clocksource.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914
  1. /*
  2. * linux/kernel/time/clocksource.c
  3. *
  4. * This file contains the functions which manage clocksource drivers.
  5. *
  6. * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. *
  22. * TODO WishList:
  23. * o Allow clocksource drivers to be unregistered
  24. */
  25. #include <linux/clocksource.h>
  26. #include <linux/sysdev.h>
  27. #include <linux/init.h>
  28. #include <linux/module.h>
  29. #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
  30. #include <linux/tick.h>
  31. #include <linux/kthread.h>
  32. void timecounter_init(struct timecounter *tc,
  33. const struct cyclecounter *cc,
  34. u64 start_tstamp)
  35. {
  36. tc->cc = cc;
  37. tc->cycle_last = cc->read(cc);
  38. tc->nsec = start_tstamp;
  39. }
  40. EXPORT_SYMBOL_GPL(timecounter_init);
  41. /**
  42. * timecounter_read_delta - get nanoseconds since last call of this function
  43. * @tc: Pointer to time counter
  44. *
  45. * When the underlying cycle counter runs over, this will be handled
  46. * correctly as long as it does not run over more than once between
  47. * calls.
  48. *
  49. * The first call to this function for a new time counter initializes
  50. * the time tracking and returns an undefined result.
  51. */
  52. static u64 timecounter_read_delta(struct timecounter *tc)
  53. {
  54. cycle_t cycle_now, cycle_delta;
  55. u64 ns_offset;
  56. /* read cycle counter: */
  57. cycle_now = tc->cc->read(tc->cc);
  58. /* calculate the delta since the last timecounter_read_delta(): */
  59. cycle_delta = (cycle_now - tc->cycle_last) & tc->cc->mask;
  60. /* convert to nanoseconds: */
  61. ns_offset = cyclecounter_cyc2ns(tc->cc, cycle_delta);
  62. /* update time stamp of timecounter_read_delta() call: */
  63. tc->cycle_last = cycle_now;
  64. return ns_offset;
  65. }
  66. u64 timecounter_read(struct timecounter *tc)
  67. {
  68. u64 nsec;
  69. /* increment time by nanoseconds since last call */
  70. nsec = timecounter_read_delta(tc);
  71. nsec += tc->nsec;
  72. tc->nsec = nsec;
  73. return nsec;
  74. }
  75. EXPORT_SYMBOL_GPL(timecounter_read);
  76. u64 timecounter_cyc2time(struct timecounter *tc,
  77. cycle_t cycle_tstamp)
  78. {
  79. u64 cycle_delta = (cycle_tstamp - tc->cycle_last) & tc->cc->mask;
  80. u64 nsec;
  81. /*
  82. * Instead of always treating cycle_tstamp as more recent
  83. * than tc->cycle_last, detect when it is too far in the
  84. * future and treat it as old time stamp instead.
  85. */
  86. if (cycle_delta > tc->cc->mask / 2) {
  87. cycle_delta = (tc->cycle_last - cycle_tstamp) & tc->cc->mask;
  88. nsec = tc->nsec - cyclecounter_cyc2ns(tc->cc, cycle_delta);
  89. } else {
  90. nsec = cyclecounter_cyc2ns(tc->cc, cycle_delta) + tc->nsec;
  91. }
  92. return nsec;
  93. }
  94. EXPORT_SYMBOL_GPL(timecounter_cyc2time);
  95. /**
  96. * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
  97. * @mult: pointer to mult variable
  98. * @shift: pointer to shift variable
  99. * @from: frequency to convert from
  100. * @to: frequency to convert to
  101. * @maxsec: guaranteed runtime conversion range in seconds
  102. *
  103. * The function evaluates the shift/mult pair for the scaled math
  104. * operations of clocksources and clockevents.
  105. *
  106. * @to and @from are frequency values in HZ. For clock sources @to is
  107. * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
  108. * event @to is the counter frequency and @from is NSEC_PER_SEC.
  109. *
  110. * The @maxsec conversion range argument controls the time frame in
  111. * seconds which must be covered by the runtime conversion with the
  112. * calculated mult and shift factors. This guarantees that no 64bit
  113. * overflow happens when the input value of the conversion is
  114. * multiplied with the calculated mult factor. Larger ranges may
  115. * reduce the conversion accuracy by chosing smaller mult and shift
  116. * factors.
