xfs_inode.c 111 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_bmap_btree.h"
  31. #include "xfs_alloc_btree.h"
  32. #include "xfs_ialloc_btree.h"
  33. #include "xfs_attr_sf.h"
  34. #include "xfs_dinode.h"
  35. #include "xfs_inode.h"
  36. #include "xfs_buf_item.h"
  37. #include "xfs_inode_item.h"
  38. #include "xfs_btree.h"
  39. #include "xfs_alloc.h"
  40. #include "xfs_ialloc.h"
  41. #include "xfs_bmap.h"
  42. #include "xfs_error.h"
  43. #include "xfs_utils.h"
  44. #include "xfs_quota.h"
  45. #include "xfs_filestream.h"
  46. #include "xfs_vnodeops.h"
  47. #include "xfs_trace.h"
  48. kmem_zone_t *xfs_ifork_zone;
  49. kmem_zone_t *xfs_inode_zone;
  50. /*
  51. * Used in xfs_itruncate_extents(). This is the maximum number of extents
  52. * freed from a file in a single transaction.
  53. */
  54. #define XFS_ITRUNC_MAX_EXTENTS 2
  55. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  56. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  57. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  58. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  59. #ifdef DEBUG
  60. /*
  61. * Make sure that the extents in the given memory buffer
  62. * are valid.
  63. */
  64. STATIC void
  65. xfs_validate_extents(
  66. xfs_ifork_t *ifp,
  67. int nrecs,
  68. xfs_exntfmt_t fmt)
  69. {
  70. xfs_bmbt_irec_t irec;
  71. xfs_bmbt_rec_host_t rec;
  72. int i;
  73. for (i = 0; i < nrecs; i++) {
  74. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  75. rec.l0 = get_unaligned(&ep->l0);
  76. rec.l1 = get_unaligned(&ep->l1);
  77. xfs_bmbt_get_all(&rec, &irec);
  78. if (fmt == XFS_EXTFMT_NOSTATE)
  79. ASSERT(irec.br_state == XFS_EXT_NORM);
  80. }
  81. }
  82. #else /* DEBUG */
  83. #define xfs_validate_extents(ifp, nrecs, fmt)
  84. #endif /* DEBUG */
  85. /*
  86. * Check that none of the inode's in the buffer have a next
  87. * unlinked field of 0.
  88. */
  89. #if defined(DEBUG)
  90. void
  91. xfs_inobp_check(
  92. xfs_mount_t *mp,
  93. xfs_buf_t *bp)
  94. {
  95. int i;
  96. int j;
  97. xfs_dinode_t *dip;
  98. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  99. for (i = 0; i < j; i++) {
  100. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  101. i * mp->m_sb.sb_inodesize);
  102. if (!dip->di_next_unlinked) {
  103. xfs_alert(mp,
  104. "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
  105. bp);
  106. ASSERT(dip->di_next_unlinked);
  107. }
  108. }
  109. }
  110. #endif
  111. /*
  112. * Find the buffer associated with the given inode map
  113. * We do basic validation checks on the buffer once it has been
  114. * retrieved from disk.
  115. */
  116. STATIC int
  117. xfs_imap_to_bp(
  118. xfs_mount_t *mp,
  119. xfs_trans_t *tp,
  120. struct xfs_imap *imap,
  121. xfs_buf_t **bpp,
  122. uint buf_flags,
  123. uint iget_flags)
  124. {
  125. int error;
  126. int i;
  127. int ni;
  128. xfs_buf_t *bp;
  129. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  130. (int)imap->im_len, buf_flags, &bp);
  131. if (error) {
  132. if (error != EAGAIN) {
  133. xfs_warn(mp,
  134. "%s: xfs_trans_read_buf() returned error %d.",
  135. __func__, error);
  136. } else {
  137. ASSERT(buf_flags & XBF_TRYLOCK);
  138. }
  139. return error;
  140. }
  141. /*
  142. * Validate the magic number and version of every inode in the buffer
  143. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  144. */
  145. #ifdef DEBUG
  146. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  147. #else /* usual case */
  148. ni = 1;
  149. #endif
  150. for (i = 0; i < ni; i++) {
  151. int di_ok;
  152. xfs_dinode_t *dip;
  153. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  154. (i << mp->m_sb.sb_inodelog));
  155. di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
  156. XFS_DINODE_GOOD_VERSION(dip->di_version);
  157. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  158. XFS_ERRTAG_ITOBP_INOTOBP,
  159. XFS_RANDOM_ITOBP_INOTOBP))) {
  160. if (iget_flags & XFS_IGET_UNTRUSTED) {
  161. xfs_trans_brelse(tp, bp);
  162. return XFS_ERROR(EINVAL);
  163. }
  164. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  165. XFS_ERRLEVEL_HIGH, mp, dip);
  166. #ifdef DEBUG
  167. xfs_emerg(mp,
  168. "bad inode magic/vsn daddr %lld #%d (magic=%x)",
  169. (unsigned long long)imap->im_blkno, i,
  170. be16_to_cpu(dip->di_magic));
  171. ASSERT(0);
  172. #endif
  173. xfs_trans_brelse(tp, bp);
  174. return XFS_ERROR(EFSCORRUPTED);
  175. }
  176. }
  177. xfs_inobp_check(mp, bp);
  178. *bpp = bp;
  179. return 0;
  180. }
  181. /*
  182. * This routine is called to map an inode number within a file
  183. * system to the buffer containing the on-disk version of the
  184. * inode. It returns a pointer to the buffer containing the
  185. * on-disk inode in the bpp parameter, and in the dip parameter
  186. * it returns a pointer to the on-disk inode within that buffer.
  187. *
  188. * If a non-zero error is returned, then the contents of bpp and
  189. * dipp are undefined.
  190. *
  191. * Use xfs_imap() to determine the size and location of the
  192. * buffer to read from disk.
  193. */
  194. int
  195. xfs_inotobp(
  196. xfs_mount_t *mp,
  197. xfs_trans_t *tp,
  198. xfs_ino_t ino,
  199. xfs_dinode_t **dipp,
  200. xfs_buf_t **bpp,
  201. int *offset,
  202. uint imap_flags)
  203. {
  204. struct xfs_imap imap;
  205. xfs_buf_t *bp;
  206. int error;
  207. imap.im_blkno = 0;
  208. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  209. if (error)
  210. return error;
  211. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
  212. if (error)
  213. return error;
  214. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  215. *bpp = bp;
  216. *offset = imap.im_boffset;
  217. return 0;
  218. }
  219. /*
  220. * This routine is called to map an inode to the buffer containing
  221. * the on-disk version of the inode. It returns a pointer to the
  222. * buffer containing the on-disk inode in the bpp parameter, and in
  223. * the dip parameter it returns a pointer to the on-disk inode within
  224. * that buffer.
  225. *
  226. * If a non-zero error is returned, then the contents of bpp and
  227. * dipp are undefined.
  228. *
  229. * The inode is expected to already been mapped to its buffer and read
  230. * in once, thus we can use the mapping information stored in the inode
  231. * rather than calling xfs_imap(). This allows us to avoid the overhead
  232. * of looking at the inode btree for small block file systems
  233. * (see xfs_imap()).
  234. */
  235. int
  236. xfs_itobp(
  237. xfs_mount_t *mp,
  238. xfs_trans_t *tp,
  239. xfs_inode_t *ip,
  240. xfs_dinode_t **dipp,
  241. xfs_buf_t **bpp,
  242. uint buf_flags)
  243. {
  244. xfs_buf_t *bp;
  245. int error;
  246. ASSERT(ip->i_imap.im_blkno != 0);
  247. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  248. if (error)
  249. return error;
  250. if (!bp) {
  251. ASSERT(buf_flags & XBF_TRYLOCK);
  252. ASSERT(tp == NULL);
  253. *bpp = NULL;
  254. return EAGAIN;
  255. }
  256. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  257. *bpp = bp;
  258. return 0;
  259. }
  260. /*
  261. * Move inode type and inode format specific information from the
  262. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  263. * this means set if_rdev to the proper value. For files, directories,
  264. * and symlinks this means to bring in the in-line data or extent
  265. * pointers. For a file in B-tree format, only the root is immediately
  266. * brought in-core. The rest will be in-lined in if_extents when it
  267. * is first referenced (see xfs_iread_extents()).
  268. */
  269. STATIC int
  270. xfs_iformat(
  271. xfs_inode_t *ip,
  272. xfs_dinode_t *dip)
  273. {
  274. xfs_attr_shortform_t *atp;
  275. int size;
  276. int error;
  277. xfs_fsize_t di_size;
  278. ip->i_df.if_ext_max =
  279. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  280. error = 0;
  281. if (unlikely(be32_to_cpu(dip->di_nextents) +
  282. be16_to_cpu(dip->di_anextents) >
  283. be64_to_cpu(dip->di_nblocks))) {
  284. xfs_warn(ip->i_mount,
  285. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  286. (unsigned long long)ip->i_ino,
  287. (int)(be32_to_cpu(dip->di_nextents) +
  288. be16_to_cpu(dip->di_anextents)),
  289. (unsigned long long)
  290. be64_to_cpu(dip->di_nblocks));
  291. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  292. ip->i_mount, dip);
  293. return XFS_ERROR(EFSCORRUPTED);
  294. }
  295. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  296. xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
  297. (unsigned long long)ip->i_ino,
  298. dip->di_forkoff);
  299. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  300. ip->i_mount, dip);
  301. return XFS_ERROR(EFSCORRUPTED);
  302. }
  303. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  304. !ip->i_mount->m_rtdev_targp)) {
  305. xfs_warn(ip->i_mount,
  306. "corrupt dinode %Lu, has realtime flag set.",
  307. ip->i_ino);
  308. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  309. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  310. return XFS_ERROR(EFSCORRUPTED);
  311. }
  312. switch (ip->i_d.di_mode & S_IFMT) {
  313. case S_IFIFO:
  314. case S_IFCHR:
  315. case S_IFBLK:
  316. case S_IFSOCK:
  317. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  318. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  319. ip->i_mount, dip);
  320. return XFS_ERROR(EFSCORRUPTED);
  321. }
  322. ip->i_d.di_size = 0;
  323. ip->i_size = 0;
  324. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  325. break;
  326. case S_IFREG:
  327. case S_IFLNK:
  328. case S_IFDIR:
  329. switch (dip->di_format) {
  330. case XFS_DINODE_FMT_LOCAL:
  331. /*
  332. * no local regular files yet
  333. */
  334. if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
  335. xfs_warn(ip->i_mount,
  336. "corrupt inode %Lu (local format for regular file).",
  337. (unsigned long long) ip->i_ino);
  338. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  339. XFS_ERRLEVEL_LOW,
  340. ip->i_mount, dip);
  341. return XFS_ERROR(EFSCORRUPTED);
  342. }
  343. di_size = be64_to_cpu(dip->di_size);
  344. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  345. xfs_warn(ip->i_mount,
  346. "corrupt inode %Lu (bad size %Ld for local inode).",
  347. (unsigned long long) ip->i_ino,
  348. (long long) di_size);
  349. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  350. XFS_ERRLEVEL_LOW,
  351. ip->i_mount, dip);
  352. return XFS_ERROR(EFSCORRUPTED);
  353. }
  354. size = (int)di_size;
  355. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  356. break;
  357. case XFS_DINODE_FMT_EXTENTS:
  358. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  359. break;
  360. case XFS_DINODE_FMT_BTREE:
  361. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  362. break;
  363. default:
  364. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  365. ip->i_mount);
  366. return XFS_ERROR(EFSCORRUPTED);
  367. }
  368. break;
  369. default:
  370. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  371. return XFS_ERROR(EFSCORRUPTED);
  372. }
  373. if (error) {
  374. return error;
  375. }
  376. if (!XFS_DFORK_Q(dip))
  377. return 0;
  378. ASSERT(ip->i_afp == NULL);
  379. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
  380. ip->i_afp->if_ext_max =
  381. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  382. switch (dip->di_aformat) {
  383. case XFS_DINODE_FMT_LOCAL:
  384. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  385. size = be16_to_cpu(atp->hdr.totsize);
  386. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  387. xfs_warn(ip->i_mount,
  388. "corrupt inode %Lu (bad attr fork size %Ld).",
  389. (unsigned long long) ip->i_ino,
  390. (long long) size);
  391. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  392. XFS_ERRLEVEL_LOW,
  393. ip->i_mount, dip);
  394. return XFS_ERROR(EFSCORRUPTED);
  395. }
  396. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  397. break;
  398. case XFS_DINODE_FMT_EXTENTS:
  399. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  400. break;
  401. case XFS_DINODE_FMT_BTREE:
  402. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  403. break;
  404. default:
  405. error = XFS_ERROR(EFSCORRUPTED);
  406. break;
  407. }
  408. if (error) {
  409. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  410. ip->i_afp = NULL;
  411. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  412. }
  413. return error;
  414. }
  415. /*
  416. * The file is in-lined in the on-disk inode.
  417. * If it fits into if_inline_data, then copy
  418. * it there, otherwise allocate a buffer for it
  419. * and copy the data there. Either way, set
  420. * if_data to point at the data.
  421. * If we allocate a buffer for the data, make
  422. * sure that its size is a multiple of 4 and
  423. * record the real size in i_real_bytes.
  424. */
  425. STATIC int
  426. xfs_iformat_local(
  427. xfs_inode_t *ip,
  428. xfs_dinode_t *dip,
  429. int whichfork,
  430. int size)
  431. {
  432. xfs_ifork_t *ifp;
  433. int real_size;
  434. /*
  435. * If the size is unreasonable, then something
  436. * is wrong and we just bail out rather than crash in
  437. * kmem_alloc() or memcpy() below.
  438. */
  439. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  440. xfs_warn(ip->i_mount,
  441. "corrupt inode %Lu (bad size %d for local fork, size = %d).",
  442. (unsigned long long) ip->i_ino, size,
  443. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  444. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  445. ip->i_mount, dip);
  446. return XFS_ERROR(EFSCORRUPTED);
  447. }
  448. ifp = XFS_IFORK_PTR(ip, whichfork);
  449. real_size = 0;
  450. if (size == 0)
  451. ifp->if_u1.if_data = NULL;
  452. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  453. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  454. else {
  455. real_size = roundup(size, 4);
  456. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
  457. }
  458. ifp->if_bytes = size;
  459. ifp->if_real_bytes = real_size;
  460. if (size)
  461. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  462. ifp->if_flags &= ~XFS_IFEXTENTS;
  463. ifp->if_flags |= XFS_IFINLINE;
  464. return 0;
  465. }
  466. /*
  467. * The file consists of a set of extents all
  468. * of which fit into the on-disk inode.
  469. * If there are few enough extents to fit into
  470. * the if_inline_ext, then copy them there.
  471. * Otherwise allocate a buffer for them and copy
  472. * them into it. Either way, set if_extents
  473. * to point at the extents.
  474. */
  475. STATIC int
  476. xfs_iformat_extents(
  477. xfs_inode_t *ip,
  478. xfs_dinode_t *dip,
  479. int whichfork)
  480. {
  481. xfs_bmbt_rec_t *dp;
  482. xfs_ifork_t *ifp;
  483. int nex;
  484. int size;
  485. int i;
  486. ifp = XFS_IFORK_PTR(ip, whichfork);
  487. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  488. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  489. /*
  490. * If the number of extents is unreasonable, then something
  491. * is wrong and we just bail out rather than crash in
  492. * kmem_alloc() or memcpy() below.
