write.c 45 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781
  1. /*
  2. * linux/fs/nfs/write.c
  3. *
  4. * Write file data over NFS.
  5. *
  6. * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/file.h>
  13. #include <linux/writeback.h>
  14. #include <linux/swap.h>
  15. #include <linux/migrate.h>
  16. #include <linux/sunrpc/clnt.h>
  17. #include <linux/nfs_fs.h>
  18. #include <linux/nfs_mount.h>
  19. #include <linux/nfs_page.h>
  20. #include <linux/backing-dev.h>
  21. #include <linux/export.h>
  22. #include <asm/uaccess.h>
  23. #include "delegation.h"
  24. #include "internal.h"
  25. #include "iostat.h"
  26. #include "nfs4_fs.h"
  27. #include "fscache.h"
  28. #include "pnfs.h"
  29. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  30. #define MIN_POOL_WRITE (32)
  31. #define MIN_POOL_COMMIT (4)
  32. /*
  33. * Local function declarations
  34. */
  35. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
  36. struct inode *inode, int ioflags);
  37. static void nfs_redirty_request(struct nfs_page *req);
  38. static const struct rpc_call_ops nfs_write_partial_ops;
  39. static const struct rpc_call_ops nfs_write_full_ops;
  40. static const struct rpc_call_ops nfs_commit_ops;
  41. static struct kmem_cache *nfs_wdata_cachep;
  42. static mempool_t *nfs_wdata_mempool;
  43. static mempool_t *nfs_commit_mempool;
  44. struct nfs_write_data *nfs_commitdata_alloc(void)
  45. {
  46. struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
  47. if (p) {
  48. memset(p, 0, sizeof(*p));
  49. INIT_LIST_HEAD(&p->pages);
  50. }
  51. return p;
  52. }
  53. EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
  54. void nfs_commit_free(struct nfs_write_data *p)
  55. {
  56. if (p && (p->pagevec != &p->page_array[0]))
  57. kfree(p->pagevec);
  58. mempool_free(p, nfs_commit_mempool);
  59. }
  60. EXPORT_SYMBOL_GPL(nfs_commit_free);
  61. struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
  62. {
  63. struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
  64. if (p) {
  65. memset(p, 0, sizeof(*p));
  66. INIT_LIST_HEAD(&p->pages);
  67. p->npages = pagecount;
  68. if (pagecount <= ARRAY_SIZE(p->page_array))
  69. p->pagevec = p->page_array;
  70. else {
  71. p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
  72. if (!p->pagevec) {
  73. mempool_free(p, nfs_wdata_mempool);
  74. p = NULL;
  75. }
  76. }
  77. }
  78. return p;
  79. }
  80. void nfs_writedata_free(struct nfs_write_data *p)
  81. {
  82. if (p && (p->pagevec != &p->page_array[0]))
  83. kfree(p->pagevec);
  84. mempool_free(p, nfs_wdata_mempool);
  85. }
  86. void nfs_writedata_release(struct nfs_write_data *wdata)
  87. {
  88. put_lseg(wdata->lseg);
  89. put_nfs_open_context(wdata->args.context);
  90. nfs_writedata_free(wdata);
  91. }
  92. static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
  93. {
  94. ctx->error = error;
  95. smp_wmb();
  96. set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
  97. }
  98. static struct nfs_page *nfs_page_find_request_locked(struct page *page)
  99. {
  100. struct nfs_page *req = NULL;
  101. if (PagePrivate(page)) {
  102. req = (struct nfs_page *)page_private(page);
  103. if (req != NULL)
  104. kref_get(&req->wb_kref);
  105. }
  106. return req;
  107. }
  108. static struct nfs_page *nfs_page_find_request(struct page *page)
  109. {
  110. struct inode *inode = page->mapping->host;
  111. struct nfs_page *req = NULL;
  112. spin_lock(&inode->i_lock);
  113. req = nfs_page_find_request_locked(page);
  114. spin_unlock(&inode->i_lock);
  115. return req;
  116. }
  117. /* Adjust the file length if we're writing beyond the end */
  118. static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
  119. {
  120. struct inode *inode = page->mapping->host;
  121. loff_t end, i_size;
  122. pgoff_t end_index;
  123. spin_lock(&inode->i_lock);
  124. i_size = i_size_read(inode);
  125. end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
  126. if (i_size > 0 && page->index < end_index)
  127. goto out;
  128. end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
  129. if (i_size >= end)
  130. goto out;
  131. i_size_write(inode, end);
  132. nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
  133. out:
  134. spin_unlock(&inode->i_lock);
  135. }
  136. /* A writeback failed: mark the page as bad, and invalidate the page cache */
  137. static void nfs_set_pageerror(struct page *page)
  138. {
  139. SetPageError(page);
  140. nfs_zap_mapping(page->mapping->host, page->mapping);
  141. }
  142. /* We can set the PG_uptodate flag if we see that a write request
  143. * covers the full page.
  144. */
  145. static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
  146. {
  147. if (PageUptodate(page))
  148. return;
  149. if (base != 0)
  150. return;
  151. if (count != nfs_page_length(page))
  152. return;
  153. SetPageUptodate(page);
  154. }
  155. static int wb_priority(struct writeback_control *wbc)
  156. {
  157. if (wbc->for_reclaim)
  158. return FLUSH_HIGHPRI | FLUSH_STABLE;
  159. if (wbc->for_kupdate || wbc->for_background)
  160. return FLUSH_LOWPRI | FLUSH_COND_STABLE;
  161. return FLUSH_COND_STABLE;
  162. }
  163. /*
  164. * NFS congestion control
  165. */
  166. int nfs_congestion_kb;
  167. #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
  168. #define NFS_CONGESTION_OFF_THRESH \
  169. (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
  170. static int nfs_set_page_writeback(struct page *page)
  171. {
  172. int ret = test_set_page_writeback(page);
  173. if (!ret) {
  174. struct inode *inode = page->mapping->host;
  175. struct nfs_server *nfss = NFS_SERVER(inode);
  176. page_cache_get(page);
  177. if (atomic_long_inc_return(&nfss->writeback) >
  178. NFS_CONGESTION_ON_THRESH) {
  179. set_bdi_congested(&nfss->backing_dev_info,
  180. BLK_RW_ASYNC);
  181. }
  182. }
  183. return ret;
  184. }
  185. static void nfs_end_page_writeback(struct page *page)
  186. {
  187. struct inode *inode = page->mapping->host;
  188. struct nfs_server *nfss = NFS_SERVER(inode);
  189. end_page_writeback(page);
  190. page_cache_release(page);
  191. if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
  192. clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
  193. }
  194. static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
  195. {
  196. struct inode *inode = page->mapping->host;
  197. struct nfs_page *req;
  198. int ret;
  199. spin_lock(&inode->i_lock);
  200. for (;;) {
  201. req = nfs_page_find_request_locked(page);
  202. if (req == NULL)
  203. break;
  204. if (nfs_set_page_tag_locked(req))
  205. break;
  206. /* Note: If we hold the page lock, as is the case in nfs_writepage,
  207. * then the call to nfs_set_page_tag_locked() will always
  208. * succeed provided that someone hasn't already marked the
  209. * request as dirty (in which case we don't care).
