page-writeback.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008
  1. /*
  2. * mm/page-writeback.c
  3. *
  4. * Copyright (C) 2002, Linus Torvalds.
  5. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  6. *
  7. * Contains functions related to writing back dirty pages at the
  8. * address_space level.
  9. *
  10. * 10Apr2002 Andrew Morton
  11. * Initial version
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/export.h>
  15. #include <linux/spinlock.h>
  16. #include <linux/fs.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/slab.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/writeback.h>
  22. #include <linux/init.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/task_io_accounting_ops.h>
  25. #include <linux/blkdev.h>
  26. #include <linux/mpage.h>
  27. #include <linux/rmap.h>
  28. #include <linux/percpu.h>
  29. #include <linux/notifier.h>
  30. #include <linux/smp.h>
  31. #include <linux/sysctl.h>
  32. #include <linux/cpu.h>
  33. #include <linux/syscalls.h>
  34. #include <linux/buffer_head.h>
  35. #include <linux/pagevec.h>
  36. #include <trace/events/writeback.h>
  37. /*
  38. * Sleep at most 200ms at a time in balance_dirty_pages().
  39. */
  40. #define MAX_PAUSE max(HZ/5, 1)
  41. /*
  42. * Estimate write bandwidth at 200ms intervals.
  43. */
  44. #define BANDWIDTH_INTERVAL max(HZ/5, 1)
  45. #define RATELIMIT_CALC_SHIFT 10
  46. /*
  47. * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  48. * will look to see if it needs to force writeback or throttling.
  49. */
  50. static long ratelimit_pages = 32;
  51. /* The following parameters are exported via /proc/sys/vm */
  52. /*
  53. * Start background writeback (via writeback threads) at this percentage
  54. */
  55. int dirty_background_ratio = 10;
  56. /*
  57. * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  58. * dirty_background_ratio * the amount of dirtyable memory
  59. */
  60. unsigned long dirty_background_bytes;
  61. /*
  62. * free highmem will not be subtracted from the total free memory
  63. * for calculating free ratios if vm_highmem_is_dirtyable is true
  64. */
  65. int vm_highmem_is_dirtyable;
  66. /*
  67. * The generator of dirty data starts writeback at this percentage
  68. */
  69. int vm_dirty_ratio = 20;
  70. /*
  71. * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  72. * vm_dirty_ratio * the amount of dirtyable memory
  73. */
  74. unsigned long vm_dirty_bytes;
  75. /*
  76. * The interval between `kupdate'-style writebacks
  77. */
  78. unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
  79. /*
  80. * The longest time for which data is allowed to remain dirty
  81. */
  82. unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
  83. /*
  84. * Flag that makes the machine dump writes/reads and block dirtyings.
  85. */
  86. int block_dump;
  87. /*
  88. * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  89. * a full sync is triggered after this time elapses without any disk activity.
  90. */
  91. int laptop_mode;
  92. EXPORT_SYMBOL(laptop_mode);
  93. /* End of sysctl-exported parameters */
  94. unsigned long global_dirty_limit;
  95. /*
  96. * Scale the writeback cache size proportional to the relative writeout speeds.
  97. *
  98. * We do this by keeping a floating proportion between BDIs, based on page
  99. * writeback completions [end_page_writeback()]. Those devices that write out
  100. * pages fastest will get the larger share, while the slower will get a smaller
  101. * share.
  102. *
  103. * We use page writeout completions because we are interested in getting rid of
  104. * dirty pages. Having them written out is the primary goal.
  105. *
  106. * We introduce a concept of time, a period over which we measure these events,
  107. * because demand can/will vary over time. The length of this period itself is
  108. * measured in page writeback completions.
  109. *
  110. */
  111. static struct prop_descriptor vm_completions;
  112. static struct prop_descriptor vm_dirties;
  113. /*
  114. * couple the period to the dirty_ratio:
  115. *
  116. * period/2 ~ roundup_pow_of_two(dirty limit)
  117. */
  118. static int calc_period_shift(void)
  119. {
  120. unsigned long dirty_total;
  121. if (vm_dirty_bytes)
  122. dirty_total = vm_dirty_bytes / PAGE_SIZE;
  123. else
  124. dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
  125. 100;
  126. return 2 + ilog2(dirty_total - 1);
  127. }
  128. /*
  129. * update the period when the dirty threshold changes.
  130. */
  131. static void update_completion_period(void)
  132. {
  133. int shift = calc_period_shift();
  134. prop_change_shift(&vm_completions, shift);
  135. prop_change_shift(&vm_dirties, shift);
  136. writeback_set_ratelimit();
  137. }
  138. int dirty_background_ratio_handler(struct ctl_table *table, int write,
  139. void __user *buffer, size_t *lenp,
  140. loff_t *ppos)
  141. {
  142. int ret;
  143. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  144. if (ret == 0 && write)
  145. dirty_background_bytes = 0;
  146. return ret;
  147. }
  148. int dirty_background_bytes_handler(struct ctl_table *table, int write,
  149. void __user *buffer, size_t *lenp,
  150. loff_t *ppos)
  151. {
  152. int ret;
  153. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  154. if (ret == 0 && write)
  155. dirty_background_ratio = 0;
  156. return ret;
  157. }
  158. int dirty_ratio_handler(struct ctl_table *table, int write,
  159. void __user *buffer, size_t *lenp,
  160. loff_t *ppos)
  161. {
  162. int old_ratio = vm_dirty_ratio;
  163. int ret;
  164. ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  165. if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
  166. update_completion_period();
  167. vm_dirty_bytes = 0;
  168. }
  169. return ret;
  170. }
  171. int dirty_bytes_handler(struct ctl_table *table, int write,
  172. void __user *buffer, size_t *lenp,
  173. loff_t *ppos)
  174. {
  175. unsigned long old_bytes = vm_dirty_bytes;
  176. int ret;
  177. ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
  178. if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
  179. update_completion_period();
  180. vm_dirty_ratio = 0;
  181. }
  182. return ret;
  183. }
  184. /*
  185. * Increment the BDI's writeout completion count and the global writeout
  186. * completion count. Called from test_clear_page_writeback().
  187. */
  188. static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
  189. {
  190. __inc_bdi_stat(bdi, BDI_WRITTEN);
  191. __prop_inc_percpu_max(&vm_completions, &bdi->completions,
  192. bdi->max_prop_frac);
  193. }
  194. void bdi_writeout_inc(struct backing_dev_info *bdi)
  195. {
  196. unsigned long flags;
  197. local_irq_save(flags);
  198. __bdi_writeout_inc(bdi);
  199. local_irq_restore(flags);
  200. }
  201. EXPORT_SYMBOL_GPL(bdi_writeout_inc);
  202. void task_dirty_inc(struct task_struct *tsk)
  203. {
  204. prop_inc_single(&vm_dirties, &tsk->dirties);
  205. }
  206. /*
  207. * Obtain an accurate fraction of the BDI's portion.
  208. */
  209. static void bdi_writeout_fraction(struct backing_dev_info *bdi,
  210. long *numerator, long *denominator)
  211. {
  212. prop_fraction_percpu(&vm_completions, &bdi->completions,
  213. numerator, denominator);
  214. }
  215. /*
  216. * bdi_min_ratio keeps the sum of the minimum dirty shares of all
  217. * registered backing devices, which, for obvious reasons, can not
  218. * exceed 100%.
  219. */
  220. static unsigned int bdi_min_ratio;
  221. int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
  222. {
  223. int ret = 0;
  224. spin_lock_bh(&bdi_lock);
  225. if (min_ratio > bdi->max_ratio) {
  226. ret = -EINVAL;
  227. } else {
  228. min_ratio -= bdi->min_ratio;
  229. if (bdi_min_ratio + min_ratio < 100) {
  230. bdi_min_ratio += min_ratio;
  231. bdi->min_ratio += min_ratio;
  232. } else {
  233. ret = -EINVAL;
  234. }
  235. }
  236. spin_unlock_bh(&bdi_lock);
  237. return ret;
  238. }
  239. int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
  240. {
  241. int ret = 0;
  242. if (max_ratio > 100)
  243. return -EINVAL;
  244. spin_lock_bh(&bdi_lock);
  245. if (bdi->min_ratio > max_ratio) {
  246. ret = -EINVAL;
  247. } else {
  248. bdi->max_ratio = max_ratio;
  249. bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
  250. }
  251. spin_unlock_bh(&bdi_lock);
  252. return ret;
  253. }
  254. EXPORT_SYMBOL(bdi_set_max_ratio);
  255. /*
  256. * Work out the current dirty-memory clamping and background writeout
  257. * thresholds.
