huge_memory.c 63 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452
  1. /*
  2. * Copyright (C) 2009 Red Hat, Inc.
  3. *
  4. * This work is licensed under the terms of the GNU GPL, version 2. See
  5. * the COPYING file in the top-level directory.
  6. */
  7. #include <linux/mm.h>
  8. #include <linux/sched.h>
  9. #include <linux/highmem.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/mmu_notifier.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/mm_inline.h>
  15. #include <linux/kthread.h>
  16. #include <linux/khugepaged.h>
  17. #include <linux/freezer.h>
  18. #include <linux/mman.h>
  19. #include <asm/tlb.h>
  20. #include <asm/pgalloc.h>
  21. #include "internal.h"
  22. /*
  23. * By default transparent hugepage support is enabled for all mappings
  24. * and khugepaged scans all mappings. Defrag is only invoked by
  25. * khugepaged hugepage allocations and by page faults inside
  26. * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
  27. * allocations.
  28. */
  29. unsigned long transparent_hugepage_flags __read_mostly =
  30. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  31. (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  32. #endif
  33. #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  34. (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  35. #endif
  36. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  37. (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  38. /* default scan 8*512 pte (or vmas) every 30 second */
  39. static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  40. static unsigned int khugepaged_pages_collapsed;
  41. static unsigned int khugepaged_full_scans;
  42. static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  43. /* during fragmentation poll the hugepage allocator once every minute */
  44. static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  45. static struct task_struct *khugepaged_thread __read_mostly;
  46. static DEFINE_MUTEX(khugepaged_mutex);
  47. static DEFINE_SPINLOCK(khugepaged_mm_lock);
  48. static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  49. /*
  50. * default collapse hugepages if there is at least one pte mapped like
  51. * it would have happened if the vma was large enough during page
  52. * fault.
  53. */
  54. static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  55. static int khugepaged(void *none);
  56. static int mm_slots_hash_init(void);
  57. static int khugepaged_slab_init(void);
  58. static void khugepaged_slab_free(void);
  59. #define MM_SLOTS_HASH_HEADS 1024
  60. static struct hlist_head *mm_slots_hash __read_mostly;
  61. static struct kmem_cache *mm_slot_cache __read_mostly;
  62. /**
  63. * struct mm_slot - hash lookup from mm to mm_slot
  64. * @hash: hash collision list
  65. * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  66. * @mm: the mm that this information is valid for
  67. */
  68. struct mm_slot {
  69. struct hlist_node hash;
  70. struct list_head mm_node;
  71. struct mm_struct *mm;
  72. };
  73. /**
  74. * struct khugepaged_scan - cursor for scanning
  75. * @mm_head: the head of the mm list to scan
  76. * @mm_slot: the current mm_slot we are scanning
  77. * @address: the next address inside that to be scanned
  78. *
  79. * There is only the one khugepaged_scan instance of this cursor structure.
  80. */
  81. struct khugepaged_scan {
  82. struct list_head mm_head;
  83. struct mm_slot *mm_slot;
  84. unsigned long address;
  85. };
  86. static struct khugepaged_scan khugepaged_scan = {
  87. .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
  88. };
  89. static int set_recommended_min_free_kbytes(void)
  90. {
  91. struct zone *zone;
  92. int nr_zones = 0;
  93. unsigned long recommended_min;
  94. extern int min_free_kbytes;
  95. if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  96. &transparent_hugepage_flags) &&
  97. !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  98. &transparent_hugepage_flags))
  99. return 0;
  100. for_each_populated_zone(zone)
  101. nr_zones++;
  102. /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
  103. recommended_min = pageblock_nr_pages * nr_zones * 2;
  104. /*
  105. * Make sure that on average at least two pageblocks are almost free
  106. * of another type, one for a migratetype to fall back to and a
  107. * second to avoid subsequent fallbacks of other types There are 3
  108. * MIGRATE_TYPES we care about.
  109. */
  110. recommended_min += pageblock_nr_pages * nr_zones *
  111. MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
  112. /* don't ever allow to reserve more than 5% of the lowmem */
  113. recommended_min = min(recommended_min,
  114. (unsigned long) nr_free_buffer_pages() / 20);
  115. recommended_min <<= (PAGE_SHIFT-10);
  116. if (recommended_min > min_free_kbytes)
  117. min_free_kbytes = recommended_min;
  118. setup_per_zone_wmarks();
  119. return 0;
  120. }
  121. late_initcall(set_recommended_min_free_kbytes);
  122. static int start_khugepaged(void)
  123. {
  124. int err = 0;
  125. if (khugepaged_enabled()) {
  126. int wakeup;
  127. if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
  128. err = -ENOMEM;
  129. goto out;
  130. }
  131. mutex_lock(&khugepaged_mutex);
  132. if (!khugepaged_thread)
  133. khugepaged_thread = kthread_run(khugepaged, NULL,
  134. "khugepaged");
  135. if (unlikely(IS_ERR(khugepaged_thread))) {
  136. printk(KERN_ERR
  137. "khugepaged: kthread_run(khugepaged) failed\n");
  138. err = PTR_ERR(khugepaged_thread);
  139. khugepaged_thread = NULL;
  140. }
  141. wakeup = !list_empty(&khugepaged_scan.mm_head);
  142. mutex_unlock(&khugepaged_mutex);
  143. if (wakeup)
  144. wake_up_interruptible(&khugepaged_wait);
  145. set_recommended_min_free_kbytes();
  146. } else
  147. /* wakeup to exit */
  148. wake_up_interruptible(&khugepaged_wait);
  149. out:
  150. return err;
  151. }
  152. #ifdef CONFIG_SYSFS
  153. static ssize_t double_flag_show(struct kobject *kobj,
  154. struct kobj_attribute *attr, char *buf,
  155. enum transparent_hugepage_flag enabled,
  156. enum transparent_hugepage_flag req_madv)
  157. {
  158. if (test_bit(enabled, &transparent_hugepage_flags)) {
  159. VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
  160. return sprintf(buf, "[always] madvise never\n");
  161. } else if (test_bit(req_madv, &transparent_hugepage_flags))
  162. return sprintf(buf, "always [madvise] never\n");
  163. else
  164. return sprintf(buf, "always madvise [never]\n");
  165. }
  166. static ssize_t double_flag_store(struct kobject *kobj,
  167. struct kobj_attribute *attr,
  168. const char *buf, size_t count,
  169. enum transparent_hugepage_flag enabled,
  170. enum transparent_hugepage_flag req_madv)
  171. {
  172. if (!memcmp("always", buf,
  173. min(sizeof("always")-1, count))) {
  174. set_bit(enabled, &transparent_hugepage_flags);
  175. clear_bit(req_madv, &transparent_hugepage_flags);
  176. } else if (!memcmp("madvise", buf,
  177. min(sizeof("madvise")-1, count))) {
  178. clear_bit(enabled, &transparent_hugepage_flags);
  179. set_bit(req_madv, &transparent_hugepage_flags);
  180. } else if (!memcmp("never", buf,
  181. min(sizeof("never")-1, count))) {
  182. clear_bit(enabled, &transparent_hugepage_flags);
  183. clear_bit(req_madv, &transparent_hugepage_flags);
  184. } else
  185. return -EINVAL;
  186. return count;
  187. }
  188. static ssize_t enabled_show(struct kobject *kobj,
  189. struct kobj_attribute *attr, char *buf)
  190. {
  191. return double_flag_show(kobj, attr, buf,
  192. TRANSPARENT_HUGEPAGE_FLAG,
  193. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  194. }
  195. static ssize_t enabled_store(struct kobject *kobj,
  196. struct kobj_attribute *attr,
  197. const char *buf, size_t count)
  198. {
  199. ssize_t ret;
  200. ret = double_flag_store(kobj, attr, buf, count,
  201. TRANSPARENT_HUGEPAGE_FLAG,
  202. TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
  203. if (ret > 0) {
  204. int err = start_khugepaged();
  205. if (err)
  206. ret = err;
  207. }
  208. if (ret > 0 &&
  209. (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
  210. &transparent_hugepage_flags) ||
  211. test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  212. &transparent_hugepage_flags)))
  213. set_recommended_min_free_kbytes();
  214. return ret;
  215. }
  216. static struct kobj_attribute enabled_attr =
  217. __ATTR(enabled, 0644, enabled_show, enabled_store);
  218. static ssize_t single_flag_show(struct kobject *kobj,
  219. struct kobj_attribute *attr, char *buf,
  220. enum transparent_hugepage_flag flag)
  221. {
  222. return sprintf(buf, "%d\n",
  223. !!test_bit(flag, &transparent_hugepage_flags));
  224. }
  225. static ssize_t single_flag_store(struct kobject *kobj,
  226. struct kobj_attribute *attr,
  227. const char *buf, size_t count,
  228. enum transparent_hugepage_flag flag)
  229. {
  230. unsigned long value;
  231. int ret;
  232. ret = kstrtoul(buf, 10, &value);
  233. if (ret < 0)
  234. return ret;
  235. if (value > 1)
  236. return -EINVAL;
  237. if (value)
  238. set_bit(flag, &transparent_hugepage_flags);
  239. else
  240. clear_bit(flag, &transparent_hugepage_flags);
  241. return count;
  242. }
  243. /*
  244. * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
  245. * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
  246. * memory just to allocate one more hugepage.