  210. */
  211. spin_unlock(&inode->i_lock);
  212. if (!nonblock)
  213. ret = nfs_wait_on_request(req);
  214. else
  215. ret = -EAGAIN;
  216. nfs_release_request(req);
  217. if (ret != 0)
  218. return ERR_PTR(ret);
  219. spin_lock(&inode->i_lock);
  220. }
  221. spin_unlock(&inode->i_lock);
  222. return req;
  223. }
  224. /*
  225. * Find an associated nfs write request, and prepare to flush it out
  226. * May return an error if the user signalled nfs_wait_on_request().
  227. */
  228. static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
  229. struct page *page, bool nonblock)
  230. {
  231. struct nfs_page *req;
  232. int ret = 0;
  233. req = nfs_find_and_lock_request(page, nonblock);
  234. if (!req)
  235. goto out;
  236. ret = PTR_ERR(req);
  237. if (IS_ERR(req))
  238. goto out;
  239. ret = nfs_set_page_writeback(page);
  240. BUG_ON(ret != 0);
  241. BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
  242. if (!nfs_pageio_add_request(pgio, req)) {
  243. nfs_redirty_request(req);
  244. ret = pgio->pg_error;
  245. }
  246. out:
  247. return ret;
  248. }
  249. static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
  250. {
  251. struct inode *inode = page->mapping->host;
  252. int ret;
  253. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
  254. nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
  255. nfs_pageio_cond_complete(pgio, page->index);
  256. ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
  257. if (ret == -EAGAIN) {
  258. redirty_page_for_writepage(wbc, page);
  259. ret = 0;
  260. }
  261. return ret;
  262. }
  263. /*
  264. * Write an mmapped page to the server.
  265. */
  266. static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
  267. {
  268. struct nfs_pageio_descriptor pgio;
  269. int err;
  270. nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
  271. err = nfs_do_writepage(page, wbc, &pgio);
  272. nfs_pageio_complete(&pgio);
  273. if (err < 0)
  274. return err;
  275. if (pgio.pg_error < 0)
  276. return pgio.pg_error;
  277. return 0;
  278. }
  279. int nfs_writepage(struct page *page, struct writeback_control *wbc)
  280. {
  281. int ret;
  282. ret = nfs_writepage_locked(page, wbc);
  283. unlock_page(page);
  284. return ret;
  285. }
  286. static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
  287. {
  288. int ret;
  289. ret = nfs_do_writepage(page, wbc, data);
  290. unlock_page(page);
  291. return ret;
  292. }
  293. int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
  294. {
  295. struct inode *inode = mapping->host;
  296. unsigned long *bitlock = &NFS_I(inode)->flags;
  297. struct nfs_pageio_descriptor pgio;
  298. int err;
  299. /* Stop dirtying of new pages while we sync */
  300. err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
  301. nfs_wait_bit_killable, TASK_KILLABLE);
  302. if (err)
  303. goto out_err;
  304. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
  305. nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
  306. err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
  307. nfs_pageio_complete(&pgio);
  308. clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
  309. smp_mb__after_clear_bit();
  310. wake_up_bit(bitlock, NFS_INO_FLUSHING);
  311. if (err < 0)
  312. goto out_err;
  313. err = pgio.pg_error;
  314. if (err < 0)
  315. goto out_err;
  316. return 0;
  317. out_err:
  318. return err;
  319. }
  320. /*
  321. * Insert a write request into an inode
  322. */
  323. static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
  324. {
  325. struct nfs_inode *nfsi = NFS_I(inode);
  326. int error;
  327. error = radix_tree_preload(GFP_NOFS);
  328. if (error != 0)
  329. goto out;
  330. /* Lock the request! */
  331. nfs_lock_request_dontget(req);
  332. spin_lock(&inode->i_lock);
  333. error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
  334. BUG_ON(error);
  335. if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
  336. inode->i_version++;
  337. set_bit(PG_MAPPED, &req->wb_flags);
  338. SetPagePrivate(req->wb_page);
  339. set_page_private(req->wb_page, (unsigned long)req);
  340. nfsi->npages++;
  341. kref_get(&req->wb_kref);
  342. radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
  343. NFS_PAGE_TAG_LOCKED);
  344. spin_unlock(&inode->i_lock);
  345. radix_tree_preload_end();
  346. out:
  347. return error;
  348. }
  349. /*
  350. * Remove a write request from an inode
  351. */
  352. static void nfs_inode_remove_request(struct nfs_page *req)
  353. {
  354. struct inode *inode = req->wb_context->dentry->d_inode;
  355. struct nfs_inode *nfsi = NFS_I(inode);
  356. BUG_ON (!NFS_WBACK_BUSY(req));
  357. spin_lock(&inode->i_lock);
  358. set_page_private(req->wb_page, 0);
  359. ClearPagePrivate(req->wb_page);
  360. clear_bit(PG_MAPPED, &req->wb_flags);
  361. radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
  362. nfsi->npages--;
  363. spin_unlock(&inode->i_lock);
  364. nfs_release_request(req);
  365. }
  366. static void
  367. nfs_mark_request_dirty(struct nfs_page *req)
  368. {
  369. __set_page_dirty_nobuffers(req->wb_page);
  370. }
  371. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  372. /*
  373. * Add a request to the inode's commit list.