  493. */
  494. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  495. xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
  496. (unsigned long long) ip->i_ino, nex);
  497. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  498. ip->i_mount, dip);
  499. return XFS_ERROR(EFSCORRUPTED);
  500. }
  501. ifp->if_real_bytes = 0;
  502. if (nex == 0)
  503. ifp->if_u1.if_extents = NULL;
  504. else if (nex <= XFS_INLINE_EXTS)
  505. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  506. else
  507. xfs_iext_add(ifp, 0, nex);
  508. ifp->if_bytes = size;
  509. if (size) {
  510. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  511. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  512. for (i = 0; i < nex; i++, dp++) {
  513. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  514. ep->l0 = get_unaligned_be64(&dp->l0);
  515. ep->l1 = get_unaligned_be64(&dp->l1);
  516. }
  517. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  518. if (whichfork != XFS_DATA_FORK ||
  519. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  520. if (unlikely(xfs_check_nostate_extents(
  521. ifp, 0, nex))) {
  522. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  523. XFS_ERRLEVEL_LOW,
  524. ip->i_mount);
  525. return XFS_ERROR(EFSCORRUPTED);
  526. }
  527. }
  528. ifp->if_flags |= XFS_IFEXTENTS;
  529. return 0;
  530. }
  531. /*
  532. * The file has too many extents to fit into
  533. * the inode, so they are in B-tree format.
  534. * Allocate a buffer for the root of the B-tree
  535. * and copy the root into it. The i_extents
  536. * field will remain NULL until all of the
  537. * extents are read in (when they are needed).
  538. */
  539. STATIC int
  540. xfs_iformat_btree(
  541. xfs_inode_t *ip,
  542. xfs_dinode_t *dip,
  543. int whichfork)
  544. {
  545. xfs_bmdr_block_t *dfp;
  546. xfs_ifork_t *ifp;
  547. /* REFERENCED */
  548. int nrecs;
  549. int size;
  550. ifp = XFS_IFORK_PTR(ip, whichfork);
  551. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  552. size = XFS_BMAP_BROOT_SPACE(dfp);
  553. nrecs = be16_to_cpu(dfp->bb_numrecs);
  554. /*
  555. * blow out if -- fork has less extents than can fit in
  556. * fork (fork shouldn't be a btree format), root btree
  557. * block has more records than can fit into the fork,
  558. * or the number of extents is greater than the number of
  559. * blocks.
  560. */
  561. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  562. || XFS_BMDR_SPACE_CALC(nrecs) >
  563. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  564. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  565. xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
  566. (unsigned long long) ip->i_ino);
  567. XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  568. ip->i_mount, dip);
  569. return XFS_ERROR(EFSCORRUPTED);
  570. }
  571. ifp->if_broot_bytes = size;
  572. ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
  573. ASSERT(ifp->if_broot != NULL);
  574. /*
  575. * Copy and convert from the on-disk structure
  576. * to the in-memory structure.
  577. */
  578. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  579. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  580. ifp->if_broot, size);
  581. ifp->if_flags &= ~XFS_IFEXTENTS;
  582. ifp->if_flags |= XFS_IFBROOT;
  583. return 0;
  584. }
  585. STATIC void
  586. xfs_dinode_from_disk(
  587. xfs_icdinode_t *to,
  588. xfs_dinode_t *from)
  589. {
  590. to->di_magic = be16_to_cpu(from->di_magic);
  591. to->di_mode = be16_to_cpu(from->di_mode);
  592. to->di_version = from ->di_version;
  593. to->di_format = from->di_format;
  594. to->di_onlink = be16_to_cpu(from->di_onlink);
  595. to->di_uid = be32_to_cpu(from->di_uid);
  596. to->di_gid = be32_to_cpu(from->di_gid);
  597. to->di_nlink = be32_to_cpu(from->di_nlink);
  598. to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
  599. to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
  600. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  601. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  602. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  603. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  604. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  605. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  606. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  607. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  608. to->di_size = be64_to_cpu(from->di_size);
  609. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  610. to->di_extsize = be32_to_cpu(from->di_extsize);
  611. to->di_nextents = be32_to_cpu(from->di_nextents);
  612. to->di_anextents = be16_to_cpu(from->di_anextents);
  613. to->di_forkoff = from->di_forkoff;
  614. to->di_aformat = from->di_aformat;
  615. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  616. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  617. to->di_flags = be16_to_cpu(from->di_flags);
  618. to->di_gen = be32_to_cpu(from->di_gen);
  619. }
  620. void
  621. xfs_dinode_to_disk(
  622. xfs_dinode_t *to,
  623. xfs_icdinode_t *from)
  624. {
  625. to->di_magic = cpu_to_be16(from->di_magic);
  626. to->di_mode = cpu_to_be16(from->di_mode);
  627. to->di_version = from ->di_version;
  628. to->di_format = from->di_format;
  629. to->di_onlink = cpu_to_be16(from->di_onlink);
  630. to->di_uid = cpu_to_be32(from->di_uid);
  631. to->di_gid = cpu_to_be32(from->di_gid);
  632. to->di_nlink = cpu_to_be32(from->di_nlink);
  633. to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
  634. to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
  635. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  636. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  637. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  638. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  639. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  640. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  641. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  642. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  643. to->di_size = cpu_to_be64(from->di_size);
  644. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  645. to->di_extsize = cpu_to_be32(from->di_extsize);
  646. to->di_nextents = cpu_to_be32(from->di_nextents);
  647. to->di_anextents = cpu_to_be16(from->di_anextents);
  648. to->di_forkoff = from->di_forkoff;
  649. to->di_aformat = from->di_aformat;
  650. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  651. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  652. to->di_flags = cpu_to_be16(from->di_flags);
  653. to->di_gen = cpu_to_be32(from->di_gen);
  654. }
  655. STATIC uint
  656. _xfs_dic2xflags(
  657. __uint16_t di_flags)
  658. {
  659. uint flags = 0;
  660. if (di_flags & XFS_DIFLAG_ANY) {
  661. if (di_flags & XFS_DIFLAG_REALTIME)
  662. flags |= XFS_XFLAG_REALTIME;
  663. if (di_flags & XFS_DIFLAG_PREALLOC)
  664. flags |= XFS_XFLAG_PREALLOC;
  665. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  666. flags |= XFS_XFLAG_IMMUTABLE;
  667. if (di_flags & XFS_DIFLAG_APPEND)
  668. flags |= XFS_XFLAG_APPEND;
  669. if (di_flags & XFS_DIFLAG_SYNC)
  670. flags |= XFS_XFLAG_SYNC;
  671. if (di_flags & XFS_DIFLAG_NOATIME)
  672. flags |= XFS_XFLAG_NOATIME;
  673. if (di_flags & XFS_DIFLAG_NODUMP)
  674. flags |= XFS_XFLAG_NODUMP;
  675. if (di_flags & XFS_DIFLAG_RTINHERIT)
  676. flags |= XFS_XFLAG_RTINHERIT;
  677. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  678. flags |= XFS_XFLAG_PROJINHERIT;
  679. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  680. flags |= XFS_XFLAG_NOSYMLINKS;
  681. if (di_flags & XFS_DIFLAG_EXTSIZE)
  682. flags |= XFS_XFLAG_EXTSIZE;
  683. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  684. flags |= XFS_XFLAG_EXTSZINHERIT;
  685. if (di_flags & XFS_DIFLAG_NODEFRAG)
  686. flags |= XFS_XFLAG_NODEFRAG;
  687. if (di_flags & XFS_DIFLAG_FILESTREAM)
  688. flags |= XFS_XFLAG_FILESTREAM;
  689. }
  690. return flags;
  691. }
  692. uint
  693. xfs_ip2xflags(
  694. xfs_inode_t *ip)
  695. {
  696. xfs_icdinode_t *dic = &ip->i_d;
  697. return _xfs_dic2xflags(dic->di_flags) |
  698. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  699. }
  700. uint
  701. xfs_dic2xflags(
  702. xfs_dinode_t *dip)
  703. {
  704. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  705. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  706. }
  707. /*
  708. * Read the disk inode attributes into the in-core inode structure.
  709. */
  710. int
  711. xfs_iread(
  712. xfs_mount_t *mp,
  713. xfs_trans_t *tp,
  714. xfs_inode_t *ip,
  715. uint iget_flags)
  716. {
  717. xfs_buf_t *bp;
  718. xfs_dinode_t *dip;
  719. int error;
  720. /*
  721. * Fill in the location information in the in-core inode.
  722. */
  723. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  724. if (error)
  725. return error;
  726. /*
  727. * Get pointers to the on-disk inode and the buffer containing it.
  728. */
  729. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  730. XBF_LOCK, iget_flags);
  731. if (error)
  732. return error;
  733. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  734. /*
  735. * If we got something that isn't an inode it means someone
  736. * (nfs or dmi) has a stale handle.
  737. */
  738. if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
  739. #ifdef DEBUG
  740. xfs_alert(mp,
  741. "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
  742. __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
  743. #endif /* DEBUG */
  744. error = XFS_ERROR(EINVAL);
  745. goto out_brelse;
  746. }
  747. /*
  748. * If the on-disk inode is already linked to a directory
  749. * entry, copy all of the inode into the in-core inode.
  750. * xfs_iformat() handles copying in the inode format
  751. * specific information.
  752. * Otherwise, just get the truly permanent information.
  753. */
  754. if (dip->di_mode) {
  755. xfs_dinode_from_disk(&ip->i_d, dip);
  756. error = xfs_iformat(ip, dip);
  757. if (error) {
  758. #ifdef DEBUG
  759. xfs_alert(mp, "%s: xfs_iformat() returned error %d",
  760. __func__, error);
  761. #endif /* DEBUG */
  762. goto out_brelse;
  763. }
  764. } else {
  765. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  766. ip->i_d.di_version = dip->di_version;
  767. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  768. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  769. /*
  770. * Make sure to pull in the mode here as well in
  771. * case the inode is released without being used.
  772. * This ensures that xfs_inactive() will see that
  773. * the inode is already free and not try to mess
  774. * with the uninitialized part of it.
  775. */
  776. ip->i_d.di_mode = 0;
  777. /*
  778. * Initialize the per-fork minima and maxima for a new
  779. * inode here. xfs_iformat will do it for old inodes.
  780. */
  781. ip->i_df.if_ext_max =
  782. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  783. }
  784. /*
  785. * The inode format changed when we moved the link count and
  786. * made it 32 bits long. If this is an old format inode,
  787. * convert it in memory to look like a new one. If it gets
  788. * flushed to disk we will convert back before flushing or
  789. * logging it. We zero out the new projid field and the old link
  790. * count field. We'll handle clearing the pad field (the remains
  791. * of the old uuid field) when we actually convert the inode to
  792. * the new format. We don't change the version number so that we
  793. * can distinguish this from a real new format inode.
  794. */
  795. if (ip->i_d.di_version == 1) {
  796. ip->i_d.di_nlink = ip->i_d.di_onlink;
  797. ip->i_d.di_onlink = 0;
  798. xfs_set_projid(ip, 0);
  799. }
  800. ip->i_delayed_blks = 0;
  801. ip->i_size = ip->i_d.di_size;
  802. /*
  803. * Mark the buffer containing the inode as something to keep
  804. * around for a while. This helps to keep recently accessed
  805. * meta-data in-core longer.
  806. */
  807. xfs_buf_set_ref(bp, XFS_INO_REF);
  808. /*
  809. * Use xfs_trans_brelse() to release the buffer containing the
  810. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  811. * in xfs_itobp() above. If tp is NULL, this is just a normal
  812. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  813. * will only release the buffer if it is not dirty within the
  814. * transaction. It will be OK to release the buffer in this case,
  815. * because inodes on disk are never destroyed and we will be
  816. * locking the new in-core inode before putting it in the hash
  817. * table where other processes can find it. Thus we don't have
  818. * to worry about the inode being changed just because we released
  819. * the buffer.
  820. */
  821. out_brelse:
  822. xfs_trans_brelse(tp, bp);
  823. return error;
  824. }
  825. /*
  826. * Read in extents from a btree-format inode.
  827. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  828. */
  829. int
  830. xfs_iread_extents(
  831. xfs_trans_t *tp,
  832. xfs_inode_t *ip,
  833. int whichfork)
  834. {
  835. int error;
  836. xfs_ifork_t *ifp;
  837. xfs_extnum_t nextents;
  838. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  839. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  840. ip->i_mount);
  841. return XFS_ERROR(EFSCORRUPTED);
  842. }
  843. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  844. ifp = XFS_IFORK_PTR(ip, whichfork);
  845. /*
  846. * We know that the size is valid (it's checked in iformat_btree)
  847. */
  848. ifp->if_bytes = ifp->if_real_bytes = 0;
  849. ifp->if_flags |= XFS_IFEXTENTS;
  850. xfs_iext_add(ifp, 0, nextents);
  851. error = xfs_bmap_read_extents(tp, ip, whichfork);
  852. if (error) {
  853. xfs_iext_destroy(ifp);
  854. ifp->if_flags &= ~XFS_IFEXTENTS;
  855. return error;
  856. }
  857. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  858. return 0;
  859. }
  860. /*
  861. * Allocate an inode on disk and return a copy of its in-core version.
  862. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  863. * appropriately within the inode. The uid and gid for the inode are
  864. * set according to the contents of the given cred structure.
  865. *
  866. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  867. * has a free inode available, call xfs_iget()
  868. * to obtain the in-core version of the allocated inode. Finally,
  869. * fill in the inode and log its initial contents. In this case,
  870. * ialloc_context would be set to NULL and call_again set to false.
  871. *
  872. * If xfs_dialloc() does not have an available inode,
  873. * it will replenish its supply by doing an allocation. Since we can
  874. * only do one allocation within a transaction without deadlocks, we
  875. * must commit the current transaction before returning the inode itself.
  876. * In this case, therefore, we will set call_again to true and return.
  877. * The caller should then commit the current transaction, start a new
  878. * transaction, and call xfs_ialloc() again to actually get the inode.
  879. *
  880. * To ensure that some other process does not grab the inode that
  881. * was allocated during the first call to xfs_ialloc(), this routine
  882. * also returns the [locked] bp pointing to the head of the freelist
  883. * as ialloc_context. The caller should hold this buffer across
  884. * the commit and pass it back into this routine on the second call.
  885. *
  886. * If we are allocating quota inodes, we do not have a parent inode
  887. * to attach to or associate with (i.e. pip == NULL) because they
  888. * are not linked into the directory structure - they are attached
  889. * directly to the superblock - and so have no parent.
  890. */
  891. int
  892. xfs_ialloc(
  893. xfs_trans_t *tp,
  894. xfs_inode_t *pip,
  895. mode_t mode,
  896. xfs_nlink_t nlink,
  897. xfs_dev_t rdev,
  898. prid_t prid,
  899. int okalloc,
  900. xfs_buf_t **ialloc_context,
  901. boolean_t *call_again,
  902. xfs_inode_t **ipp)
  903. {
  904. xfs_ino_t ino;
  905. xfs_inode_t *ip;
  906. uint flags;
  907. int error;
  908. timespec_t tv;
  909. int filestreams = 0;
  910. /*
  911. * Call the space management code to pick
  912. * the on-disk inode to be allocated.
  913. */
  914. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  915. ialloc_context, call_again, &ino);
  916. if (error)
  917. return error;
  918. if (*call_again || ino == NULLFSINO) {
  919. *ipp = NULL;
  920. return 0;
  921. }
  922. ASSERT(*ialloc_context == NULL);
  923. /*
  924. * Get the in-core inode with the lock held exclusively.
  925. * This is because we're setting fields here we need
  926. * to prevent others from looking at until we're done.
  927. */
  928. error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
  929. XFS_ILOCK_EXCL, &ip);
  930. if (error)
  931. return error;
  932. ASSERT(ip != NULL);
  933. ip->i_d.di_mode = (__uint16_t)mode;
  934. ip->i_d.di_onlink = 0;
  935. ip->i_d.di_nlink = nlink;
  936. ASSERT(ip->i_d.di_nlink == nlink);
  937. ip->i_d.di_uid = current_fsuid();
  938. ip->i_d.di_gid = current_fsgid();
  939. xfs_set_projid(ip, prid);
  940. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  941. /*
  942. * If the superblock version is up to where we support new format
  943. * inodes and this is currently an old format inode, then change
  944. * the inode version number now. This way we only do the conversion
  945. * here rather than here and in the flush/logging code.