  258. *
  259. * The main aim here is to lower them aggressively if there is a lot of mapped
  260. * memory around. To avoid stressing page reclaim with lots of unreclaimable
  261. * pages. It is better to clamp down on writers than to start swapping, and
  262. * performing lots of scanning.
  263. *
  264. * We only allow 1/2 of the currently-unmapped memory to be dirtied.
  265. *
  266. * We don't permit the clamping level to fall below 5% - that is getting rather
  267. * excessive.
  268. *
  269. * We make sure that the background writeout level is below the adjusted
  270. * clamping level.
  271. */
  272. static unsigned long highmem_dirtyable_memory(unsigned long total)
  273. {
  274. #ifdef CONFIG_HIGHMEM
  275. int node;
  276. unsigned long x = 0;
  277. for_each_node_state(node, N_HIGH_MEMORY) {
  278. struct zone *z =
  279. &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
  280. x += zone_page_state(z, NR_FREE_PAGES) +
  281. zone_reclaimable_pages(z);
  282. }
  283. /*
  284. * Make sure that the number of highmem pages is never larger
  285. * than the number of the total dirtyable memory. This can only
  286. * occur in very strange VM situations but we want to make sure
  287. * that this does not occur.
  288. */
  289. return min(x, total);
  290. #else
  291. return 0;
  292. #endif
  293. }
  294. /**
  295. * determine_dirtyable_memory - amount of memory that may be used
  296. *
  297. * Returns the numebr of pages that can currently be freed and used
  298. * by the kernel for direct mappings.
  299. */
  300. unsigned long determine_dirtyable_memory(void)
  301. {
  302. unsigned long x;
  303. x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
  304. if (!vm_highmem_is_dirtyable)
  305. x -= highmem_dirtyable_memory(x);
  306. return x + 1; /* Ensure that we never return 0 */
  307. }
  308. static unsigned long dirty_freerun_ceiling(unsigned long thresh,
  309. unsigned long bg_thresh)
  310. {
  311. return (thresh + bg_thresh) / 2;
  312. }
  313. static unsigned long hard_dirty_limit(unsigned long thresh)
  314. {
  315. return max(thresh, global_dirty_limit);
  316. }
  317. /*
  318. * global_dirty_limits - background-writeback and dirty-throttling thresholds
  319. *
  320. * Calculate the dirty thresholds based on sysctl parameters
  321. * - vm.dirty_background_ratio or vm.dirty_background_bytes
  322. * - vm.dirty_ratio or vm.dirty_bytes
  323. * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
  324. * real-time tasks.
  325. */
  326. void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
  327. {
  328. unsigned long background;
  329. unsigned long dirty;
  330. unsigned long uninitialized_var(available_memory);
  331. struct task_struct *tsk;
  332. if (!vm_dirty_bytes || !dirty_background_bytes)
  333. available_memory = determine_dirtyable_memory();
  334. if (vm_dirty_bytes)
  335. dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
  336. else
  337. dirty = (vm_dirty_ratio * available_memory) / 100;
  338. if (dirty_background_bytes)
  339. background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
  340. else
  341. background = (dirty_background_ratio * available_memory) / 100;
  342. if (background >= dirty)
  343. background = dirty / 2;
  344. tsk = current;
  345. if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
  346. background += background / 4;
  347. dirty += dirty / 4;
  348. }
  349. *pbackground = background;
  350. *pdirty = dirty;
  351. trace_global_dirty_state(background, dirty);
  352. }
  353. /**
  354. * bdi_dirty_limit - @bdi's share of dirty throttling threshold
  355. * @bdi: the backing_dev_info to query
  356. * @dirty: global dirty limit in pages
  357. *
  358. * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
  359. * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
  360. * And the "limit" in the name is not seriously taken as hard limit in
  361. * balance_dirty_pages().
  362. *
  363. * It allocates high/low dirty limits to fast/slow devices, in order to prevent
  364. * - starving fast devices
  365. * - piling up dirty pages (that will take long time to sync) on slow devices
  366. *
  367. * The bdi's share of dirty limit will be adapting to its throughput and
  368. * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
  369. */
  370. unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
  371. {
  372. u64 bdi_dirty;
  373. long numerator, denominator;
  374. /*
  375. * Calculate this BDI's share of the dirty ratio.
  376. */
  377. bdi_writeout_fraction(bdi, &numerator, &denominator);
  378. bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
  379. bdi_dirty *= numerator;
  380. do_div(bdi_dirty, denominator);
  381. bdi_dirty += (dirty * bdi->min_ratio) / 100;
  382. if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
  383. bdi_dirty = dirty * bdi->max_ratio / 100;
  384. return bdi_dirty;
  385. }
  386. /*
  387. * Dirty position control.
  388. *
  389. * (o) global/bdi setpoints
  390. *
  391. * We want the dirty pages be balanced around the global/bdi setpoints.
  392. * When the number of dirty pages is higher/lower than the setpoint, the
  393. * dirty position control ratio (and hence task dirty ratelimit) will be
  394. * decreased/increased to bring the dirty pages back to the setpoint.
  395. *
  396. * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
  397. *
  398. * if (dirty < setpoint) scale up pos_ratio
  399. * if (dirty > setpoint) scale down pos_ratio
  400. *
  401. * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
  402. * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
  403. *
  404. * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
  405. *
  406. * (o) global control line
  407. *
  408. * ^ pos_ratio
  409. * |
  410. * | |<===== global dirty control scope ======>|
  411. * 2.0 .............*
  412. * | .*
  413. * | . *
  414. * | . *
  415. * | . *
  416. * | . *
  417. * | . *
  418. * 1.0 ................................*
  419. * | . . *
  420. * | . . *
  421. * | . . *
  422. * | . . *
  423. * | . . *
  424. * 0 +------------.------------------.----------------------*------------->
  425. * freerun^ setpoint^ limit^ dirty pages
  426. *
  427. * (o) bdi control line
  428. *
  429. * ^ pos_ratio
  430. * |
  431. * | *
  432. * | *
  433. * | *
  434. * | *
  435. * | * |<=========== span ============>|
  436. * 1.0 .......................*
  437. * | . *
  438. * | . *
  439. * | . *
  440. * | . *
  441. * | . *
  442. * | . *
  443. * | . *
  444. * | . *
  445. * | . *
  446. * | . *
  447. * | . *
  448. * 1/4 ...............................................* * * * * * * * * * * *
  449. * | . .
  450. * | . .
  451. * | . .
  452. * 0 +----------------------.-------------------------------.------------->
  453. * bdi_setpoint^ x_intercept^
  454. *
  455. * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
  456. * be smoothly throttled down to normal if it starts high in situations like
  457. * - start writing to a slow SD card and a fast disk at the same time. The SD
  458. * card's bdi_dirty may rush to many times higher than bdi_setpoint.
  459. * - the bdi dirty thresh drops quickly due to change of JBOD workload
  460. */
  461. static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
  462. unsigned long thresh,
  463. unsigned long bg_thresh,
  464. unsigned long dirty,
  465. unsigned long bdi_thresh,
  466. unsigned long bdi_dirty)
  467. {
  468. unsigned long write_bw = bdi->avg_write_bandwidth;
  469. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  470. unsigned long limit = hard_dirty_limit(thresh);
  471. unsigned long x_intercept;
  472. unsigned long setpoint; /* dirty pages' target balance point */
  473. unsigned long bdi_setpoint;
  474. unsigned long span;
  475. long long pos_ratio; /* for scaling up/down the rate limit */
  476. long x;
  477. if (unlikely(dirty >= limit))
  478. return 0;
  479. /*
  480. * global setpoint
  481. *
  482. * setpoint - dirty 3
  483. * f(dirty) := 1.0 + (----------------)
  484. * limit - setpoint
  485. *
  486. * it's a 3rd order polynomial that subjects to
  487. *
  488. * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
  489. * (2) f(setpoint) = 1.0 => the balance point
  490. * (3) f(limit) = 0 => the hard limit
  491. * (4) df/dx <= 0 => negative feedback control
  492. * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
  493. * => fast response on large errors; small oscillation near setpoint
  494. */
  495. setpoint = (freerun + limit) / 2;
  496. x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
  497. limit - setpoint + 1);
  498. pos_ratio = x;
  499. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  500. pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
  501. pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
  502. /*
  503. * We have computed basic pos_ratio above based on global situation. If
  504. * the bdi is over/under its share of dirty pages, we want to scale
  505. * pos_ratio further down/up. That is done by the following mechanism.