  247. */
  248. static ssize_t defrag_show(struct kobject *kobj,
  249. struct kobj_attribute *attr, char *buf)
  250. {
  251. return double_flag_show(kobj, attr, buf,
  252. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  253. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  254. }
  255. static ssize_t defrag_store(struct kobject *kobj,
  256. struct kobj_attribute *attr,
  257. const char *buf, size_t count)
  258. {
  259. return double_flag_store(kobj, attr, buf, count,
  260. TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
  261. TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
  262. }
  263. static struct kobj_attribute defrag_attr =
  264. __ATTR(defrag, 0644, defrag_show, defrag_store);
  265. #ifdef CONFIG_DEBUG_VM
  266. static ssize_t debug_cow_show(struct kobject *kobj,
  267. struct kobj_attribute *attr, char *buf)
  268. {
  269. return single_flag_show(kobj, attr, buf,
  270. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  271. }
  272. static ssize_t debug_cow_store(struct kobject *kobj,
  273. struct kobj_attribute *attr,
  274. const char *buf, size_t count)
  275. {
  276. return single_flag_store(kobj, attr, buf, count,
  277. TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
  278. }
  279. static struct kobj_attribute debug_cow_attr =
  280. __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
  281. #endif /* CONFIG_DEBUG_VM */
  282. static struct attribute *hugepage_attr[] = {
  283. &enabled_attr.attr,
  284. &defrag_attr.attr,
  285. #ifdef CONFIG_DEBUG_VM
  286. &debug_cow_attr.attr,
  287. #endif
  288. NULL,
  289. };
  290. static struct attribute_group hugepage_attr_group = {
  291. .attrs = hugepage_attr,
  292. };
  293. static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
  294. struct kobj_attribute *attr,
  295. char *buf)
  296. {
  297. return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
  298. }
  299. static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
  300. struct kobj_attribute *attr,
  301. const char *buf, size_t count)
  302. {
  303. unsigned long msecs;
  304. int err;
  305. err = strict_strtoul(buf, 10, &msecs);
  306. if (err || msecs > UINT_MAX)
  307. return -EINVAL;
  308. khugepaged_scan_sleep_millisecs = msecs;
  309. wake_up_interruptible(&khugepaged_wait);
  310. return count;
  311. }
  312. static struct kobj_attribute scan_sleep_millisecs_attr =
  313. __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
  314. scan_sleep_millisecs_store);
  315. static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
  316. struct kobj_attribute *attr,
  317. char *buf)
  318. {
  319. return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
  320. }
  321. static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
  322. struct kobj_attribute *attr,
  323. const char *buf, size_t count)
  324. {
  325. unsigned long msecs;
  326. int err;
  327. err = strict_strtoul(buf, 10, &msecs);
  328. if (err || msecs > UINT_MAX)
  329. return -EINVAL;
  330. khugepaged_alloc_sleep_millisecs = msecs;
  331. wake_up_interruptible(&khugepaged_wait);
  332. return count;
  333. }
  334. static struct kobj_attribute alloc_sleep_millisecs_attr =
  335. __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
  336. alloc_sleep_millisecs_store);
  337. static ssize_t pages_to_scan_show(struct kobject *kobj,
  338. struct kobj_attribute *attr,
  339. char *buf)
  340. {
  341. return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
  342. }
  343. static ssize_t pages_to_scan_store(struct kobject *kobj,
  344. struct kobj_attribute *attr,
  345. const char *buf, size_t count)
  346. {
  347. int err;
  348. unsigned long pages;
  349. err = strict_strtoul(buf, 10, &pages);
  350. if (err || !pages || pages > UINT_MAX)
  351. return -EINVAL;
  352. khugepaged_pages_to_scan = pages;
  353. return count;
  354. }
  355. static struct kobj_attribute pages_to_scan_attr =
  356. __ATTR(pages_to_scan, 0644, pages_to_scan_show,
  357. pages_to_scan_store);
  358. static ssize_t pages_collapsed_show(struct kobject *kobj,
  359. struct kobj_attribute *attr,
  360. char *buf)
  361. {
  362. return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
  363. }
  364. static struct kobj_attribute pages_collapsed_attr =
  365. __ATTR_RO(pages_collapsed);
  366. static ssize_t full_scans_show(struct kobject *kobj,
  367. struct kobj_attribute *attr,
  368. char *buf)
  369. {
  370. return sprintf(buf, "%u\n", khugepaged_full_scans);
  371. }
  372. static struct kobj_attribute full_scans_attr =
  373. __ATTR_RO(full_scans);
  374. static ssize_t khugepaged_defrag_show(struct kobject *kobj,
  375. struct kobj_attribute *attr, char *buf)
  376. {
  377. return single_flag_show(kobj, attr, buf,
  378. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  379. }
  380. static ssize_t khugepaged_defrag_store(struct kobject *kobj,
  381. struct kobj_attribute *attr,
  382. const char *buf, size_t count)
  383. {
  384. return single_flag_store(kobj, attr, buf, count,
  385. TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
  386. }
  387. static struct kobj_attribute khugepaged_defrag_attr =
  388. __ATTR(defrag, 0644, khugepaged_defrag_show,
  389. khugepaged_defrag_store);
  390. /*
  391. * max_ptes_none controls if khugepaged should collapse hugepages over
  392. * any unmapped ptes in turn potentially increasing the memory
  393. * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
  394. * reduce the available free memory in the system as it
  395. * runs. Increasing max_ptes_none will instead potentially reduce the
  396. * free memory in the system during the khugepaged scan.
  397. */
  398. static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
  399. struct kobj_attribute *attr,
  400. char *buf)
  401. {
  402. return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
  403. }
  404. static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
  405. struct kobj_attribute *attr,
  406. const char *buf, size_t count)
  407. {
  408. int err;
  409. unsigned long max_ptes_none;
  410. err = strict_strtoul(buf, 10, &max_ptes_none);
  411. if (err || max_ptes_none > HPAGE_PMD_NR-1)
  412. return -EINVAL;
  413. khugepaged_max_ptes_none = max_ptes_none;
  414. return count;
  415. }
  416. static struct kobj_attribute khugepaged_max_ptes_none_attr =
  417. __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
  418. khugepaged_max_ptes_none_store);
  419. static struct attribute *khugepaged_attr[] = {
  420. &khugepaged_defrag_attr.attr,
  421. &khugepaged_max_ptes_none_attr.attr,
  422. &pages_to_scan_attr.attr,
  423. &pages_collapsed_attr.attr,
  424. &full_scans_attr.attr,
  425. &scan_sleep_millisecs_attr.attr,
  426. &alloc_sleep_millisecs_attr.attr,
  427. NULL,
  428. };
  429. static struct attribute_group khugepaged_attr_group = {
  430. .attrs = khugepaged_attr,
  431. .name = "khugepaged",
  432. };
  433. #endif /* CONFIG_SYSFS */
  434. static int __init hugepage_init(void)
  435. {
  436. int err;
  437. #ifdef CONFIG_SYSFS
  438. static struct kobject *hugepage_kobj;
  439. #endif
  440. err = -EINVAL;
  441. if (!has_transparent_hugepage()) {
  442. transparent_hugepage_flags = 0;
  443. goto out;
  444. }
  445. #ifdef CONFIG_SYSFS
  446. err = -ENOMEM;
  447. hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
  448. if (unlikely(!hugepage_kobj)) {
  449. printk(KERN_ERR "hugepage: failed kobject create\n");
  450. goto out;
  451. }
  452. err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
  453. if (err) {
  454. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  455. goto out;
  456. }
  457. err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
  458. if (err) {
  459. printk(KERN_ERR "hugepage: failed register hugeage group\n");
  460. goto out;
  461. }
  462. #endif
  463. err = khugepaged_slab_init();
  464. if (err)
  465. goto out;
  466. err = mm_slots_hash_init();
  467. if (err) {
  468. khugepaged_slab_free();
  469. goto out;
  470. }
  471. /*
  472. * By default disable transparent hugepages on smaller systems,
  473. * where the extra memory used could hurt more than TLB overhead
  474. * is likely to save. The admin can still enable it through /sys.
  475. */
  476. if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
  477. transparent_hugepage_flags = 0;
  478. start_khugepaged();
  479. set_recommended_min_free_kbytes();
  480. out:
  481. return err;
  482. }
  483. module_init(hugepage_init)
  484. static int __init setup_transparent_hugepage(char *str)
  485. {
  486. int ret = 0;
  487. if (!str)
  488. goto out;
  489. if (!strcmp(str, "always")) {
  490. set_bit(TRANSPARENT_HUGEPAGE_FLAG,
  491. &transparent_hugepage_flags);
  492. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  493. &transparent_hugepage_flags);
  494. ret = 1;
  495. } else if (!strcmp(str, "madvise")) {
  496. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  497. &transparent_hugepage_flags);
  498. set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  499. &transparent_hugepage_flags);
  500. ret = 1;
  501. } else if (!strcmp(str, "never")) {
  502. clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
  503. &transparent_hugepage_flags);
  504. clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
  505. &transparent_hugepage_flags);
  506. ret = 1;
  507. }
  508. out:
  509. if (!ret)
  510. printk(KERN_WARNING
  511. "transparent_hugepage= cannot parse, ignored\n");
  512. return ret;
  513. }
  514. __setup("transparent_hugepage=", setup_transparent_hugepage);
  515. static void prepare_pmd_huge_pte(pgtable_t pgtable,
  516. struct mm_struct *mm)
  517. {
  518. assert_spin_locked(&mm->page_table_lock);
  519. /* FIFO */
  520. if (!mm->pmd_huge_pte)
  521. INIT_LIST_HEAD(&pgtable->lru);
  522. else
  523. list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
  524. mm->pmd_huge_pte = pgtable;
  525. }
  526. static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
  527. {
  528. if (likely(vma->vm_flags & VM_WRITE))
  529. pmd = pmd_mkwrite(pmd);
  530. return pmd;
  531. }
  532. static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
  533. struct vm_area_struct *vma,
  534. unsigned long haddr, pmd_t *pmd,
  535. struct page *page)
  536. {
  537. int ret = 0;
  538. pgtable_t pgtable;
  539. VM_BUG_ON(!PageCompound(page));
  540. pgtable = pte_alloc_one(mm, haddr);
  541. if (unlikely(!pgtable)) {
  542. mem_cgroup_uncharge_page(page);
  543. put_page(page);
  544. return VM_FAULT_OOM;
  545. }
  546. clear_huge_page(page, haddr, HPAGE_PMD_NR);
  547. __SetPageUptodate(page);
  548. spin_lock(&mm->page_table_lock);
  549. if (unlikely(!pmd_none(*pmd))) {
  550. spin_unlock(&mm->page_table_lock);
  551. mem_cgroup_uncharge_page(page);
  552. put_page(page);
  553. pte_free(mm, pgtable);
  554. } else {
  555. pmd_t entry;
  556. entry = mk_pmd(page, vma->vm_page_prot);
  557. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  558. entry = pmd_mkhuge(entry);
  559. /*
  560. * The spinlocking to take the lru_lock inside
  561. * page_add_new_anon_rmap() acts as a full memory
  562. * barrier to be sure clear_huge_page writes become
  563. * visible after the set_pmd_at() write.