  946. */
  947. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  948. ip->i_d.di_version == 1) {
  949. ip->i_d.di_version = 2;
  950. /*
  951. * We've already zeroed the old link count, the projid field,
  952. * and the pad field.
  953. */
  954. }
  955. /*
  956. * Project ids won't be stored on disk if we are using a version 1 inode.
  957. */
  958. if ((prid != 0) && (ip->i_d.di_version == 1))
  959. xfs_bump_ino_vers2(tp, ip);
  960. if (pip && XFS_INHERIT_GID(pip)) {
  961. ip->i_d.di_gid = pip->i_d.di_gid;
  962. if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
  963. ip->i_d.di_mode |= S_ISGID;
  964. }
  965. }
  966. /*
  967. * If the group ID of the new file does not match the effective group
  968. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  969. * (and only if the irix_sgid_inherit compatibility variable is set).
  970. */
  971. if ((irix_sgid_inherit) &&
  972. (ip->i_d.di_mode & S_ISGID) &&
  973. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  974. ip->i_d.di_mode &= ~S_ISGID;
  975. }
  976. ip->i_d.di_size = 0;
  977. ip->i_size = 0;
  978. ip->i_d.di_nextents = 0;
  979. ASSERT(ip->i_d.di_nblocks == 0);
  980. nanotime(&tv);
  981. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  982. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  983. ip->i_d.di_atime = ip->i_d.di_mtime;
  984. ip->i_d.di_ctime = ip->i_d.di_mtime;
  985. /*
  986. * di_gen will have been taken care of in xfs_iread.
  987. */
  988. ip->i_d.di_extsize = 0;
  989. ip->i_d.di_dmevmask = 0;
  990. ip->i_d.di_dmstate = 0;
  991. ip->i_d.di_flags = 0;
  992. flags = XFS_ILOG_CORE;
  993. switch (mode & S_IFMT) {
  994. case S_IFIFO:
  995. case S_IFCHR:
  996. case S_IFBLK:
  997. case S_IFSOCK:
  998. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  999. ip->i_df.if_u2.if_rdev = rdev;
  1000. ip->i_df.if_flags = 0;
  1001. flags |= XFS_ILOG_DEV;
  1002. break;
  1003. case S_IFREG:
  1004. /*
  1005. * we can't set up filestreams until after the VFS inode
  1006. * is set up properly.
  1007. */
  1008. if (pip && xfs_inode_is_filestream(pip))
  1009. filestreams = 1;
  1010. /* fall through */
  1011. case S_IFDIR:
  1012. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1013. uint di_flags = 0;
  1014. if (S_ISDIR(mode)) {
  1015. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1016. di_flags |= XFS_DIFLAG_RTINHERIT;
  1017. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1018. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1019. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1020. }
  1021. } else if (S_ISREG(mode)) {
  1022. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1023. di_flags |= XFS_DIFLAG_REALTIME;
  1024. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1025. di_flags |= XFS_DIFLAG_EXTSIZE;
  1026. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1027. }
  1028. }
  1029. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1030. xfs_inherit_noatime)
  1031. di_flags |= XFS_DIFLAG_NOATIME;
  1032. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1033. xfs_inherit_nodump)
  1034. di_flags |= XFS_DIFLAG_NODUMP;
  1035. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1036. xfs_inherit_sync)
  1037. di_flags |= XFS_DIFLAG_SYNC;
  1038. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1039. xfs_inherit_nosymlinks)
  1040. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1041. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1042. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1043. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1044. xfs_inherit_nodefrag)
  1045. di_flags |= XFS_DIFLAG_NODEFRAG;
  1046. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1047. di_flags |= XFS_DIFLAG_FILESTREAM;
  1048. ip->i_d.di_flags |= di_flags;
  1049. }
  1050. /* FALLTHROUGH */
  1051. case S_IFLNK:
  1052. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1053. ip->i_df.if_flags = XFS_IFEXTENTS;
  1054. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1055. ip->i_df.if_u1.if_extents = NULL;
  1056. break;
  1057. default:
  1058. ASSERT(0);
  1059. }
  1060. /*
  1061. * Attribute fork settings for new inode.
  1062. */
  1063. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1064. ip->i_d.di_anextents = 0;
  1065. /*
  1066. * Log the new values stuffed into the inode.
  1067. */
  1068. xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
  1069. xfs_trans_log_inode(tp, ip, flags);
  1070. /* now that we have an i_mode we can setup inode ops and unlock */
  1071. xfs_setup_inode(ip);
  1072. /* now we have set up the vfs inode we can associate the filestream */
  1073. if (filestreams) {
  1074. error = xfs_filestream_associate(pip, ip);
  1075. if (error < 0)
  1076. return -error;
  1077. if (!error)
  1078. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1079. }
  1080. *ipp = ip;
  1081. return 0;
  1082. }
  1083. /*
  1084. * Check to make sure that there are no blocks allocated to the
  1085. * file beyond the size of the file. We don't check this for
  1086. * files with fixed size extents or real time extents, but we
  1087. * at least do it for regular files.
  1088. */
  1089. #ifdef DEBUG
  1090. STATIC void
  1091. xfs_isize_check(
  1092. struct xfs_inode *ip,
  1093. xfs_fsize_t isize)
  1094. {
  1095. struct xfs_mount *mp = ip->i_mount;
  1096. xfs_fileoff_t map_first;
  1097. int nimaps;
  1098. xfs_bmbt_irec_t imaps[2];
  1099. int error;
  1100. if (!S_ISREG(ip->i_d.di_mode))
  1101. return;
  1102. if (XFS_IS_REALTIME_INODE(ip))
  1103. return;
  1104. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1105. return;
  1106. nimaps = 2;
  1107. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1108. /*
  1109. * The filesystem could be shutting down, so bmapi may return
  1110. * an error.
  1111. */
  1112. error = xfs_bmapi_read(ip, map_first,
  1113. (XFS_B_TO_FSB(mp,
  1114. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - map_first),
  1115. imaps, &nimaps, XFS_BMAPI_ENTIRE);
  1116. if (error)
  1117. return;
  1118. ASSERT(nimaps == 1);
  1119. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1120. }
  1121. #else /* DEBUG */
  1122. #define xfs_isize_check(ip, isize)
  1123. #endif /* DEBUG */
  1124. /*
  1125. * Free up the underlying blocks past new_size. The new size must be smaller
  1126. * than the current size. This routine can be used both for the attribute and
  1127. * data fork, and does not modify the inode size, which is left to the caller.
  1128. *
  1129. * The transaction passed to this routine must have made a permanent log
  1130. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1131. * given transaction and start new ones, so make sure everything involved in
  1132. * the transaction is tidy before calling here. Some transaction will be
  1133. * returned to the caller to be committed. The incoming transaction must
  1134. * already include the inode, and both inode locks must be held exclusively.
  1135. * The inode must also be "held" within the transaction. On return the inode
  1136. * will be "held" within the returned transaction. This routine does NOT
  1137. * require any disk space to be reserved for it within the transaction.
  1138. *
  1139. * If we get an error, we must return with the inode locked and linked into the
  1140. * current transaction. This keeps things simple for the higher level code,
  1141. * because it always knows that the inode is locked and held in the transaction
  1142. * that returns to it whether errors occur or not. We don't mark the inode
  1143. * dirty on error so that transactions can be easily aborted if possible.
  1144. */
  1145. int
  1146. xfs_itruncate_extents(
  1147. struct xfs_trans **tpp,
  1148. struct xfs_inode *ip,
  1149. int whichfork,
  1150. xfs_fsize_t new_size)
  1151. {
  1152. struct xfs_mount *mp = ip->i_mount;
  1153. struct xfs_trans *tp = *tpp;
  1154. struct xfs_trans *ntp;
  1155. xfs_bmap_free_t free_list;
  1156. xfs_fsblock_t first_block;
  1157. xfs_fileoff_t first_unmap_block;
  1158. xfs_fileoff_t last_block;
  1159. xfs_filblks_t unmap_len;
  1160. int committed;
  1161. int error = 0;
  1162. int done = 0;
  1163. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1164. ASSERT(new_size <= ip->i_size);
  1165. ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
  1166. ASSERT(ip->i_itemp != NULL);
  1167. ASSERT(ip->i_itemp->ili_lock_flags == 0);
  1168. ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
  1169. /*
  1170. * Since it is possible for space to become allocated beyond
  1171. * the end of the file (in a crash where the space is allocated
  1172. * but the inode size is not yet updated), simply remove any
  1173. * blocks which show up between the new EOF and the maximum
  1174. * possible file size. If the first block to be removed is
  1175. * beyond the maximum file size (ie it is the same as last_block),
  1176. * then there is nothing to do.
  1177. */
  1178. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1179. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1180. if (first_unmap_block == last_block)
  1181. return 0;
  1182. ASSERT(first_unmap_block < last_block);
  1183. unmap_len = last_block - first_unmap_block + 1;
  1184. while (!done) {
  1185. xfs_bmap_init(&free_list, &first_block);
  1186. error = xfs_bunmapi(tp, ip,
  1187. first_unmap_block, unmap_len,
  1188. xfs_bmapi_aflag(whichfork),
  1189. XFS_ITRUNC_MAX_EXTENTS,
  1190. &first_block, &free_list,
  1191. &done);
  1192. if (error)
  1193. goto out_bmap_cancel;
  1194. /*
  1195. * Duplicate the transaction that has the permanent
  1196. * reservation and commit the old transaction.
  1197. */
  1198. error = xfs_bmap_finish(&tp, &free_list, &committed);
  1199. if (committed)
  1200. xfs_trans_ijoin(tp, ip, 0);
  1201. if (error)
  1202. goto out_bmap_cancel;
  1203. if (committed) {
  1204. /*
  1205. * Mark the inode dirty so it will be logged and
  1206. * moved forward in the log as part of every commit.
  1207. */
  1208. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1209. }
  1210. ntp = xfs_trans_dup(tp);
  1211. error = xfs_trans_commit(tp, 0);
  1212. tp = ntp;
  1213. xfs_trans_ijoin(tp, ip, 0);
  1214. if (error)
  1215. goto out;
  1216. /*
  1217. * Transaction commit worked ok so we can drop the extra ticket
  1218. * reference that we gained in xfs_trans_dup()
  1219. */
  1220. xfs_log_ticket_put(tp->t_ticket);
  1221. error = xfs_trans_reserve(tp, 0,
  1222. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1223. XFS_TRANS_PERM_LOG_RES,
  1224. XFS_ITRUNCATE_LOG_COUNT);
  1225. if (error)
  1226. goto out;
  1227. }
  1228. out:
  1229. *tpp = tp;
  1230. return error;
  1231. out_bmap_cancel:
  1232. /*
  1233. * If the bunmapi call encounters an error, return to the caller where
  1234. * the transaction can be properly aborted. We just need to make sure
  1235. * we're not holding any resources that we were not when we came in.
  1236. */
  1237. xfs_bmap_cancel(&free_list);
  1238. goto out;
  1239. }
  1240. int
  1241. xfs_itruncate_data(
  1242. struct xfs_trans **tpp,
  1243. struct xfs_inode *ip,
  1244. xfs_fsize_t new_size)
  1245. {
  1246. int error;
  1247. trace_xfs_itruncate_data_start(ip, new_size);
  1248. /*
  1249. * The first thing we do is set the size to new_size permanently on
  1250. * disk. This way we don't have to worry about anyone ever being able
  1251. * to look at the data being freed even in the face of a crash.
  1252. * What we're getting around here is the case where we free a block, it
  1253. * is allocated to another file, it is written to, and then we crash.
  1254. * If the new data gets written to the file but the log buffers
  1255. * containing the free and reallocation don't, then we'd end up with
  1256. * garbage in the blocks being freed. As long as we make the new_size
  1257. * permanent before actually freeing any blocks it doesn't matter if
  1258. * they get written to.
  1259. */
  1260. if (ip->i_d.di_nextents > 0) {
  1261. /*
  1262. * If we are not changing the file size then do not update
  1263. * the on-disk file size - we may be called from
  1264. * xfs_inactive_free_eofblocks(). If we update the on-disk
  1265. * file size and then the system crashes before the contents
  1266. * of the file are flushed to disk then the files may be
  1267. * full of holes (ie NULL files bug).
  1268. */
  1269. if (ip->i_size != new_size) {
  1270. ip->i_d.di_size = new_size;
  1271. ip->i_size = new_size;
  1272. xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
  1273. }
  1274. }
  1275. error = xfs_itruncate_extents(tpp, ip, XFS_DATA_FORK, new_size);
  1276. if (error)
  1277. return error;
  1278. /*
  1279. * If we are not changing the file size then do not update the on-disk
  1280. * file size - we may be called from xfs_inactive_free_eofblocks().
  1281. * If we update the on-disk file size and then the system crashes
  1282. * before the contents of the file are flushed to disk then the files
  1283. * may be full of holes (ie NULL files bug).
  1284. */
  1285. xfs_isize_check(ip, new_size);
  1286. if (ip->i_size != new_size) {
  1287. ip->i_d.di_size = new_size;
  1288. ip->i_size = new_size;
  1289. }
  1290. ASSERT(new_size != 0 || ip->i_delayed_blks == 0);
  1291. ASSERT(new_size != 0 || ip->i_d.di_nextents == 0);
  1292. /*
  1293. * Always re-log the inode so that our permanent transaction can keep
  1294. * on rolling it forward in the log.
  1295. */
  1296. xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
  1297. trace_xfs_itruncate_data_end(ip, new_size);
  1298. return 0;
  1299. }
  1300. /*
  1301. * This is called when the inode's link count goes to 0.
  1302. * We place the on-disk inode on a list in the AGI. It
  1303. * will be pulled from this list when the inode is freed.
  1304. */
  1305. int
  1306. xfs_iunlink(
  1307. xfs_trans_t *tp,
  1308. xfs_inode_t *ip)
  1309. {
  1310. xfs_mount_t *mp;
  1311. xfs_agi_t *agi;
  1312. xfs_dinode_t *dip;
  1313. xfs_buf_t *agibp;
  1314. xfs_buf_t *ibp;
  1315. xfs_agino_t agino;
  1316. short bucket_index;
  1317. int offset;
  1318. int error;
  1319. ASSERT(ip->i_d.di_nlink == 0);
  1320. ASSERT(ip->i_d.di_mode != 0);
  1321. mp = tp->t_mountp;
  1322. /*
  1323. * Get the agi buffer first. It ensures lock ordering
  1324. * on the list.
  1325. */
  1326. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1327. if (error)
  1328. return error;
  1329. agi = XFS_BUF_TO_AGI(agibp);
  1330. /*
  1331. * Get the index into the agi hash table for the
  1332. * list this inode will go on.
  1333. */
  1334. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1335. ASSERT(agino != 0);
  1336. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1337. ASSERT(agi->agi_unlinked[bucket_index]);
  1338. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1339. if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
  1340. /*
  1341. * There is already another inode in the bucket we need
  1342. * to add ourselves to. Add us at the front of the list.
  1343. * Here we put the head pointer into our next pointer,
  1344. * and then we fall through to point the head at us.
  1345. */
  1346. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1347. if (error)
  1348. return error;
  1349. ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
  1350. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1351. offset = ip->i_imap.im_boffset +
  1352. offsetof(xfs_dinode_t, di_next_unlinked);
  1353. xfs_trans_inode_buf(tp, ibp);
  1354. xfs_trans_log_buf(tp, ibp, offset,
  1355. (offset + sizeof(xfs_agino_t) - 1));
  1356. xfs_inobp_check(mp, ibp);
  1357. }
  1358. /*
  1359. * Point the bucket head pointer at the inode being inserted.