  506. */
  507. /*
  508. * bdi setpoint
  509. *
  510. * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
  511. *
  512. * x_intercept - bdi_dirty
  513. * := --------------------------
  514. * x_intercept - bdi_setpoint
  515. *
  516. * The main bdi control line is a linear function that subjects to
  517. *
  518. * (1) f(bdi_setpoint) = 1.0
  519. * (2) k = - 1 / (8 * write_bw) (in single bdi case)
  520. * or equally: x_intercept = bdi_setpoint + 8 * write_bw
  521. *
  522. * For single bdi case, the dirty pages are observed to fluctuate
  523. * regularly within range
  524. * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
  525. * for various filesystems, where (2) can yield in a reasonable 12.5%
  526. * fluctuation range for pos_ratio.
  527. *
  528. * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
  529. * own size, so move the slope over accordingly and choose a slope that
  530. * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
  531. */
  532. if (unlikely(bdi_thresh > thresh))
  533. bdi_thresh = thresh;
  534. bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
  535. /*
  536. * scale global setpoint to bdi's:
  537. * bdi_setpoint = setpoint * bdi_thresh / thresh
  538. */
  539. x = div_u64((u64)bdi_thresh << 16, thresh + 1);
  540. bdi_setpoint = setpoint * (u64)x >> 16;
  541. /*
  542. * Use span=(8*write_bw) in single bdi case as indicated by
  543. * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
  544. *
  545. * bdi_thresh thresh - bdi_thresh
  546. * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
  547. * thresh thresh
  548. */
  549. span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
  550. x_intercept = bdi_setpoint + span;
  551. if (bdi_dirty < x_intercept - span / 4) {
  552. pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
  553. x_intercept - bdi_setpoint + 1);
  554. } else
  555. pos_ratio /= 4;
  556. /*
  557. * bdi reserve area, safeguard against dirty pool underrun and disk idle
  558. * It may push the desired control point of global dirty pages higher
  559. * than setpoint.
  560. */
  561. x_intercept = bdi_thresh / 2;
  562. if (bdi_dirty < x_intercept) {
  563. if (bdi_dirty > x_intercept / 8)
  564. pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
  565. else
  566. pos_ratio *= 8;
  567. }
  568. return pos_ratio;
  569. }
  570. static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
  571. unsigned long elapsed,
  572. unsigned long written)
  573. {
  574. const unsigned long period = roundup_pow_of_two(3 * HZ);
  575. unsigned long avg = bdi->avg_write_bandwidth;
  576. unsigned long old = bdi->write_bandwidth;
  577. u64 bw;
  578. /*
  579. * bw = written * HZ / elapsed
  580. *
  581. * bw * elapsed + write_bandwidth * (period - elapsed)
  582. * write_bandwidth = ---------------------------------------------------
  583. * period
  584. */
  585. bw = written - bdi->written_stamp;
  586. bw *= HZ;
  587. if (unlikely(elapsed > period)) {
  588. do_div(bw, elapsed);
  589. avg = bw;
  590. goto out;
  591. }
  592. bw += (u64)bdi->write_bandwidth * (period - elapsed);
  593. bw >>= ilog2(period);
  594. /*
  595. * one more level of smoothing, for filtering out sudden spikes
  596. */
  597. if (avg > old && old >= (unsigned long)bw)
  598. avg -= (avg - old) >> 3;
  599. if (avg < old && old <= (unsigned long)bw)
  600. avg += (old - avg) >> 3;
  601. out:
  602. bdi->write_bandwidth = bw;
  603. bdi->avg_write_bandwidth = avg;
  604. }
  605. /*
  606. * The global dirtyable memory and dirty threshold could be suddenly knocked
  607. * down by a large amount (eg. on the startup of KVM in a swapless system).
  608. * This may throw the system into deep dirty exceeded state and throttle
  609. * heavy/light dirtiers alike. To retain good responsiveness, maintain
  610. * global_dirty_limit for tracking slowly down to the knocked down dirty
  611. * threshold.
  612. */
  613. static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
  614. {
  615. unsigned long limit = global_dirty_limit;
  616. /*
  617. * Follow up in one step.
  618. */
  619. if (limit < thresh) {
  620. limit = thresh;
  621. goto update;
  622. }
  623. /*
  624. * Follow down slowly. Use the higher one as the target, because thresh
  625. * may drop below dirty. This is exactly the reason to introduce
  626. * global_dirty_limit which is guaranteed to lie above the dirty pages.
  627. */
  628. thresh = max(thresh, dirty);
  629. if (limit > thresh) {
  630. limit -= (limit - thresh) >> 5;
  631. goto update;
  632. }
  633. return;
  634. update:
  635. global_dirty_limit = limit;
  636. }
  637. static void global_update_bandwidth(unsigned long thresh,
  638. unsigned long dirty,
  639. unsigned long now)
  640. {
  641. static DEFINE_SPINLOCK(dirty_lock);
  642. static unsigned long update_time;
  643. /*
  644. * check locklessly first to optimize away locking for the most time
  645. */
  646. if (time_before(now, update_time + BANDWIDTH_INTERVAL))
  647. return;
  648. spin_lock(&dirty_lock);
  649. if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
  650. update_dirty_limit(thresh, dirty);
  651. update_time = now;
  652. }
  653. spin_unlock(&dirty_lock);
  654. }
  655. /*
  656. * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
  657. *
  658. * Normal bdi tasks will be curbed at or below it in long term.
  659. * Obviously it should be around (write_bw / N) when there are N dd tasks.
  660. */
  661. static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
  662. unsigned long thresh,
  663. unsigned long bg_thresh,
  664. unsigned long dirty,
  665. unsigned long bdi_thresh,
  666. unsigned long bdi_dirty,
  667. unsigned long dirtied,
  668. unsigned long elapsed)
  669. {
  670. unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
  671. unsigned long limit = hard_dirty_limit(thresh);
  672. unsigned long setpoint = (freerun + limit) / 2;
  673. unsigned long write_bw = bdi->avg_write_bandwidth;
  674. unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
  675. unsigned long dirty_rate;
  676. unsigned long task_ratelimit;
  677. unsigned long balanced_dirty_ratelimit;
  678. unsigned long pos_ratio;
  679. unsigned long step;
  680. unsigned long x;
  681. /*
  682. * The dirty rate will match the writeout rate in long term, except
  683. * when dirty pages are truncated by userspace or re-dirtied by FS.
  684. */
  685. dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
  686. pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
  687. bdi_thresh, bdi_dirty);
  688. /*
  689. * task_ratelimit reflects each dd's dirty rate for the past 200ms.
  690. */
  691. task_ratelimit = (u64)dirty_ratelimit *
  692. pos_ratio >> RATELIMIT_CALC_SHIFT;
  693. task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
  694. /*
  695. * A linear estimation of the "balanced" throttle rate. The theory is,
  696. * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
  697. * dirty_rate will be measured to be (N * task_ratelimit). So the below
  698. * formula will yield the balanced rate limit (write_bw / N).
  699. *
  700. * Note that the expanded form is not a pure rate feedback:
  701. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
  702. * but also takes pos_ratio into account:
  703. * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
  704. *
  705. * (1) is not realistic because pos_ratio also takes part in balancing
  706. * the dirty rate. Consider the state
  707. * pos_ratio = 0.5 (3)
  708. * rate = 2 * (write_bw / N) (4)
  709. * If (1) is used, it will stuck in that state! Because each dd will
  710. * be throttled at
  711. * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
  712. * yielding
  713. * dirty_rate = N * task_ratelimit = write_bw (6)
  714. * put (6) into (1) we get
  715. * rate_(i+1) = rate_(i) (7)
  716. *
  717. * So we end up using (2) to always keep
  718. * rate_(i+1) ~= (write_bw / N) (8)
  719. * regardless of the value of pos_ratio. As long as (8) is satisfied,
  720. * pos_ratio is able to drive itself to 1.0, which is not only where
  721. * the dirty count meet the setpoint, but also where the slope of
  722. * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
  723. */
  724. balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
  725. dirty_rate | 1);
  726. /*
  727. * We could safely do this and return immediately:
  728. *
  729. * bdi->dirty_ratelimit = balanced_dirty_ratelimit;
  730. *
  731. * However to get a more stable dirty_ratelimit, the below elaborated
  732. * code makes use of task_ratelimit to filter out sigular points and
  733. * limit the step size.
  734. *
  735. * The below code essentially only uses the relative value of
  736. *
  737. * task_ratelimit - dirty_ratelimit
  738. * = (pos_ratio - 1) * dirty_ratelimit
  739. *
  740. * which reflects the direction and size of dirty position error.