  564. */
  565. page_add_new_anon_rmap(page, vma, haddr);
  566. set_pmd_at(mm, haddr, pmd, entry);
  567. prepare_pmd_huge_pte(pgtable, mm);
  568. add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
  569. spin_unlock(&mm->page_table_lock);
  570. }
  571. return ret;
  572. }
  573. static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
  574. {
  575. return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
  576. }
  577. static inline struct page *alloc_hugepage_vma(int defrag,
  578. struct vm_area_struct *vma,
  579. unsigned long haddr, int nd,
  580. gfp_t extra_gfp)
  581. {
  582. return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
  583. HPAGE_PMD_ORDER, vma, haddr, nd);
  584. }
  585. #ifndef CONFIG_NUMA
  586. static inline struct page *alloc_hugepage(int defrag)
  587. {
  588. return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
  589. HPAGE_PMD_ORDER);
  590. }
  591. #endif
  592. int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  593. unsigned long address, pmd_t *pmd,
  594. unsigned int flags)
  595. {
  596. struct page *page;
  597. unsigned long haddr = address & HPAGE_PMD_MASK;
  598. pte_t *pte;
  599. if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
  600. if (unlikely(anon_vma_prepare(vma)))
  601. return VM_FAULT_OOM;
  602. if (unlikely(khugepaged_enter(vma)))
  603. return VM_FAULT_OOM;
  604. page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  605. vma, haddr, numa_node_id(), 0);
  606. if (unlikely(!page)) {
  607. count_vm_event(THP_FAULT_FALLBACK);
  608. goto out;
  609. }
  610. count_vm_event(THP_FAULT_ALLOC);
  611. if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
  612. put_page(page);
  613. goto out;
  614. }
  615. return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
  616. }
  617. out:
  618. /*
  619. * Use __pte_alloc instead of pte_alloc_map, because we can't
  620. * run pte_offset_map on the pmd, if an huge pmd could
  621. * materialize from under us from a different thread.
  622. */
  623. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  624. return VM_FAULT_OOM;
  625. /* if an huge pmd materialized from under us just retry later */
  626. if (unlikely(pmd_trans_huge(*pmd)))
  627. return 0;
  628. /*
  629. * A regular pmd is established and it can't morph into a huge pmd
  630. * from under us anymore at this point because we hold the mmap_sem
  631. * read mode and khugepaged takes it in write mode. So now it's
  632. * safe to run pte_offset_map().
  633. */
  634. pte = pte_offset_map(pmd, address);
  635. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  636. }
  637. int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  638. pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
  639. struct vm_area_struct *vma)
  640. {
  641. struct page *src_page;
  642. pmd_t pmd;
  643. pgtable_t pgtable;
  644. int ret;
  645. ret = -ENOMEM;
  646. pgtable = pte_alloc_one(dst_mm, addr);
  647. if (unlikely(!pgtable))
  648. goto out;
  649. spin_lock(&dst_mm->page_table_lock);
  650. spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
  651. ret = -EAGAIN;
  652. pmd = *src_pmd;
  653. if (unlikely(!pmd_trans_huge(pmd))) {
  654. pte_free(dst_mm, pgtable);
  655. goto out_unlock;
  656. }
  657. if (unlikely(pmd_trans_splitting(pmd))) {
  658. /* split huge page running from under us */
  659. spin_unlock(&src_mm->page_table_lock);
  660. spin_unlock(&dst_mm->page_table_lock);
  661. pte_free(dst_mm, pgtable);
  662. wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
  663. goto out;
  664. }
  665. src_page = pmd_page(pmd);
  666. VM_BUG_ON(!PageHead(src_page));
  667. get_page(src_page);
  668. page_dup_rmap(src_page);
  669. add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
  670. pmdp_set_wrprotect(src_mm, addr, src_pmd);
  671. pmd = pmd_mkold(pmd_wrprotect(pmd));
  672. set_pmd_at(dst_mm, addr, dst_pmd, pmd);
  673. prepare_pmd_huge_pte(pgtable, dst_mm);
  674. ret = 0;
  675. out_unlock:
  676. spin_unlock(&src_mm->page_table_lock);
  677. spin_unlock(&dst_mm->page_table_lock);
  678. out:
  679. return ret;
  680. }
  681. /* no "address" argument so destroys page coloring of some arch */
  682. pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
  683. {
  684. pgtable_t pgtable;
  685. assert_spin_locked(&mm->page_table_lock);
  686. /* FIFO */
  687. pgtable = mm->pmd_huge_pte;
  688. if (list_empty(&pgtable->lru))
  689. mm->pmd_huge_pte = NULL;
  690. else {
  691. mm->pmd_huge_pte = list_entry(pgtable->lru.next,
  692. struct page, lru);
  693. list_del(&pgtable->lru);
  694. }
  695. return pgtable;
  696. }
  697. static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
  698. struct vm_area_struct *vma,
  699. unsigned long address,
  700. pmd_t *pmd, pmd_t orig_pmd,
  701. struct page *page,
  702. unsigned long haddr)
  703. {
  704. pgtable_t pgtable;
  705. pmd_t _pmd;
  706. int ret = 0, i;
  707. struct page **pages;
  708. pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
  709. GFP_KERNEL);
  710. if (unlikely(!pages)) {
  711. ret |= VM_FAULT_OOM;
  712. goto out;
  713. }
  714. for (i = 0; i < HPAGE_PMD_NR; i++) {
  715. pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
  716. __GFP_OTHER_NODE,
  717. vma, address, page_to_nid(page));
  718. if (unlikely(!pages[i] ||
  719. mem_cgroup_newpage_charge(pages[i], mm,
  720. GFP_KERNEL))) {
  721. if (pages[i])
  722. put_page(pages[i]);
  723. mem_cgroup_uncharge_start();
  724. while (--i >= 0) {
  725. mem_cgroup_uncharge_page(pages[i]);
  726. put_page(pages[i]);
  727. }
  728. mem_cgroup_uncharge_end();
  729. kfree(pages);
  730. ret |= VM_FAULT_OOM;
  731. goto out;
  732. }
  733. }
  734. for (i = 0; i < HPAGE_PMD_NR; i++) {
  735. copy_user_highpage(pages[i], page + i,
  736. haddr + PAGE_SIZE * i, vma);
  737. __SetPageUptodate(pages[i]);
  738. cond_resched();
  739. }
  740. spin_lock(&mm->page_table_lock);
  741. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  742. goto out_free_pages;
  743. VM_BUG_ON(!PageHead(page));
  744. pmdp_clear_flush_notify(vma, haddr, pmd);
  745. /* leave pmd empty until pte is filled */
  746. pgtable = get_pmd_huge_pte(mm);
  747. pmd_populate(mm, &_pmd, pgtable);
  748. for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
  749. pte_t *pte, entry;
  750. entry = mk_pte(pages[i], vma->vm_page_prot);
  751. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  752. page_add_new_anon_rmap(pages[i], vma, haddr);
  753. pte = pte_offset_map(&_pmd, haddr);
  754. VM_BUG_ON(!pte_none(*pte));
  755. set_pte_at(mm, haddr, pte, entry);
  756. pte_unmap(pte);
  757. }
  758. kfree(pages);
  759. mm->nr_ptes++;
  760. smp_wmb(); /* make pte visible before pmd */
  761. pmd_populate(mm, pmd, pgtable);
  762. page_remove_rmap(page);
  763. spin_unlock(&mm->page_table_lock);
  764. ret |= VM_FAULT_WRITE;
  765. put_page(page);
  766. out:
  767. return ret;
  768. out_free_pages:
  769. spin_unlock(&mm->page_table_lock);
  770. mem_cgroup_uncharge_start();
  771. for (i = 0; i < HPAGE_PMD_NR; i++) {
  772. mem_cgroup_uncharge_page(pages[i]);
  773. put_page(pages[i]);
  774. }
  775. mem_cgroup_uncharge_end();
  776. kfree(pages);
  777. goto out;
  778. }
  779. int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  780. unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
  781. {
  782. int ret = 0;
  783. struct page *page, *new_page;
  784. unsigned long haddr;
  785. VM_BUG_ON(!vma->anon_vma);
  786. spin_lock(&mm->page_table_lock);
  787. if (unlikely(!pmd_same(*pmd, orig_pmd)))
  788. goto out_unlock;
  789. page = pmd_page(orig_pmd);
  790. VM_BUG_ON(!PageCompound(page) || !PageHead(page));
  791. haddr = address & HPAGE_PMD_MASK;
  792. if (page_mapcount(page) == 1) {
  793. pmd_t entry;
  794. entry = pmd_mkyoung(orig_pmd);
  795. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  796. if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
  797. update_mmu_cache(vma, address, entry);
  798. ret |= VM_FAULT_WRITE;
  799. goto out_unlock;
  800. }
  801. get_page(page);
  802. spin_unlock(&mm->page_table_lock);
  803. if (transparent_hugepage_enabled(vma) &&
  804. !transparent_hugepage_debug_cow())
  805. new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
  806. vma, haddr, numa_node_id(), 0);
  807. else
  808. new_page = NULL;
  809. if (unlikely(!new_page)) {
  810. count_vm_event(THP_FAULT_FALLBACK);
  811. ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
  812. pmd, orig_pmd, page, haddr);
  813. put_page(page);
  814. goto out;
  815. }
  816. count_vm_event(THP_FAULT_ALLOC);
  817. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  818. put_page(new_page);
  819. put_page(page);
  820. ret |= VM_FAULT_OOM;
  821. goto out;
  822. }
  823. copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
  824. __SetPageUptodate(new_page);
  825. spin_lock(&mm->page_table_lock);
  826. put_page(page);
  827. if (unlikely(!pmd_same(*pmd, orig_pmd))) {
  828. mem_cgroup_uncharge_page(new_page);
  829. put_page(new_page);
  830. } else {
  831. pmd_t entry;
  832. VM_BUG_ON(!PageHead(page));
  833. entry = mk_pmd(new_page, vma->vm_page_prot);
  834. entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
  835. entry = pmd_mkhuge(entry);
  836. pmdp_clear_flush_notify(vma, haddr, pmd);
  837. page_add_new_anon_rmap(new_page, vma, haddr);
  838. set_pmd_at(mm, haddr, pmd, entry);
  839. update_mmu_cache(vma, address, entry);
  840. page_remove_rmap(page);
  841. put_page(page);
  842. ret |= VM_FAULT_WRITE;
  843. }
  844. out_unlock:
  845. spin_unlock(&mm->page_table_lock);
  846. out:
  847. return ret;
  848. }
  849. struct page *follow_trans_huge_pmd(struct mm_struct *mm,
  850. unsigned long addr,
  851. pmd_t *pmd,
  852. unsigned int flags)
  853. {
  854. struct page *page = NULL;
  855. assert_spin_locked(&mm->page_table_lock);
  856. if (flags & FOLL_WRITE && !pmd_write(*pmd))
  857. goto out;
  858. page = pmd_page(*pmd);
  859. VM_BUG_ON(!PageHead(page));
  860. if (flags & FOLL_TOUCH) {
  861. pmd_t _pmd;
  862. /*
  863. * We should set the dirty bit only for FOLL_WRITE but
  864. * for now the dirty bit in the pmd is meaningless.