  1360. */
  1361. ASSERT(agino != 0);
  1362. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1363. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1364. (sizeof(xfs_agino_t) * bucket_index);
  1365. xfs_trans_log_buf(tp, agibp, offset,
  1366. (offset + sizeof(xfs_agino_t) - 1));
  1367. return 0;
  1368. }
  1369. /*
  1370. * Pull the on-disk inode from the AGI unlinked list.
  1371. */
  1372. STATIC int
  1373. xfs_iunlink_remove(
  1374. xfs_trans_t *tp,
  1375. xfs_inode_t *ip)
  1376. {
  1377. xfs_ino_t next_ino;
  1378. xfs_mount_t *mp;
  1379. xfs_agi_t *agi;
  1380. xfs_dinode_t *dip;
  1381. xfs_buf_t *agibp;
  1382. xfs_buf_t *ibp;
  1383. xfs_agnumber_t agno;
  1384. xfs_agino_t agino;
  1385. xfs_agino_t next_agino;
  1386. xfs_buf_t *last_ibp;
  1387. xfs_dinode_t *last_dip = NULL;
  1388. short bucket_index;
  1389. int offset, last_offset = 0;
  1390. int error;
  1391. mp = tp->t_mountp;
  1392. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1393. /*
  1394. * Get the agi buffer first. It ensures lock ordering
  1395. * on the list.
  1396. */
  1397. error = xfs_read_agi(mp, tp, agno, &agibp);
  1398. if (error)
  1399. return error;
  1400. agi = XFS_BUF_TO_AGI(agibp);
  1401. /*
  1402. * Get the index into the agi hash table for the
  1403. * list this inode will go on.
  1404. */
  1405. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1406. ASSERT(agino != 0);
  1407. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1408. ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
  1409. ASSERT(agi->agi_unlinked[bucket_index]);
  1410. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1411. /*
  1412. * We're at the head of the list. Get the inode's
  1413. * on-disk buffer to see if there is anyone after us
  1414. * on the list. Only modify our next pointer if it
  1415. * is not already NULLAGINO. This saves us the overhead
  1416. * of dealing with the buffer when there is no need to
  1417. * change it.
  1418. */
  1419. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1420. if (error) {
  1421. xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
  1422. __func__, error);
  1423. return error;
  1424. }
  1425. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1426. ASSERT(next_agino != 0);
  1427. if (next_agino != NULLAGINO) {
  1428. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1429. offset = ip->i_imap.im_boffset +
  1430. offsetof(xfs_dinode_t, di_next_unlinked);
  1431. xfs_trans_inode_buf(tp, ibp);
  1432. xfs_trans_log_buf(tp, ibp, offset,
  1433. (offset + sizeof(xfs_agino_t) - 1));
  1434. xfs_inobp_check(mp, ibp);
  1435. } else {
  1436. xfs_trans_brelse(tp, ibp);
  1437. }
  1438. /*
  1439. * Point the bucket head pointer at the next inode.
  1440. */
  1441. ASSERT(next_agino != 0);
  1442. ASSERT(next_agino != agino);
  1443. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1444. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1445. (sizeof(xfs_agino_t) * bucket_index);
  1446. xfs_trans_log_buf(tp, agibp, offset,
  1447. (offset + sizeof(xfs_agino_t) - 1));
  1448. } else {
  1449. /*
  1450. * We need to search the list for the inode being freed.
  1451. */
  1452. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1453. last_ibp = NULL;
  1454. while (next_agino != agino) {
  1455. /*
  1456. * If the last inode wasn't the one pointing to
  1457. * us, then release its buffer since we're not
  1458. * going to do anything with it.
  1459. */
  1460. if (last_ibp != NULL) {
  1461. xfs_trans_brelse(tp, last_ibp);
  1462. }
  1463. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1464. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1465. &last_ibp, &last_offset, 0);
  1466. if (error) {
  1467. xfs_warn(mp,
  1468. "%s: xfs_inotobp() returned error %d.",
  1469. __func__, error);
  1470. return error;
  1471. }
  1472. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1473. ASSERT(next_agino != NULLAGINO);
  1474. ASSERT(next_agino != 0);
  1475. }
  1476. /*
  1477. * Now last_ibp points to the buffer previous to us on
  1478. * the unlinked list. Pull us from the list.
  1479. */
  1480. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
  1481. if (error) {
  1482. xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
  1483. __func__, error);
  1484. return error;
  1485. }
  1486. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1487. ASSERT(next_agino != 0);
  1488. ASSERT(next_agino != agino);
  1489. if (next_agino != NULLAGINO) {
  1490. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1491. offset = ip->i_imap.im_boffset +
  1492. offsetof(xfs_dinode_t, di_next_unlinked);
  1493. xfs_trans_inode_buf(tp, ibp);
  1494. xfs_trans_log_buf(tp, ibp, offset,
  1495. (offset + sizeof(xfs_agino_t) - 1));
  1496. xfs_inobp_check(mp, ibp);
  1497. } else {
  1498. xfs_trans_brelse(tp, ibp);
  1499. }
  1500. /*
  1501. * Point the previous inode on the list to the next inode.
  1502. */
  1503. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1504. ASSERT(next_agino != 0);
  1505. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1506. xfs_trans_inode_buf(tp, last_ibp);
  1507. xfs_trans_log_buf(tp, last_ibp, offset,
  1508. (offset + sizeof(xfs_agino_t) - 1));
  1509. xfs_inobp_check(mp, last_ibp);
  1510. }
  1511. return 0;
  1512. }
  1513. /*
  1514. * A big issue when freeing the inode cluster is is that we _cannot_ skip any
  1515. * inodes that are in memory - they all must be marked stale and attached to
  1516. * the cluster buffer.
  1517. */
  1518. STATIC int
  1519. xfs_ifree_cluster(
  1520. xfs_inode_t *free_ip,
  1521. xfs_trans_t *tp,
  1522. xfs_ino_t inum)
  1523. {
  1524. xfs_mount_t *mp = free_ip->i_mount;
  1525. int blks_per_cluster;
  1526. int nbufs;
  1527. int ninodes;
  1528. int i, j;
  1529. xfs_daddr_t blkno;
  1530. xfs_buf_t *bp;
  1531. xfs_inode_t *ip;
  1532. xfs_inode_log_item_t *iip;
  1533. xfs_log_item_t *lip;
  1534. struct xfs_perag *pag;
  1535. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
  1536. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1537. blks_per_cluster = 1;
  1538. ninodes = mp->m_sb.sb_inopblock;
  1539. nbufs = XFS_IALLOC_BLOCKS(mp);
  1540. } else {
  1541. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1542. mp->m_sb.sb_blocksize;
  1543. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1544. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1545. }
  1546. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1547. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1548. XFS_INO_TO_AGBNO(mp, inum));
  1549. /*
  1550. * We obtain and lock the backing buffer first in the process
  1551. * here, as we have to ensure that any dirty inode that we
  1552. * can't get the flush lock on is attached to the buffer.
  1553. * If we scan the in-memory inodes first, then buffer IO can
  1554. * complete before we get a lock on it, and hence we may fail
  1555. * to mark all the active inodes on the buffer stale.
  1556. */
  1557. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1558. mp->m_bsize * blks_per_cluster,
  1559. XBF_LOCK);
  1560. if (!bp)
  1561. return ENOMEM;
  1562. /*
  1563. * Walk the inodes already attached to the buffer and mark them
  1564. * stale. These will all have the flush locks held, so an
  1565. * in-memory inode walk can't lock them. By marking them all
  1566. * stale first, we will not attempt to lock them in the loop
  1567. * below as the XFS_ISTALE flag will be set.
  1568. */
  1569. lip = bp->b_fspriv;
  1570. while (lip) {
  1571. if (lip->li_type == XFS_LI_INODE) {
  1572. iip = (xfs_inode_log_item_t *)lip;
  1573. ASSERT(iip->ili_logged == 1);
  1574. lip->li_cb = xfs_istale_done;
  1575. xfs_trans_ail_copy_lsn(mp->m_ail,
  1576. &iip->ili_flush_lsn,
  1577. &iip->ili_item.li_lsn);
  1578. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1579. }
  1580. lip = lip->li_bio_list;
  1581. }
  1582. /*
  1583. * For each inode in memory attempt to add it to the inode
  1584. * buffer and set it up for being staled on buffer IO
  1585. * completion. This is safe as we've locked out tail pushing
  1586. * and flushing by locking the buffer.
  1587. *
  1588. * We have already marked every inode that was part of a
  1589. * transaction stale above, which means there is no point in
  1590. * even trying to lock them.
  1591. */
  1592. for (i = 0; i < ninodes; i++) {
  1593. retry:
  1594. rcu_read_lock();
  1595. ip = radix_tree_lookup(&pag->pag_ici_root,
  1596. XFS_INO_TO_AGINO(mp, (inum + i)));
  1597. /* Inode not in memory, nothing to do */
  1598. if (!ip) {
  1599. rcu_read_unlock();
  1600. continue;
  1601. }
  1602. /*
  1603. * because this is an RCU protected lookup, we could
  1604. * find a recently freed or even reallocated inode
  1605. * during the lookup. We need to check under the
  1606. * i_flags_lock for a valid inode here. Skip it if it
  1607. * is not valid, the wrong inode or stale.
  1608. */
  1609. spin_lock(&ip->i_flags_lock);
  1610. if (ip->i_ino != inum + i ||
  1611. __xfs_iflags_test(ip, XFS_ISTALE)) {
  1612. spin_unlock(&ip->i_flags_lock);
  1613. rcu_read_unlock();
  1614. continue;
  1615. }
  1616. spin_unlock(&ip->i_flags_lock);
  1617. /*
  1618. * Don't try to lock/unlock the current inode, but we
  1619. * _cannot_ skip the other inodes that we did not find
  1620. * in the list attached to the buffer and are not
  1621. * already marked stale. If we can't lock it, back off
  1622. * and retry.
  1623. */
  1624. if (ip != free_ip &&
  1625. !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1626. rcu_read_unlock();
  1627. delay(1);
  1628. goto retry;
  1629. }
  1630. rcu_read_unlock();
  1631. xfs_iflock(ip);
  1632. xfs_iflags_set(ip, XFS_ISTALE);
  1633. /*
  1634. * we don't need to attach clean inodes or those only
  1635. * with unlogged changes (which we throw away, anyway).
  1636. */
  1637. iip = ip->i_itemp;
  1638. if (!iip || xfs_inode_clean(ip)) {
  1639. ASSERT(ip != free_ip);
  1640. ip->i_update_core = 0;
  1641. xfs_ifunlock(ip);
  1642. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1643. continue;
  1644. }
  1645. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1646. iip->ili_format.ilf_fields = 0;
  1647. iip->ili_logged = 1;
  1648. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1649. &iip->ili_item.li_lsn);
  1650. xfs_buf_attach_iodone(bp, xfs_istale_done,
  1651. &iip->ili_item);
  1652. if (ip != free_ip)
  1653. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1654. }
  1655. xfs_trans_stale_inode_buf(tp, bp);
  1656. xfs_trans_binval(tp, bp);
  1657. }
  1658. xfs_perag_put(pag);
  1659. return 0;
  1660. }
  1661. /*
  1662. * This is called to return an inode to the inode free list.
  1663. * The inode should already be truncated to 0 length and have
  1664. * no pages associated with it. This routine also assumes that
  1665. * the inode is already a part of the transaction.
  1666. *
  1667. * The on-disk copy of the inode will have been added to the list
  1668. * of unlinked inodes in the AGI. We need to remove the inode from
  1669. * that list atomically with respect to freeing it here.
  1670. */
  1671. int
  1672. xfs_ifree(
  1673. xfs_trans_t *tp,
  1674. xfs_inode_t *ip,
  1675. xfs_bmap_free_t *flist)
  1676. {
  1677. int error;
  1678. int delete;
  1679. xfs_ino_t first_ino;
  1680. xfs_dinode_t *dip;
  1681. xfs_buf_t *ibp;
  1682. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1683. ASSERT(ip->i_d.di_nlink == 0);
  1684. ASSERT(ip->i_d.di_nextents == 0);
  1685. ASSERT(ip->i_d.di_anextents == 0);
  1686. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1687. (!S_ISREG(ip->i_d.di_mode)));
  1688. ASSERT(ip->i_d.di_nblocks == 0);
  1689. /*
  1690. * Pull the on-disk inode from the AGI unlinked list.
  1691. */
  1692. error = xfs_iunlink_remove(tp, ip);
  1693. if (error != 0) {
  1694. return error;
  1695. }
  1696. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1697. if (error != 0) {
  1698. return error;
  1699. }
  1700. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1701. ip->i_d.di_flags = 0;
  1702. ip->i_d.di_dmevmask = 0;
  1703. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1704. ip->i_df.if_ext_max =
  1705. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  1706. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1707. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1708. /*
  1709. * Bump the generation count so no one will be confused
  1710. * by reincarnations of this inode.
  1711. */
  1712. ip->i_d.di_gen++;
  1713. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1714. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
  1715. if (error)
  1716. return error;
  1717. /*
  1718. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  1719. * from picking up this inode when it is reclaimed (its incore state
  1720. * initialzed but not flushed to disk yet). The in-core di_mode is
  1721. * already cleared and a corresponding transaction logged.
  1722. * The hack here just synchronizes the in-core to on-disk
  1723. * di_mode value in advance before the actual inode sync to disk.
  1724. * This is OK because the inode is already unlinked and would never
  1725. * change its di_mode again for this inode generation.
  1726. * This is a temporary hack that would require a proper fix
  1727. * in the future.
  1728. */
  1729. dip->di_mode = 0;
  1730. if (delete) {
  1731. error = xfs_ifree_cluster(ip, tp, first_ino);
  1732. }
  1733. return error;
  1734. }
  1735. /*
  1736. * Reallocate the space for if_broot based on the number of records
  1737. * being added or deleted as indicated in rec_diff. Move the records
  1738. * and pointers in if_broot to fit the new size. When shrinking this
  1739. * will eliminate holes between the records and pointers created by
  1740. * the caller. When growing this will create holes to be filled in
  1741. * by the caller.
  1742. *
  1743. * The caller must not request to add more records than would fit in
  1744. * the on-disk inode root. If the if_broot is currently NULL, then
  1745. * if we adding records one will be allocated. The caller must also
  1746. * not request that the number of records go below zero, although
  1747. * it can go to zero.
  1748. *
  1749. * ip -- the inode whose if_broot area is changing
  1750. * ext_diff -- the change in the number of records, positive or negative,
  1751. * requested for the if_broot array.
  1752. */
  1753. void
  1754. xfs_iroot_realloc(
  1755. xfs_inode_t *ip,
  1756. int rec_diff,
  1757. int whichfork)
  1758. {
  1759. struct xfs_mount *mp = ip->i_mount;
  1760. int cur_max;
  1761. xfs_ifork_t *ifp;
  1762. struct xfs_btree_block *new_broot;
  1763. int new_max;
  1764. size_t new_size;
  1765. char *np;
  1766. char *op;
  1767. /*
  1768. * Handle the degenerate case quietly.
  1769. */
  1770. if (rec_diff == 0) {
  1771. return;
  1772. }
  1773. ifp = XFS_IFORK_PTR(ip, whichfork);
  1774. if (rec_diff > 0) {
  1775. /*
  1776. * If there wasn't any memory allocated before, just
  1777. * allocate it now and get out.
  1778. */
  1779. if (ifp->if_broot_bytes == 0) {
  1780. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  1781. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1782. ifp->if_broot_bytes = (int)new_size;
  1783. return;
  1784. }
  1785. /*
  1786. * If there is already an existing if_broot, then we need
  1787. * to realloc() it and shift the pointers to their new
  1788. * location. The records don't change location because
  1789. * they are kept butted up against the btree block header.