  117. */
  118. void
  119. clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
  120. {
  121. u64 tmp;
  122. u32 sft, sftacc= 32;
  123. /*
  124. * Calculate the shift factor which is limiting the conversion
  125. * range:
  126. */
  127. tmp = ((u64)maxsec * from) >> 32;
  128. while (tmp) {
  129. tmp >>=1;
  130. sftacc--;
  131. }
  132. /*
  133. * Find the conversion shift/mult pair which has the best
  134. * accuracy and fits the maxsec conversion range:
  135. */
  136. for (sft = 32; sft > 0; sft--) {
  137. tmp = (u64) to << sft;
  138. tmp += from / 2;
  139. do_div(tmp, from);
  140. if ((tmp >> sftacc) == 0)
  141. break;
  142. }
  143. *mult = tmp;
  144. *shift = sft;
  145. }
  146. /*[Clocksource internal variables]---------
  147. * curr_clocksource:
  148. * currently selected clocksource.
  149. * clocksource_list:
  150. * linked list with the registered clocksources
  151. * clocksource_mutex:
  152. * protects manipulations to curr_clocksource and the clocksource_list
  153. * override_name:
  154. * Name of the user-specified clocksource.
  155. */
  156. static struct clocksource *curr_clocksource;
  157. static LIST_HEAD(clocksource_list);
  158. static DEFINE_MUTEX(clocksource_mutex);
  159. static char override_name[32];
  160. static int finished_booting;
  161. #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
  162. static void clocksource_watchdog_work(struct work_struct *work);
  163. static LIST_HEAD(watchdog_list);
  164. static struct clocksource *watchdog;
  165. static struct timer_list watchdog_timer;
  166. static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
  167. static DEFINE_SPINLOCK(watchdog_lock);
  168. static int watchdog_running;
  169. static atomic_t watchdog_reset_pending;
  170. static int clocksource_watchdog_kthread(void *data);
  171. static void __clocksource_change_rating(struct clocksource *cs, int rating);
  172. /*
  173. * Interval: 0.5sec Threshold: 0.0625s
  174. */
  175. #define WATCHDOG_INTERVAL (HZ >> 1)
  176. #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
  177. static void clocksource_watchdog_work(struct work_struct *work)
  178. {
  179. /*
  180. * If kthread_run fails the next watchdog scan over the
  181. * watchdog_list will find the unstable clock again.
  182. */
  183. kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
  184. }
  185. static void __clocksource_unstable(struct clocksource *cs)
  186. {
  187. cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
  188. cs->flags |= CLOCK_SOURCE_UNSTABLE;
  189. if (finished_booting)
  190. schedule_work(&watchdog_work);
  191. }
  192. static void clocksource_unstable(struct clocksource *cs, int64_t delta)
  193. {
  194. printk(KERN_WARNING "Clocksource %s unstable (delta = %Ld ns)\n",
  195. cs->name, delta);
  196. __clocksource_unstable(cs);
  197. }
  198. /**
  199. * clocksource_mark_unstable - mark clocksource unstable via watchdog
  200. * @cs: clocksource to be marked unstable
  201. *
  202. * This function is called instead of clocksource_change_rating from
  203. * cpu hotplug code to avoid a deadlock between the clocksource mutex
  204. * and the cpu hotplug mutex. It defers the update of the clocksource
  205. * to the watchdog thread.