  865. * And if the dirty bit will become meaningful and
  866. * we'll only set it with FOLL_WRITE, an atomic
  867. * set_bit will be required on the pmd to set the
  868. * young bit, instead of the current set_pmd_at.
  869. */
  870. _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
  871. set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
  872. }
  873. page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
  874. VM_BUG_ON(!PageCompound(page));
  875. if (flags & FOLL_GET)
  876. get_page_foll(page);
  877. out:
  878. return page;
  879. }
  880. int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
  881. pmd_t *pmd)
  882. {
  883. int ret = 0;
  884. spin_lock(&tlb->mm->page_table_lock);
  885. if (likely(pmd_trans_huge(*pmd))) {
  886. if (unlikely(pmd_trans_splitting(*pmd))) {
  887. spin_unlock(&tlb->mm->page_table_lock);
  888. wait_split_huge_page(vma->anon_vma,
  889. pmd);
  890. } else {
  891. struct page *page;
  892. pgtable_t pgtable;
  893. pgtable = get_pmd_huge_pte(tlb->mm);
  894. page = pmd_page(*pmd);
  895. pmd_clear(pmd);
  896. page_remove_rmap(page);
  897. VM_BUG_ON(page_mapcount(page) < 0);
  898. add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
  899. VM_BUG_ON(!PageHead(page));
  900. spin_unlock(&tlb->mm->page_table_lock);
  901. tlb_remove_page(tlb, page);
  902. pte_free(tlb->mm, pgtable);
  903. ret = 1;
  904. }
  905. } else
  906. spin_unlock(&tlb->mm->page_table_lock);
  907. return ret;
  908. }
  909. int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  910. unsigned long addr, unsigned long end,
  911. unsigned char *vec)
  912. {
  913. int ret = 0;
  914. spin_lock(&vma->vm_mm->page_table_lock);
  915. if (likely(pmd_trans_huge(*pmd))) {
  916. ret = !pmd_trans_splitting(*pmd);
  917. spin_unlock(&vma->vm_mm->page_table_lock);
  918. if (unlikely(!ret))
  919. wait_split_huge_page(vma->anon_vma, pmd);
  920. else {
  921. /*
  922. * All logical pages in the range are present
  923. * if backed by a huge page.
  924. */
  925. memset(vec, 1, (end - addr) >> PAGE_SHIFT);
  926. }
  927. } else
  928. spin_unlock(&vma->vm_mm->page_table_lock);
  929. return ret;
  930. }
  931. int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
  932. unsigned long old_addr,
  933. unsigned long new_addr, unsigned long old_end,
  934. pmd_t *old_pmd, pmd_t *new_pmd)
  935. {
  936. int ret = 0;
  937. pmd_t pmd;
  938. struct mm_struct *mm = vma->vm_mm;
  939. if ((old_addr & ~HPAGE_PMD_MASK) ||
  940. (new_addr & ~HPAGE_PMD_MASK) ||
  941. old_end - old_addr < HPAGE_PMD_SIZE ||
  942. (new_vma->vm_flags & VM_NOHUGEPAGE))
  943. goto out;
  944. /*
  945. * The destination pmd shouldn't be established, free_pgtables()
  946. * should have release it.
  947. */
  948. if (WARN_ON(!pmd_none(*new_pmd))) {
  949. VM_BUG_ON(pmd_trans_huge(*new_pmd));
  950. goto out;
  951. }
  952. spin_lock(&mm->page_table_lock);
  953. if (likely(pmd_trans_huge(*old_pmd))) {
  954. if (pmd_trans_splitting(*old_pmd)) {
  955. spin_unlock(&mm->page_table_lock);
  956. wait_split_huge_page(vma->anon_vma, old_pmd);
  957. ret = -1;
  958. } else {
  959. pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
  960. VM_BUG_ON(!pmd_none(*new_pmd));
  961. set_pmd_at(mm, new_addr, new_pmd, pmd);
  962. spin_unlock(&mm->page_table_lock);
  963. ret = 1;
  964. }
  965. } else {
  966. spin_unlock(&mm->page_table_lock);
  967. }
  968. out:
  969. return ret;
  970. }
  971. int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
  972. unsigned long addr, pgprot_t newprot)
  973. {
  974. struct mm_struct *mm = vma->vm_mm;
  975. int ret = 0;
  976. spin_lock(&mm->page_table_lock);
  977. if (likely(pmd_trans_huge(*pmd))) {
  978. if (unlikely(pmd_trans_splitting(*pmd))) {
  979. spin_unlock(&mm->page_table_lock);
  980. wait_split_huge_page(vma->anon_vma, pmd);
  981. } else {
  982. pmd_t entry;
  983. entry = pmdp_get_and_clear(mm, addr, pmd);
  984. entry = pmd_modify(entry, newprot);
  985. set_pmd_at(mm, addr, pmd, entry);
  986. spin_unlock(&vma->vm_mm->page_table_lock);
  987. flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
  988. ret = 1;
  989. }
  990. } else
  991. spin_unlock(&vma->vm_mm->page_table_lock);
  992. return ret;
  993. }
  994. pmd_t *page_check_address_pmd(struct page *page,
  995. struct mm_struct *mm,
  996. unsigned long address,
  997. enum page_check_address_pmd_flag flag)
  998. {
  999. pgd_t *pgd;
  1000. pud_t *pud;
  1001. pmd_t *pmd, *ret = NULL;
  1002. if (address & ~HPAGE_PMD_MASK)
  1003. goto out;
  1004. pgd = pgd_offset(mm, address);
  1005. if (!pgd_present(*pgd))
  1006. goto out;
  1007. pud = pud_offset(pgd, address);
  1008. if (!pud_present(*pud))
  1009. goto out;
  1010. pmd = pmd_offset(pud, address);
  1011. if (pmd_none(*pmd))
  1012. goto out;
  1013. if (pmd_page(*pmd) != page)
  1014. goto out;
  1015. /*
  1016. * split_vma() may create temporary aliased mappings. There is
  1017. * no risk as long as all huge pmd are found and have their
  1018. * splitting bit set before __split_huge_page_refcount
  1019. * runs. Finding the same huge pmd more than once during the
  1020. * same rmap walk is not a problem.
  1021. */
  1022. if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
  1023. pmd_trans_splitting(*pmd))
  1024. goto out;
  1025. if (pmd_trans_huge(*pmd)) {
  1026. VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
  1027. !pmd_trans_splitting(*pmd));
  1028. ret = pmd;
  1029. }
  1030. out:
  1031. return ret;
  1032. }
  1033. static int __split_huge_page_splitting(struct page *page,
  1034. struct vm_area_struct *vma,
  1035. unsigned long address)
  1036. {
  1037. struct mm_struct *mm = vma->vm_mm;
  1038. pmd_t *pmd;
  1039. int ret = 0;
  1040. spin_lock(&mm->page_table_lock);
  1041. pmd = page_check_address_pmd(page, mm, address,
  1042. PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
  1043. if (pmd) {
  1044. /*
  1045. * We can't temporarily set the pmd to null in order
  1046. * to split it, the pmd must remain marked huge at all
  1047. * times or the VM won't take the pmd_trans_huge paths
  1048. * and it won't wait on the anon_vma->root->mutex to
  1049. * serialize against split_huge_page*.
  1050. */
  1051. pmdp_splitting_flush_notify(vma, address, pmd);
  1052. ret = 1;
  1053. }
  1054. spin_unlock(&mm->page_table_lock);
  1055. return ret;
  1056. }
  1057. static void __split_huge_page_refcount(struct page *page)
  1058. {
  1059. int i;
  1060. unsigned long head_index = page->index;
  1061. struct zone *zone = page_zone(page);
  1062. int zonestat;
  1063. int tail_count = 0;
  1064. /* prevent PageLRU to go away from under us, and freeze lru stats */
  1065. spin_lock_irq(&zone->lru_lock);
  1066. compound_lock(page);
  1067. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1068. struct page *page_tail = page + i;
  1069. /* tail_page->_mapcount cannot change */
  1070. BUG_ON(page_mapcount(page_tail) < 0);
  1071. tail_count += page_mapcount(page_tail);
  1072. /* check for overflow */
  1073. BUG_ON(tail_count < 0);
  1074. BUG_ON(atomic_read(&page_tail->_count) != 0);
  1075. /*
  1076. * tail_page->_count is zero and not changing from
  1077. * under us. But get_page_unless_zero() may be running
  1078. * from under us on the tail_page. If we used
  1079. * atomic_set() below instead of atomic_add(), we
  1080. * would then run atomic_set() concurrently with
  1081. * get_page_unless_zero(), and atomic_set() is
  1082. * implemented in C not using locked ops. spin_unlock
  1083. * on x86 sometime uses locked ops because of PPro
  1084. * errata 66, 92, so unless somebody can guarantee
  1085. * atomic_set() here would be safe on all archs (and
  1086. * not only on x86), it's safer to use atomic_add().
  1087. */
  1088. atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
  1089. &page_tail->_count);
  1090. /* after clearing PageTail the gup refcount can be released */
  1091. smp_mb();
  1092. /*
  1093. * retain hwpoison flag of the poisoned tail page:
  1094. * fix for the unsuitable process killed on Guest Machine(KVM)
  1095. * by the memory-failure.
  1096. */
  1097. page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
  1098. page_tail->flags |= (page->flags &
  1099. ((1L << PG_referenced) |
  1100. (1L << PG_swapbacked) |
  1101. (1L << PG_mlocked) |
  1102. (1L << PG_uptodate)));
  1103. page_tail->flags |= (1L << PG_dirty);
  1104. /* clear PageTail before overwriting first_page */
  1105. smp_wmb();
  1106. /*
  1107. * __split_huge_page_splitting() already set the
  1108. * splitting bit in all pmd that could map this
  1109. * hugepage, that will ensure no CPU can alter the
  1110. * mapcount on the head page. The mapcount is only
  1111. * accounted in the head page and it has to be
  1112. * transferred to all tail pages in the below code. So
  1113. * for this code to be safe, the split the mapcount
  1114. * can't change. But that doesn't mean userland can't
  1115. * keep changing and reading the page contents while
  1116. * we transfer the mapcount, so the pmd splitting
  1117. * status is achieved setting a reserved bit in the
  1118. * pmd, not by clearing the present bit.