  374. */
  375. static void
  376. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
  377. {
  378. struct inode *inode = req->wb_context->dentry->d_inode;
  379. struct nfs_inode *nfsi = NFS_I(inode);
  380. spin_lock(&inode->i_lock);
  381. set_bit(PG_CLEAN, &(req)->wb_flags);
  382. radix_tree_tag_set(&nfsi->nfs_page_tree,
  383. req->wb_index,
  384. NFS_PAGE_TAG_COMMIT);
  385. nfsi->ncommit++;
  386. spin_unlock(&inode->i_lock);
  387. pnfs_mark_request_commit(req, lseg);
  388. inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  389. inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  390. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  391. }
  392. static int
  393. nfs_clear_request_commit(struct nfs_page *req)
  394. {
  395. struct page *page = req->wb_page;
  396. if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
  397. dec_zone_page_state(page, NR_UNSTABLE_NFS);
  398. dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  399. return 1;
  400. }
  401. return 0;
  402. }
  403. static inline
  404. int nfs_write_need_commit(struct nfs_write_data *data)
  405. {
  406. if (data->verf.committed == NFS_DATA_SYNC)
  407. return data->lseg == NULL;
  408. else
  409. return data->verf.committed != NFS_FILE_SYNC;
  410. }
  411. static inline
  412. int nfs_reschedule_unstable_write(struct nfs_page *req,
  413. struct nfs_write_data *data)
  414. {
  415. if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  416. nfs_mark_request_commit(req, data->lseg);
  417. return 1;
  418. }
  419. if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  420. nfs_mark_request_dirty(req);
  421. return 1;
  422. }
  423. return 0;
  424. }
  425. #else
  426. static inline void
  427. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
  428. {
  429. }
  430. static inline int
  431. nfs_clear_request_commit(struct nfs_page *req)
  432. {
  433. return 0;
  434. }
  435. static inline
  436. int nfs_write_need_commit(struct nfs_write_data *data)
  437. {
  438. return 0;
  439. }
  440. static inline
  441. int nfs_reschedule_unstable_write(struct nfs_page *req,
  442. struct nfs_write_data *data)
  443. {
  444. return 0;
  445. }
  446. #endif
  447. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  448. static int
  449. nfs_need_commit(struct nfs_inode *nfsi)
  450. {
  451. return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
  452. }
  453. /*
  454. * nfs_scan_commit - Scan an inode for commit requests
  455. * @inode: NFS inode to scan
  456. * @dst: destination list
  457. * @idx_start: lower bound of page->index to scan.
  458. * @npages: idx_start + npages sets the upper bound to scan.
  459. *
  460. * Moves requests from the inode's 'commit' request list.
  461. * The requests are *not* checked to ensure that they form a contiguous set.
  462. */
  463. static int
  464. nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  465. {
  466. struct nfs_inode *nfsi = NFS_I(inode);
  467. int ret;
  468. if (!nfs_need_commit(nfsi))
  469. return 0;
  470. spin_lock(&inode->i_lock);
  471. ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
  472. if (ret > 0)
  473. nfsi->ncommit -= ret;
  474. spin_unlock(&inode->i_lock);
  475. if (nfs_need_commit(NFS_I(inode)))
  476. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  477. return ret;
  478. }
  479. #else
  480. static inline int nfs_need_commit(struct nfs_inode *nfsi)
  481. {
  482. return 0;
  483. }
  484. static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  485. {
  486. return 0;
  487. }
  488. #endif
  489. /*
  490. * Search for an existing write request, and attempt to update
  491. * it to reflect a new dirty region on a given page.
  492. *
  493. * If the attempt fails, then the existing request is flushed out
  494. * to disk.
  495. */
  496. static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
  497. struct page *page,
  498. unsigned int offset,
  499. unsigned int bytes)
  500. {
  501. struct nfs_page *req;
  502. unsigned int rqend;
  503. unsigned int end;
  504. int error;
  505. if (!PagePrivate(page))
  506. return NULL;
  507. end = offset + bytes;
  508. spin_lock(&inode->i_lock);
  509. for (;;) {
  510. req = nfs_page_find_request_locked(page);
  511. if (req == NULL)
  512. goto out_unlock;
  513. rqend = req->wb_offset + req->wb_bytes;
  514. /*
  515. * Tell the caller to flush out the request if
  516. * the offsets are non-contiguous.
  517. * Note: nfs_flush_incompatible() will already
  518. * have flushed out requests having wrong owners.
  519. */
  520. if (offset > rqend
  521. || end < req->wb_offset)
  522. goto out_flushme;
  523. if (nfs_set_page_tag_locked(req))
  524. break;
  525. /* The request is locked, so wait and then retry */
  526. spin_unlock(&inode->i_lock);
  527. error = nfs_wait_on_request(req);
  528. nfs_release_request(req);
  529. if (error != 0)
  530. goto out_err;
  531. spin_lock(&inode->i_lock);
  532. }
  533. if (nfs_clear_request_commit(req) &&
  534. radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
  535. req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
  536. NFS_I(inode)->ncommit--;
  537. pnfs_clear_request_commit(req);
  538. }
  539. /* Okay, the request matches. Update the region */
  540. if (offset < req->wb_offset) {
  541. req->wb_offset = offset;
  542. req->wb_pgbase = offset;
  543. }
  544. if (end > rqend)
  545. req->wb_bytes = end - req->wb_offset;
  546. else
  547. req->wb_bytes = rqend - req->wb_offset;
  548. out_unlock:
  549. spin_unlock(&inode->i_lock);
  550. return req;
  551. out_flushme:
  552. spin_unlock(&inode->i_lock);
  553. nfs_release_request(req);
  554. error = nfs_wb_page(inode, page);
  555. out_err:
  556. return ERR_PTR(error);
  557. }
  558. /*
  559. * Try to update an existing write request, or create one if there is none.