  206. */
  207. void clocksource_mark_unstable(struct clocksource *cs)
  208. {
  209. unsigned long flags;
  210. spin_lock_irqsave(&watchdog_lock, flags);
  211. if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
  212. if (list_empty(&cs->wd_list))
  213. list_add(&cs->wd_list, &watchdog_list);
  214. __clocksource_unstable(cs);
  215. }
  216. spin_unlock_irqrestore(&watchdog_lock, flags);
  217. }
  218. static void clocksource_watchdog(unsigned long data)
  219. {
  220. struct clocksource *cs;
  221. cycle_t csnow, wdnow;
  222. int64_t wd_nsec, cs_nsec;
  223. int next_cpu, reset_pending;
  224. spin_lock(&watchdog_lock);
  225. if (!watchdog_running)
  226. goto out;
  227. reset_pending = atomic_read(&watchdog_reset_pending);
  228. list_for_each_entry(cs, &watchdog_list, wd_list) {
  229. /* Clocksource already marked unstable? */
  230. if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
  231. if (finished_booting)
  232. schedule_work(&watchdog_work);
  233. continue;
  234. }
  235. local_irq_disable();
  236. csnow = cs->read(cs);
  237. wdnow = watchdog->read(watchdog);
  238. local_irq_enable();
  239. /* Clocksource initialized ? */
  240. if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
  241. atomic_read(&watchdog_reset_pending)) {
  242. cs->flags |= CLOCK_SOURCE_WATCHDOG;
  243. cs->wd_last = wdnow;
  244. cs->cs_last = csnow;
  245. continue;
  246. }
  247. wd_nsec = clocksource_cyc2ns((wdnow - cs->wd_last) & watchdog->mask,
  248. watchdog->mult, watchdog->shift);
  249. cs_nsec = clocksource_cyc2ns((csnow - cs->cs_last) &
  250. cs->mask, cs->mult, cs->shift);
  251. cs->cs_last = csnow;
  252. cs->wd_last = wdnow;
  253. if (atomic_read(&watchdog_reset_pending))
  254. continue;
  255. /* Check the deviation from the watchdog clocksource. */
  256. if ((abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD)) {
  257. clocksource_unstable(cs, cs_nsec - wd_nsec);
  258. continue;
  259. }
  260. if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
  261. (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
  262. (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
  263. cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
  264. /*
  265. * We just marked the clocksource as highres-capable,
  266. * notify the rest of the system as well so that we
  267. * transition into high-res mode:
  268. */
  269. tick_clock_notify();
  270. }
  271. }
  272. /*
  273. * We only clear the watchdog_reset_pending, when we did a
  274. * full cycle through all clocksources.
  275. */
  276. if (reset_pending)
  277. atomic_dec(&watchdog_reset_pending);
  278. /*
  279. * Cycle through CPUs to check if the CPUs stay synchronized
  280. * to each other.
  281. */
  282. next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
  283. if (next_cpu >= nr_cpu_ids)
  284. next_cpu = cpumask_first(cpu_online_mask);
  285. watchdog_timer.expires += WATCHDOG_INTERVAL;
  286. add_timer_on(&watchdog_timer, next_cpu);
  287. out:
  288. spin_unlock(&watchdog_lock);
  289. }
  290. static inline void clocksource_start_watchdog(void)
  291. {
  292. if (watchdog_running || !watchdog || list_empty(&watchdog_list))
  293. return;
  294. init_timer(&watchdog_timer);
  295. watchdog_timer.function = clocksource_watchdog;
  296. watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
  297. add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
  298. watchdog_running = 1;
  299. }
  300. static inline void clocksource_stop_watchdog(void)
  301. {
  302. if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
  303. return;
  304. del_timer(&watchdog_timer);
  305. watchdog_running = 0;
  306. }
  307. static inline void clocksource_reset_watchdog(void)
  308. {
  309. struct clocksource *cs;
  310. list_for_each_entry(cs, &watchdog_list, wd_list)
  311. cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
  312. }
  313. static void clocksource_resume_watchdog(void)
  314. {
  315. atomic_inc(&watchdog_reset_pending);
  316. }
  317. static void clocksource_enqueue_watchdog(struct clocksource *cs)
  318. {
  319. unsigned long flags;
  320. spin_lock_irqsave(&watchdog_lock, flags);
  321. if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
  322. /* cs is a clocksource to be watched. */
  323. list_add(&cs->wd_list, &watchdog_list);
  324. cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
  325. } else {
  326. /* cs is a watchdog. */
  327. if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
  328. cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
  329. /* Pick the best watchdog. */
  330. if (!watchdog || cs->rating > watchdog->rating) {
  331. watchdog = cs;
  332. /* Reset watchdog cycles */
  333. clocksource_reset_watchdog();
  334. }
  335. }
  336. /* Check if the watchdog timer needs to be started. */
  337. clocksource_start_watchdog();
  338. spin_unlock_irqrestore(&watchdog_lock, flags);
  339. }