  1119. */
  1120. page_tail->_mapcount = page->_mapcount;
  1121. BUG_ON(page_tail->mapping);
  1122. page_tail->mapping = page->mapping;
  1123. page_tail->index = ++head_index;
  1124. BUG_ON(!PageAnon(page_tail));
  1125. BUG_ON(!PageUptodate(page_tail));
  1126. BUG_ON(!PageDirty(page_tail));
  1127. BUG_ON(!PageSwapBacked(page_tail));
  1128. mem_cgroup_split_huge_fixup(page, page_tail);
  1129. lru_add_page_tail(zone, page, page_tail);
  1130. }
  1131. atomic_sub(tail_count, &page->_count);
  1132. BUG_ON(atomic_read(&page->_count) <= 0);
  1133. __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  1134. __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
  1135. /*
  1136. * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
  1137. * so adjust those appropriately if this page is on the LRU.
  1138. */
  1139. if (PageLRU(page)) {
  1140. zonestat = NR_LRU_BASE + page_lru(page);
  1141. __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
  1142. }
  1143. ClearPageCompound(page);
  1144. compound_unlock(page);
  1145. spin_unlock_irq(&zone->lru_lock);
  1146. for (i = 1; i < HPAGE_PMD_NR; i++) {
  1147. struct page *page_tail = page + i;
  1148. BUG_ON(page_count(page_tail) <= 0);
  1149. /*
  1150. * Tail pages may be freed if there wasn't any mapping
  1151. * like if add_to_swap() is running on a lru page that
  1152. * had its mapping zapped. And freeing these pages
  1153. * requires taking the lru_lock so we do the put_page
  1154. * of the tail pages after the split is complete.
  1155. */
  1156. put_page(page_tail);
  1157. }
  1158. /*
  1159. * Only the head page (now become a regular page) is required
  1160. * to be pinned by the caller.
  1161. */
  1162. BUG_ON(page_count(page) <= 0);
  1163. }
  1164. static int __split_huge_page_map(struct page *page,
  1165. struct vm_area_struct *vma,
  1166. unsigned long address)
  1167. {
  1168. struct mm_struct *mm = vma->vm_mm;
  1169. pmd_t *pmd, _pmd;
  1170. int ret = 0, i;
  1171. pgtable_t pgtable;
  1172. unsigned long haddr;
  1173. spin_lock(&mm->page_table_lock);
  1174. pmd = page_check_address_pmd(page, mm, address,
  1175. PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
  1176. if (pmd) {
  1177. pgtable = get_pmd_huge_pte(mm);
  1178. pmd_populate(mm, &_pmd, pgtable);
  1179. for (i = 0, haddr = address; i < HPAGE_PMD_NR;
  1180. i++, haddr += PAGE_SIZE) {
  1181. pte_t *pte, entry;
  1182. BUG_ON(PageCompound(page+i));
  1183. entry = mk_pte(page + i, vma->vm_page_prot);
  1184. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  1185. if (!pmd_write(*pmd))
  1186. entry = pte_wrprotect(entry);
  1187. else
  1188. BUG_ON(page_mapcount(page) != 1);
  1189. if (!pmd_young(*pmd))
  1190. entry = pte_mkold(entry);
  1191. pte = pte_offset_map(&_pmd, haddr);
  1192. BUG_ON(!pte_none(*pte));
  1193. set_pte_at(mm, haddr, pte, entry);
  1194. pte_unmap(pte);
  1195. }
  1196. mm->nr_ptes++;
  1197. smp_wmb(); /* make pte visible before pmd */
  1198. /*
  1199. * Up to this point the pmd is present and huge and
  1200. * userland has the whole access to the hugepage
  1201. * during the split (which happens in place). If we
  1202. * overwrite the pmd with the not-huge version
  1203. * pointing to the pte here (which of course we could
  1204. * if all CPUs were bug free), userland could trigger
  1205. * a small page size TLB miss on the small sized TLB
  1206. * while the hugepage TLB entry is still established
  1207. * in the huge TLB. Some CPU doesn't like that. See
  1208. * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
  1209. * Erratum 383 on page 93. Intel should be safe but is
  1210. * also warns that it's only safe if the permission
  1211. * and cache attributes of the two entries loaded in
  1212. * the two TLB is identical (which should be the case
  1213. * here). But it is generally safer to never allow
  1214. * small and huge TLB entries for the same virtual
  1215. * address to be loaded simultaneously. So instead of
  1216. * doing "pmd_populate(); flush_tlb_range();" we first
  1217. * mark the current pmd notpresent (atomically because
  1218. * here the pmd_trans_huge and pmd_trans_splitting
  1219. * must remain set at all times on the pmd until the
  1220. * split is complete for this pmd), then we flush the
  1221. * SMP TLB and finally we write the non-huge version
  1222. * of the pmd entry with pmd_populate.
  1223. */
  1224. set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
  1225. flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
  1226. pmd_populate(mm, pmd, pgtable);
  1227. ret = 1;
  1228. }
  1229. spin_unlock(&mm->page_table_lock);
  1230. return ret;
  1231. }
  1232. /* must be called with anon_vma->root->mutex hold */
  1233. static void __split_huge_page(struct page *page,
  1234. struct anon_vma *anon_vma)
  1235. {
  1236. int mapcount, mapcount2;
  1237. struct anon_vma_chain *avc;
  1238. BUG_ON(!PageHead(page));
  1239. BUG_ON(PageTail(page));
  1240. mapcount = 0;
  1241. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1242. struct vm_area_struct *vma = avc->vma;
  1243. unsigned long addr = vma_address(page, vma);
  1244. BUG_ON(is_vma_temporary_stack(vma));
  1245. if (addr == -EFAULT)
  1246. continue;
  1247. mapcount += __split_huge_page_splitting(page, vma, addr);
  1248. }
  1249. /*
  1250. * It is critical that new vmas are added to the tail of the
  1251. * anon_vma list. This guarantes that if copy_huge_pmd() runs
  1252. * and establishes a child pmd before
  1253. * __split_huge_page_splitting() freezes the parent pmd (so if
  1254. * we fail to prevent copy_huge_pmd() from running until the
  1255. * whole __split_huge_page() is complete), we will still see
  1256. * the newly established pmd of the child later during the
  1257. * walk, to be able to set it as pmd_trans_splitting too.
  1258. */
  1259. if (mapcount != page_mapcount(page))
  1260. printk(KERN_ERR "mapcount %d page_mapcount %d\n",
  1261. mapcount, page_mapcount(page));
  1262. BUG_ON(mapcount != page_mapcount(page));
  1263. __split_huge_page_refcount(page);
  1264. mapcount2 = 0;
  1265. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1266. struct vm_area_struct *vma = avc->vma;
  1267. unsigned long addr = vma_address(page, vma);
  1268. BUG_ON(is_vma_temporary_stack(vma));
  1269. if (addr == -EFAULT)
  1270. continue;
  1271. mapcount2 += __split_huge_page_map(page, vma, addr);
  1272. }
  1273. if (mapcount != mapcount2)
  1274. printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
  1275. mapcount, mapcount2, page_mapcount(page));
  1276. BUG_ON(mapcount != mapcount2);
  1277. }
  1278. int split_huge_page(struct page *page)
  1279. {
  1280. struct anon_vma *anon_vma;
  1281. int ret = 1;
  1282. BUG_ON(!PageAnon(page));
  1283. anon_vma = page_lock_anon_vma(page);
  1284. if (!anon_vma)
  1285. goto out;
  1286. ret = 0;
  1287. if (!PageCompound(page))
  1288. goto out_unlock;
  1289. BUG_ON(!PageSwapBacked(page));
  1290. __split_huge_page(page, anon_vma);
  1291. count_vm_event(THP_SPLIT);
  1292. BUG_ON(PageCompound(page));
  1293. out_unlock:
  1294. page_unlock_anon_vma(anon_vma);
  1295. out:
  1296. return ret;
  1297. }
  1298. #define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
  1299. VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
  1300. int hugepage_madvise(struct vm_area_struct *vma,
  1301. unsigned long *vm_flags, int advice)
  1302. {
  1303. switch (advice) {
  1304. case MADV_HUGEPAGE:
  1305. /*
  1306. * Be somewhat over-protective like KSM for now!
  1307. */
  1308. if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
  1309. return -EINVAL;
  1310. *vm_flags &= ~VM_NOHUGEPAGE;
  1311. *vm_flags |= VM_HUGEPAGE;
  1312. /*
  1313. * If the vma become good for khugepaged to scan,
  1314. * register it here without waiting a page fault that
  1315. * may not happen any time soon.
  1316. */
  1317. if (unlikely(khugepaged_enter_vma_merge(vma)))
  1318. return -ENOMEM;
  1319. break;
  1320. case MADV_NOHUGEPAGE:
  1321. /*
  1322. * Be somewhat over-protective like KSM for now!
  1323. */
  1324. if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
  1325. return -EINVAL;
  1326. *vm_flags &= ~VM_HUGEPAGE;
  1327. *vm_flags |= VM_NOHUGEPAGE;
  1328. /*
  1329. * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
  1330. * this vma even if we leave the mm registered in khugepaged if
  1331. * it got registered before VM_NOHUGEPAGE was set.