  1790. */
  1791. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1792. new_max = cur_max + rec_diff;
  1793. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  1794. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  1795. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  1796. KM_SLEEP | KM_NOFS);
  1797. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1798. ifp->if_broot_bytes);
  1799. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1800. (int)new_size);
  1801. ifp->if_broot_bytes = (int)new_size;
  1802. ASSERT(ifp->if_broot_bytes <=
  1803. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  1804. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  1805. return;
  1806. }
  1807. /*
  1808. * rec_diff is less than 0. In this case, we are shrinking the
  1809. * if_broot buffer. It must already exist. If we go to zero
  1810. * records, just get rid of the root and clear the status bit.
  1811. */
  1812. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  1813. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  1814. new_max = cur_max + rec_diff;
  1815. ASSERT(new_max >= 0);
  1816. if (new_max > 0)
  1817. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  1818. else
  1819. new_size = 0;
  1820. if (new_size > 0) {
  1821. new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
  1822. /*
  1823. * First copy over the btree block header.
  1824. */
  1825. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  1826. } else {
  1827. new_broot = NULL;
  1828. ifp->if_flags &= ~XFS_IFBROOT;
  1829. }
  1830. /*
  1831. * Only copy the records and pointers if there are any.
  1832. */
  1833. if (new_max > 0) {
  1834. /*
  1835. * First copy the records.
  1836. */
  1837. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  1838. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  1839. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  1840. /*
  1841. * Then copy the pointers.
  1842. */
  1843. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  1844. ifp->if_broot_bytes);
  1845. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  1846. (int)new_size);
  1847. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  1848. }
  1849. kmem_free(ifp->if_broot);
  1850. ifp->if_broot = new_broot;
  1851. ifp->if_broot_bytes = (int)new_size;
  1852. ASSERT(ifp->if_broot_bytes <=
  1853. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  1854. return;
  1855. }
  1856. /*
  1857. * This is called when the amount of space needed for if_data
  1858. * is increased or decreased. The change in size is indicated by
  1859. * the number of bytes that need to be added or deleted in the
  1860. * byte_diff parameter.
  1861. *
  1862. * If the amount of space needed has decreased below the size of the
  1863. * inline buffer, then switch to using the inline buffer. Otherwise,
  1864. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  1865. * to what is needed.
  1866. *
  1867. * ip -- the inode whose if_data area is changing
  1868. * byte_diff -- the change in the number of bytes, positive or negative,
  1869. * requested for the if_data array.
  1870. */
  1871. void
  1872. xfs_idata_realloc(
  1873. xfs_inode_t *ip,
  1874. int byte_diff,
  1875. int whichfork)
  1876. {
  1877. xfs_ifork_t *ifp;
  1878. int new_size;
  1879. int real_size;
  1880. if (byte_diff == 0) {
  1881. return;
  1882. }
  1883. ifp = XFS_IFORK_PTR(ip, whichfork);
  1884. new_size = (int)ifp->if_bytes + byte_diff;
  1885. ASSERT(new_size >= 0);
  1886. if (new_size == 0) {
  1887. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1888. kmem_free(ifp->if_u1.if_data);
  1889. }
  1890. ifp->if_u1.if_data = NULL;
  1891. real_size = 0;
  1892. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  1893. /*
  1894. * If the valid extents/data can fit in if_inline_ext/data,
  1895. * copy them from the malloc'd vector and free it.
  1896. */
  1897. if (ifp->if_u1.if_data == NULL) {
  1898. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  1899. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1900. ASSERT(ifp->if_real_bytes != 0);
  1901. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  1902. new_size);
  1903. kmem_free(ifp->if_u1.if_data);
  1904. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  1905. }
  1906. real_size = 0;
  1907. } else {
  1908. /*
  1909. * Stuck with malloc/realloc.
  1910. * For inline data, the underlying buffer must be
  1911. * a multiple of 4 bytes in size so that it can be
  1912. * logged and stay on word boundaries. We enforce
  1913. * that here.
  1914. */
  1915. real_size = roundup(new_size, 4);
  1916. if (ifp->if_u1.if_data == NULL) {
  1917. ASSERT(ifp->if_real_bytes == 0);
  1918. ifp->if_u1.if_data = kmem_alloc(real_size,
  1919. KM_SLEEP | KM_NOFS);
  1920. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  1921. /*
  1922. * Only do the realloc if the underlying size
  1923. * is really changing.
  1924. */
  1925. if (ifp->if_real_bytes != real_size) {
  1926. ifp->if_u1.if_data =
  1927. kmem_realloc(ifp->if_u1.if_data,
  1928. real_size,
  1929. ifp->if_real_bytes,
  1930. KM_SLEEP | KM_NOFS);
  1931. }
  1932. } else {
  1933. ASSERT(ifp->if_real_bytes == 0);
  1934. ifp->if_u1.if_data = kmem_alloc(real_size,
  1935. KM_SLEEP | KM_NOFS);
  1936. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  1937. ifp->if_bytes);
  1938. }
  1939. }
  1940. ifp->if_real_bytes = real_size;
  1941. ifp->if_bytes = new_size;
  1942. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  1943. }
  1944. void
  1945. xfs_idestroy_fork(
  1946. xfs_inode_t *ip,
  1947. int whichfork)
  1948. {
  1949. xfs_ifork_t *ifp;
  1950. ifp = XFS_IFORK_PTR(ip, whichfork);
  1951. if (ifp->if_broot != NULL) {
  1952. kmem_free(ifp->if_broot);
  1953. ifp->if_broot = NULL;
  1954. }
  1955. /*
  1956. * If the format is local, then we can't have an extents
  1957. * array so just look for an inline data array. If we're
  1958. * not local then we may or may not have an extents list,
  1959. * so check and free it up if we do.
  1960. */
  1961. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  1962. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  1963. (ifp->if_u1.if_data != NULL)) {
  1964. ASSERT(ifp->if_real_bytes != 0);
  1965. kmem_free(ifp->if_u1.if_data);
  1966. ifp->if_u1.if_data = NULL;
  1967. ifp->if_real_bytes = 0;
  1968. }
  1969. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  1970. ((ifp->if_flags & XFS_IFEXTIREC) ||
  1971. ((ifp->if_u1.if_extents != NULL) &&
  1972. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  1973. ASSERT(ifp->if_real_bytes != 0);
  1974. xfs_iext_destroy(ifp);
  1975. }
  1976. ASSERT(ifp->if_u1.if_extents == NULL ||
  1977. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  1978. ASSERT(ifp->if_real_bytes == 0);
  1979. if (whichfork == XFS_ATTR_FORK) {
  1980. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  1981. ip->i_afp = NULL;
  1982. }
  1983. }
  1984. /*
  1985. * This is called to unpin an inode. The caller must have the inode locked
  1986. * in at least shared mode so that the buffer cannot be subsequently pinned
  1987. * once someone is waiting for it to be unpinned.
  1988. */
  1989. static void
  1990. xfs_iunpin_nowait(
  1991. struct xfs_inode *ip)
  1992. {
  1993. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  1994. trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
  1995. /* Give the log a push to start the unpinning I/O */
  1996. xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
  1997. }
  1998. void
  1999. xfs_iunpin_wait(
  2000. struct xfs_inode *ip)
  2001. {
  2002. if (xfs_ipincount(ip)) {
  2003. xfs_iunpin_nowait(ip);
  2004. wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
  2005. }
  2006. }
  2007. /*
  2008. * xfs_iextents_copy()
  2009. *
  2010. * This is called to copy the REAL extents (as opposed to the delayed
  2011. * allocation extents) from the inode into the given buffer. It
  2012. * returns the number of bytes copied into the buffer.
  2013. *
  2014. * If there are no delayed allocation extents, then we can just
  2015. * memcpy() the extents into the buffer. Otherwise, we need to
  2016. * examine each extent in turn and skip those which are delayed.
  2017. */
  2018. int
  2019. xfs_iextents_copy(
  2020. xfs_inode_t *ip,
  2021. xfs_bmbt_rec_t *dp,
  2022. int whichfork)
  2023. {
  2024. int copied;
  2025. int i;
  2026. xfs_ifork_t *ifp;
  2027. int nrecs;
  2028. xfs_fsblock_t start_block;
  2029. ifp = XFS_IFORK_PTR(ip, whichfork);
  2030. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2031. ASSERT(ifp->if_bytes > 0);
  2032. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2033. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2034. ASSERT(nrecs > 0);
  2035. /*
  2036. * There are some delayed allocation extents in the
  2037. * inode, so copy the extents one at a time and skip
  2038. * the delayed ones. There must be at least one
  2039. * non-delayed extent.
  2040. */
  2041. copied = 0;
  2042. for (i = 0; i < nrecs; i++) {
  2043. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2044. start_block = xfs_bmbt_get_startblock(ep);
  2045. if (isnullstartblock(start_block)) {
  2046. /*
  2047. * It's a delayed allocation extent, so skip it.
  2048. */
  2049. continue;
  2050. }
  2051. /* Translate to on disk format */
  2052. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2053. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2054. dp++;
  2055. copied++;
  2056. }
  2057. ASSERT(copied != 0);
  2058. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2059. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2060. }
  2061. /*
  2062. * Each of the following cases stores data into the same region
  2063. * of the on-disk inode, so only one of them can be valid at
  2064. * any given time. While it is possible to have conflicting formats
  2065. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2066. * in EXTENTS format, this can only happen when the fork has
  2067. * changed formats after being modified but before being flushed.
  2068. * In these cases, the format always takes precedence, because the
  2069. * format indicates the current state of the fork.
  2070. */
  2071. /*ARGSUSED*/
  2072. STATIC void
  2073. xfs_iflush_fork(
  2074. xfs_inode_t *ip,
  2075. xfs_dinode_t *dip,
  2076. xfs_inode_log_item_t *iip,
  2077. int whichfork,
  2078. xfs_buf_t *bp)
  2079. {
  2080. char *cp;
  2081. xfs_ifork_t *ifp;
  2082. xfs_mount_t *mp;
  2083. #ifdef XFS_TRANS_DEBUG
  2084. int first;
  2085. #endif
  2086. static const short brootflag[2] =
  2087. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2088. static const short dataflag[2] =
  2089. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2090. static const short extflag[2] =
  2091. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2092. if (!iip)
  2093. return;
  2094. ifp = XFS_IFORK_PTR(ip, whichfork);
  2095. /*
  2096. * This can happen if we gave up in iformat in an error path,
  2097. * for the attribute fork.
  2098. */
  2099. if (!ifp) {
  2100. ASSERT(whichfork == XFS_ATTR_FORK);
  2101. return;
  2102. }
  2103. cp = XFS_DFORK_PTR(dip, whichfork);
  2104. mp = ip->i_mount;
  2105. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2106. case XFS_DINODE_FMT_LOCAL:
  2107. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2108. (ifp->if_bytes > 0)) {
  2109. ASSERT(ifp->if_u1.if_data != NULL);
  2110. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2111. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2112. }
  2113. break;
  2114. case XFS_DINODE_FMT_EXTENTS:
  2115. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2116. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2117. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2118. (ifp->if_bytes > 0)) {
  2119. ASSERT(xfs_iext_get_ext(ifp, 0));
  2120. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2121. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2122. whichfork);
  2123. }
  2124. break;
  2125. case XFS_DINODE_FMT_BTREE:
  2126. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2127. (ifp->if_broot_bytes > 0)) {
  2128. ASSERT(ifp->if_broot != NULL);
  2129. ASSERT(ifp->if_broot_bytes <=
  2130. (XFS_IFORK_SIZE(ip, whichfork) +
  2131. XFS_BROOT_SIZE_ADJ));
  2132. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2133. (xfs_bmdr_block_t *)cp,
  2134. XFS_DFORK_SIZE(dip, mp, whichfork));
  2135. }
  2136. break;
  2137. case XFS_DINODE_FMT_DEV:
  2138. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2139. ASSERT(whichfork == XFS_DATA_FORK);
  2140. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2141. }
  2142. break;
  2143. case XFS_DINODE_FMT_UUID:
  2144. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2145. ASSERT(whichfork == XFS_DATA_FORK);
  2146. memcpy(XFS_DFORK_DPTR(dip),
  2147. &ip->i_df.if_u2.if_uuid,
  2148. sizeof(uuid_t));
  2149. }
  2150. break;
  2151. default:
  2152. ASSERT(0);
  2153. break;
  2154. }
  2155. }
  2156. STATIC int
  2157. xfs_iflush_cluster(
  2158. xfs_inode_t *ip,
  2159. xfs_buf_t *bp)
  2160. {
  2161. xfs_mount_t *mp = ip->i_mount;
  2162. struct xfs_perag *pag;
  2163. unsigned long first_index, mask;
  2164. unsigned long inodes_per_cluster;
  2165. int ilist_size;
  2166. xfs_inode_t **ilist;
  2167. xfs_inode_t *iq;
  2168. int nr_found;
  2169. int clcount = 0;
  2170. int bufwasdelwri;
  2171. int i;
  2172. pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
  2173. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2174. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2175. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2176. if (!ilist)
  2177. goto out_put;
  2178. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2179. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2180. rcu_read_lock();
  2181. /* really need a gang lookup range call here */
  2182. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2183. first_index, inodes_per_cluster);
  2184. if (nr_found == 0)
  2185. goto out_free;
  2186. for (i = 0; i < nr_found; i++) {
  2187. iq = ilist[i];
  2188. if (iq == ip)
  2189. continue;
  2190. /*
  2191. * because this is an RCU protected lookup, we could find a
  2192. * recently freed or even reallocated inode during the lookup.
  2193. * We need to check under the i_flags_lock for a valid inode
  2194. * here. Skip it if it is not valid or the wrong inode.
  2195. */
  2196. spin_lock(&ip->i_flags_lock);
  2197. if (!ip->i_ino ||
  2198. (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
  2199. spin_unlock(&ip->i_flags_lock);
  2200. continue;
  2201. }
  2202. spin_unlock(&ip->i_flags_lock);
  2203. /*
  2204. * Do an un-protected check to see if the inode is dirty and
  2205. * is a candidate for flushing. These checks will be repeated
  2206. * later after the appropriate locks are acquired.
  2207. */
  2208. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2209. continue;
  2210. /*
  2211. * Try to get locks. If any are unavailable or it is pinned,
  2212. * then this inode cannot be flushed and is skipped.
  2213. */
  2214. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2215. continue;
  2216. if (!xfs_iflock_nowait(iq)) {
  2217. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2218. continue;
  2219. }
  2220. if (xfs_ipincount(iq)) {
  2221. xfs_ifunlock(iq);
  2222. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2223. continue;
  2224. }
  2225. /*
  2226. * arriving here means that this inode can be flushed. First
  2227. * re-check that it's dirty before flushing.
  2228. */
  2229. if (!xfs_inode_clean(iq)) {
  2230. int error;
  2231. error = xfs_iflush_int(iq, bp);
  2232. if (error) {
  2233. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2234. goto cluster_corrupt_out;
  2235. }
  2236. clcount++;
  2237. } else {
  2238. xfs_ifunlock(iq);
  2239. }
  2240. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2241. }
  2242. if (clcount) {
  2243. XFS_STATS_INC(xs_icluster_flushcnt);
  2244. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2245. }
  2246. out_free:
  2247. rcu_read_unlock();
  2248. kmem_free(ilist);
  2249. out_put:
  2250. xfs_perag_put(pag);
  2251. return 0;
  2252. cluster_corrupt_out:
  2253. /*
  2254. * Corruption detected in the clustering loop. Invalidate the
  2255. * inode buffer and shut down the filesystem.
  2256. */
  2257. rcu_read_unlock();
  2258. /*
  2259. * Clean up the buffer. If it was B_DELWRI, just release it --
  2260. * brelse can handle it with no problems. If not, shut down the
  2261. * filesystem before releasing the buffer.
