket state change
  1896. * while con_work is running and end up
  1897. * queuing (non-delayed) work, such that we
  1898. * can't backoff with a delay. Set a flag so
  1899. * that when con_work restarts we schedule the
  1900. * delay then.
  1901. */
  1902. set_bit(BACKOFF, &con->state);
  1903. }
  1904. }
  1905. out_unlock:
  1906. mutex_unlock(&con->mutex);
  1907. out:
  1908. /*
  1909. * in case we faulted due to authentication, invalidate our
  1910. * current tickets so that we can get new ones.
  1911. */
  1912. if (con->auth_retry && con->ops->invalidate_authorizer) {
  1913. dout("calling invalidate_authorizer()\n");
  1914. con->ops->invalidate_authorizer(con);
  1915. }
  1916. if (con->ops->fault)
  1917. con->ops->fault(con);
  1918. }
  1919. /*
  1920. * create a new messenger instance
  1921. */
  1922. struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
  1923. u32 supported_features,
  1924. u32 required_features)
  1925. {
  1926. struct ceph_messenger *msgr;
  1927. msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
  1928. if (msgr == NULL)
  1929. return ERR_PTR(-ENOMEM);
  1930. msgr->supported_features = supported_features;
  1931. msgr->required_features = required_features;
  1932. spin_lock_init(&msgr->global_seq_lock);
  1933. /* the zero page is needed if a request is "canceled" while the message
  1934. * is being written over the socket */
  1935. msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
  1936. if (!msgr->zero_page) {
  1937. kfree(msgr);
  1938. return ERR_PTR(-ENOMEM);
  1939. }
  1940. kmap(msgr->zero_page);
  1941. if (myaddr)
  1942. msgr->inst.addr = *myaddr;
  1943. /* select a random nonce */
  1944. msgr->inst.addr.type = 0;
  1945. get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
  1946. encode_my_addr(msgr);
  1947. dout("messenger_create %p\n", msgr);
  1948. return msgr;
  1949. }
  1950. EXPORT_SYMBOL(ceph_messenger_create);
  1951. void ceph_messenger_destroy(struct ceph_messenger *msgr)
  1952. {
  1953. dout("destroy %p\n", msgr);
  1954. kunmap(msgr->zero_page);
  1955. __free_page(msgr->zero_page);
  1956. kfree(msgr);
  1957. dout("destroyed messenger %p\n", msgr);
  1958. }
  1959. EXPORT_SYMBOL(ceph_messenger_destroy);
  1960. static void clear_standby(struct ceph_connection *con)
  1961. {
  1962. /* come back from STANDBY? */
  1963. if (test_and_clear_bit(STANDBY, &con->state)) {
  1964. mutex_lock(&con->mutex);
  1965. dout("clear_standby %p and ++connect_seq\n", con);
  1966. con->connect_seq++;
  1967. WARN_ON(test_bit(WRITE_PENDING, &con->state));
  1968. WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
  1969. mutex_unlock(&con->mutex);
  1970. }
  1971. }
  1972. /*
  1973. * Queue up an outgoing message on the given connection.
  1974. */
  1975. void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
  1976. {
  1977. if (test_bit(CLOSED, &con->state)) {
  1978. dout("con_send %p closed, dropping %p\n", con, msg);
  1979. ceph_msg_put(msg);
  1980. return;
  1981. }
  1982. /* set src+dst */
  1983. msg->hdr.src = con->msgr->inst.name;
  1984. BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
  1985. msg->needs_out_seq = true;
  1986. /* queue */
  1987. mutex_lock(&con->mutex);
  1988. BUG_ON(!list_empty(&msg->list_head));
  1989. list_add_tail(&msg->list_head, &con->out_queue);
  1990. dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
  1991. ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
  1992. ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
  1993. le32_to_cpu(msg->hdr.front_len),
  1994. le32_to_cpu(msg->hdr.middle_len),
  1995. le32_to_cpu(msg->hdr.data_len));
  1996. mutex_unlock(&con->mutex);
  1997. /* if there wasn't anything waiting to send before, queue
  1998. * new work */
  1999. clear_standby(con);
  2000. if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  2001. queue_con(con);
  2002. }
  2003. EXPORT_SYMBOL(ceph_con_send);
  2004. /*
  2005. * Revoke a message that was previously queued for send
  2006. */
  2007. void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
  2008. {
  2009. mutex_lock(&con->mutex);
  2010. if (!list_empty(&msg->list_head)) {
  2011. dout("con_revoke %p msg %p - was on queue\n", con, msg);
  2012. list_del_init(&msg->list_head);
  2013. ceph_msg_put(msg);
  2014. msg->hdr.seq = 0;
  2015. }
  2016. if (con->out_msg == msg) {