  1332. */
  1333. break;
  1334. }
  1335. return 0;
  1336. }
  1337. static int __init khugepaged_slab_init(void)
  1338. {
  1339. mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
  1340. sizeof(struct mm_slot),
  1341. __alignof__(struct mm_slot), 0, NULL);
  1342. if (!mm_slot_cache)
  1343. return -ENOMEM;
  1344. return 0;
  1345. }
  1346. static void __init khugepaged_slab_free(void)
  1347. {
  1348. kmem_cache_destroy(mm_slot_cache);
  1349. mm_slot_cache = NULL;
  1350. }
  1351. static inline struct mm_slot *alloc_mm_slot(void)
  1352. {
  1353. if (!mm_slot_cache) /* initialization failed */
  1354. return NULL;
  1355. return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
  1356. }
  1357. static inline void free_mm_slot(struct mm_slot *mm_slot)
  1358. {
  1359. kmem_cache_free(mm_slot_cache, mm_slot);
  1360. }
  1361. static int __init mm_slots_hash_init(void)
  1362. {
  1363. mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
  1364. GFP_KERNEL);
  1365. if (!mm_slots_hash)
  1366. return -ENOMEM;
  1367. return 0;
  1368. }
  1369. #if 0
  1370. static void __init mm_slots_hash_free(void)
  1371. {
  1372. kfree(mm_slots_hash);
  1373. mm_slots_hash = NULL;
  1374. }
  1375. #endif
  1376. static struct mm_slot *get_mm_slot(struct mm_struct *mm)
  1377. {
  1378. struct mm_slot *mm_slot;
  1379. struct hlist_head *bucket;
  1380. struct hlist_node *node;
  1381. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1382. % MM_SLOTS_HASH_HEADS];
  1383. hlist_for_each_entry(mm_slot, node, bucket, hash) {
  1384. if (mm == mm_slot->mm)
  1385. return mm_slot;
  1386. }
  1387. return NULL;
  1388. }
  1389. static void insert_to_mm_slots_hash(struct mm_struct *mm,
  1390. struct mm_slot *mm_slot)
  1391. {
  1392. struct hlist_head *bucket;
  1393. bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
  1394. % MM_SLOTS_HASH_HEADS];
  1395. mm_slot->mm = mm;
  1396. hlist_add_head(&mm_slot->hash, bucket);
  1397. }
  1398. static inline int khugepaged_test_exit(struct mm_struct *mm)
  1399. {
  1400. return atomic_read(&mm->mm_users) == 0;
  1401. }
  1402. int __khugepaged_enter(struct mm_struct *mm)
  1403. {
  1404. struct mm_slot *mm_slot;
  1405. int wakeup;
  1406. mm_slot = alloc_mm_slot();
  1407. if (!mm_slot)
  1408. return -ENOMEM;
  1409. /* __khugepaged_exit() must not run from under us */
  1410. VM_BUG_ON(khugepaged_test_exit(mm));
  1411. if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
  1412. free_mm_slot(mm_slot);
  1413. return 0;
  1414. }
  1415. spin_lock(&khugepaged_mm_lock);
  1416. insert_to_mm_slots_hash(mm, mm_slot);
  1417. /*
  1418. * Insert just behind the scanning cursor, to let the area settle
  1419. * down a little.
  1420. */
  1421. wakeup = list_empty(&khugepaged_scan.mm_head);
  1422. list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
  1423. spin_unlock(&khugepaged_mm_lock);
  1424. atomic_inc(&mm->mm_count);
  1425. if (wakeup)
  1426. wake_up_interruptible(&khugepaged_wait);
  1427. return 0;
  1428. }
  1429. int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
  1430. {
  1431. unsigned long hstart, hend;
  1432. if (!vma->anon_vma)
  1433. /*
  1434. * Not yet faulted in so we will register later in the
  1435. * page fault if needed.
  1436. */
  1437. return 0;
  1438. if (vma->vm_ops)
  1439. /* khugepaged not yet working on file or special mappings */
  1440. return 0;
  1441. /*
  1442. * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
  1443. * true too, verify it here.
  1444. */
  1445. VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
  1446. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1447. hend = vma->vm_end & HPAGE_PMD_MASK;
  1448. if (hstart < hend)
  1449. return khugepaged_enter(vma);
  1450. return 0;
  1451. }
  1452. void __khugepaged_exit(struct mm_struct *mm)
  1453. {
  1454. struct mm_slot *mm_slot;
  1455. int free = 0;
  1456. spin_lock(&khugepaged_mm_lock);
  1457. mm_slot = get_mm_slot(mm);
  1458. if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
  1459. hlist_del(&mm_slot->hash);
  1460. list_del(&mm_slot->mm_node);
  1461. free = 1;
  1462. }
  1463. spin_unlock(&khugepaged_mm_lock);
  1464. if (free) {
  1465. clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1466. free_mm_slot(mm_slot);
  1467. mmdrop(mm);
  1468. } else if (mm_slot) {
  1469. /*
  1470. * This is required to serialize against
  1471. * khugepaged_test_exit() (which is guaranteed to run
  1472. * under mmap sem read mode). Stop here (after we
  1473. * return all pagetables will be destroyed) until
  1474. * khugepaged has finished working on the pagetables
  1475. * under the mmap_sem.
  1476. */
  1477. down_write(&mm->mmap_sem);
  1478. up_write(&mm->mmap_sem);
  1479. }
  1480. }
  1481. static void release_pte_page(struct page *page)
  1482. {
  1483. /* 0 stands for page_is_file_cache(page) == false */
  1484. dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1485. unlock_page(page);
  1486. putback_lru_page(page);
  1487. }
  1488. static void release_pte_pages(pte_t *pte, pte_t *_pte)
  1489. {
  1490. while (--_pte >= pte) {
  1491. pte_t pteval = *_pte;
  1492. if (!pte_none(pteval))
  1493. release_pte_page(pte_page(pteval));
  1494. }
  1495. }
  1496. static void release_all_pte_pages(pte_t *pte)
  1497. {
  1498. release_pte_pages(pte, pte + HPAGE_PMD_NR);
  1499. }
  1500. static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
  1501. unsigned long address,
  1502. pte_t *pte)
  1503. {
  1504. struct page *page;
  1505. pte_t *_pte;
  1506. int referenced = 0, isolated = 0, none = 0;
  1507. for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
  1508. _pte++, address += PAGE_SIZE) {
  1509. pte_t pteval = *_pte;
  1510. if (pte_none(pteval)) {
  1511. if (++none <= khugepaged_max_ptes_none)
  1512. continue;
  1513. else {
  1514. release_pte_pages(pte, _pte);
  1515. goto out;
  1516. }
  1517. }
  1518. if (!pte_present(pteval) || !pte_write(pteval)) {
  1519. release_pte_pages(pte, _pte);
  1520. goto out;
  1521. }
  1522. page = vm_normal_page(vma, address, pteval);
  1523. if (unlikely(!page)) {
  1524. release_pte_pages(pte, _pte);
  1525. goto out;
  1526. }
  1527. VM_BUG_ON(PageCompound(page));
  1528. BUG_ON(!PageAnon(page));
  1529. VM_BUG_ON(!PageSwapBacked(page));
  1530. /* cannot use mapcount: can't collapse if there's a gup pin */
  1531. if (page_count(page) != 1) {
  1532. release_pte_pages(pte, _pte);
  1533. goto out;
  1534. }
  1535. /*
  1536. * We can do it before isolate_lru_page because the
  1537. * page can't be freed from under us. NOTE: PG_lock
  1538. * is needed to serialize against split_huge_page
  1539. * when invoked from the VM.
  1540. */
  1541. if (!trylock_page(page)) {
  1542. release_pte_pages(pte, _pte);
  1543. goto out;
  1544. }
  1545. /*
  1546. * Isolate the page to avoid collapsing an hugepage
  1547. * currently in use by the VM.
  1548. */
  1549. if (isolate_lru_page(page)) {
  1550. unlock_page(page);
  1551. release_pte_pages(pte, _pte);
  1552. goto out;
  1553. }
  1554. /* 0 stands for page_is_file_cache(page) == false */
  1555. inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
  1556. VM_BUG_ON(!PageLocked(page));
  1557. VM_BUG_ON(PageLRU(page));
  1558. /* If there is no mapped pte young don't collapse the page */
  1559. if (pte_young(pteval) || PageReferenced(page) ||
  1560. mmu_notifier_test_young(vma->vm_mm, address))
  1561. referenced = 1;
  1562. }
  1563. if (unlikely(!referenced))
  1564. release_all_pte_pages(pte);
  1565. else
  1566. isolated = 1;
  1567. out:
  1568. return isolated;
  1569. }
  1570. static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
  1571. struct vm_area_struct *vma,
  1572. unsigned long address,
  1573. spinlock_t *ptl)
  1574. {
  1575. pte_t *_pte;
  1576. for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
  1577. pte_t pteval = *_pte;
  1578. struct page *src_page;
  1579. if (pte_none(pteval)) {
  1580. clear_user_highpage(page, address);
  1581. add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
  1582. } else {
  1583. src_page = pte_page(pteval);
  1584. copy_user_highpage(page, src_page, address, vma);
  1585. VM_BUG_ON(page_mapcount(src_page) != 1);
  1586. VM_BUG_ON(page_count(src_page) != 2);
  1587. release_pte_page(src_page);
  1588. /*
  1589. * ptl mostly unnecessary, but preempt has to
  1590. * be disabled to update the per-cpu stats
  1591. * inside page_remove_rmap().
  1592. */
  1593. spin_lock(ptl);
  1594. /*
  1595. * paravirt calls inside pte_clear here are
  1596. * superfluous.
  1597. */
  1598. pte_clear(vma->vm_mm, address, _pte);
  1599. page_remove_rmap(src_page);
  1600. spin_unlock(ptl);
  1601. free_page_and_swap_cache(src_page);
  1602. }
  1603. address += PAGE_SIZE;
  1604. page++;
  1605. }
  1606. }
  1607. static void collapse_huge_page(struct mm_struct *mm,
  1608. unsigned long address,
  1609. struct page **hpage,
  1610. struct vm_area_struct *vma,
  1611. int node)
  1612. {
  1613. pgd_t *pgd;
  1614. pud_t *pud;
  1615. pmd_t *pmd, _pmd;
  1616. pte_t *pte;
  1617. pgtable_t pgtable;
  1618. struct page *new_page;
  1619. spinlock_t *ptl;
  1620. int isolated;
  1621. unsigned long hstart, hend;
  1622. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1623. #ifndef CONFIG_NUMA
  1624. up_read(&mm->mmap_sem);
  1625. VM_BUG_ON(!*hpage);
  1626. new_page = *hpage;
  1627. #else
  1628. VM_BUG_ON(*hpage);
  1629. /*
  1630. * Allocate the page while the vma is still valid and under
  1631. * the mmap_sem read mode so there is no memory allocation
  1632. * later when we take the mmap_sem in write mode. This is more
  1633. * friendly behavior (OTOH it may actually hide bugs) to
  1634. * filesystems in userland with daemons allocating memory in
  1635. * the userland I/O paths. Allocating memory with the
  1636. * mmap_sem in read mode is good idea also to allow greater
  1637. * scalability.
  1638. */
  1639. new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
  1640. node, __GFP_OTHER_NODE);
  1641. /*
  1642. * After allocating the hugepage, release the mmap_sem read lock in
  1643. * preparation for taking it in write mode.