  2262. */
  2263. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2264. if (bufwasdelwri)
  2265. xfs_buf_relse(bp);
  2266. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2267. if (!bufwasdelwri) {
  2268. /*
  2269. * Just like incore_relse: if we have b_iodone functions,
  2270. * mark the buffer as an error and call them. Otherwise
  2271. * mark it as stale and brelse.
  2272. */
  2273. if (bp->b_iodone) {
  2274. XFS_BUF_UNDONE(bp);
  2275. xfs_buf_stale(bp);
  2276. xfs_buf_ioerror(bp, EIO);
  2277. xfs_buf_ioend(bp, 0);
  2278. } else {
  2279. xfs_buf_stale(bp);
  2280. xfs_buf_relse(bp);
  2281. }
  2282. }
  2283. /*
  2284. * Unlocks the flush lock
  2285. */
  2286. xfs_iflush_abort(iq);
  2287. kmem_free(ilist);
  2288. xfs_perag_put(pag);
  2289. return XFS_ERROR(EFSCORRUPTED);
  2290. }
  2291. /*
  2292. * xfs_iflush() will write a modified inode's changes out to the
  2293. * inode's on disk home. The caller must have the inode lock held
  2294. * in at least shared mode and the inode flush completion must be
  2295. * active as well. The inode lock will still be held upon return from
  2296. * the call and the caller is free to unlock it.
  2297. * The inode flush will be completed when the inode reaches the disk.
  2298. * The flags indicate how the inode's buffer should be written out.
  2299. */
  2300. int
  2301. xfs_iflush(
  2302. xfs_inode_t *ip,
  2303. uint flags)
  2304. {
  2305. xfs_inode_log_item_t *iip;
  2306. xfs_buf_t *bp;
  2307. xfs_dinode_t *dip;
  2308. xfs_mount_t *mp;
  2309. int error;
  2310. XFS_STATS_INC(xs_iflush_count);
  2311. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2312. ASSERT(!completion_done(&ip->i_flush));
  2313. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2314. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2315. iip = ip->i_itemp;
  2316. mp = ip->i_mount;
  2317. /*
  2318. * We can't flush the inode until it is unpinned, so wait for it if we
  2319. * are allowed to block. We know no one new can pin it, because we are
  2320. * holding the inode lock shared and you need to hold it exclusively to
  2321. * pin the inode.
  2322. *
  2323. * If we are not allowed to block, force the log out asynchronously so
  2324. * that when we come back the inode will be unpinned. If other inodes
  2325. * in the same cluster are dirty, they will probably write the inode
  2326. * out for us if they occur after the log force completes.
  2327. */
  2328. if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
  2329. xfs_iunpin_nowait(ip);
  2330. xfs_ifunlock(ip);
  2331. return EAGAIN;
  2332. }
  2333. xfs_iunpin_wait(ip);
  2334. /*
  2335. * For stale inodes we cannot rely on the backing buffer remaining
  2336. * stale in cache for the remaining life of the stale inode and so
  2337. * xfs_itobp() below may give us a buffer that no longer contains
  2338. * inodes below. We have to check this after ensuring the inode is
  2339. * unpinned so that it is safe to reclaim the stale inode after the
  2340. * flush call.
  2341. */
  2342. if (xfs_iflags_test(ip, XFS_ISTALE)) {
  2343. xfs_ifunlock(ip);
  2344. return 0;
  2345. }
  2346. /*
  2347. * This may have been unpinned because the filesystem is shutting
  2348. * down forcibly. If that's the case we must not write this inode
  2349. * to disk, because the log record didn't make it to disk!
  2350. */
  2351. if (XFS_FORCED_SHUTDOWN(mp)) {
  2352. ip->i_update_core = 0;
  2353. if (iip)
  2354. iip->ili_format.ilf_fields = 0;
  2355. xfs_ifunlock(ip);
  2356. return XFS_ERROR(EIO);
  2357. }
  2358. /*
  2359. * Get the buffer containing the on-disk inode.
  2360. */
  2361. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2362. (flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
  2363. if (error || !bp) {
  2364. xfs_ifunlock(ip);
  2365. return error;
  2366. }
  2367. /*
  2368. * First flush out the inode that xfs_iflush was called with.
  2369. */
  2370. error = xfs_iflush_int(ip, bp);
  2371. if (error)
  2372. goto corrupt_out;
  2373. /*
  2374. * If the buffer is pinned then push on the log now so we won't
  2375. * get stuck waiting in the write for too long.
  2376. */
  2377. if (xfs_buf_ispinned(bp))
  2378. xfs_log_force(mp, 0);
  2379. /*
  2380. * inode clustering:
  2381. * see if other inodes can be gathered into this write
  2382. */
  2383. error = xfs_iflush_cluster(ip, bp);
  2384. if (error)
  2385. goto cluster_corrupt_out;
  2386. if (flags & SYNC_WAIT)
  2387. error = xfs_bwrite(bp);
  2388. else
  2389. xfs_buf_delwri_queue(bp);
  2390. xfs_buf_relse(bp);
  2391. return error;
  2392. corrupt_out:
  2393. xfs_buf_relse(bp);
  2394. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2395. cluster_corrupt_out:
  2396. /*
  2397. * Unlocks the flush lock
  2398. */
  2399. xfs_iflush_abort(ip);
  2400. return XFS_ERROR(EFSCORRUPTED);
  2401. }
  2402. STATIC int
  2403. xfs_iflush_int(
  2404. xfs_inode_t *ip,
  2405. xfs_buf_t *bp)
  2406. {
  2407. xfs_inode_log_item_t *iip;
  2408. xfs_dinode_t *dip;
  2409. xfs_mount_t *mp;
  2410. #ifdef XFS_TRANS_DEBUG
  2411. int first;
  2412. #endif
  2413. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2414. ASSERT(!completion_done(&ip->i_flush));
  2415. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2416. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2417. iip = ip->i_itemp;
  2418. mp = ip->i_mount;
  2419. /* set *dip = inode's place in the buffer */
  2420. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2421. /*
  2422. * Clear i_update_core before copying out the data.
  2423. * This is for coordination with our timestamp updates
  2424. * that don't hold the inode lock. They will always
  2425. * update the timestamps BEFORE setting i_update_core,
  2426. * so if we clear i_update_core after they set it we
  2427. * are guaranteed to see their updates to the timestamps.
  2428. * I believe that this depends on strongly ordered memory
  2429. * semantics, but we have that. We use the SYNCHRONIZE
  2430. * macro to make sure that the compiler does not reorder
  2431. * the i_update_core access below the data copy below.
  2432. */
  2433. ip->i_update_core = 0;
  2434. SYNCHRONIZE();
  2435. /*
  2436. * Make sure to get the latest timestamps from the Linux inode.
  2437. */
  2438. xfs_synchronize_times(ip);
  2439. if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
  2440. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2441. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2442. "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2443. __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2444. goto corrupt_out;
  2445. }
  2446. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2447. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2448. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2449. "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2450. __func__, ip->i_ino, ip, ip->i_d.di_magic);
  2451. goto corrupt_out;
  2452. }
  2453. if (S_ISREG(ip->i_d.di_mode)) {
  2454. if (XFS_TEST_ERROR(
  2455. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2456. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2457. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2458. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2459. "%s: Bad regular inode %Lu, ptr 0x%p",
  2460. __func__, ip->i_ino, ip);
  2461. goto corrupt_out;
  2462. }
  2463. } else if (S_ISDIR(ip->i_d.di_mode)) {
  2464. if (XFS_TEST_ERROR(
  2465. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2466. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2467. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2468. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2469. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2470. "%s: Bad directory inode %Lu, ptr 0x%p",
  2471. __func__, ip->i_ino, ip);
  2472. goto corrupt_out;
  2473. }
  2474. }
  2475. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2476. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2477. XFS_RANDOM_IFLUSH_5)) {
  2478. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2479. "%s: detected corrupt incore inode %Lu, "
  2480. "total extents = %d, nblocks = %Ld, ptr 0x%p",
  2481. __func__, ip->i_ino,
  2482. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2483. ip->i_d.di_nblocks, ip);
  2484. goto corrupt_out;
  2485. }
  2486. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2487. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2488. xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
  2489. "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2490. __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
  2491. goto corrupt_out;
  2492. }
  2493. /*
  2494. * bump the flush iteration count, used to detect flushes which
  2495. * postdate a log record during recovery.
  2496. */
  2497. ip->i_d.di_flushiter++;
  2498. /*
  2499. * Copy the dirty parts of the inode into the on-disk
  2500. * inode. We always copy out the core of the inode,
  2501. * because if the inode is dirty at all the core must
  2502. * be.
  2503. */
  2504. xfs_dinode_to_disk(dip, &ip->i_d);
  2505. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2506. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2507. ip->i_d.di_flushiter = 0;
  2508. /*
  2509. * If this is really an old format inode and the superblock version
  2510. * has not been updated to support only new format inodes, then
  2511. * convert back to the old inode format. If the superblock version
  2512. * has been updated, then make the conversion permanent.
  2513. */
  2514. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2515. if (ip->i_d.di_version == 1) {
  2516. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2517. /*
  2518. * Convert it back.
  2519. */
  2520. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2521. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2522. } else {
  2523. /*
  2524. * The superblock version has already been bumped,
  2525. * so just make the conversion to the new inode
  2526. * format permanent.
  2527. */
  2528. ip->i_d.di_version = 2;
  2529. dip->di_version = 2;
  2530. ip->i_d.di_onlink = 0;
  2531. dip->di_onlink = 0;
  2532. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2533. memset(&(dip->di_pad[0]), 0,
  2534. sizeof(dip->di_pad));
  2535. ASSERT(xfs_get_projid(ip) == 0);
  2536. }
  2537. }
  2538. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2539. if (XFS_IFORK_Q(ip))
  2540. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2541. xfs_inobp_check(mp, bp);
  2542. /*
  2543. * We've recorded everything logged in the inode, so we'd
  2544. * like to clear the ilf_fields bits so we don't log and
  2545. * flush things unnecessarily. However, we can't stop
  2546. * logging all this information until the data we've copied
  2547. * into the disk buffer is written to disk. If we did we might
  2548. * overwrite the copy of the inode in the log with all the
  2549. * data after re-logging only part of it, and in the face of
  2550. * a crash we wouldn't have all the data we need to recover.
  2551. *
  2552. * What we do is move the bits to the ili_last_fields field.
  2553. * When logging the inode, these bits are moved back to the
  2554. * ilf_fields field. In the xfs_iflush_done() routine we
  2555. * clear ili_last_fields, since we know that the information
  2556. * those bits represent is permanently on disk. As long as
  2557. * the flush completes before the inode is logged again, then
  2558. * both ilf_fields and ili_last_fields will be cleared.
  2559. *
  2560. * We can play with the ilf_fields bits here, because the inode
  2561. * lock must be held exclusively in order to set bits there
  2562. * and the flush lock protects the ili_last_fields bits.
  2563. * Set ili_logged so the flush done
  2564. * routine can tell whether or not to look in the AIL.
  2565. * Also, store the current LSN of the inode so that we can tell
  2566. * whether the item has moved in the AIL from xfs_iflush_done().
  2567. * In order to read the lsn we need the AIL lock, because
  2568. * it is a 64 bit value that cannot be read atomically.
  2569. */
  2570. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2571. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2572. iip->ili_format.ilf_fields = 0;
  2573. iip->ili_logged = 1;
  2574. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2575. &iip->ili_item.li_lsn);
  2576. /*
  2577. * Attach the function xfs_iflush_done to the inode's
  2578. * buffer. This will remove the inode from the AIL
  2579. * and unlock the inode's flush lock when the inode is
  2580. * completely written to disk.
  2581. */
  2582. xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
  2583. ASSERT(bp->b_fspriv != NULL);
  2584. ASSERT(bp->b_iodone != NULL);
  2585. } else {
  2586. /*
  2587. * We're flushing an inode which is not in the AIL and has
  2588. * not been logged but has i_update_core set. For this
  2589. * case we can use a B_DELWRI flush and immediately drop
  2590. * the inode flush lock because we can avoid the whole
  2591. * AIL state thing. It's OK to drop the flush lock now,
  2592. * because we've already locked the buffer and to do anything
  2593. * you really need both.
  2594. */
  2595. if (iip != NULL) {
  2596. ASSERT(iip->ili_logged == 0);
  2597. ASSERT(iip->ili_last_fields == 0);
  2598. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2599. }
  2600. xfs_ifunlock(ip);
  2601. }
  2602. return 0;
  2603. corrupt_out:
  2604. return XFS_ERROR(EFSCORRUPTED);
  2605. }
  2606. /*
  2607. * Return a pointer to the extent record at file index idx.
  2608. */
  2609. xfs_bmbt_rec_host_t *
  2610. xfs_iext_get_ext(
  2611. xfs_ifork_t *ifp, /* inode fork pointer */
  2612. xfs_extnum_t idx) /* index of target extent */
  2613. {
  2614. ASSERT(idx >= 0);
  2615. ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  2616. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2617. return ifp->if_u1.if_ext_irec->er_extbuf;
  2618. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2619. xfs_ext_irec_t *erp; /* irec pointer */
  2620. int erp_idx = 0; /* irec index */
  2621. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2622. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2623. return &erp->er_extbuf[page_idx];
  2624. } else if (ifp->if_bytes) {
  2625. return &ifp->if_u1.if_extents[idx];
  2626. } else {
  2627. return NULL;
  2628. }
  2629. }
  2630. /*
  2631. * Insert new item(s) into the extent records for incore inode
  2632. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2633. */
  2634. void
  2635. xfs_iext_insert(
  2636. xfs_inode_t *ip, /* incore inode pointer */
  2637. xfs_extnum_t idx, /* starting index of new items */
  2638. xfs_extnum_t count, /* number of inserted items */
  2639. xfs_bmbt_irec_t *new, /* items to insert */
  2640. int state) /* type of extent conversion */
  2641. {
  2642. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2643. xfs_extnum_t i; /* extent record index */
  2644. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  2645. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  2646. xfs_iext_add(ifp, idx, count);
  2647. for (i = idx; i < idx + count; i++, new++)
  2648. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  2649. }
  2650. /*
  2651. * This is called when the amount of space required for incore file
  2652. * extents needs to be increased. The ext_diff parameter stores the
  2653. * number of new extents being added and the idx parameter contains
  2654. * the extent index where the new extents will be added. If the new
  2655. * extents are being appended, then we just need to (re)allocate and
  2656. * initialize the space. Otherwise, if the new extents are being
  2657. * inserted into the middle of the existing entries, a bit more work
  2658. * is required to make room for the new extents to be inserted. The
  2659. * caller is responsible for filling in the new extent entries upon
  2660. * return.
  2661. */
  2662. void
  2663. xfs_iext_add(
  2664. xfs_ifork_t *ifp, /* inode fork pointer */
  2665. xfs_extnum_t idx, /* index to begin adding exts */
  2666. int ext_diff) /* number of extents to add */
  2667. {
  2668. int byte_diff; /* new bytes being added */
  2669. int new_size; /* size of extents after adding */
  2670. xfs_extnum_t nextents; /* number of extents in file */
  2671. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2672. ASSERT((idx >= 0) && (idx <= nextents));
  2673. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  2674. new_size = ifp->if_bytes + byte_diff;
  2675. /*
  2676. * If the new number of extents (nextents + ext_diff)
  2677. * fits inside the inode, then continue to use the inline
  2678. * extent buffer.
  2679. */
  2680. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  2681. if (idx < nextents) {
  2682. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  2683. &ifp->if_u2.if_inline_ext[idx],
  2684. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2685. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  2686. }
  2687. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  2688. ifp->if_real_bytes = 0;
  2689. }
  2690. /*
  2691. * Otherwise use a linear (direct) extent list.
  2692. * If the extents are currently inside the inode,
  2693. * xfs_iext_realloc_direct will switch us from
  2694. * inline to direct extent allocation mode.