  560. *
  561. * Note: Should always be called with the Page Lock held to prevent races
  562. * if we have to add a new request. Also assumes that the caller has
  563. * already called nfs_flush_incompatible() if necessary.
  564. */
  565. static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
  566. struct page *page, unsigned int offset, unsigned int bytes)
  567. {
  568. struct inode *inode = page->mapping->host;
  569. struct nfs_page *req;
  570. int error;
  571. req = nfs_try_to_update_request(inode, page, offset, bytes);
  572. if (req != NULL)
  573. goto out;
  574. req = nfs_create_request(ctx, inode, page, offset, bytes);
  575. if (IS_ERR(req))
  576. goto out;
  577. error = nfs_inode_add_request(inode, req);
  578. if (error != 0) {
  579. nfs_release_request(req);
  580. req = ERR_PTR(error);
  581. }
  582. out:
  583. return req;
  584. }
  585. static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
  586. unsigned int offset, unsigned int count)
  587. {
  588. struct nfs_page *req;
  589. req = nfs_setup_write_request(ctx, page, offset, count);
  590. if (IS_ERR(req))
  591. return PTR_ERR(req);
  592. /* Update file length */
  593. nfs_grow_file(page, offset, count);
  594. nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
  595. nfs_mark_request_dirty(req);
  596. nfs_clear_page_tag_locked(req);
  597. return 0;
  598. }
  599. int nfs_flush_incompatible(struct file *file, struct page *page)
  600. {
  601. struct nfs_open_context *ctx = nfs_file_open_context(file);
  602. struct nfs_page *req;
  603. int do_flush, status;
  604. /*
  605. * Look for a request corresponding to this page. If there
  606. * is one, and it belongs to another file, we flush it out
  607. * before we try to copy anything into the page. Do this
  608. * due to the lack of an ACCESS-type call in NFSv2.
  609. * Also do the same if we find a request from an existing
  610. * dropped page.
  611. */
  612. do {
  613. req = nfs_page_find_request(page);
  614. if (req == NULL)
  615. return 0;
  616. do_flush = req->wb_page != page || req->wb_context != ctx ||
  617. req->wb_lock_context->lockowner != current->files ||
  618. req->wb_lock_context->pid != current->tgid;
  619. nfs_release_request(req);
  620. if (!do_flush)
  621. return 0;
  622. status = nfs_wb_page(page->mapping->host, page);
  623. } while (status == 0);
  624. return status;
  625. }
  626. /*
  627. * If the page cache is marked as unsafe or invalid, then we can't rely on
  628. * the PageUptodate() flag. In this case, we will need to turn off
  629. * write optimisations that depend on the page contents being correct.
  630. */
  631. static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
  632. {
  633. return PageUptodate(page) &&
  634. !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
  635. }
  636. /*
  637. * Update and possibly write a cached page of an NFS file.
  638. *
  639. * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
  640. * things with a page scheduled for an RPC call (e.g. invalidate it).
  641. */
  642. int nfs_updatepage(struct file *file, struct page *page,
  643. unsigned int offset, unsigned int count)
  644. {
  645. struct nfs_open_context *ctx = nfs_file_open_context(file);
  646. struct inode *inode = page->mapping->host;
  647. int status = 0;
  648. nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
  649. dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
  650. file->f_path.dentry->d_parent->d_name.name,
  651. file->f_path.dentry->d_name.name, count,
  652. (long long)(page_offset(page) + offset));
  653. /* If we're not using byte range locks, and we know the page
  654. * is up to date, it may be more efficient to extend the write
  655. * to cover the entire page in order to avoid fragmentation
  656. * inefficiencies.
  657. */
  658. if (nfs_write_pageuptodate(page, inode) &&
  659. inode->i_flock == NULL &&
  660. !(file->f_flags & O_DSYNC)) {
  661. count = max(count + offset, nfs_page_length(page));
  662. offset = 0;
  663. }
  664. status = nfs_writepage_setup(ctx, page, offset, count);
  665. if (status < 0)
  666. nfs_set_pageerror(page);
  667. else
  668. __set_page_dirty_nobuffers(page);
  669. dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
  670. status, (long long)i_size_read(inode));
  671. return status;
  672. }
  673. static void nfs_writepage_release(struct nfs_page *req,
  674. struct nfs_write_data *data)
  675. {
  676. struct page *page = req->wb_page;
  677. if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
  678. nfs_inode_remove_request(req);
  679. nfs_clear_page_tag_locked(req);
  680. nfs_end_page_writeback(page);
  681. }
  682. static int flush_task_priority(int how)
  683. {
  684. switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
  685. case FLUSH_HIGHPRI:
  686. return RPC_PRIORITY_HIGH;
  687. case FLUSH_LOWPRI:
  688. return RPC_PRIORITY_LOW;
  689. }
  690. return RPC_PRIORITY_NORMAL;
  691. }
  692. int nfs_initiate_write(struct nfs_write_data *data,
  693. struct rpc_clnt *clnt,
  694. const struct rpc_call_ops *call_ops,
  695. int how)
  696. {
  697. struct inode *inode = data->inode;
  698. int priority = flush_task_priority(how);
  699. struct rpc_task *task;
  700. struct rpc_message msg = {
  701. .rpc_argp = &data->args,
  702. .rpc_resp = &data->res,
  703. .rpc_cred = data->cred,
  704. };
  705. struct rpc_task_setup task_setup_data = {
  706. .rpc_client = clnt,
  707. .task = &data->task,
  708. .rpc_message = &msg,
  709. .callback_ops = call_ops,
  710. .callback_data = data,
  711. .workqueue = nfsiod_workqueue,
  712. .flags = RPC_TASK_ASYNC,
  713. .priority = priority,
  714. };
  715. int ret = 0;
  716. /* Set up the initial task struct. */
  717. NFS_PROTO(inode)->write_setup(data, &msg);
  718. dprintk("NFS: %5u initiated write call "
  719. "(req %s/%lld, %u bytes @ offset %llu)\n",
  720. data->task.tk_pid,
  721. inode->i_sb->s_id,
  722. (long long)NFS_FILEID(inode),
  723. data->args.count,
  724. (unsigned long long)data->args.offset);
  725. task = rpc_run_task(&task_setup_data);
  726. if (IS_ERR(task)) {
  727. ret = PTR_ERR(task);
  728. goto out;
  729. }
  730. if (how & FLUSH_SYNC) {
  731. ret = rpc_wait_for_completion_task(task);
  732. if (ret == 0)
  733. ret = task->tk_status;
  734. }
  735. rpc_put_task(task);
  736. out:
  737. return ret;
  738. }
  739. EXPORT_SYMBOL_GPL(nfs_initiate_write);
  740. /*
  741. * Set up the argument/result storage required for the RPC call.