  340. static void clocksource_dequeue_watchdog(struct clocksource *cs)
  341. {
  342. struct clocksource *tmp;
  343. unsigned long flags;
  344. spin_lock_irqsave(&watchdog_lock, flags);
  345. if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
  346. /* cs is a watched clocksource. */
  347. list_del_init(&cs->wd_list);
  348. } else if (cs == watchdog) {
  349. /* Reset watchdog cycles */
  350. clocksource_reset_watchdog();
  351. /* Current watchdog is removed. Find an alternative. */
  352. watchdog = NULL;
  353. list_for_each_entry(tmp, &clocksource_list, list) {
  354. if (tmp == cs || tmp->flags & CLOCK_SOURCE_MUST_VERIFY)
  355. continue;
  356. if (!watchdog || tmp->rating > watchdog->rating)
  357. watchdog = tmp;
  358. }
  359. }
  360. cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
  361. /* Check if the watchdog timer needs to be stopped. */
  362. clocksource_stop_watchdog();
  363. spin_unlock_irqrestore(&watchdog_lock, flags);
  364. }
  365. static int clocksource_watchdog_kthread(void *data)
  366. {
  367. struct clocksource *cs, *tmp;
  368. unsigned long flags;
  369. LIST_HEAD(unstable);
  370. mutex_lock(&clocksource_mutex);
  371. spin_lock_irqsave(&watchdog_lock, flags);
  372. list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list)
  373. if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
  374. list_del_init(&cs->wd_list);
  375. list_add(&cs->wd_list, &unstable);
  376. }
  377. /* Check if the watchdog timer needs to be stopped. */
  378. clocksource_stop_watchdog();
  379. spin_unlock_irqrestore(&watchdog_lock, flags);
  380. /* Needs to be done outside of watchdog lock */
  381. list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
  382. list_del_init(&cs->wd_list);
  383. __clocksource_change_rating(cs, 0);
  384. }
  385. mutex_unlock(&clocksource_mutex);
  386. return 0;
  387. }
  388. #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
  389. static void clocksource_enqueue_watchdog(struct clocksource *cs)
  390. {
  391. if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
  392. cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
  393. }
  394. static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
  395. static inline void clocksource_resume_watchdog(void) { }
  396. static inline int clocksource_watchdog_kthread(void *data) { return 0; }
  397. #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
  398. /**
  399. * clocksource_suspend - suspend the clocksource(s)
  400. */
  401. void clocksource_suspend(void)
  402. {
  403. struct clocksource *cs;
  404. list_for_each_entry_reverse(cs, &clocksource_list, list)
  405. if (cs->suspend)
  406. cs->suspend(cs);
  407. }
  408. /**
  409. * clocksource_resume - resume the clocksource(s)
  410. */
  411. void clocksource_resume(void)
  412. {
  413. struct clocksource *cs;
  414. list_for_each_entry(cs, &clocksource_list, list)
  415. if (cs->resume)
  416. cs->resume(cs);
  417. clocksource_resume_watchdog();
  418. }
  419. /**
  420. * clocksource_touch_watchdog - Update watchdog
  421. *
  422. * Update the watchdog after exception contexts such as kgdb so as not
  423. * to incorrectly trip the watchdog. This might fail when the kernel
  424. * was stopped in code which holds watchdog_lock.
  425. */
  426. void clocksource_touch_watchdog(void)
  427. {
  428. clocksource_resume_watchdog();
  429. }
  430. /**
  431. * clocksource_max_deferment - Returns max time the clocksource can be deferred
  432. * @cs: Pointer to clocksource
  433. *
  434. */
  435. static u64 clocksource_max_deferment(struct clocksource *cs)
  436. {
  437. u64 max_nsecs, max_cycles;
  438. /*
  439. * Calculate the maximum number of cycles that we can pass to the
  440. * cyc2ns function without overflowing a 64-bit signed result. The
  441. * maximum number of cycles is equal to ULLONG_MAX/cs->mult which
  442. * is equivalent to the below.
  443. * max_cycles < (2^63)/cs->mult
  444. * max_cycles < 2^(log2((2^63)/cs->mult))
  445. * max_cycles < 2^(log2(2^63) - log2(cs->mult))
  446. * max_cycles < 2^(63 - log2(cs->mult))
  447. * max_cycles < 1 << (63 - log2(cs->mult))
  448. * Please note that we add 1 to the result of the log2 to account for
  449. * any rounding errors, ensure the above inequality is satisfied and
  450. * no overflow will occur.
  451. */
  452. max_cycles = 1ULL << (63 - (ilog2(cs->mult) + 1));
  453. /*
  454. * The actual maximum number of cycles we can defer the clocksource is
  455. * determined by the minimum of max_cycles and cs->mask.
  456. */
  457. max_cycles = min_t(u64, max_cycles, (u64) cs->mask);
  458. max_nsecs = clocksource_cyc2ns(max_cycles, cs->mult, cs->shift);
  459. /*
  460. * To ensure that the clocksource does not wrap whilst we are idle,
  461. * limit the time the clocksource can be deferred by 12.5%. Please
  462. * note a margin of 12.5% is used because this can be computed with
  463. * a shift, versus say 10% which would require division.