  2695. */
  2696. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  2697. xfs_iext_realloc_direct(ifp, new_size);
  2698. if (idx < nextents) {
  2699. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  2700. &ifp->if_u1.if_extents[idx],
  2701. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  2702. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  2703. }
  2704. }
  2705. /* Indirection array */
  2706. else {
  2707. xfs_ext_irec_t *erp;
  2708. int erp_idx = 0;
  2709. int page_idx = idx;
  2710. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  2711. if (ifp->if_flags & XFS_IFEXTIREC) {
  2712. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  2713. } else {
  2714. xfs_iext_irec_init(ifp);
  2715. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2716. erp = ifp->if_u1.if_ext_irec;
  2717. }
  2718. /* Extents fit in target extent page */
  2719. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  2720. if (page_idx < erp->er_extcount) {
  2721. memmove(&erp->er_extbuf[page_idx + ext_diff],
  2722. &erp->er_extbuf[page_idx],
  2723. (erp->er_extcount - page_idx) *
  2724. sizeof(xfs_bmbt_rec_t));
  2725. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  2726. }
  2727. erp->er_extcount += ext_diff;
  2728. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2729. }
  2730. /* Insert a new extent page */
  2731. else if (erp) {
  2732. xfs_iext_add_indirect_multi(ifp,
  2733. erp_idx, page_idx, ext_diff);
  2734. }
  2735. /*
  2736. * If extent(s) are being appended to the last page in
  2737. * the indirection array and the new extent(s) don't fit
  2738. * in the page, then erp is NULL and erp_idx is set to
  2739. * the next index needed in the indirection array.
  2740. */
  2741. else {
  2742. int count = ext_diff;
  2743. while (count) {
  2744. erp = xfs_iext_irec_new(ifp, erp_idx);
  2745. erp->er_extcount = count;
  2746. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  2747. if (count) {
  2748. erp_idx++;
  2749. }
  2750. }
  2751. }
  2752. }
  2753. ifp->if_bytes = new_size;
  2754. }
  2755. /*
  2756. * This is called when incore extents are being added to the indirection
  2757. * array and the new extents do not fit in the target extent list. The
  2758. * erp_idx parameter contains the irec index for the target extent list
  2759. * in the indirection array, and the idx parameter contains the extent
  2760. * index within the list. The number of extents being added is stored
  2761. * in the count parameter.
  2762. *
  2763. * |-------| |-------|
  2764. * | | | | idx - number of extents before idx
  2765. * | idx | | count |
  2766. * | | | | count - number of extents being inserted at idx
  2767. * |-------| |-------|
  2768. * | count | | nex2 | nex2 - number of extents after idx + count
  2769. * |-------| |-------|
  2770. */
  2771. void
  2772. xfs_iext_add_indirect_multi(
  2773. xfs_ifork_t *ifp, /* inode fork pointer */
  2774. int erp_idx, /* target extent irec index */
  2775. xfs_extnum_t idx, /* index within target list */
  2776. int count) /* new extents being added */
  2777. {
  2778. int byte_diff; /* new bytes being added */
  2779. xfs_ext_irec_t *erp; /* pointer to irec entry */
  2780. xfs_extnum_t ext_diff; /* number of extents to add */
  2781. xfs_extnum_t ext_cnt; /* new extents still needed */
  2782. xfs_extnum_t nex2; /* extents after idx + count */
  2783. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  2784. int nlists; /* number of irec's (lists) */
  2785. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2786. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  2787. nex2 = erp->er_extcount - idx;
  2788. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  2789. /*
  2790. * Save second part of target extent list
  2791. * (all extents past */
  2792. if (nex2) {
  2793. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2794. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  2795. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  2796. erp->er_extcount -= nex2;
  2797. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  2798. memset(&erp->er_extbuf[idx], 0, byte_diff);
  2799. }
  2800. /*
  2801. * Add the new extents to the end of the target
  2802. * list, then allocate new irec record(s) and
  2803. * extent buffer(s) as needed to store the rest
  2804. * of the new extents.
  2805. */
  2806. ext_cnt = count;
  2807. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  2808. if (ext_diff) {
  2809. erp->er_extcount += ext_diff;
  2810. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2811. ext_cnt -= ext_diff;
  2812. }
  2813. while (ext_cnt) {
  2814. erp_idx++;
  2815. erp = xfs_iext_irec_new(ifp, erp_idx);
  2816. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  2817. erp->er_extcount = ext_diff;
  2818. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  2819. ext_cnt -= ext_diff;
  2820. }
  2821. /* Add nex2 extents back to indirection array */
  2822. if (nex2) {
  2823. xfs_extnum_t ext_avail;
  2824. int i;
  2825. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  2826. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  2827. i = 0;
  2828. /*
  2829. * If nex2 extents fit in the current page, append
  2830. * nex2_ep after the new extents.
  2831. */
  2832. if (nex2 <= ext_avail) {
  2833. i = erp->er_extcount;
  2834. }
  2835. /*
  2836. * Otherwise, check if space is available in the
  2837. * next page.
  2838. */
  2839. else if ((erp_idx < nlists - 1) &&
  2840. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  2841. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  2842. erp_idx++;
  2843. erp++;
  2844. /* Create a hole for nex2 extents */
  2845. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  2846. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  2847. }
  2848. /*
  2849. * Final choice, create a new extent page for
  2850. * nex2 extents.
  2851. */
  2852. else {
  2853. erp_idx++;
  2854. erp = xfs_iext_irec_new(ifp, erp_idx);
  2855. }
  2856. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  2857. kmem_free(nex2_ep);
  2858. erp->er_extcount += nex2;
  2859. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  2860. }
  2861. }
  2862. /*
  2863. * This is called when the amount of space required for incore file
  2864. * extents needs to be decreased. The ext_diff parameter stores the
  2865. * number of extents to be removed and the idx parameter contains
  2866. * the extent index where the extents will be removed from.
  2867. *
  2868. * If the amount of space needed has decreased below the linear
  2869. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  2870. * extent array. Otherwise, use kmem_realloc() to adjust the
  2871. * size to what is needed.
  2872. */
  2873. void
  2874. xfs_iext_remove(
  2875. xfs_inode_t *ip, /* incore inode pointer */
  2876. xfs_extnum_t idx, /* index to begin removing exts */
  2877. int ext_diff, /* number of extents to remove */
  2878. int state) /* type of extent conversion */
  2879. {
  2880. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  2881. xfs_extnum_t nextents; /* number of extents in file */
  2882. int new_size; /* size of extents after removal */
  2883. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  2884. ASSERT(ext_diff > 0);
  2885. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2886. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  2887. if (new_size == 0) {
  2888. xfs_iext_destroy(ifp);
  2889. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2890. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  2891. } else if (ifp->if_real_bytes) {
  2892. xfs_iext_remove_direct(ifp, idx, ext_diff);
  2893. } else {
  2894. xfs_iext_remove_inline(ifp, idx, ext_diff);
  2895. }
  2896. ifp->if_bytes = new_size;
  2897. }
  2898. /*
  2899. * This removes ext_diff extents from the inline buffer, beginning
  2900. * at extent index idx.
  2901. */
  2902. void
  2903. xfs_iext_remove_inline(
  2904. xfs_ifork_t *ifp, /* inode fork pointer */
  2905. xfs_extnum_t idx, /* index to begin removing exts */
  2906. int ext_diff) /* number of extents to remove */
  2907. {
  2908. int nextents; /* number of extents in file */
  2909. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  2910. ASSERT(idx < XFS_INLINE_EXTS);
  2911. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2912. ASSERT(((nextents - ext_diff) > 0) &&
  2913. (nextents - ext_diff) < XFS_INLINE_EXTS);
  2914. if (idx + ext_diff < nextents) {
  2915. memmove(&ifp->if_u2.if_inline_ext[idx],
  2916. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  2917. (nextents - (idx + ext_diff)) *
  2918. sizeof(xfs_bmbt_rec_t));
  2919. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  2920. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  2921. } else {
  2922. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  2923. ext_diff * sizeof(xfs_bmbt_rec_t));
  2924. }
  2925. }
  2926. /*
  2927. * This removes ext_diff extents from a linear (direct) extent list,
  2928. * beginning at extent index idx. If the extents are being removed
  2929. * from the end of the list (ie. truncate) then we just need to re-
  2930. * allocate the list to remove the extra space. Otherwise, if the
  2931. * extents are being removed from the middle of the existing extent
  2932. * entries, then we first need to move the extent records beginning
  2933. * at idx + ext_diff up in the list to overwrite the records being
  2934. * removed, then remove the extra space via kmem_realloc.
  2935. */
  2936. void
  2937. xfs_iext_remove_direct(
  2938. xfs_ifork_t *ifp, /* inode fork pointer */
  2939. xfs_extnum_t idx, /* index to begin removing exts */
  2940. int ext_diff) /* number of extents to remove */
  2941. {
  2942. xfs_extnum_t nextents; /* number of extents in file */
  2943. int new_size; /* size of extents after removal */
  2944. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  2945. new_size = ifp->if_bytes -
  2946. (ext_diff * sizeof(xfs_bmbt_rec_t));
  2947. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2948. if (new_size == 0) {
  2949. xfs_iext_destroy(ifp);
  2950. return;
  2951. }
  2952. /* Move extents up in the list (if needed) */
  2953. if (idx + ext_diff < nextents) {
  2954. memmove(&ifp->if_u1.if_extents[idx],
  2955. &ifp->if_u1.if_extents[idx + ext_diff],
  2956. (nextents - (idx + ext_diff)) *
  2957. sizeof(xfs_bmbt_rec_t));
  2958. }
  2959. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  2960. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  2961. /*
  2962. * Reallocate the direct extent list. If the extents
  2963. * will fit inside the inode then xfs_iext_realloc_direct
  2964. * will switch from direct to inline extent allocation
  2965. * mode for us.
  2966. */
  2967. xfs_iext_realloc_direct(ifp, new_size);
  2968. ifp->if_bytes = new_size;
  2969. }
  2970. /*
  2971. * This is called when incore extents are being removed from the
  2972. * indirection array and the extents being removed span multiple extent
  2973. * buffers. The idx parameter contains the file extent index where we
  2974. * want to begin removing extents, and the count parameter contains
  2975. * how many extents need to be removed.
  2976. *
  2977. * |-------| |-------|
  2978. * | nex1 | | | nex1 - number of extents before idx
  2979. * |-------| | count |
  2980. * | | | | count - number of extents being removed at idx
  2981. * | count | |-------|
  2982. * | | | nex2 | nex2 - number of extents after idx + count
  2983. * |-------| |-------|
  2984. */
  2985. void
  2986. xfs_iext_remove_indirect(
  2987. xfs_ifork_t *ifp, /* inode fork pointer */
  2988. xfs_extnum_t idx, /* index to begin removing extents */
  2989. int count) /* number of extents to remove */
  2990. {
  2991. xfs_ext_irec_t *erp; /* indirection array pointer */
  2992. int erp_idx = 0; /* indirection array index */
  2993. xfs_extnum_t ext_cnt; /* extents left to remove */
  2994. xfs_extnum_t ext_diff; /* extents to remove in current list */
  2995. xfs_extnum_t nex1; /* number of extents before idx */
  2996. xfs_extnum_t nex2; /* extents after idx + count */
  2997. int page_idx = idx; /* index in target extent list */
  2998. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  2999. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3000. ASSERT(erp != NULL);
  3001. nex1 = page_idx;
  3002. ext_cnt = count;
  3003. while (ext_cnt) {
  3004. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3005. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3006. /*
  3007. * Check for deletion of entire list;
  3008. * xfs_iext_irec_remove() updates extent offsets.
  3009. */
  3010. if (ext_diff == erp->er_extcount) {
  3011. xfs_iext_irec_remove(ifp, erp_idx);
  3012. ext_cnt -= ext_diff;
  3013. nex1 = 0;
  3014. if (ext_cnt) {
  3015. ASSERT(erp_idx < ifp->if_real_bytes /
  3016. XFS_IEXT_BUFSZ);
  3017. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3018. nex1 = 0;
  3019. continue;
  3020. } else {
  3021. break;
  3022. }
  3023. }
  3024. /* Move extents up (if needed) */
  3025. if (nex2) {
  3026. memmove(&erp->er_extbuf[nex1],
  3027. &erp->er_extbuf[nex1 + ext_diff],
  3028. nex2 * sizeof(xfs_bmbt_rec_t));
  3029. }
  3030. /* Zero out rest of page */
  3031. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3032. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3033. /* Update remaining counters */
  3034. erp->er_extcount -= ext_diff;
  3035. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3036. ext_cnt -= ext_diff;
  3037. nex1 = 0;
  3038. erp_idx++;
  3039. erp++;
  3040. }
  3041. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3042. xfs_iext_irec_compact(ifp);
  3043. }
  3044. /*
  3045. * Create, destroy, or resize a linear (direct) block of extents.
  3046. */
  3047. void
  3048. xfs_iext_realloc_direct(
  3049. xfs_ifork_t *ifp, /* inode fork pointer */
  3050. int new_size) /* new size of extents */
  3051. {
  3052. int rnew_size; /* real new size of extents */
  3053. rnew_size = new_size;
  3054. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3055. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3056. (new_size != ifp->if_real_bytes)));
  3057. /* Free extent records */
  3058. if (new_size == 0) {
  3059. xfs_iext_destroy(ifp);
  3060. }
  3061. /* Resize direct extent list and zero any new bytes */
  3062. else if (ifp->if_real_bytes) {
  3063. /* Check if extents will fit inside the inode */
  3064. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3065. xfs_iext_direct_to_inline(ifp, new_size /
  3066. (uint)sizeof(xfs_bmbt_rec_t));
  3067. ifp->if_bytes = new_size;
  3068. return;
  3069. }
  3070. if (!is_power_of_2(new_size)){
  3071. rnew_size = roundup_pow_of_two(new_size);
  3072. }
  3073. if (rnew_size != ifp->if_real_bytes) {
  3074. ifp->if_u1.if_extents =
  3075. kmem_realloc(ifp->if_u1.if_extents,
  3076. rnew_size,
  3077. ifp->if_real_bytes, KM_NOFS);
  3078. }
  3079. if (rnew_size > ifp->if_real_bytes) {
  3080. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3081. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3082. rnew_size - ifp->if_real_bytes);
  3083. }
  3084. }
  3085. /*
  3086. * Switch from the inline extent buffer to a direct
  3087. * extent list. Be sure to include the inline extent
  3088. * bytes in new_size.
  3089. */
  3090. else {
  3091. new_size += ifp->if_bytes;
  3092. if (!is_power_of_2(new_size)) {
  3093. rnew_size = roundup_pow_of_two(new_size);
  3094. }
  3095. xfs_iext_inline_to_direct(ifp, rnew_size);
  3096. }
  3097. ifp->if_real_bytes = rnew_size;
  3098. ifp->if_bytes = new_size;
  3099. }
  3100. /*
  3101. * Switch from linear (direct) extent records to inline buffer.
  3102. */
  3103. void
  3104. xfs_iext_direct_to_inline(
  3105. xfs_ifork_t *ifp, /* inode fork pointer */
  3106. xfs_extnum_t nextents) /* number of extents in file */
  3107. {
  3108. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3109. ASSERT(nextents <= XFS_INLINE_EXTS);
  3110. /*
  3111. * The inline buffer was zeroed when we switched
  3112. * from inline to direct extent allocation mode,
  3113. * so we don't need to clear it here.
  3114. */
  3115. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3116. nextents * sizeof(xfs_bmbt_rec_t));
  3117. kmem_free(ifp->if_u1.if_extents);
  3118. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3119. ifp->if_real_bytes = 0;
  3120. }
  3121. /*
  3122. * Switch from inline buffer to linear (direct) extent records.
  3123. * new_size should already be rounded up to the next power of 2
  3124. * by the caller (when appropriate), so use new_size as it is.