  741. */
  742. /*
  743. * dirty_ratelimit will follow balanced_dirty_ratelimit iff
  744. * task_ratelimit is on the same side of dirty_ratelimit, too.
  745. * For example, when
  746. * - dirty_ratelimit > balanced_dirty_ratelimit
  747. * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
  748. * lowering dirty_ratelimit will help meet both the position and rate
  749. * control targets. Otherwise, don't update dirty_ratelimit if it will
  750. * only help meet the rate target. After all, what the users ultimately
  751. * feel and care are stable dirty rate and small position error.
  752. *
  753. * |task_ratelimit - dirty_ratelimit| is used to limit the step size
  754. * and filter out the sigular points of balanced_dirty_ratelimit. Which
  755. * keeps jumping around randomly and can even leap far away at times
  756. * due to the small 200ms estimation period of dirty_rate (we want to
  757. * keep that period small to reduce time lags).
  758. */
  759. step = 0;
  760. if (dirty < setpoint) {
  761. x = min(bdi->balanced_dirty_ratelimit,
  762. min(balanced_dirty_ratelimit, task_ratelimit));
  763. if (dirty_ratelimit < x)
  764. step = x - dirty_ratelimit;
  765. } else {
  766. x = max(bdi->balanced_dirty_ratelimit,
  767. max(balanced_dirty_ratelimit, task_ratelimit));
  768. if (dirty_ratelimit > x)
  769. step = dirty_ratelimit - x;
  770. }
  771. /*
  772. * Don't pursue 100% rate matching. It's impossible since the balanced
  773. * rate itself is constantly fluctuating. So decrease the track speed
  774. * when it gets close to the target. Helps eliminate pointless tremors.
  775. */
  776. step >>= dirty_ratelimit / (2 * step + 1);
  777. /*
  778. * Limit the tracking speed to avoid overshooting.
  779. */
  780. step = (step + 7) / 8;
  781. if (dirty_ratelimit < balanced_dirty_ratelimit)
  782. dirty_ratelimit += step;
  783. else
  784. dirty_ratelimit -= step;
  785. bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
  786. bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
  787. trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
  788. }
  789. void __bdi_update_bandwidth(struct backing_dev_info *bdi,
  790. unsigned long thresh,
  791. unsigned long bg_thresh,
  792. unsigned long dirty,
  793. unsigned long bdi_thresh,
  794. unsigned long bdi_dirty,
  795. unsigned long start_time)
  796. {
  797. unsigned long now = jiffies;
  798. unsigned long elapsed = now - bdi->bw_time_stamp;
  799. unsigned long dirtied;
  800. unsigned long written;
  801. /*
  802. * rate-limit, only update once every 200ms.
  803. */
  804. if (elapsed < BANDWIDTH_INTERVAL)
  805. return;
  806. dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
  807. written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
  808. /*
  809. * Skip quiet periods when disk bandwidth is under-utilized.
  810. * (at least 1s idle time between two flusher runs)
  811. */
  812. if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
  813. goto snapshot;
  814. if (thresh) {
  815. global_update_bandwidth(thresh, dirty, now);
  816. bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
  817. bdi_thresh, bdi_dirty,
  818. dirtied, elapsed);
  819. }
  820. bdi_update_write_bandwidth(bdi, elapsed, written);
  821. snapshot:
  822. bdi->dirtied_stamp = dirtied;
  823. bdi->written_stamp = written;
  824. bdi->bw_time_stamp = now;
  825. }
  826. static void bdi_update_bandwidth(struct backing_dev_info *bdi,
  827. unsigned long thresh,
  828. unsigned long bg_thresh,
  829. unsigned long dirty,
  830. unsigned long bdi_thresh,
  831. unsigned long bdi_dirty,
  832. unsigned long start_time)
  833. {
  834. if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
  835. return;
  836. spin_lock(&bdi->wb.list_lock);
  837. __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
  838. bdi_thresh, bdi_dirty, start_time);
  839. spin_unlock(&bdi->wb.list_lock);
  840. }
  841. /*
  842. * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
  843. * will look to see if it needs to start dirty throttling.
  844. *
  845. * If dirty_poll_interval is too low, big NUMA machines will call the expensive
  846. * global_page_state() too often. So scale it near-sqrt to the safety margin
  847. * (the number of pages we may dirty without exceeding the dirty limits).
  848. */
  849. static unsigned long dirty_poll_interval(unsigned long dirty,
  850. unsigned long thresh)
  851. {
  852. if (thresh > dirty)
  853. return 1UL << (ilog2(thresh - dirty) >> 1);
  854. return 1;
  855. }
  856. static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
  857. unsigned long bdi_dirty)
  858. {
  859. unsigned long bw = bdi->avg_write_bandwidth;
  860. unsigned long hi = ilog2(bw);
  861. unsigned long lo = ilog2(bdi->dirty_ratelimit);
  862. unsigned long t;
  863. /* target for 20ms max pause on 1-dd case */
  864. t = HZ / 50;
  865. /*
  866. * Scale up pause time for concurrent dirtiers in order to reduce CPU
  867. * overheads.
  868. *
  869. * (N * 20ms) on 2^N concurrent tasks.
  870. */
  871. if (hi > lo)
  872. t += (hi - lo) * (20 * HZ) / 1024;
  873. /*
  874. * Limit pause time for small memory systems. If sleeping for too long
  875. * time, a small pool of dirty/writeback pages may go empty and disk go
  876. * idle.
  877. *
  878. * 8 serves as the safety ratio.
  879. */
  880. if (bdi_dirty)
  881. t = min(t, bdi_dirty * HZ / (8 * bw + 1));
  882. /*
  883. * The pause time will be settled within range (max_pause/4, max_pause).
  884. * Apply a minimal value of 4 to get a non-zero max_pause/4.
  885. */
  886. return clamp_val(t, 4, MAX_PAUSE);
  887. }
  888. /*
  889. * balance_dirty_pages() must be called by processes which are generating dirty
  890. * data. It looks at the number of dirty pages in the machine and will force
  891. * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
  892. * If we're over `background_thresh' then the writeback threads are woken to
  893. * perform some writeout.
  894. */
  895. static void balance_dirty_pages(struct address_space *mapping,
  896. unsigned long pages_dirtied)
  897. {
  898. unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
  899. unsigned long bdi_reclaimable;
  900. unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
  901. unsigned long bdi_dirty;
  902. unsigned long freerun;
  903. unsigned long background_thresh;
  904. unsigned long dirty_thresh;
  905. unsigned long bdi_thresh;
  906. long pause = 0;
  907. long uninitialized_var(max_pause);
  908. bool dirty_exceeded = false;
  909. unsigned long task_ratelimit;
  910. unsigned long uninitialized_var(dirty_ratelimit);
  911. unsigned long pos_ratio;
  912. struct backing_dev_info *bdi = mapping->backing_dev_info;
  913. unsigned long start_time = jiffies;
  914. for (;;) {
  915. /*
  916. * Unstable writes are a feature of certain networked
  917. * filesystems (i.e. NFS) in which data may have been
  918. * written to the server's write cache, but has not yet
  919. * been flushed to permanent storage.
  920. */
  921. nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
  922. global_page_state(NR_UNSTABLE_NFS);
  923. nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
  924. global_dirty_limits(&background_thresh, &dirty_thresh);
  925. /*
  926. * Throttle it only when the background writeback cannot
  927. * catch-up. This avoids (excessively) small writeouts
  928. * when the bdi limits are ramping up.
  929. */
  930. freerun = dirty_freerun_ceiling(dirty_thresh,
  931. background_thresh);
  932. if (nr_dirty <= freerun)
  933. break;
  934. if (unlikely(!writeback_in_progress(bdi)))
  935. bdi_start_background_writeback(bdi);
  936. /*
  937. * bdi_thresh is not treated as some limiting factor as
  938. * dirty_thresh, due to reasons
  939. * - in JBOD setup, bdi_thresh can fluctuate a lot
  940. * - in a system with HDD and USB key, the USB key may somehow
  941. * go into state (bdi_dirty >> bdi_thresh) either because
  942. * bdi_dirty starts high, or because bdi_thresh drops low.
  943. * In this case we don't want to hard throttle the USB key
  944. * dirtiers for 100 seconds until bdi_dirty drops under
  945. * bdi_thresh. Instead the auxiliary bdi control line in
  946. * bdi_position_ratio() will let the dirtier task progress
  947. * at some rate <= (write_bw / 2) for bringing down bdi_dirty.
  948. */
  949. bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
  950. /*
  951. * In order to avoid the stacked BDI deadlock we need
  952. * to ensure we accurately count the 'dirty' pages when
  953. * the threshold is low.