  464. */
  465. return max_nsecs - (max_nsecs >> 5);
  466. }
  467. #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
  468. /**
  469. * clocksource_select - Select the best clocksource available
  470. *
  471. * Private function. Must hold clocksource_mutex when called.
  472. *
  473. * Select the clocksource with the best rating, or the clocksource,
  474. * which is selected by userspace override.
  475. */
  476. static void clocksource_select(void)
  477. {
  478. struct clocksource *best, *cs;
  479. if (!finished_booting || list_empty(&clocksource_list))
  480. return;
  481. /* First clocksource on the list has the best rating. */
  482. best = list_first_entry(&clocksource_list, struct clocksource, list);
  483. /* Check for the override clocksource. */
  484. list_for_each_entry(cs, &clocksource_list, list) {
  485. if (strcmp(cs->name, override_name) != 0)
  486. continue;
  487. /*
  488. * Check to make sure we don't switch to a non-highres
  489. * capable clocksource if the tick code is in oneshot
  490. * mode (highres or nohz)
  491. */
  492. if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
  493. tick_oneshot_mode_active()) {
  494. /* Override clocksource cannot be used. */
  495. printk(KERN_WARNING "Override clocksource %s is not "
  496. "HRT compatible. Cannot switch while in "
  497. "HRT/NOHZ mode\n", cs->name);
  498. override_name[0] = 0;
  499. } else
  500. /* Override clocksource can be used. */
  501. best = cs;
  502. break;
  503. }
  504. if (curr_clocksource != best) {
  505. printk(KERN_INFO "Switching to clocksource %s\n", best->name);
  506. curr_clocksource = best;
  507. timekeeping_notify(curr_clocksource);
  508. }
  509. }
  510. #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
  511. static inline void clocksource_select(void) { }
  512. #endif
  513. /*
  514. * clocksource_done_booting - Called near the end of core bootup
  515. *
  516. * Hack to avoid lots of clocksource churn at boot time.
  517. * We use fs_initcall because we want this to start before
  518. * device_initcall but after subsys_initcall.
  519. */
  520. static int __init clocksource_done_booting(void)
  521. {
  522. mutex_lock(&clocksource_mutex);
  523. curr_clocksource = clocksource_default_clock();
  524. mutex_unlock(&clocksource_mutex);
  525. finished_booting = 1;
  526. /*
  527. * Run the watchdog first to eliminate unstable clock sources
  528. */
  529. clocksource_watchdog_kthread(NULL);
  530. mutex_lock(&clocksource_mutex);
  531. clocksource_select();
  532. mutex_unlock(&clocksource_mutex);
  533. return 0;
  534. }
  535. fs_initcall(clocksource_done_booting);
  536. /*
  537. * Enqueue the clocksource sorted by rating
  538. */
  539. static void clocksource_enqueue(struct clocksource *cs)
  540. {
  541. struct list_head *entry = &clocksource_list;
  542. struct clocksource *tmp;
  543. list_for_each_entry(tmp, &clocksource_list, list)
  544. /* Keep track of the place, where to insert */
  545. if (tmp->rating >= cs->rating)
  546. entry = &tmp->list;
  547. list_add(&cs->list, entry);
  548. }
  549. /**
  550. * __clocksource_updatefreq_scale - Used update clocksource with new freq
  551. * @t: clocksource to be registered
  552. * @scale: Scale factor multiplied against freq to get clocksource hz
  553. * @freq: clocksource frequency (cycles per second) divided by scale
  554. *
  555. * This should only be called from the clocksource->enable() method.
  556. *
  557. * This *SHOULD NOT* be called directly! Please use the
  558. * clocksource_updatefreq_hz() or clocksource_updatefreq_khz helper functions.