  742. */
  743. static void nfs_write_rpcsetup(struct nfs_page *req,
  744. struct nfs_write_data *data,
  745. unsigned int count, unsigned int offset,
  746. int how)
  747. {
  748. struct inode *inode = req->wb_context->dentry->d_inode;
  749. /* Set up the RPC argument and reply structs
  750. * NB: take care not to mess about with data->commit et al. */
  751. data->req = req;
  752. data->inode = inode = req->wb_context->dentry->d_inode;
  753. data->cred = req->wb_context->cred;
  754. data->args.fh = NFS_FH(inode);
  755. data->args.offset = req_offset(req) + offset;
  756. /* pnfs_set_layoutcommit needs this */
  757. data->mds_offset = data->args.offset;
  758. data->args.pgbase = req->wb_pgbase + offset;
  759. data->args.pages = data->pagevec;
  760. data->args.count = count;
  761. data->args.context = get_nfs_open_context(req->wb_context);
  762. data->args.lock_context = req->wb_lock_context;
  763. data->args.stable = NFS_UNSTABLE;
  764. switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
  765. case 0:
  766. break;
  767. case FLUSH_COND_STABLE:
  768. if (nfs_need_commit(NFS_I(inode)))
  769. break;
  770. default:
  771. data->args.stable = NFS_FILE_SYNC;
  772. }
  773. data->res.fattr = &data->fattr;
  774. data->res.count = count;
  775. data->res.verf = &data->verf;
  776. nfs_fattr_init(&data->fattr);
  777. }
  778. static int nfs_do_write(struct nfs_write_data *data,
  779. const struct rpc_call_ops *call_ops,
  780. int how)
  781. {
  782. struct inode *inode = data->args.context->dentry->d_inode;
  783. return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
  784. }
  785. static int nfs_do_multiple_writes(struct list_head *head,
  786. const struct rpc_call_ops *call_ops,
  787. int how)
  788. {
  789. struct nfs_write_data *data;
  790. int ret = 0;
  791. while (!list_empty(head)) {
  792. int ret2;
  793. data = list_entry(head->next, struct nfs_write_data, list);
  794. list_del_init(&data->list);
  795. ret2 = nfs_do_write(data, call_ops, how);
  796. if (ret == 0)
  797. ret = ret2;
  798. }
  799. return ret;
  800. }
  801. /* If a nfs_flush_* function fails, it should remove reqs from @head and
  802. * call this on each, which will prepare them to be retried on next
  803. * writeback using standard nfs.
  804. */
  805. static void nfs_redirty_request(struct nfs_page *req)
  806. {
  807. struct page *page = req->wb_page;
  808. nfs_mark_request_dirty(req);
  809. nfs_clear_page_tag_locked(req);
  810. nfs_end_page_writeback(page);
  811. }
  812. /*
  813. * Generate multiple small requests to write out a single
  814. * contiguous dirty area on one page.
  815. */
  816. static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, struct list_head *res)
  817. {
  818. struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
  819. struct page *page = req->wb_page;
  820. struct nfs_write_data *data;
  821. size_t wsize = desc->pg_bsize, nbytes;
  822. unsigned int offset;
  823. int requests = 0;
  824. int ret = 0;
  825. nfs_list_remove_request(req);
  826. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  827. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
  828. desc->pg_count > wsize))
  829. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  830. offset = 0;
  831. nbytes = desc->pg_count;
  832. do {
  833. size_t len = min(nbytes, wsize);
  834. data = nfs_writedata_alloc(1);
  835. if (!data)
  836. goto out_bad;
  837. data->pagevec[0] = page;
  838. nfs_write_rpcsetup(req, data, len, offset, desc->pg_ioflags);
  839. list_add(&data->list, res);
  840. requests++;
  841. nbytes -= len;
  842. offset += len;
  843. } while (nbytes != 0);
  844. atomic_set(&req->wb_complete, requests);
  845. desc->pg_rpc_callops = &nfs_write_partial_ops;
  846. return ret;
  847. out_bad:
  848. while (!list_empty(res)) {
  849. data = list_entry(res->next, struct nfs_write_data, list);
  850. list_del(&data->list);
  851. nfs_writedata_free(data);
  852. }
  853. nfs_redirty_request(req);
  854. return -ENOMEM;
  855. }
  856. /*
  857. * Create an RPC task for the given write request and kick it.
  858. * The page must have been locked by the caller.
  859. *
  860. * It may happen that the page we're passed is not marked dirty.
  861. * This is the case if nfs_updatepage detects a conflicting request
  862. * that has been written but not committed.