  954. *
  955. * Otherwise it would be possible to get thresh+n pages
  956. * reported dirty, even though there are thresh-m pages
  957. * actually dirty; with m+n sitting in the percpu
  958. * deltas.
  959. */
  960. if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
  961. bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
  962. bdi_dirty = bdi_reclaimable +
  963. bdi_stat_sum(bdi, BDI_WRITEBACK);
  964. } else {
  965. bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
  966. bdi_dirty = bdi_reclaimable +
  967. bdi_stat(bdi, BDI_WRITEBACK);
  968. }
  969. dirty_exceeded = (bdi_dirty > bdi_thresh) ||
  970. (nr_dirty > dirty_thresh);
  971. if (dirty_exceeded && !bdi->dirty_exceeded)
  972. bdi->dirty_exceeded = 1;
  973. bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
  974. nr_dirty, bdi_thresh, bdi_dirty,
  975. start_time);
  976. max_pause = bdi_max_pause(bdi, bdi_dirty);
  977. dirty_ratelimit = bdi->dirty_ratelimit;
  978. pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
  979. background_thresh, nr_dirty,
  980. bdi_thresh, bdi_dirty);
  981. task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
  982. RATELIMIT_CALC_SHIFT;
  983. if (unlikely(task_ratelimit == 0)) {
  984. pause = max_pause;
  985. goto pause;
  986. }
  987. pause = HZ * pages_dirtied / task_ratelimit;
  988. if (unlikely(pause <= 0)) {
  989. trace_balance_dirty_pages(bdi,
  990. dirty_thresh,
  991. background_thresh,
  992. nr_dirty,
  993. bdi_thresh,
  994. bdi_dirty,
  995. dirty_ratelimit,
  996. task_ratelimit,
  997. pages_dirtied,
  998. pause,
  999. start_time);
  1000. pause = 1; /* avoid resetting nr_dirtied_pause below */
  1001. break;
  1002. }
  1003. pause = min(pause, max_pause);
  1004. pause:
  1005. trace_balance_dirty_pages(bdi,
  1006. dirty_thresh,
  1007. background_thresh,
  1008. nr_dirty,
  1009. bdi_thresh,
  1010. bdi_dirty,
  1011. dirty_ratelimit,
  1012. task_ratelimit,
  1013. pages_dirtied,
  1014. pause,
  1015. start_time);
  1016. __set_current_state(TASK_UNINTERRUPTIBLE);
  1017. io_schedule_timeout(pause);
  1018. dirty_thresh = hard_dirty_limit(dirty_thresh);
  1019. /*
  1020. * max-pause area. If dirty exceeded but still within this
  1021. * area, no need to sleep for more than 200ms: (a) 8 pages per
  1022. * 200ms is typically more than enough to curb heavy dirtiers;
  1023. * (b) the pause time limit makes the dirtiers more responsive.
  1024. */
  1025. if (nr_dirty < dirty_thresh)
  1026. break;
  1027. }
  1028. if (!dirty_exceeded && bdi->dirty_exceeded)
  1029. bdi->dirty_exceeded = 0;
  1030. current->nr_dirtied = 0;
  1031. if (pause == 0) { /* in freerun area */
  1032. current->nr_dirtied_pause =
  1033. dirty_poll_interval(nr_dirty, dirty_thresh);
  1034. } else if (pause <= max_pause / 4 &&
  1035. pages_dirtied >= current->nr_dirtied_pause) {
  1036. current->nr_dirtied_pause = clamp_val(
  1037. dirty_ratelimit * (max_pause / 2) / HZ,
  1038. pages_dirtied + pages_dirtied / 8,
  1039. pages_dirtied * 4);
  1040. } else if (pause >= max_pause) {
  1041. current->nr_dirtied_pause = 1 | clamp_val(
  1042. dirty_ratelimit * (max_pause / 2) / HZ,
  1043. pages_dirtied / 4,
  1044. pages_dirtied - pages_dirtied / 8);
  1045. }
  1046. if (writeback_in_progress(bdi))
  1047. return;
  1048. /*
  1049. * In laptop mode, we wait until hitting the higher threshold before
  1050. * starting background writeout, and then write out all the way down
  1051. * to the lower threshold. So slow writers cause minimal disk activity.
  1052. *
  1053. * In normal mode, we start background writeout at the lower
  1054. * background_thresh, to keep the amount of dirty memory low.
  1055. */
  1056. if (laptop_mode)
  1057. return;
  1058. if (nr_reclaimable > background_thresh)
  1059. bdi_start_background_writeback(bdi);
  1060. }
  1061. void set_page_dirty_balance(struct page *page, int page_mkwrite)
  1062. {
  1063. if (set_page_dirty(page) || page_mkwrite) {
  1064. struct address_space *mapping = page_mapping(page);
  1065. if (mapping)
  1066. balance_dirty_pages_ratelimited(mapping);
  1067. }
  1068. }
  1069. static DEFINE_PER_CPU(int, bdp_ratelimits);
  1070. /**
  1071. * balance_dirty_pages_ratelimited_nr - balance dirty memory state
  1072. * @mapping: address_space which was dirtied
  1073. * @nr_pages_dirtied: number of pages which the caller has just dirtied
  1074. *
  1075. * Processes which are dirtying memory should call in here once for each page
  1076. * which was newly dirtied. The function will periodically check the system's
  1077. * dirty state and will initiate writeback if needed.
  1078. *
  1079. * On really big machines, get_writeback_state is expensive, so try to avoid
  1080. * calling it too often (ratelimiting). But once we're over the dirty memory
  1081. * limit we decrease the ratelimiting by a lot, to prevent individual processes
  1082. * from overshooting the limit by (ratelimit_pages) each.
  1083. */
  1084. void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
  1085. unsigned long nr_pages_dirtied)
  1086. {
  1087. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1088. int ratelimit;
  1089. int *p;
  1090. if (!bdi_cap_account_dirty(bdi))
  1091. return;
  1092. ratelimit = current->nr_dirtied_pause;
  1093. if (bdi->dirty_exceeded)
  1094. ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
  1095. current->nr_dirtied += nr_pages_dirtied;
  1096. preempt_disable();
  1097. /*
  1098. * This prevents one CPU to accumulate too many dirtied pages without
  1099. * calling into balance_dirty_pages(), which can happen when there are
  1100. * 1000+ tasks, all of them start dirtying pages at exactly the same
  1101. * time, hence all honoured too large initial task->nr_dirtied_pause.
  1102. */
  1103. p = &__get_cpu_var(bdp_ratelimits);
  1104. if (unlikely(current->nr_dirtied >= ratelimit))
  1105. *p = 0;
  1106. else {
  1107. *p += nr_pages_dirtied;
  1108. if (unlikely(*p >= ratelimit_pages)) {
  1109. *p = 0;
  1110. ratelimit = 0;
  1111. }
  1112. }
  1113. preempt_enable();
  1114. if (unlikely(current->nr_dirtied >= ratelimit))
  1115. balance_dirty_pages(mapping, current->nr_dirtied);
  1116. }
  1117. EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
  1118. void throttle_vm_writeout(gfp_t gfp_mask)
  1119. {
  1120. unsigned long background_thresh;
  1121. unsigned long dirty_thresh;
  1122. for ( ; ; ) {
  1123. global_dirty_limits(&background_thresh, &dirty_thresh);
  1124. /*
  1125. * Boost the allowable dirty threshold a bit for page
  1126. * allocators so they don't get DoS'ed by heavy writers
  1127. */
  1128. dirty_thresh += dirty_thresh / 10; /* wheeee... */
  1129. if (global_page_state(NR_UNSTABLE_NFS) +
  1130. global_page_state(NR_WRITEBACK) <= dirty_thresh)
  1131. break;
  1132. congestion_wait(BLK_RW_ASYNC, HZ/10);
  1133. /*
  1134. * The caller might hold locks which can prevent IO completion
  1135. * or progress in the filesystem. So we cannot just sit here
  1136. * waiting for IO to complete.