  559. */
  560. void __clocksource_updatefreq_scale(struct clocksource *cs, u32 scale, u32 freq)
  561. {
  562. u64 sec;
  563. /*
  564. * Calc the maximum number of seconds which we can run before
  565. * wrapping around. For clocksources which have a mask > 32bit
  566. * we need to limit the max sleep time to have a good
  567. * conversion precision. 10 minutes is still a reasonable
  568. * amount. That results in a shift value of 24 for a
  569. * clocksource with mask >= 40bit and f >= 4GHz. That maps to
  570. * ~ 0.06ppm granularity for NTP. We apply the same 12.5%
  571. * margin as we do in clocksource_max_deferment()
  572. */
  573. sec = (cs->mask - (cs->mask >> 5));
  574. do_div(sec, freq);
  575. do_div(sec, scale);
  576. if (!sec)
  577. sec = 1;
  578. else if (sec > 600 && cs->mask > UINT_MAX)
  579. sec = 600;
  580. clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
  581. NSEC_PER_SEC / scale, sec * scale);
  582. cs->max_idle_ns = clocksource_max_deferment(cs);
  583. }
  584. EXPORT_SYMBOL_GPL(__clocksource_updatefreq_scale);
  585. /**
  586. * __clocksource_register_scale - Used to install new clocksources
  587. * @t: clocksource to be registered
  588. * @scale: Scale factor multiplied against freq to get clocksource hz
  589. * @freq: clocksource frequency (cycles per second) divided by scale
  590. *
  591. * Returns -EBUSY if registration fails, zero otherwise.
  592. *
  593. * This *SHOULD NOT* be called directly! Please use the
  594. * clocksource_register_hz() or clocksource_register_khz helper functions.
  595. */
  596. int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
  597. {
  598. /* Initialize mult/shift and max_idle_ns */
  599. __clocksource_updatefreq_scale(cs, scale, freq);
  600. /* Add clocksource to the clcoksource list */
  601. mutex_lock(&clocksource_mutex);
  602. clocksource_enqueue(cs);
  603. clocksource_enqueue_watchdog(cs);
  604. clocksource_select();
  605. mutex_unlock(&clocksource_mutex);
  606. return 0;
  607. }
  608. EXPORT_SYMBOL_GPL(__clocksource_register_scale);
  609. /**
  610. * clocksource_register - Used to install new clocksources
  611. * @t: clocksource to be registered
  612. *
  613. * Returns -EBUSY if registration fails, zero otherwise.
  614. */
  615. int clocksource_register(struct clocksource *cs)
  616. {
  617. /* calculate max idle time permitted for this clocksource */
  618. cs->max_idle_ns = clocksource_max_deferment(cs);
  619. mutex_lock(&clocksource_mutex);
  620. clocksource_enqueue(cs);
  621. clocksource_enqueue_watchdog(cs);
  622. clocksource_select();
  623. mutex_unlock(&clocksource_mutex);
  624. return 0;
  625. }
  626. EXPORT_SYMBOL(clocksource_register);
  627. static void __clocksource_change_rating(struct clocksource *cs, int rating)
  628. {
  629. list_del(&cs->list);
  630. cs->rating = rating;
  631. clocksource_enqueue(cs);
  632. clocksource_select();
  633. }
  634. /**
  635. * clocksource_change_rating - Change the rating of a registered clocksource
  636. */
  637. void clocksource_change_rating(struct clocksource *cs, int rating)
  638. {
  639. mutex_lock(&clocksource_mutex);
  640. __clocksource_change_rating(cs, rating);
  641. mutex_unlock(&clocksource_mutex);
  642. }
  643. EXPORT_SYMBOL(clocksource_change_rating);
  644. /**
  645. * clocksource_unregister - remove a registered clocksource
  646. */
  647. void clocksource_unregister(struct clocksource *cs)
  648. {
  649. mutex_lock(&clocksource_mutex);
  650. clocksource_dequeue_watchdog(cs);
  651. list_del(&cs->list);
  652. clocksource_select();
  653. mutex_unlock(&clocksource_mutex);
  654. }
  655. EXPORT_SYMBOL(clocksource_unregister);
  656. #ifdef CONFIG_SYSFS
  657. /**
  658. * sysfs_show_current_clocksources - sysfs interface for current clocksource
  659. * @dev: unused
  660. * @buf: char buffer to be filled with clocksource list
  661. *
  662. * Provides sysfs interface for listing current clocksource.
  663. */
  664. static ssize_t
  665. sysfs_show_current_clocksources(struct sys_device *dev,
  666. struct sysdev_attribute *attr, char *buf)
  667. {
  668. ssize_t count = 0;
  669. mutex_lock(&clocksource_mutex);
  670. count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
  671. mutex_unlock(&clocksource_mutex);
  672. return count;
  673. }
  674. /**
  675. * sysfs_override_clocksource - interface for manually overriding clocksource
  676. * @dev: unused
  677. * @buf: name of override clocksource
  678. * @count: length of buffer
  679. *
  680. * Takes input from sysfs interface for manually overriding the default
  681. * clocksource selection.