  3125. * However, since new_size may be rounded up, we can't update
  3126. * if_bytes here. It is the caller's responsibility to update
  3127. * if_bytes upon return.
  3128. */
  3129. void
  3130. xfs_iext_inline_to_direct(
  3131. xfs_ifork_t *ifp, /* inode fork pointer */
  3132. int new_size) /* number of extents in file */
  3133. {
  3134. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3135. memset(ifp->if_u1.if_extents, 0, new_size);
  3136. if (ifp->if_bytes) {
  3137. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3138. ifp->if_bytes);
  3139. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3140. sizeof(xfs_bmbt_rec_t));
  3141. }
  3142. ifp->if_real_bytes = new_size;
  3143. }
  3144. /*
  3145. * Resize an extent indirection array to new_size bytes.
  3146. */
  3147. STATIC void
  3148. xfs_iext_realloc_indirect(
  3149. xfs_ifork_t *ifp, /* inode fork pointer */
  3150. int new_size) /* new indirection array size */
  3151. {
  3152. int nlists; /* number of irec's (ex lists) */
  3153. int size; /* current indirection array size */
  3154. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3155. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3156. size = nlists * sizeof(xfs_ext_irec_t);
  3157. ASSERT(ifp->if_real_bytes);
  3158. ASSERT((new_size >= 0) && (new_size != size));
  3159. if (new_size == 0) {
  3160. xfs_iext_destroy(ifp);
  3161. } else {
  3162. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3163. kmem_realloc(ifp->if_u1.if_ext_irec,
  3164. new_size, size, KM_NOFS);
  3165. }
  3166. }
  3167. /*
  3168. * Switch from indirection array to linear (direct) extent allocations.
  3169. */
  3170. STATIC void
  3171. xfs_iext_indirect_to_direct(
  3172. xfs_ifork_t *ifp) /* inode fork pointer */
  3173. {
  3174. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3175. xfs_extnum_t nextents; /* number of extents in file */
  3176. int size; /* size of file extents */
  3177. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3178. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3179. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3180. size = nextents * sizeof(xfs_bmbt_rec_t);
  3181. xfs_iext_irec_compact_pages(ifp);
  3182. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3183. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3184. kmem_free(ifp->if_u1.if_ext_irec);
  3185. ifp->if_flags &= ~XFS_IFEXTIREC;
  3186. ifp->if_u1.if_extents = ep;
  3187. ifp->if_bytes = size;
  3188. if (nextents < XFS_LINEAR_EXTS) {
  3189. xfs_iext_realloc_direct(ifp, size);
  3190. }
  3191. }
  3192. /*
  3193. * Free incore file extents.
  3194. */
  3195. void
  3196. xfs_iext_destroy(
  3197. xfs_ifork_t *ifp) /* inode fork pointer */
  3198. {
  3199. if (ifp->if_flags & XFS_IFEXTIREC) {
  3200. int erp_idx;
  3201. int nlists;
  3202. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3203. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3204. xfs_iext_irec_remove(ifp, erp_idx);
  3205. }
  3206. ifp->if_flags &= ~XFS_IFEXTIREC;
  3207. } else if (ifp->if_real_bytes) {
  3208. kmem_free(ifp->if_u1.if_extents);
  3209. } else if (ifp->if_bytes) {
  3210. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3211. sizeof(xfs_bmbt_rec_t));
  3212. }
  3213. ifp->if_u1.if_extents = NULL;
  3214. ifp->if_real_bytes = 0;
  3215. ifp->if_bytes = 0;
  3216. }
  3217. /*
  3218. * Return a pointer to the extent record for file system block bno.
  3219. */
  3220. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3221. xfs_iext_bno_to_ext(
  3222. xfs_ifork_t *ifp, /* inode fork pointer */
  3223. xfs_fileoff_t bno, /* block number to search for */
  3224. xfs_extnum_t *idxp) /* index of target extent */
  3225. {
  3226. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3227. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3228. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3229. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3230. int high; /* upper boundary in search */
  3231. xfs_extnum_t idx = 0; /* index of target extent */
  3232. int low; /* lower boundary in search */
  3233. xfs_extnum_t nextents; /* number of file extents */
  3234. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3235. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3236. if (nextents == 0) {
  3237. *idxp = 0;
  3238. return NULL;
  3239. }
  3240. low = 0;
  3241. if (ifp->if_flags & XFS_IFEXTIREC) {
  3242. /* Find target extent list */
  3243. int erp_idx = 0;
  3244. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3245. base = erp->er_extbuf;
  3246. high = erp->er_extcount - 1;
  3247. } else {
  3248. base = ifp->if_u1.if_extents;
  3249. high = nextents - 1;
  3250. }
  3251. /* Binary search extent records */
  3252. while (low <= high) {
  3253. idx = (low + high) >> 1;
  3254. ep = base + idx;
  3255. startoff = xfs_bmbt_get_startoff(ep);
  3256. blockcount = xfs_bmbt_get_blockcount(ep);
  3257. if (bno < startoff) {
  3258. high = idx - 1;
  3259. } else if (bno >= startoff + blockcount) {
  3260. low = idx + 1;
  3261. } else {
  3262. /* Convert back to file-based extent index */
  3263. if (ifp->if_flags & XFS_IFEXTIREC) {
  3264. idx += erp->er_extoff;
  3265. }
  3266. *idxp = idx;
  3267. return ep;
  3268. }
  3269. }
  3270. /* Convert back to file-based extent index */
  3271. if (ifp->if_flags & XFS_IFEXTIREC) {
  3272. idx += erp->er_extoff;
  3273. }
  3274. if (bno >= startoff + blockcount) {
  3275. if (++idx == nextents) {
  3276. ep = NULL;
  3277. } else {
  3278. ep = xfs_iext_get_ext(ifp, idx);
  3279. }
  3280. }
  3281. *idxp = idx;
  3282. return ep;
  3283. }
  3284. /*
  3285. * Return a pointer to the indirection array entry containing the
  3286. * extent record for filesystem block bno. Store the index of the
  3287. * target irec in *erp_idxp.
  3288. */
  3289. xfs_ext_irec_t * /* pointer to found extent record */
  3290. xfs_iext_bno_to_irec(
  3291. xfs_ifork_t *ifp, /* inode fork pointer */
  3292. xfs_fileoff_t bno, /* block number to search for */
  3293. int *erp_idxp) /* irec index of target ext list */
  3294. {
  3295. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3296. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3297. int erp_idx; /* indirection array index */
  3298. int nlists; /* number of extent irec's (lists) */
  3299. int high; /* binary search upper limit */
  3300. int low; /* binary search lower limit */
  3301. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3302. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3303. erp_idx = 0;
  3304. low = 0;
  3305. high = nlists - 1;
  3306. while (low <= high) {
  3307. erp_idx = (low + high) >> 1;
  3308. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3309. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3310. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3311. high = erp_idx - 1;
  3312. } else if (erp_next && bno >=
  3313. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3314. low = erp_idx + 1;
  3315. } else {
  3316. break;
  3317. }
  3318. }
  3319. *erp_idxp = erp_idx;
  3320. return erp;
  3321. }
  3322. /*
  3323. * Return a pointer to the indirection array entry containing the
  3324. * extent record at file extent index *idxp. Store the index of the
  3325. * target irec in *erp_idxp and store the page index of the target
  3326. * extent record in *idxp.
  3327. */
  3328. xfs_ext_irec_t *
  3329. xfs_iext_idx_to_irec(
  3330. xfs_ifork_t *ifp, /* inode fork pointer */
  3331. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3332. int *erp_idxp, /* pointer to target irec */
  3333. int realloc) /* new bytes were just added */
  3334. {
  3335. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3336. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3337. int erp_idx; /* indirection array index */
  3338. int nlists; /* number of irec's (ex lists) */
  3339. int high; /* binary search upper limit */
  3340. int low; /* binary search lower limit */
  3341. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3342. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3343. ASSERT(page_idx >= 0);
  3344. ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
  3345. ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
  3346. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3347. erp_idx = 0;
  3348. low = 0;
  3349. high = nlists - 1;
  3350. /* Binary search extent irec's */
  3351. while (low <= high) {
  3352. erp_idx = (low + high) >> 1;
  3353. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3354. prev = erp_idx > 0 ? erp - 1 : NULL;
  3355. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3356. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3357. high = erp_idx - 1;
  3358. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3359. (page_idx == erp->er_extoff + erp->er_extcount &&
  3360. !realloc)) {
  3361. low = erp_idx + 1;
  3362. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3363. erp->er_extcount == XFS_LINEAR_EXTS) {
  3364. ASSERT(realloc);
  3365. page_idx = 0;
  3366. erp_idx++;
  3367. erp = erp_idx < nlists ? erp + 1 : NULL;
  3368. break;
  3369. } else {
  3370. page_idx -= erp->er_extoff;
  3371. break;
  3372. }
  3373. }
  3374. *idxp = page_idx;
  3375. *erp_idxp = erp_idx;
  3376. return(erp);
  3377. }
  3378. /*
  3379. * Allocate and initialize an indirection array once the space needed
  3380. * for incore extents increases above XFS_IEXT_BUFSZ.
  3381. */
  3382. void
  3383. xfs_iext_irec_init(
  3384. xfs_ifork_t *ifp) /* inode fork pointer */
  3385. {
  3386. xfs_ext_irec_t *erp; /* indirection array pointer */
  3387. xfs_extnum_t nextents; /* number of extents in file */
  3388. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3389. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3390. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3391. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3392. if (nextents == 0) {
  3393. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3394. } else if (!ifp->if_real_bytes) {
  3395. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3396. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3397. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3398. }
  3399. erp->er_extbuf = ifp->if_u1.if_extents;
  3400. erp->er_extcount = nextents;
  3401. erp->er_extoff = 0;
  3402. ifp->if_flags |= XFS_IFEXTIREC;
  3403. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3404. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3405. ifp->if_u1.if_ext_irec = erp;
  3406. return;
  3407. }
  3408. /*
  3409. * Allocate and initialize a new entry in the indirection array.
  3410. */
  3411. xfs_ext_irec_t *
  3412. xfs_iext_irec_new(
  3413. xfs_ifork_t *ifp, /* inode fork pointer */
  3414. int erp_idx) /* index for new irec */
  3415. {
  3416. xfs_ext_irec_t *erp; /* indirection array pointer */
  3417. int i; /* loop counter */
  3418. int nlists; /* number of irec's (ex lists) */
  3419. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3420. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3421. /* Resize indirection array */
  3422. xfs_iext_realloc_indirect(ifp, ++nlists *
  3423. sizeof(xfs_ext_irec_t));
  3424. /*
  3425. * Move records down in the array so the
  3426. * new page can use erp_idx.
  3427. */
  3428. erp = ifp->if_u1.if_ext_irec;
  3429. for (i = nlists - 1; i > erp_idx; i--) {
  3430. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3431. }
  3432. ASSERT(i == erp_idx);
  3433. /* Initialize new extent record */
  3434. erp = ifp->if_u1.if_ext_irec;
  3435. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3436. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3437. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3438. erp[erp_idx].er_extcount = 0;
  3439. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3440. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3441. return (&erp[erp_idx]);
  3442. }
  3443. /*
  3444. * Remove a record from the indirection array.
  3445. */
  3446. void
  3447. xfs_iext_irec_remove(
  3448. xfs_ifork_t *ifp, /* inode fork pointer */
  3449. int erp_idx) /* irec index to remove */
  3450. {
  3451. xfs_ext_irec_t *erp; /* indirection array pointer */
  3452. int i; /* loop counter */
  3453. int nlists; /* number of irec's (ex lists) */
  3454. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3455. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3456. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3457. if (erp->er_extbuf) {
  3458. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3459. -erp->er_extcount);
  3460. kmem_free(erp->er_extbuf);
  3461. }
  3462. /* Compact extent records */
  3463. erp = ifp->if_u1.if_ext_irec;
  3464. for (i = erp_idx; i < nlists - 1; i++) {
  3465. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3466. }
  3467. /*
  3468. * Manually free the last extent record from the indirection
  3469. * array. A call to xfs_iext_realloc_indirect() with a size
  3470. * of zero would result in a call to xfs_iext_destroy() which
  3471. * would in turn call this function again, creating a nasty
  3472. * infinite loop.
  3473. */
  3474. if (--nlists) {
  3475. xfs_iext_realloc_indirect(ifp,
  3476. nlists * sizeof(xfs_ext_irec_t));
  3477. } else {
  3478. kmem_free(ifp->if_u1.if_ext_irec);
  3479. }
  3480. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3481. }
  3482. /*
  3483. * This is called to clean up large amounts of unused memory allocated
  3484. * by the indirection array. Before compacting anything though, verify
  3485. * that the indirection array is still needed and switch back to the
  3486. * linear extent list (or even the inline buffer) if possible. The
  3487. * compaction policy is as follows:
  3488. *
  3489. * Full Compaction: Extents fit into a single page (or inline buffer)
  3490. * Partial Compaction: Extents occupy less than 50% of allocated space
  3491. * No Compaction: Extents occupy at least 50% of allocated space
  3492. */
  3493. void
  3494. xfs_iext_irec_compact(
  3495. xfs_ifork_t *ifp) /* inode fork pointer */
  3496. {
  3497. xfs_extnum_t nextents; /* number of extents in file */
  3498. int nlists; /* number of irec's (ex lists) */
  3499. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3500. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3501. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3502. if (nextents == 0) {
  3503. xfs_iext_destroy(ifp);
  3504. } else if (nextents <= XFS_INLINE_EXTS) {
  3505. xfs_iext_indirect_to_direct(ifp);
  3506. xfs_iext_direct_to_inline(ifp, nextents);
  3507. } else if (nextents <= XFS_LINEAR_EXTS) {
  3508. xfs_iext_indirect_to_direct(ifp);
  3509. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3510. xfs_iext_irec_compact_pages(ifp);
  3511. }
  3512. }
  3513. /*
  3514. * Combine extents from neighboring extent pages.
  3515. */
  3516. void
  3517. xfs_iext_irec_compact_pages(
  3518. xfs_ifork_t *ifp) /* inode fork pointer */
  3519. {
  3520. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3521. int erp_idx = 0; /* indirection array index */
  3522. int nlists; /* number of irec's (ex lists) */
  3523. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3524. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3525. while (erp_idx < nlists - 1) {
  3526. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3527. erp_next = erp + 1;
  3528. if (erp_next->er_extcount <=
  3529. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3530. memcpy(&erp->er_extbuf[erp->er_extcount],
  3531. erp_next->er_extbuf, erp_next->er_extcount *
  3532. sizeof(xfs_bmbt_rec_t));
  3533. erp->er_extcount += erp_next->er_extcount;
  3534. /*
  3535. * Free page before removing extent record
  3536. * so er_extoffs don't get modified in
  3537. * xfs_iext_irec_remove.
  3538. */
  3539. kmem_free(erp_next->er_extbuf);
  3540. erp_next->er_extbuf = NULL;
  3541. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3542. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3543. } else {
  3544. erp_idx++;
  3545. }
  3546. }
  3547. }
  3548. /*
  3549. * This is called to update the er_extoff field in the indirection
  3550. * array when extents have been added or removed from one of the
  3551. * extent lists. erp_idx contains the irec index to begin updating
  3552. * at and ext_diff contains the number of extents that were added
  3553. * or removed.
  3554. */
  3555. void
  3556. xfs_iext_irec_update_extoffs(
  3557. xfs_ifork_t *ifp, /* inode fork pointer */
  3558. int erp_idx, /* irec index to update */
  3559. int ext_diff) /* number of new extents */
  3560. {
  3561. int i; /* loop counter */
  3562. int nlists; /* number of irec's (ex lists */
  3563. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3564. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3565. for (i = erp_idx; i < nlists; i++) {
  3566. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3567. }
  3568. }