  1137. */
  1138. if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
  1139. break;
  1140. }
  1141. }
  1142. /*
  1143. * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
  1144. */
  1145. int dirty_writeback_centisecs_handler(ctl_table *table, int write,
  1146. void __user *buffer, size_t *length, loff_t *ppos)
  1147. {
  1148. proc_dointvec(table, write, buffer, length, ppos);
  1149. bdi_arm_supers_timer();
  1150. return 0;
  1151. }
  1152. #ifdef CONFIG_BLOCK
  1153. void laptop_mode_timer_fn(unsigned long data)
  1154. {
  1155. struct request_queue *q = (struct request_queue *)data;
  1156. int nr_pages = global_page_state(NR_FILE_DIRTY) +
  1157. global_page_state(NR_UNSTABLE_NFS);
  1158. /*
  1159. * We want to write everything out, not just down to the dirty
  1160. * threshold
  1161. */
  1162. if (bdi_has_dirty_io(&q->backing_dev_info))
  1163. bdi_start_writeback(&q->backing_dev_info, nr_pages,
  1164. WB_REASON_LAPTOP_TIMER);
  1165. }
  1166. /*
  1167. * We've spun up the disk and we're in laptop mode: schedule writeback
  1168. * of all dirty data a few seconds from now. If the flush is already scheduled
  1169. * then push it back - the user is still using the disk.
  1170. */
  1171. void laptop_io_completion(struct backing_dev_info *info)
  1172. {
  1173. mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
  1174. }
  1175. /*
  1176. * We're in laptop mode and we've just synced. The sync's writes will have
  1177. * caused another writeback to be scheduled by laptop_io_completion.
  1178. * Nothing needs to be written back anymore, so we unschedule the writeback.
  1179. */
  1180. void laptop_sync_completion(void)
  1181. {
  1182. struct backing_dev_info *bdi;
  1183. rcu_read_lock();
  1184. list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
  1185. del_timer(&bdi->laptop_mode_wb_timer);
  1186. rcu_read_unlock();
  1187. }
  1188. #endif
  1189. /*
  1190. * If ratelimit_pages is too high then we can get into dirty-data overload
  1191. * if a large number of processes all perform writes at the same time.
  1192. * If it is too low then SMP machines will call the (expensive)
  1193. * get_writeback_state too often.
  1194. *
  1195. * Here we set ratelimit_pages to a level which ensures that when all CPUs are
  1196. * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
  1197. * thresholds.
  1198. */
  1199. void writeback_set_ratelimit(void)
  1200. {
  1201. unsigned long background_thresh;
  1202. unsigned long dirty_thresh;
  1203. global_dirty_limits(&background_thresh, &dirty_thresh);
  1204. ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
  1205. if (ratelimit_pages < 16)
  1206. ratelimit_pages = 16;
  1207. }
  1208. static int __cpuinit
  1209. ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
  1210. {
  1211. writeback_set_ratelimit();
  1212. return NOTIFY_DONE;
  1213. }
  1214. static struct notifier_block __cpuinitdata ratelimit_nb = {
  1215. .notifier_call = ratelimit_handler,
  1216. .next = NULL,
  1217. };
  1218. /*
  1219. * Called early on to tune the page writeback dirty limits.
  1220. *
  1221. * We used to scale dirty pages according to how total memory
  1222. * related to pages that could be allocated for buffers (by
  1223. * comparing nr_free_buffer_pages() to vm_total_pages.
  1224. *
  1225. * However, that was when we used "dirty_ratio" to scale with
  1226. * all memory, and we don't do that any more. "dirty_ratio"
  1227. * is now applied to total non-HIGHPAGE memory (by subtracting
  1228. * totalhigh_pages from vm_total_pages), and as such we can't
  1229. * get into the old insane situation any more where we had
  1230. * large amounts of dirty pages compared to a small amount of
  1231. * non-HIGHMEM memory.
  1232. *
  1233. * But we might still want to scale the dirty_ratio by how
  1234. * much memory the box has..
  1235. */
  1236. void __init page_writeback_init(void)
  1237. {
  1238. int shift;
  1239. writeback_set_ratelimit();
  1240. register_cpu_notifier(&ratelimit_nb);
  1241. shift = calc_period_shift();
  1242. prop_descriptor_init(&vm_completions, shift);
  1243. prop_descriptor_init(&vm_dirties, shift);
  1244. }
  1245. /**
  1246. * tag_pages_for_writeback - tag pages to be written by write_cache_pages
  1247. * @mapping: address space structure to write
  1248. * @start: starting page index
  1249. * @end: ending page index (inclusive)
  1250. *
  1251. * This function scans the page range from @start to @end (inclusive) and tags
  1252. * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
  1253. * that write_cache_pages (or whoever calls this function) will then use
  1254. * TOWRITE tag to identify pages eligible for writeback. This mechanism is
  1255. * used to avoid livelocking of writeback by a process steadily creating new
  1256. * dirty pages in the file (thus it is important for this function to be quick
  1257. * so that it can tag pages faster than a dirtying process can create them).
  1258. */
  1259. /*
  1260. * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
  1261. */
  1262. void tag_pages_for_writeback(struct address_space *mapping,
  1263. pgoff_t start, pgoff_t end)
  1264. {
  1265. #define WRITEBACK_TAG_BATCH 4096
  1266. unsigned long tagged;
  1267. do {
  1268. spin_lock_irq(&mapping->tree_lock);
  1269. tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
  1270. &start, end, WRITEBACK_TAG_BATCH,
  1271. PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
  1272. spin_unlock_irq(&mapping->tree_lock);
  1273. WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
  1274. cond_resched();
  1275. /* We check 'start' to handle wrapping when end == ~0UL */
  1276. } while (tagged >= WRITEBACK_TAG_BATCH && start);
  1277. }
  1278. EXPORT_SYMBOL(tag_pages_for_writeback);
  1279. /**
  1280. * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
  1281. * @mapping: address space structure to write
  1282. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1283. * @writepage: function called for each page
  1284. * @data: data passed to writepage function
  1285. *
  1286. * If a page is already under I/O, write_cache_pages() skips it, even
  1287. * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
  1288. * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
  1289. * and msync() need to guarantee that all the data which was dirty at the time
  1290. * the call was made get new I/O started against them. If wbc->sync_mode is
  1291. * WB_SYNC_ALL then we were called for data integrity and we must wait for
  1292. * existing IO to complete.
  1293. *
  1294. * To avoid livelocks (when other process dirties new pages), we first tag
  1295. * pages which should be written back with TOWRITE tag and only then start
  1296. * writing them. For data-integrity sync we have to be careful so that we do
  1297. * not miss some pages (e.g., because some other process has cleared TOWRITE
  1298. * tag we set). The rule we follow is that TOWRITE tag can be cleared only
  1299. * by the process clearing the DIRTY tag (and submitting the page for IO).
  1300. */
  1301. int write_cache_pages(struct address_space *mapping,
  1302. struct writeback_control *wbc, writepage_t writepage,
  1303. void *data)
  1304. {
  1305. int ret = 0;
  1306. int done = 0;
  1307. struct pagevec pvec;
  1308. int nr_pages;
  1309. pgoff_t uninitialized_var(writeback_index);
  1310. pgoff_t index;
  1311. pgoff_t end; /* Inclusive */
  1312. pgoff_t done_index;
  1313. int cycled;
  1314. int range_whole = 0;
  1315. int tag;
  1316. pagevec_init(&pvec, 0);
  1317. if (wbc->range_cyclic) {
  1318. writeback_index = mapping->writeback_index; /* prev offset */
  1319. index = writeback_index;
  1320. if (index == 0)
  1321. cycled = 1;
  1322. else
  1323. cycled = 0;
  1324. end = -1;
  1325. } else {
  1326. index = wbc->range_start >> PAGE_CACHE_SHIFT;
  1327. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  1328. if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
  1329. range_whole = 1;
  1330. cycled = 1; /* ignore range_cyclic tests */
  1331. }
  1332. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1333. tag = PAGECACHE_TAG_TOWRITE;
  1334. else
  1335. tag = PAGECACHE_TAG_DIRTY;
  1336. retry:
  1337. if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
  1338. tag_pages_for_writeback(mapping, index, end);
  1339. done_index = index;
  1340. while (!done && (index <= end)) {
  1341. int i;
  1342. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
  1343. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1344. if (nr_pages == 0)
  1345. break;
  1346. for (i = 0; i < nr_pages; i++) {
  1347. struct page *page = pvec.pages[i];
  1348. /*
  1349. * At this point, the page may be truncated or
  1350. * invalidated (changing page->mapping to NULL), or
  1351. * even swizzled back from swapper_space to tmpfs file
  1352. * mapping. However, page->index will not change
  1353. * because we have a reference on the page.
  1354. */
  1355. if (page->index > end) {
  1356. /*
  1357. * can't be range_cyclic (1st pass) because
  1358. * end == -1 in that case.