  1644. */
  1645. up_read(&mm->mmap_sem);
  1646. if (unlikely(!new_page)) {
  1647. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1648. *hpage = ERR_PTR(-ENOMEM);
  1649. return;
  1650. }
  1651. #endif
  1652. count_vm_event(THP_COLLAPSE_ALLOC);
  1653. if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
  1654. #ifdef CONFIG_NUMA
  1655. put_page(new_page);
  1656. #endif
  1657. return;
  1658. }
  1659. /*
  1660. * Prevent all access to pagetables with the exception of
  1661. * gup_fast later hanlded by the ptep_clear_flush and the VM
  1662. * handled by the anon_vma lock + PG_lock.
  1663. */
  1664. down_write(&mm->mmap_sem);
  1665. if (unlikely(khugepaged_test_exit(mm)))
  1666. goto out;
  1667. vma = find_vma(mm, address);
  1668. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1669. hend = vma->vm_end & HPAGE_PMD_MASK;
  1670. if (address < hstart || address + HPAGE_PMD_SIZE > hend)
  1671. goto out;
  1672. if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
  1673. (vma->vm_flags & VM_NOHUGEPAGE))
  1674. goto out;
  1675. if (!vma->anon_vma || vma->vm_ops)
  1676. goto out;
  1677. if (is_vma_temporary_stack(vma))
  1678. goto out;
  1679. /*
  1680. * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
  1681. * true too, verify it here.
  1682. */
  1683. VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
  1684. pgd = pgd_offset(mm, address);
  1685. if (!pgd_present(*pgd))
  1686. goto out;
  1687. pud = pud_offset(pgd, address);
  1688. if (!pud_present(*pud))
  1689. goto out;
  1690. pmd = pmd_offset(pud, address);
  1691. /* pmd can't go away or become huge under us */
  1692. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1693. goto out;
  1694. anon_vma_lock(vma->anon_vma);
  1695. pte = pte_offset_map(pmd, address);
  1696. ptl = pte_lockptr(mm, pmd);
  1697. spin_lock(&mm->page_table_lock); /* probably unnecessary */
  1698. /*
  1699. * After this gup_fast can't run anymore. This also removes
  1700. * any huge TLB entry from the CPU so we won't allow
  1701. * huge and small TLB entries for the same virtual address
  1702. * to avoid the risk of CPU bugs in that area.
  1703. */
  1704. _pmd = pmdp_clear_flush_notify(vma, address, pmd);
  1705. spin_unlock(&mm->page_table_lock);
  1706. spin_lock(ptl);
  1707. isolated = __collapse_huge_page_isolate(vma, address, pte);
  1708. spin_unlock(ptl);
  1709. if (unlikely(!isolated)) {
  1710. pte_unmap(pte);
  1711. spin_lock(&mm->page_table_lock);
  1712. BUG_ON(!pmd_none(*pmd));
  1713. set_pmd_at(mm, address, pmd, _pmd);
  1714. spin_unlock(&mm->page_table_lock);
  1715. anon_vma_unlock(vma->anon_vma);
  1716. goto out;
  1717. }
  1718. /*
  1719. * All pages are isolated and locked so anon_vma rmap
  1720. * can't run anymore.
  1721. */
  1722. anon_vma_unlock(vma->anon_vma);
  1723. __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
  1724. pte_unmap(pte);
  1725. __SetPageUptodate(new_page);
  1726. pgtable = pmd_pgtable(_pmd);
  1727. VM_BUG_ON(page_count(pgtable) != 1);
  1728. VM_BUG_ON(page_mapcount(pgtable) != 0);
  1729. _pmd = mk_pmd(new_page, vma->vm_page_prot);
  1730. _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
  1731. _pmd = pmd_mkhuge(_pmd);
  1732. /*
  1733. * spin_lock() below is not the equivalent of smp_wmb(), so
  1734. * this is needed to avoid the copy_huge_page writes to become
  1735. * visible after the set_pmd_at() write.
  1736. */
  1737. smp_wmb();
  1738. spin_lock(&mm->page_table_lock);
  1739. BUG_ON(!pmd_none(*pmd));
  1740. page_add_new_anon_rmap(new_page, vma, address);
  1741. set_pmd_at(mm, address, pmd, _pmd);
  1742. update_mmu_cache(vma, address, _pmd);
  1743. prepare_pmd_huge_pte(pgtable, mm);
  1744. mm->nr_ptes--;
  1745. spin_unlock(&mm->page_table_lock);
  1746. #ifndef CONFIG_NUMA
  1747. *hpage = NULL;
  1748. #endif
  1749. khugepaged_pages_collapsed++;
  1750. out_up_write:
  1751. up_write(&mm->mmap_sem);
  1752. return;
  1753. out:
  1754. mem_cgroup_uncharge_page(new_page);
  1755. #ifdef CONFIG_NUMA
  1756. put_page(new_page);
  1757. #endif
  1758. goto out_up_write;
  1759. }
  1760. static int khugepaged_scan_pmd(struct mm_struct *mm,
  1761. struct vm_area_struct *vma,
  1762. unsigned long address,
  1763. struct page **hpage)
  1764. {
  1765. pgd_t *pgd;
  1766. pud_t *pud;
  1767. pmd_t *pmd;
  1768. pte_t *pte, *_pte;
  1769. int ret = 0, referenced = 0, none = 0;
  1770. struct page *page;
  1771. unsigned long _address;
  1772. spinlock_t *ptl;
  1773. int node = -1;
  1774. VM_BUG_ON(address & ~HPAGE_PMD_MASK);
  1775. pgd = pgd_offset(mm, address);
  1776. if (!pgd_present(*pgd))
  1777. goto out;
  1778. pud = pud_offset(pgd, address);
  1779. if (!pud_present(*pud))
  1780. goto out;
  1781. pmd = pmd_offset(pud, address);
  1782. if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
  1783. goto out;
  1784. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1785. for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
  1786. _pte++, _address += PAGE_SIZE) {
  1787. pte_t pteval = *_pte;
  1788. if (pte_none(pteval)) {
  1789. if (++none <= khugepaged_max_ptes_none)
  1790. continue;
  1791. else
  1792. goto out_unmap;
  1793. }
  1794. if (!pte_present(pteval) || !pte_write(pteval))
  1795. goto out_unmap;
  1796. page = vm_normal_page(vma, _address, pteval);
  1797. if (unlikely(!page))
  1798. goto out_unmap;
  1799. /*
  1800. * Chose the node of the first page. This could
  1801. * be more sophisticated and look at more pages,
  1802. * but isn't for now.
  1803. */
  1804. if (node == -1)
  1805. node = page_to_nid(page);
  1806. VM_BUG_ON(PageCompound(page));
  1807. if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
  1808. goto out_unmap;
  1809. /* cannot use mapcount: can't collapse if there's a gup pin */
  1810. if (page_count(page) != 1)
  1811. goto out_unmap;
  1812. if (pte_young(pteval) || PageReferenced(page) ||
  1813. mmu_notifier_test_young(vma->vm_mm, address))
  1814. referenced = 1;
  1815. }
  1816. if (referenced)
  1817. ret = 1;
  1818. out_unmap:
  1819. pte_unmap_unlock(pte, ptl);
  1820. if (ret)
  1821. /* collapse_huge_page will return with the mmap_sem released */
  1822. collapse_huge_page(mm, address, hpage, vma, node);
  1823. out:
  1824. return ret;
  1825. }
  1826. static void collect_mm_slot(struct mm_slot *mm_slot)
  1827. {
  1828. struct mm_struct *mm = mm_slot->mm;
  1829. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1830. if (khugepaged_test_exit(mm)) {
  1831. /* free mm_slot */
  1832. hlist_del(&mm_slot->hash);
  1833. list_del(&mm_slot->mm_node);
  1834. /*
  1835. * Not strictly needed because the mm exited already.
  1836. *
  1837. * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
  1838. */
  1839. /* khugepaged_mm_lock actually not necessary for the below */
  1840. free_mm_slot(mm_slot);
  1841. mmdrop(mm);
  1842. }
  1843. }
  1844. static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
  1845. struct page **hpage)
  1846. __releases(&khugepaged_mm_lock)
  1847. __acquires(&khugepaged_mm_lock)
  1848. {
  1849. struct mm_slot *mm_slot;
  1850. struct mm_struct *mm;
  1851. struct vm_area_struct *vma;
  1852. int progress = 0;
  1853. VM_BUG_ON(!pages);
  1854. VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
  1855. if (khugepaged_scan.mm_slot)
  1856. mm_slot = khugepaged_scan.mm_slot;
  1857. else {
  1858. mm_slot = list_entry(khugepaged_scan.mm_head.next,
  1859. struct mm_slot, mm_node);
  1860. khugepaged_scan.address = 0;
  1861. khugepaged_scan.mm_slot = mm_slot;
  1862. }
  1863. spin_unlock(&khugepaged_mm_lock);
  1864. mm = mm_slot->mm;
  1865. down_read(&mm->mmap_sem);
  1866. if (unlikely(khugepaged_test_exit(mm)))
  1867. vma = NULL;
  1868. else
  1869. vma = find_vma(mm, khugepaged_scan.address);
  1870. progress++;
  1871. for (; vma; vma = vma->vm_next) {
  1872. unsigned long hstart, hend;
  1873. cond_resched();
  1874. if (unlikely(khugepaged_test_exit(mm))) {
  1875. progress++;
  1876. break;
  1877. }
  1878. if ((!(vma->vm_flags & VM_HUGEPAGE) &&
  1879. !khugepaged_always()) ||
  1880. (vma->vm_flags & VM_NOHUGEPAGE)) {
  1881. skip:
  1882. progress++;
  1883. continue;
  1884. }
  1885. if (!vma->anon_vma || vma->vm_ops)
  1886. goto skip;
  1887. if (is_vma_temporary_stack(vma))
  1888. goto skip;
  1889. /*
  1890. * If is_pfn_mapping() is true is_learn_pfn_mapping()
  1891. * must be true too, verify it here.