  863. */
  864. static int nfs_flush_one(struct nfs_pageio_descriptor *desc, struct list_head *res)
  865. {
  866. struct nfs_page *req;
  867. struct page **pages;
  868. struct nfs_write_data *data;
  869. struct list_head *head = &desc->pg_list;
  870. int ret = 0;
  871. data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
  872. desc->pg_count));
  873. if (!data) {
  874. while (!list_empty(head)) {
  875. req = nfs_list_entry(head->next);
  876. nfs_list_remove_request(req);
  877. nfs_redirty_request(req);
  878. }
  879. ret = -ENOMEM;
  880. goto out;
  881. }
  882. pages = data->pagevec;
  883. while (!list_empty(head)) {
  884. req = nfs_list_entry(head->next);
  885. nfs_list_remove_request(req);
  886. nfs_list_add_request(req, &data->pages);
  887. *pages++ = req->wb_page;
  888. }
  889. req = nfs_list_entry(data->pages.next);
  890. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  891. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
  892. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  893. /* Set up the argument struct */
  894. nfs_write_rpcsetup(req, data, desc->pg_count, 0, desc->pg_ioflags);
  895. list_add(&data->list, res);
  896. desc->pg_rpc_callops = &nfs_write_full_ops;
  897. out:
  898. return ret;
  899. }
  900. int nfs_generic_flush(struct nfs_pageio_descriptor *desc, struct list_head *head)
  901. {
  902. if (desc->pg_bsize < PAGE_CACHE_SIZE)
  903. return nfs_flush_multi(desc, head);
  904. return nfs_flush_one(desc, head);
  905. }
  906. static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
  907. {
  908. LIST_HEAD(head);
  909. int ret;
  910. ret = nfs_generic_flush(desc, &head);
  911. if (ret == 0)
  912. ret = nfs_do_multiple_writes(&head, desc->pg_rpc_callops,
  913. desc->pg_ioflags);
  914. return ret;
  915. }
  916. static const struct nfs_pageio_ops nfs_pageio_write_ops = {
  917. .pg_test = nfs_generic_pg_test,
  918. .pg_doio = nfs_generic_pg_writepages,
  919. };
  920. static void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio,
  921. struct inode *inode, int ioflags)
  922. {
  923. nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops,
  924. NFS_SERVER(inode)->wsize, ioflags);
  925. }
  926. void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
  927. {
  928. pgio->pg_ops = &nfs_pageio_write_ops;
  929. pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
  930. }
  931. EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
  932. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
  933. struct inode *inode, int ioflags)
  934. {
  935. if (!pnfs_pageio_init_write(pgio, inode, ioflags))
  936. nfs_pageio_init_write_mds(pgio, inode, ioflags);
  937. }
  938. /*
  939. * Handle a write reply that flushed part of a page.
  940. */
  941. static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
  942. {
  943. struct nfs_write_data *data = calldata;
  944. dprintk("NFS: %5u write(%s/%lld %d@%lld)",
  945. task->tk_pid,
  946. data->req->wb_context->dentry->d_inode->i_sb->s_id,
  947. (long long)
  948. NFS_FILEID(data->req->wb_context->dentry->d_inode),
  949. data->req->wb_bytes, (long long)req_offset(data->req));
  950. nfs_writeback_done(task, data);
  951. }
  952. static void nfs_writeback_release_partial(void *calldata)
  953. {
  954. struct nfs_write_data *data = calldata;
  955. struct nfs_page *req = data->req;
  956. struct page *page = req->wb_page;
  957. int status = data->task.tk_status;
  958. if (status < 0) {
  959. nfs_set_pageerror(page);
  960. nfs_context_set_write_error(req->wb_context, status);
  961. dprintk(", error = %d\n", status);
  962. goto out;
  963. }
  964. if (nfs_write_need_commit(data)) {
  965. struct inode *inode = page->mapping->host;
  966. spin_lock(&inode->i_lock);
  967. if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  968. /* Do nothing we need to resend the writes */
  969. } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  970. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  971. dprintk(" defer commit\n");
  972. } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
  973. set_bit(PG_NEED_RESCHED, &req->wb_flags);
  974. clear_bit(PG_NEED_COMMIT, &req->wb_flags);
  975. dprintk(" server reboot detected\n");
  976. }
  977. spin_unlock(&inode->i_lock);
  978. } else
  979. dprintk(" OK\n");
  980. out:
  981. if (atomic_dec_and_test(&req->wb_complete))
  982. nfs_writepage_release(req, data);
  983. nfs_writedata_release(calldata);
  984. }
  985. #if defined(CONFIG_NFS_V4_1)
  986. void nfs_write_prepare(struct rpc_task *task, void *calldata)
  987. {
  988. struct nfs_write_data *data = calldata;
  989. if (nfs4_setup_sequence(NFS_SERVER(data->inode),
  990. &data->args.seq_args,
  991. &data->res.seq_res, 1, task))
  992. return;
  993. rpc_call_start(task);
  994. }
  995. #endif /* CONFIG_NFS_V4_1 */
  996. static const struct rpc_call_ops nfs_write_partial_ops = {
  997. #if defined(CONFIG_NFS_V4_1)
  998. .rpc_call_prepare = nfs_write_prepare,
  999. #endif /* CONFIG_NFS_V4_1 */
  1000. .rpc_call_done = nfs_writeback_done_partial,
  1001. .rpc_release = nfs_writeback_release_partial,
  1002. };
  1003. /*
  1004. * Handle a write reply that flushes a whole page.
  1005. *
  1006. * FIXME: There is an inherent race with invalidate_inode_pages and
  1007. * writebacks since the page->count is kept > 1 for as long
  1008. * as the page has a write request pending.