  1359. */
  1360. done = 1;
  1361. break;
  1362. }
  1363. done_index = page->index;
  1364. lock_page(page);
  1365. /*
  1366. * Page truncated or invalidated. We can freely skip it
  1367. * then, even for data integrity operations: the page
  1368. * has disappeared concurrently, so there could be no
  1369. * real expectation of this data interity operation
  1370. * even if there is now a new, dirty page at the same
  1371. * pagecache address.
  1372. */
  1373. if (unlikely(page->mapping != mapping)) {
  1374. continue_unlock:
  1375. unlock_page(page);
  1376. continue;
  1377. }
  1378. if (!PageDirty(page)) {
  1379. /* someone wrote it for us */
  1380. goto continue_unlock;
  1381. }
  1382. if (PageWriteback(page)) {
  1383. if (wbc->sync_mode != WB_SYNC_NONE)
  1384. wait_on_page_writeback(page);
  1385. else
  1386. goto continue_unlock;
  1387. }
  1388. BUG_ON(PageWriteback(page));
  1389. if (!clear_page_dirty_for_io(page))
  1390. goto continue_unlock;
  1391. trace_wbc_writepage(wbc, mapping->backing_dev_info);
  1392. ret = (*writepage)(page, wbc, data);
  1393. if (unlikely(ret)) {
  1394. if (ret == AOP_WRITEPAGE_ACTIVATE) {
  1395. unlock_page(page);
  1396. ret = 0;
  1397. } else {
  1398. /*
  1399. * done_index is set past this page,
  1400. * so media errors will not choke
  1401. * background writeout for the entire
  1402. * file. This has consequences for
  1403. * range_cyclic semantics (ie. it may
  1404. * not be suitable for data integrity
  1405. * writeout).
  1406. */
  1407. done_index = page->index + 1;
  1408. done = 1;
  1409. break;
  1410. }
  1411. }
  1412. /*
  1413. * We stop writing back only if we are not doing
  1414. * integrity sync. In case of integrity sync we have to
  1415. * keep going until we have written all the pages
  1416. * we tagged for writeback prior to entering this loop.
  1417. */
  1418. if (--wbc->nr_to_write <= 0 &&
  1419. wbc->sync_mode == WB_SYNC_NONE) {
  1420. done = 1;
  1421. break;
  1422. }
  1423. }
  1424. pagevec_release(&pvec);
  1425. cond_resched();
  1426. }
  1427. if (!cycled && !done) {
  1428. /*
  1429. * range_cyclic:
  1430. * We hit the last page and there is more work to be done: wrap
  1431. * back to the start of the file
  1432. */
  1433. cycled = 1;
  1434. index = 0;
  1435. end = writeback_index - 1;
  1436. goto retry;
  1437. }
  1438. if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
  1439. mapping->writeback_index = done_index;
  1440. return ret;
  1441. }
  1442. EXPORT_SYMBOL(write_cache_pages);
  1443. /*
  1444. * Function used by generic_writepages to call the real writepage
  1445. * function and set the mapping flags on error
  1446. */
  1447. static int __writepage(struct page *page, struct writeback_control *wbc,
  1448. void *data)
  1449. {
  1450. struct address_space *mapping = data;
  1451. int ret = mapping->a_ops->writepage(page, wbc);
  1452. mapping_set_error(mapping, ret);
  1453. return ret;
  1454. }
  1455. /**
  1456. * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
  1457. * @mapping: address space structure to write
  1458. * @wbc: subtract the number of written pages from *@wbc->nr_to_write
  1459. *
  1460. * This is a library function, which implements the writepages()
  1461. * address_space_operation.
  1462. */
  1463. int generic_writepages(struct address_space *mapping,
  1464. struct writeback_control *wbc)
  1465. {
  1466. struct blk_plug plug;
  1467. int ret;
  1468. /* deal with chardevs and other special file */
  1469. if (!mapping->a_ops->writepage)
  1470. return 0;
  1471. blk_start_plug(&plug);
  1472. ret = write_cache_pages(mapping, wbc, __writepage, mapping);
  1473. blk_finish_plug(&plug);
  1474. return ret;
  1475. }
  1476. EXPORT_SYMBOL(generic_writepages);
  1477. int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
  1478. {
  1479. int ret;
  1480. if (wbc->nr_to_write <= 0)
  1481. return 0;
  1482. if (mapping->a_ops->writepages)
  1483. ret = mapping->a_ops->writepages(mapping, wbc);
  1484. else
  1485. ret = generic_writepages(mapping, wbc);
  1486. return ret;
  1487. }
  1488. /**
  1489. * write_one_page - write out a single page and optionally wait on I/O
  1490. * @page: the page to write
  1491. * @wait: if true, wait on writeout
  1492. *
  1493. * The page must be locked by the caller and will be unlocked upon return.
  1494. *
  1495. * write_one_page() returns a negative error code if I/O failed.
  1496. */
  1497. int write_one_page(struct page *page, int wait)
  1498. {
  1499. struct address_space *mapping = page->mapping;
  1500. int ret = 0;
  1501. struct writeback_control wbc = {
  1502. .sync_mode = WB_SYNC_ALL,
  1503. .nr_to_write = 1,
  1504. };
  1505. BUG_ON(!PageLocked(page));
  1506. if (wait)
  1507. wait_on_page_writeback(page);
  1508. if (clear_page_dirty_for_io(page)) {
  1509. page_cache_get(page);
  1510. ret = mapping->a_ops->writepage(page, &wbc);
  1511. if (ret == 0 && wait) {
  1512. wait_on_page_writeback(page);
  1513. if (PageError(page))
  1514. ret = -EIO;
  1515. }
  1516. page_cache_release(page);
  1517. } else {
  1518. unlock_page(page);
  1519. }
  1520. return ret;
  1521. }
  1522. EXPORT_SYMBOL(write_one_page);
  1523. /*
  1524. * For address_spaces which do not use buffers nor write back.
  1525. */
  1526. int __set_page_dirty_no_writeback(struct page *page)
  1527. {
  1528. if (!PageDirty(page))
  1529. return !TestSetPageDirty(page);
  1530. return 0;
  1531. }
  1532. /*
  1533. * Helper function for set_page_dirty family.
  1534. * NOTE: This relies on being atomic wrt interrupts.
  1535. */
  1536. void account_page_dirtied(struct page *page, struct address_space *mapping)
  1537. {
  1538. if (mapping_cap_account_dirty(mapping)) {
  1539. __inc_zone_page_state(page, NR_FILE_DIRTY);
  1540. __inc_zone_page_state(page, NR_DIRTIED);
  1541. __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
  1542. __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
  1543. task_dirty_inc(current);
  1544. task_io_account_write(PAGE_CACHE_SIZE);
  1545. }
  1546. }
  1547. EXPORT_SYMBOL(account_page_dirtied);
  1548. /*
  1549. * Helper function for set_page_writeback family.
  1550. * NOTE: Unlike account_page_dirtied this does not rely on being atomic
  1551. * wrt interrupts.
  1552. */
  1553. void account_page_writeback(struct page *page)
  1554. {
  1555. inc_zone_page_state(page, NR_WRITEBACK);
  1556. }
  1557. EXPORT_SYMBOL(account_page_writeback);
  1558. /*
  1559. * For address_spaces which do not use buffers. Just tag the page as dirty in
  1560. * its radix tree.
  1561. *
  1562. * This is also used when a single buffer is being dirtied: we want to set the
  1563. * page dirty in that case, but not all the buffers. This is a "bottom-up"
  1564. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
  1565. *
  1566. * Most callers have locked the page, which pins the address_space in memory.
  1567. * But zap_pte_range() does not lock the page, however in that case the
  1568. * mapping is pinned by the vma's ->vm_file reference.
  1569. *
  1570. * We take care to handle the case where the page was truncated from the
  1571. * mapping by re-checking page_mapping() inside tree_lock.
  1572. */
  1573. int __set_page_dirty_nobuffers(struct page *page)
  1574. {
  1575. if (!TestSetPageDirty(page)) {
  1576. struct address_space *mapping = page_mapping(page);
  1577. struct address_space *mapping2;
  1578. if (!mapping)
  1579. return 1;
  1580. spin_lock_irq(&mapping->tree_lock);
  1581. mapping2 = page_mapping(page);
  1582. if (mapping2) { /* Race with truncate? */
  1583. BUG_ON(mapping2 != mapping);
  1584. WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
  1585. account_page_dirtied(page, mapping);
  1586. radix_tree_tag_set(&mapping->page_tree,
  1587. page_index(page), PAGECACHE_TAG_DIRTY);
  1588. }
  1589. spin_unlock_irq(&mapping->tree_lock);
  1590. if (mapping->host) {
  1591. /* !PageAnon && !swapper_space */
  1592. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  1593. }
  1594. return 1;
  1595. }
  1596. return 0;
  1597. }
  1598. EXPORT_SYMBOL(__set_page_dirty_nobuffers);
  1599. /*
  1600. * When a writepage implementation decides that it doesn't want to write this
  1601. * page for some reason, it should redirty the locked page via
  1602. * redirty_page_for_writepage() and it should then unlock the page and return 0
  1603. */
  1604. int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
  1605. {
  1606. wbc->pages_skipped++;
  1607. return __set_page_dirty_nobuffers(page);
  1608. }
  1609. EXPORT_SYMBOL(redirty_page_for_writepage);
  1610. /*
  1611. * Dirty a page.