  2017. dout("con_revoke %p msg %p - was sending\n", con, msg);
  2018. con->out_msg = NULL;
  2019. if (con->out_kvec_is_msg) {
  2020. con->out_skip = con->out_kvec_bytes;
  2021. con->out_kvec_is_msg = false;
  2022. }
  2023. ceph_msg_put(msg);
  2024. msg->hdr.seq = 0;
  2025. }
  2026. mutex_unlock(&con->mutex);
  2027. }
  2028. /*
  2029. * Revoke a message that we may be reading data into
  2030. */
  2031. void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
  2032. {
  2033. mutex_lock(&con->mutex);
  2034. if (con->in_msg && con->in_msg == msg) {
  2035. unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
  2036. unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
  2037. unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
  2038. /* skip rest of message */
  2039. dout("con_revoke_pages %p msg %p revoked\n", con, msg);
  2040. con->in_base_pos = con->in_base_pos -
  2041. sizeof(struct ceph_msg_header) -
  2042. front_len -
  2043. middle_len -
  2044. data_len -
  2045. sizeof(struct ceph_msg_footer);
  2046. ceph_msg_put(con->in_msg);
  2047. con->in_msg = NULL;
  2048. con->in_tag = CEPH_MSGR_TAG_READY;
  2049. con->in_seq++;
  2050. } else {
  2051. dout("con_revoke_pages %p msg %p pages %p no-op\n",
  2052. con, con->in_msg, msg);
  2053. }
  2054. mutex_unlock(&con->mutex);
  2055. }
  2056. /*
  2057. * Queue a keepalive byte to ensure the tcp connection is alive.
  2058. */
  2059. void ceph_con_keepalive(struct ceph_connection *con)
  2060. {
  2061. dout("con_keepalive %p\n", con);
  2062. clear_standby(con);
  2063. if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
  2064. test_and_set_bit(WRITE_PENDING, &con->state) == 0)
  2065. queue_con(con);
  2066. }
  2067. EXPORT_SYMBOL(ceph_con_keepalive);
  2068. /*
  2069. * construct a new message with given type, size
  2070. * the new msg has a ref count of 1.
  2071. */
  2072. struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
  2073. bool can_fail)
  2074. {
  2075. struct ceph_msg *m;
  2076. m = kmalloc(sizeof(*m), flags);
  2077. if (m == NULL)
  2078. goto out;
  2079. kref_init(&m->kref);
  2080. INIT_LIST_HEAD(&m->list_head);
  2081. m->hdr.tid = 0;
  2082. m->hdr.type = cpu_to_le16(type);
  2083. m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
  2084. m->hdr.version = 0;
  2085. m->hdr.front_len = cpu_to_le32(front_len);
  2086. m->hdr.middle_len = 0;
  2087. m->hdr.data_len = 0;
  2088. m->hdr.data_off = 0;
  2089. m->hdr.reserved = 0;
  2090. m->footer.front_crc = 0;
  2091. m->footer.middle_crc = 0;
  2092. m->footer.data_crc = 0;
  2093. m->footer.flags = 0;
  2094. m->front_max = front_len;
  2095. m->front_is_vmalloc = false;
  2096. m->more_to_follow = false;
  2097. m->ack_stamp = 0;
  2098. m->pool = NULL;
  2099. /* middle */
  2100. m->middle = NULL;
  2101. /* data */
  2102. m->nr_pages = 0;
  2103. m->page_alignment = 0;
  2104. m->pages = NULL;
  2105. m->pagelist = NULL;
  2106. m->bio = NULL;
  2107. m->bio_iter = NULL;
  2108. m->bio_seg = 0;
  2109. m->trail = NULL;
  2110. /* front */
  2111. if (front_len) {
  2112. if (front_len > PAGE_CACHE_SIZE) {
  2113. m->front.iov_base = __vmalloc(front_len, flags,
  2114. PAGE_KERNEL);
  2115. m->front_is_vmalloc = true;
  2116. } else {
  2117. m->front.iov_base = kmalloc(front_len, flags);
  2118. }
  2119. if (m->front.iov_base == NULL) {
  2120. dout("ceph_msg_new can't allocate %d bytes\n",
  2121. front_len);
  2122. goto out2;
  2123. }
  2124. } else {
  2125. m->front.iov_base = NULL;
  2126. }
  2127. m->front.iov_len = front_len;
  2128. dout("ceph_msg_new %p front %d\n", m, front_len);
  2129. return m;
  2130. out2:
  2131. ceph_msg_put(m);
  2132. out:
  2133. if (!can_fail) {
  2134. pr_err("msg_new can't create type %d front %d\n", type,
  2135. front_len);
  2136. WARN_ON(1);
  2137. } else {
  2138. dout("msg_new can't create type %d front %d\n", type,
  2139. front_len);
  2140. }
  2141. return NULL;
  2142. }
  2143. EXPORT_SYMBOL(ceph_msg_new);
  2144. /*
  2145. * Allocate "middle" portion of a message, if it is needed and wasn't
  2146. * allocated by alloc_msg. This allows us to read a small fixed-size
  2147. * per-type header in the front and then gracefully fail (i.e.,
  2148. * propagate the error to the caller based on info in the front) when
  2149. * the middle is too large.