  682. */
  683. static ssize_t sysfs_override_clocksource(struct sys_device *dev,
  684. struct sysdev_attribute *attr,
  685. const char *buf, size_t count)
  686. {
  687. size_t ret = count;
  688. /* strings from sysfs write are not 0 terminated! */
  689. if (count >= sizeof(override_name))
  690. return -EINVAL;
  691. /* strip of \n: */
  692. if (buf[count-1] == '\n')
  693. count--;
  694. mutex_lock(&clocksource_mutex);
  695. if (count > 0)
  696. memcpy(override_name, buf, count);
  697. override_name[count] = 0;
  698. clocksource_select();
  699. mutex_unlock(&clocksource_mutex);
  700. return ret;
  701. }
  702. /**
  703. * sysfs_show_available_clocksources - sysfs interface for listing clocksource
  704. * @dev: unused
  705. * @buf: char buffer to be filled with clocksource list
  706. *
  707. * Provides sysfs interface for listing registered clocksources
  708. */
  709. static ssize_t
  710. sysfs_show_available_clocksources(struct sys_device *dev,
  711. struct sysdev_attribute *attr,
  712. char *buf)
  713. {
  714. struct clocksource *src;
  715. ssize_t count = 0;
  716. mutex_lock(&clocksource_mutex);
  717. list_for_each_entry(src, &clocksource_list, list) {
  718. /*
  719. * Don't show non-HRES clocksource if the tick code is
  720. * in one shot mode (highres=on or nohz=on)
  721. */
  722. if (!tick_oneshot_mode_active() ||
  723. (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
  724. count += snprintf(buf + count,
  725. max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
  726. "%s ", src->name);
  727. }
  728. mutex_unlock(&clocksource_mutex);
  729. count += snprintf(buf + count,
  730. max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
  731. return count;
  732. }
  733. /*
  734. * Sysfs setup bits:
  735. */
  736. static SYSDEV_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
  737. sysfs_override_clocksource);
  738. static SYSDEV_ATTR(available_clocksource, 0444,
  739. sysfs_show_available_clocksources, NULL);
  740. static struct sysdev_class clocksource_sysclass = {
  741. .name = "clocksource",
  742. };
  743. static struct sys_device device_clocksource = {
  744. .id = 0,
  745. .cls = &clocksource_sysclass,
  746. };
  747. static int __init init_clocksource_sysfs(void)
  748. {
  749. int error = sysdev_class_register(&clocksource_sysclass);
  750. if (!error)
  751. error = sysdev_register(&device_clocksource);
  752. if (!error)
  753. error = sysdev_create_file(
  754. &device_clocksource,
  755. &attr_current_clocksource);
  756. if (!error)
  757. error = sysdev_create_file(
  758. &device_clocksource,
  759. &attr_available_clocksource);
  760. return error;
  761. }
  762. device_initcall(init_clocksource_sysfs);
  763. #endif /* CONFIG_SYSFS */
  764. /**
  765. * boot_override_clocksource - boot clock override
  766. * @str: override name
  767. *
  768. * Takes a clocksource= boot argument and uses it
  769. * as the clocksource override name.
  770. */
  771. static int __init boot_override_clocksource(char* str)
  772. {
  773. mutex_lock(&clocksource_mutex);
  774. if (str)
  775. strlcpy(override_name, str, sizeof(override_name));
  776. mutex_unlock(&clocksource_mutex);
  777. return 1;
  778. }
  779. __setup("clocksource=", boot_override_clocksource);
  780. /**
  781. * boot_override_clock - Compatibility layer for deprecated boot option
  782. * @str: override name
  783. *
  784. * DEPRECATED! Takes a clock= boot argument and uses it
  785. * as the clocksource override name
  786. */
  787. static int __init boot_override_clock(char* str)
  788. {
  789. if (!strcmp(str, "pmtmr")) {
  790. printk("Warning: clock=pmtmr is deprecated. "
  791. "Use clocksource=acpi_pm.\n");
  792. return boot_override_clocksource("acpi_pm");
  793. }
  794. printk("Warning! clock= boot option is deprecated. "
  795. "Use clocksource=xyz\n");
  796. return boot_override_clocksource(str);
  797. }
  798. __setup("clock=", boot_override_clock);