  1612. *
  1613. * For pages with a mapping this should be done under the page lock
  1614. * for the benefit of asynchronous memory errors who prefer a consistent
  1615. * dirty state. This rule can be broken in some special cases,
  1616. * but should be better not to.
  1617. *
  1618. * If the mapping doesn't provide a set_page_dirty a_op, then
  1619. * just fall through and assume that it wants buffer_heads.
  1620. */
  1621. int set_page_dirty(struct page *page)
  1622. {
  1623. struct address_space *mapping = page_mapping(page);
  1624. if (likely(mapping)) {
  1625. int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
  1626. /*
  1627. * readahead/lru_deactivate_page could remain
  1628. * PG_readahead/PG_reclaim due to race with end_page_writeback
  1629. * About readahead, if the page is written, the flags would be
  1630. * reset. So no problem.
  1631. * About lru_deactivate_page, if the page is redirty, the flag
  1632. * will be reset. So no problem. but if the page is used by readahead
  1633. * it will confuse readahead and make it restart the size rampup
  1634. * process. But it's a trivial problem.
  1635. */
  1636. ClearPageReclaim(page);
  1637. #ifdef CONFIG_BLOCK
  1638. if (!spd)
  1639. spd = __set_page_dirty_buffers;
  1640. #endif
  1641. return (*spd)(page);
  1642. }
  1643. if (!PageDirty(page)) {
  1644. if (!TestSetPageDirty(page))
  1645. return 1;
  1646. }
  1647. return 0;
  1648. }
  1649. EXPORT_SYMBOL(set_page_dirty);
  1650. /*
  1651. * set_page_dirty() is racy if the caller has no reference against
  1652. * page->mapping->host, and if the page is unlocked. This is because another
  1653. * CPU could truncate the page off the mapping and then free the mapping.
  1654. *
  1655. * Usually, the page _is_ locked, or the caller is a user-space process which
  1656. * holds a reference on the inode by having an open file.
  1657. *
  1658. * In other cases, the page should be locked before running set_page_dirty().
  1659. */
  1660. int set_page_dirty_lock(struct page *page)
  1661. {
  1662. int ret;
  1663. lock_page(page);
  1664. ret = set_page_dirty(page);
  1665. unlock_page(page);
  1666. return ret;
  1667. }
  1668. EXPORT_SYMBOL(set_page_dirty_lock);
  1669. /*
  1670. * Clear a page's dirty flag, while caring for dirty memory accounting.
  1671. * Returns true if the page was previously dirty.
  1672. *
  1673. * This is for preparing to put the page under writeout. We leave the page
  1674. * tagged as dirty in the radix tree so that a concurrent write-for-sync
  1675. * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
  1676. * implementation will run either set_page_writeback() or set_page_dirty(),
  1677. * at which stage we bring the page's dirty flag and radix-tree dirty tag
  1678. * back into sync.
  1679. *
  1680. * This incoherency between the page's dirty flag and radix-tree tag is
  1681. * unfortunate, but it only exists while the page is locked.
  1682. */
  1683. int clear_page_dirty_for_io(struct page *page)
  1684. {
  1685. struct address_space *mapping = page_mapping(page);
  1686. BUG_ON(!PageLocked(page));
  1687. if (mapping && mapping_cap_account_dirty(mapping)) {
  1688. /*
  1689. * Yes, Virginia, this is indeed insane.
  1690. *
  1691. * We use this sequence to make sure that
  1692. * (a) we account for dirty stats properly
  1693. * (b) we tell the low-level filesystem to
  1694. * mark the whole page dirty if it was
  1695. * dirty in a pagetable. Only to then
  1696. * (c) clean the page again and return 1 to
  1697. * cause the writeback.
  1698. *
  1699. * This way we avoid all nasty races with the
  1700. * dirty bit in multiple places and clearing
  1701. * them concurrently from different threads.
  1702. *
  1703. * Note! Normally the "set_page_dirty(page)"
  1704. * has no effect on the actual dirty bit - since
  1705. * that will already usually be set. But we
  1706. * need the side effects, and it can help us
  1707. * avoid races.
  1708. *
  1709. * We basically use the page "master dirty bit"
  1710. * as a serialization point for all the different
  1711. * threads doing their things.
  1712. */
  1713. if (page_mkclean(page))
  1714. set_page_dirty(page);
  1715. /*
  1716. * We carefully synchronise fault handlers against
  1717. * installing a dirty pte and marking the page dirty
  1718. * at this point. We do this by having them hold the
  1719. * page lock at some point after installing their
  1720. * pte, but before marking the page dirty.
  1721. * Pages are always locked coming in here, so we get
  1722. * the desired exclusion. See mm/memory.c:do_wp_page()
  1723. * for more comments.
  1724. */
  1725. if (TestClearPageDirty(page)) {
  1726. dec_zone_page_state(page, NR_FILE_DIRTY);
  1727. dec_bdi_stat(mapping->backing_dev_info,
  1728. BDI_RECLAIMABLE);
  1729. return 1;
  1730. }
  1731. return 0;
  1732. }
  1733. return TestClearPageDirty(page);
  1734. }
  1735. EXPORT_SYMBOL(clear_page_dirty_for_io);
  1736. int test_clear_page_writeback(struct page *page)
  1737. {
  1738. struct address_space *mapping = page_mapping(page);
  1739. int ret;
  1740. if (mapping) {
  1741. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1742. unsigned long flags;
  1743. spin_lock_irqsave(&mapping->tree_lock, flags);
  1744. ret = TestClearPageWriteback(page);
  1745. if (ret) {
  1746. radix_tree_tag_clear(&mapping->page_tree,
  1747. page_index(page),
  1748. PAGECACHE_TAG_WRITEBACK);
  1749. if (bdi_cap_account_writeback(bdi)) {
  1750. __dec_bdi_stat(bdi, BDI_WRITEBACK);
  1751. __bdi_writeout_inc(bdi);
  1752. }
  1753. }
  1754. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1755. } else {
  1756. ret = TestClearPageWriteback(page);
  1757. }
  1758. if (ret) {
  1759. dec_zone_page_state(page, NR_WRITEBACK);
  1760. inc_zone_page_state(page, NR_WRITTEN);
  1761. }
  1762. return ret;
  1763. }
  1764. int test_set_page_writeback(struct page *page)
  1765. {
  1766. struct address_space *mapping = page_mapping(page);
  1767. int ret;
  1768. if (mapping) {
  1769. struct backing_dev_info *bdi = mapping->backing_dev_info;
  1770. unsigned long flags;
  1771. spin_lock_irqsave(&mapping->tree_lock, flags);
  1772. ret = TestSetPageWriteback(page);
  1773. if (!ret) {
  1774. radix_tree_tag_set(&mapping->page_tree,
  1775. page_index(page),
  1776. PAGECACHE_TAG_WRITEBACK);
  1777. if (bdi_cap_account_writeback(bdi))
  1778. __inc_bdi_stat(bdi, BDI_WRITEBACK);
  1779. }
  1780. if (!PageDirty(page))
  1781. radix_tree_tag_clear(&mapping->page_tree,
  1782. page_index(page),
  1783. PAGECACHE_TAG_DIRTY);
  1784. radix_tree_tag_clear(&mapping->page_tree,
  1785. page_index(page),
  1786. PAGECACHE_TAG_TOWRITE);
  1787. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  1788. } else {
  1789. ret = TestSetPageWriteback(page);
  1790. }
  1791. if (!ret)
  1792. account_page_writeback(page);
  1793. return ret;
  1794. }
  1795. EXPORT_SYMBOL(test_set_page_writeback);
  1796. /*
  1797. * Return true if any of the pages in the mapping are marked with the
  1798. * passed tag.
  1799. */
  1800. int mapping_tagged(struct address_space *mapping, int tag)
  1801. {
  1802. return radix_tree_tagged(&mapping->page_tree, tag);
  1803. }
  1804. EXPORT_SYMBOL(mapping_tagged);