  1009. */
  1010. static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
  1011. {
  1012. struct nfs_write_data *data = calldata;
  1013. nfs_writeback_done(task, data);
  1014. }
  1015. static void nfs_writeback_release_full(void *calldata)
  1016. {
  1017. struct nfs_write_data *data = calldata;
  1018. int ret, status = data->task.tk_status;
  1019. struct nfs_pageio_descriptor pgio;
  1020. if (data->pnfs_error) {
  1021. nfs_pageio_init_write_mds(&pgio, data->inode, FLUSH_STABLE);
  1022. pgio.pg_recoalesce = 1;
  1023. }
  1024. /* Update attributes as result of writeback. */
  1025. while (!list_empty(&data->pages)) {
  1026. struct nfs_page *req = nfs_list_entry(data->pages.next);
  1027. struct page *page = req->wb_page;
  1028. nfs_list_remove_request(req);
  1029. dprintk("NFS: %5u write (%s/%lld %d@%lld)",
  1030. data->task.tk_pid,
  1031. req->wb_context->dentry->d_inode->i_sb->s_id,
  1032. (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
  1033. req->wb_bytes,
  1034. (long long)req_offset(req));
  1035. if (data->pnfs_error) {
  1036. dprintk(", pnfs error = %d\n", data->pnfs_error);
  1037. goto next;
  1038. }
  1039. if (status < 0) {
  1040. nfs_set_pageerror(page);
  1041. nfs_context_set_write_error(req->wb_context, status);
  1042. dprintk(", error = %d\n", status);
  1043. goto remove_request;
  1044. }
  1045. if (nfs_write_need_commit(data)) {
  1046. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  1047. nfs_mark_request_commit(req, data->lseg);
  1048. dprintk(" marked for commit\n");
  1049. goto next;
  1050. }
  1051. dprintk(" OK\n");
  1052. remove_request:
  1053. nfs_inode_remove_request(req);
  1054. next:
  1055. nfs_clear_page_tag_locked(req);
  1056. nfs_end_page_writeback(page);
  1057. if (data->pnfs_error) {
  1058. lock_page(page);
  1059. nfs_pageio_cond_complete(&pgio, page->index);
  1060. ret = nfs_page_async_flush(&pgio, page, 0);
  1061. if (ret) {
  1062. nfs_set_pageerror(page);
  1063. dprintk("rewrite to MDS error = %d\n", ret);
  1064. }
  1065. unlock_page(page);
  1066. }
  1067. }
  1068. if (data->pnfs_error)
  1069. nfs_pageio_complete(&pgio);
  1070. nfs_writedata_release(calldata);
  1071. }
  1072. static const struct rpc_call_ops nfs_write_full_ops = {
  1073. #if defined(CONFIG_NFS_V4_1)
  1074. .rpc_call_prepare = nfs_write_prepare,
  1075. #endif /* CONFIG_NFS_V4_1 */
  1076. .rpc_call_done = nfs_writeback_done_full,
  1077. .rpc_release = nfs_writeback_release_full,
  1078. };
  1079. /*
  1080. * This function is called when the WRITE call is complete.
  1081. */
  1082. void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
  1083. {
  1084. struct nfs_writeargs *argp = &data->args;
  1085. struct nfs_writeres *resp = &data->res;
  1086. int status;
  1087. dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
  1088. task->tk_pid, task->tk_status);
  1089. /*
  1090. * ->write_done will attempt to use post-op attributes to detect
  1091. * conflicting writes by other clients. A strict interpretation
  1092. * of close-to-open would allow us to continue caching even if
  1093. * another writer had changed the file, but some applications
  1094. * depend on tighter cache coherency when writing.
  1095. */
  1096. status = NFS_PROTO(data->inode)->write_done(task, data);
  1097. if (status != 0)
  1098. return;
  1099. nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
  1100. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1101. if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
  1102. /* We tried a write call, but the server did not
  1103. * commit data to stable storage even though we
  1104. * requested it.
  1105. * Note: There is a known bug in Tru64 < 5.0 in which
  1106. * the server reports NFS_DATA_SYNC, but performs
  1107. * NFS_FILE_SYNC. We therefore implement this checking
  1108. * as a dprintk() in order to avoid filling syslog.
  1109. */
  1110. static unsigned long complain;
  1111. /* Note this will print the MDS for a DS write */
  1112. if (time_before(complain, jiffies)) {
  1113. dprintk("NFS: faulty NFS server %s:"
  1114. " (committed = %d) != (stable = %d)\n",
  1115. NFS_SERVER(data->inode)->nfs_client->cl_hostname,
  1116. resp->verf->committed, argp->stable);
  1117. complain = jiffies + 300 * HZ;
  1118. }
  1119. }
  1120. #endif
  1121. /* Is this a short write? */
  1122. if (task->tk_status >= 0 && resp->count < argp->count) {
  1123. static unsigned long complain;
  1124. nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
  1125. /* Has the server at least made some progress? */
  1126. if (resp->count != 0) {
  1127. /* Was this an NFSv2 write or an NFSv3 stable write? */
  1128. if (resp->verf->committed != NFS_UNSTABLE) {
  1129. /* Resend from where the server left off */
  1130. data->mds_offset += resp->count;
  1131. argp->offset += resp->count;
  1132. argp->pgbase += resp->count;
  1133. argp->count -= resp->count;
  1134. } else {
  1135. /* Resend as a stable write in order to avoid
  1136. * headaches in the case of a server crash.
  1137. */
  1138. argp->stable = NFS_FILE_SYNC;
  1139. }
  1140. rpc_restart_call_prepare(task);
  1141. return;
  1142. }
  1143. if (time_before(complain, jiffies)) {
  1144. printk(KERN_WARNING
  1145. "NFS: Server wrote zero bytes, expected %u.\n",
  1146. argp->count);
  1147. complain = jiffies + 300 * HZ;
  1148. }
  1149. /* Can't do anything about it except throw an error. */
  1150. task->tk_status = -EIO;
  1151. }
  1152. return;
  1153. }
  1154. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1155. static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
  1156. {
  1157. int ret;
  1158. if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
  1159. return 1;
  1160. if (!may_wait)
  1161. return 0;
  1162. ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
  1163. NFS_INO_COMMIT,
  1164. nfs_wait_bit_killable,
  1165. TASK_KILLABLE);
  1166. return (ret < 0) ? ret : 1;
  1167. }
  1168. void nfs_commit_clear_lock(struct nfs_inode *nfsi)
  1169. {
  1170. clear_bit(NFS_INO_COMMIT, &nfsi->flags);
  1171. smp_mb__after_clear_bit();
  1172. wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
  1173. }
  1174. EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
  1175. void nfs_commitdata_release(void *data)
  1176. {
  1177. struct nfs_write_data *wdata = data;
  1178. put_lseg(wdata->lseg);
  1179. put_nfs_open_context(wdata->args.context);
  1180. nfs_commit_free(wdata);
  1181. }
  1182. EXPORT_SYMBOL_GPL(nfs_commitdata_release);
  1183. int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
  1184. const struct rpc_call_ops *call_ops,
  1185. int how)
  1186. {
  1187. struct rpc_task *task;
  1188. int priority = flush_task_priority(how);
  1189. struct rpc_message msg = {
  1190. .rpc_argp = &data->args,
  1191. .rpc_resp = &data->res,
  1192. .rpc_cred = data->cred,
  1193. };
  1194. struct rpc_task_setup task_setup_data = {
  1195. .task = &data->task,
  1196. .rpc_client = clnt,
  1197. .rpc_message = &msg,
  1198. .callback_ops = call_ops,
  1199. .callback_data = data,
  1200. .workqueue = nfsiod_workqueue,
  1201. .flags = RPC_TASK_ASYNC,
  1202. .priority = priority,
  1203. };
  1204. /* Set up the initial task struct. */
  1205. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  1206. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  1207. task = rpc_run_task(&task_setup_data);
  1208. if (IS_ERR(task))
  1209. return PTR_ERR(task);
  1210. if (how & FLUSH_SYNC)
  1211. rpc_wait_for_completion_task(task);
  1212. rpc_put_task(task);
  1213. return 0;
  1214. }
  1215. EXPORT_SYMBOL_GPL(nfs_initiate_commit);
  1216. /*
  1217. * Set up the argument/result storage required for the RPC call.