  1892. */
  1893. VM_BUG_ON(is_linear_pfn_mapping(vma) ||
  1894. vma->vm_flags & VM_NO_THP);
  1895. hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
  1896. hend = vma->vm_end & HPAGE_PMD_MASK;
  1897. if (hstart >= hend)
  1898. goto skip;
  1899. if (khugepaged_scan.address > hend)
  1900. goto skip;
  1901. if (khugepaged_scan.address < hstart)
  1902. khugepaged_scan.address = hstart;
  1903. VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
  1904. while (khugepaged_scan.address < hend) {
  1905. int ret;
  1906. cond_resched();
  1907. if (unlikely(khugepaged_test_exit(mm)))
  1908. goto breakouterloop;
  1909. VM_BUG_ON(khugepaged_scan.address < hstart ||
  1910. khugepaged_scan.address + HPAGE_PMD_SIZE >
  1911. hend);
  1912. ret = khugepaged_scan_pmd(mm, vma,
  1913. khugepaged_scan.address,
  1914. hpage);
  1915. /* move to next address */
  1916. khugepaged_scan.address += HPAGE_PMD_SIZE;
  1917. progress += HPAGE_PMD_NR;
  1918. if (ret)
  1919. /* we released mmap_sem so break loop */
  1920. goto breakouterloop_mmap_sem;
  1921. if (progress >= pages)
  1922. goto breakouterloop;
  1923. }
  1924. }
  1925. breakouterloop:
  1926. up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
  1927. breakouterloop_mmap_sem:
  1928. spin_lock(&khugepaged_mm_lock);
  1929. VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
  1930. /*
  1931. * Release the current mm_slot if this mm is about to die, or
  1932. * if we scanned all vmas of this mm.
  1933. */
  1934. if (khugepaged_test_exit(mm) || !vma) {
  1935. /*
  1936. * Make sure that if mm_users is reaching zero while
  1937. * khugepaged runs here, khugepaged_exit will find
  1938. * mm_slot not pointing to the exiting mm.
  1939. */
  1940. if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
  1941. khugepaged_scan.mm_slot = list_entry(
  1942. mm_slot->mm_node.next,
  1943. struct mm_slot, mm_node);
  1944. khugepaged_scan.address = 0;
  1945. } else {
  1946. khugepaged_scan.mm_slot = NULL;
  1947. khugepaged_full_scans++;
  1948. }
  1949. collect_mm_slot(mm_slot);
  1950. }
  1951. return progress;
  1952. }
  1953. static int khugepaged_has_work(void)
  1954. {
  1955. return !list_empty(&khugepaged_scan.mm_head) &&
  1956. khugepaged_enabled();
  1957. }
  1958. static int khugepaged_wait_event(void)
  1959. {
  1960. return !list_empty(&khugepaged_scan.mm_head) ||
  1961. !khugepaged_enabled();
  1962. }
  1963. static void khugepaged_do_scan(struct page **hpage)
  1964. {
  1965. unsigned int progress = 0, pass_through_head = 0;
  1966. unsigned int pages = khugepaged_pages_to_scan;
  1967. barrier(); /* write khugepaged_pages_to_scan to local stack */
  1968. while (progress < pages) {
  1969. cond_resched();
  1970. #ifndef CONFIG_NUMA
  1971. if (!*hpage) {
  1972. *hpage = alloc_hugepage(khugepaged_defrag());
  1973. if (unlikely(!*hpage)) {
  1974. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  1975. break;
  1976. }
  1977. count_vm_event(THP_COLLAPSE_ALLOC);
  1978. }
  1979. #else
  1980. if (IS_ERR(*hpage))
  1981. break;
  1982. #endif
  1983. if (unlikely(kthread_should_stop() || freezing(current)))
  1984. break;
  1985. spin_lock(&khugepaged_mm_lock);
  1986. if (!khugepaged_scan.mm_slot)
  1987. pass_through_head++;
  1988. if (khugepaged_has_work() &&
  1989. pass_through_head < 2)
  1990. progress += khugepaged_scan_mm_slot(pages - progress,
  1991. hpage);
  1992. else
  1993. progress = pages;
  1994. spin_unlock(&khugepaged_mm_lock);
  1995. }
  1996. }
  1997. static void khugepaged_alloc_sleep(void)
  1998. {
  1999. DEFINE_WAIT(wait);
  2000. add_wait_queue(&khugepaged_wait, &wait);
  2001. schedule_timeout_interruptible(
  2002. msecs_to_jiffies(
  2003. khugepaged_alloc_sleep_millisecs));
  2004. remove_wait_queue(&khugepaged_wait, &wait);
  2005. }
  2006. #ifndef CONFIG_NUMA
  2007. static struct page *khugepaged_alloc_hugepage(void)
  2008. {
  2009. struct page *hpage;
  2010. do {
  2011. hpage = alloc_hugepage(khugepaged_defrag());
  2012. if (!hpage) {
  2013. count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
  2014. khugepaged_alloc_sleep();
  2015. } else
  2016. count_vm_event(THP_COLLAPSE_ALLOC);
  2017. } while (unlikely(!hpage) &&
  2018. likely(khugepaged_enabled()));
  2019. return hpage;
  2020. }
  2021. #endif
  2022. static void khugepaged_loop(void)
  2023. {
  2024. struct page *hpage;
  2025. #ifdef CONFIG_NUMA
  2026. hpage = NULL;
  2027. #endif
  2028. while (likely(khugepaged_enabled())) {
  2029. #ifndef CONFIG_NUMA
  2030. hpage = khugepaged_alloc_hugepage();
  2031. if (unlikely(!hpage))
  2032. break;
  2033. #else
  2034. if (IS_ERR(hpage)) {
  2035. khugepaged_alloc_sleep();
  2036. hpage = NULL;
  2037. }
  2038. #endif
  2039. khugepaged_do_scan(&hpage);
  2040. #ifndef CONFIG_NUMA
  2041. if (hpage)
  2042. put_page(hpage);
  2043. #endif
  2044. try_to_freeze();
  2045. if (unlikely(kthread_should_stop()))
  2046. break;
  2047. if (khugepaged_has_work()) {
  2048. DEFINE_WAIT(wait);
  2049. if (!khugepaged_scan_sleep_millisecs)
  2050. continue;
  2051. add_wait_queue(&khugepaged_wait, &wait);
  2052. schedule_timeout_interruptible(
  2053. msecs_to_jiffies(
  2054. khugepaged_scan_sleep_millisecs));
  2055. remove_wait_queue(&khugepaged_wait, &wait);
  2056. } else if (khugepaged_enabled())
  2057. wait_event_freezable(khugepaged_wait,
  2058. khugepaged_wait_event());
  2059. }
  2060. }
  2061. static int khugepaged(void *none)
  2062. {
  2063. struct mm_slot *mm_slot;
  2064. set_freezable();
  2065. set_user_nice(current, 19);
  2066. /* serialize with start_khugepaged() */
  2067. mutex_lock(&khugepaged_mutex);
  2068. for (;;) {
  2069. mutex_unlock(&khugepaged_mutex);
  2070. VM_BUG_ON(khugepaged_thread != current);
  2071. khugepaged_loop();
  2072. VM_BUG_ON(khugepaged_thread != current);
  2073. mutex_lock(&khugepaged_mutex);
  2074. if (!khugepaged_enabled())
  2075. break;
  2076. if (unlikely(kthread_should_stop()))
  2077. break;
  2078. }
  2079. spin_lock(&khugepaged_mm_lock);
  2080. mm_slot = khugepaged_scan.mm_slot;
  2081. khugepaged_scan.mm_slot = NULL;
  2082. if (mm_slot)
  2083. collect_mm_slot(mm_slot);
  2084. spin_unlock(&khugepaged_mm_lock);
  2085. khugepaged_thread = NULL;
  2086. mutex_unlock(&khugepaged_mutex);
  2087. return 0;
  2088. }
  2089. void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
  2090. {
  2091. struct page *page;
  2092. spin_lock(&mm->page_table_lock);
  2093. if (unlikely(!pmd_trans_huge(*pmd))) {
  2094. spin_unlock(&mm->page_table_lock);
  2095. return;
  2096. }
  2097. page = pmd_page(*pmd);
  2098. VM_BUG_ON(!page_count(page));
  2099. get_page(page);
  2100. spin_unlock(&mm->page_table_lock);
  2101. split_huge_page(page);
  2102. put_page(page);
  2103. BUG_ON(pmd_trans_huge(*pmd));
  2104. }
  2105. static void split_huge_page_address(struct mm_struct *mm,
  2106. unsigned long address)
  2107. {
  2108. pgd_t *pgd;
  2109. pud_t *pud;
  2110. pmd_t *pmd;
  2111. VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
  2112. pgd = pgd_offset(mm, address);
  2113. if (!pgd_present(*pgd))
  2114. return;
  2115. pud = pud_offset(pgd, address);
  2116. if (!pud_present(*pud))
  2117. return;
  2118. pmd = pmd_offset(pud, address);
  2119. if (!pmd_present(*pmd))
  2120. return;
  2121. /*
  2122. * Caller holds the mmap_sem write mode, so a huge pmd cannot
  2123. * materialize from under us.
  2124. */
  2125. split_huge_page_pmd(mm, pmd);
  2126. }
  2127. void __vma_adjust_trans_huge(struct vm_area_struct *vma,
  2128. unsigned long start,
  2129. unsigned long end,
  2130. long adjust_next)
  2131. {
  2132. /*
  2133. * If the new start address isn't hpage aligned and it could
  2134. * previously contain an hugepage: check if we need to split
  2135. * an huge pmd.
  2136. */
  2137. if (start & ~HPAGE_PMD_MASK &&
  2138. (start & HPAGE_PMD_MASK) >= vma->vm_start &&
  2139. (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2140. split_huge_page_address(vma->vm_mm, start);
  2141. /*
  2142. * If the new end address isn't hpage aligned and it could
  2143. * previously contain an hugepage: check if we need to split
  2144. * an huge pmd.
  2145. */
  2146. if (end & ~HPAGE_PMD_MASK &&
  2147. (end & HPAGE_PMD_MASK) >= vma->vm_start &&
  2148. (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
  2149. split_huge_page_address(vma->vm_mm, end);
  2150. /*
  2151. * If we're also updating the vma->vm_next->vm_start, if the new
  2152. * vm_next->vm_start isn't page aligned and it could previously
  2153. * contain an hugepage: check if we need to split an huge pmd.
  2154. */
  2155. if (adjust_next > 0) {
  2156. struct vm_area_struct *next = vma->vm_next;
  2157. unsigned long nstart = next->vm_start;
  2158. nstart += adjust_next << PAGE_SHIFT;
  2159. if (nstart & ~HPAGE_PMD_MASK &&
  2160. (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
  2161. (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
  2162. split_huge_page_address(next->vm_mm, nstart);
  2163. }
  2164. }