  2150. */
  2151. static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
  2152. {
  2153. int type = le16_to_cpu(msg->hdr.type);
  2154. int middle_len = le32_to_cpu(msg->hdr.middle_len);
  2155. dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
  2156. ceph_msg_type_name(type), middle_len);
  2157. BUG_ON(!middle_len);
  2158. BUG_ON(msg->middle);
  2159. msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
  2160. if (!msg->middle)
  2161. return -ENOMEM;
  2162. return 0;
  2163. }
  2164. /*
  2165. * Generic message allocator, for incoming messages.
  2166. */
  2167. static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
  2168. struct ceph_msg_header *hdr,
  2169. int *skip)
  2170. {
  2171. int type = le16_to_cpu(hdr->type);
  2172. int front_len = le32_to_cpu(hdr->front_len);
  2173. int middle_len = le32_to_cpu(hdr->middle_len);
  2174. struct ceph_msg *msg = NULL;
  2175. int ret;
  2176. if (con->ops->alloc_msg) {
  2177. mutex_unlock(&con->mutex);
  2178. msg = con->ops->alloc_msg(con, hdr, skip);
  2179. mutex_lock(&con->mutex);
  2180. if (!msg || *skip)
  2181. return NULL;
  2182. }
  2183. if (!msg) {
  2184. *skip = 0;
  2185. msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
  2186. if (!msg) {
  2187. pr_err("unable to allocate msg type %d len %d\n",
  2188. type, front_len);
  2189. return NULL;
  2190. }
  2191. msg->page_alignment = le16_to_cpu(hdr->data_off);
  2192. }
  2193. memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
  2194. if (middle_len && !msg->middle) {
  2195. ret = ceph_alloc_middle(con, msg);
  2196. if (ret < 0) {
  2197. ceph_msg_put(msg);
  2198. return NULL;
  2199. }
  2200. }
  2201. return msg;
  2202. }
  2203. /*
  2204. * Free a generically kmalloc'd message.
  2205. */
  2206. void ceph_msg_kfree(struct ceph_msg *m)
  2207. {
  2208. dout("msg_kfree %p\n", m);
  2209. if (m->front_is_vmalloc)
  2210. vfree(m->front.iov_base);
  2211. else
  2212. kfree(m->front.iov_base);
  2213. kfree(m);
  2214. }
  2215. /*
  2216. * Drop a msg ref. Destroy as needed.
  2217. */
  2218. void ceph_msg_last_put(struct kref *kref)
  2219. {
  2220. struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
  2221. dout("ceph_msg_put last one on %p\n", m);
  2222. WARN_ON(!list_empty(&m->list_head));
  2223. /* drop middle, data, if any */
  2224. if (m->middle) {
  2225. ceph_buffer_put(m->middle);
  2226. m->middle = NULL;
  2227. }
  2228. m->nr_pages = 0;
  2229. m->pages = NULL;
  2230. if (m->pagelist) {
  2231. ceph_pagelist_release(m->pagelist);
  2232. kfree(m->pagelist);
  2233. m->pagelist = NULL;
  2234. }
  2235. m->trail = NULL;
  2236. if (m->pool)
  2237. ceph_msgpool_put(m->pool, m);
  2238. else
  2239. ceph_msg_kfree(m);
  2240. }
  2241. EXPORT_SYMBOL(ceph_msg_last_put);
  2242. void ceph_msg_dump(struct ceph_msg *msg)
  2243. {
  2244. pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
  2245. msg->front_max, msg->nr_pages);
  2246. print_hex_dump(KERN_DEBUG, "header: ",
  2247. DUMP_PREFIX_OFFSET, 16, 1,
  2248. &msg->hdr, sizeof(msg->hdr), true);
  2249. print_hex_dump(KERN_DEBUG, " front: ",
  2250. DUMP_PREFIX_OFFSET, 16, 1,
  2251. msg->front.iov_base, msg->front.iov_len, true);
  2252. if (msg->middle)
  2253. print_hex_dump(KERN_DEBUG, "middle: ",
  2254. DUMP_PREFIX_OFFSET, 16, 1,
  2255. msg->middle->vec.iov_base,
  2256. msg->middle->vec.iov_len, true);
  2257. print_hex_dump(KERN_DEBUG, "footer: ",
  2258. DUMP_PREFIX_OFFSET, 16, 1,
  2259. &msg->footer, sizeof(msg->footer), true);
  2260. }
  2261. EXPORT_SYMBOL(ceph_msg_dump);