  1218. */
  1219. void nfs_init_commit(struct nfs_write_data *data,
  1220. struct list_head *head,
  1221. struct pnfs_layout_segment *lseg)
  1222. {
  1223. struct nfs_page *first = nfs_list_entry(head->next);
  1224. struct inode *inode = first->wb_context->dentry->d_inode;
  1225. /* Set up the RPC argument and reply structs
  1226. * NB: take care not to mess about with data->commit et al. */
  1227. list_splice_init(head, &data->pages);
  1228. data->inode = inode;
  1229. data->cred = first->wb_context->cred;
  1230. data->lseg = lseg; /* reference transferred */
  1231. data->mds_ops = &nfs_commit_ops;
  1232. data->args.fh = NFS_FH(data->inode);
  1233. /* Note: we always request a commit of the entire inode */
  1234. data->args.offset = 0;
  1235. data->args.count = 0;
  1236. data->args.context = get_nfs_open_context(first->wb_context);
  1237. data->res.count = 0;
  1238. data->res.fattr = &data->fattr;
  1239. data->res.verf = &data->verf;
  1240. nfs_fattr_init(&data->fattr);
  1241. }
  1242. EXPORT_SYMBOL_GPL(nfs_init_commit);
  1243. void nfs_retry_commit(struct list_head *page_list,
  1244. struct pnfs_layout_segment *lseg)
  1245. {
  1246. struct nfs_page *req;
  1247. while (!list_empty(page_list)) {
  1248. req = nfs_list_entry(page_list->next);
  1249. nfs_list_remove_request(req);
  1250. nfs_mark_request_commit(req, lseg);
  1251. dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  1252. dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
  1253. BDI_RECLAIMABLE);
  1254. nfs_clear_page_tag_locked(req);
  1255. }
  1256. }
  1257. EXPORT_SYMBOL_GPL(nfs_retry_commit);
  1258. /*
  1259. * Commit dirty pages
  1260. */
  1261. static int
  1262. nfs_commit_list(struct inode *inode, struct list_head *head, int how)
  1263. {
  1264. struct nfs_write_data *data;
  1265. data = nfs_commitdata_alloc();
  1266. if (!data)
  1267. goto out_bad;
  1268. /* Set up the argument struct */
  1269. nfs_init_commit(data, head, NULL);
  1270. return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
  1271. out_bad:
  1272. nfs_retry_commit(head, NULL);
  1273. nfs_commit_clear_lock(NFS_I(inode));
  1274. return -ENOMEM;
  1275. }
  1276. /*
  1277. * COMMIT call returned
  1278. */
  1279. static void nfs_commit_done(struct rpc_task *task, void *calldata)
  1280. {
  1281. struct nfs_write_data *data = calldata;
  1282. dprintk("NFS: %5u nfs_commit_done (status %d)\n",
  1283. task->tk_pid, task->tk_status);
  1284. /* Call the NFS version-specific code */
  1285. NFS_PROTO(data->inode)->commit_done(task, data);
  1286. }
  1287. void nfs_commit_release_pages(struct nfs_write_data *data)
  1288. {
  1289. struct nfs_page *req;
  1290. int status = data->task.tk_status;
  1291. while (!list_empty(&data->pages)) {
  1292. req = nfs_list_entry(data->pages.next);
  1293. nfs_list_remove_request(req);
  1294. nfs_clear_request_commit(req);
  1295. dprintk("NFS: commit (%s/%lld %d@%lld)",
  1296. req->wb_context->dentry->d_sb->s_id,
  1297. (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
  1298. req->wb_bytes,
  1299. (long long)req_offset(req));
  1300. if (status < 0) {
  1301. nfs_context_set_write_error(req->wb_context, status);
  1302. nfs_inode_remove_request(req);
  1303. dprintk(", error = %d\n", status);
  1304. goto next;
  1305. }
  1306. /* Okay, COMMIT succeeded, apparently. Check the verifier
  1307. * returned by the server against all stored verfs. */
  1308. if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
  1309. /* We have a match */
  1310. nfs_inode_remove_request(req);
  1311. dprintk(" OK\n");
  1312. goto next;
  1313. }
  1314. /* We have a mismatch. Write the page again */
  1315. dprintk(" mismatch\n");
  1316. nfs_mark_request_dirty(req);
  1317. next:
  1318. nfs_clear_page_tag_locked(req);
  1319. }
  1320. }
  1321. EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
  1322. static void nfs_commit_release(void *calldata)
  1323. {
  1324. struct nfs_write_data *data = calldata;
  1325. nfs_commit_release_pages(data);
  1326. nfs_commit_clear_lock(NFS_I(data->inode));
  1327. nfs_commitdata_release(calldata);
  1328. }
  1329. static const struct rpc_call_ops nfs_commit_ops = {
  1330. #if defined(CONFIG_NFS_V4_1)
  1331. .rpc_call_prepare = nfs_write_prepare,
  1332. #endif /* CONFIG_NFS_V4_1 */
  1333. .rpc_call_done = nfs_commit_done,
  1334. .rpc_release = nfs_commit_release,
  1335. };
  1336. int nfs_commit_inode(struct inode *inode, int how)
  1337. {
  1338. LIST_HEAD(head);
  1339. int may_wait = how & FLUSH_SYNC;
  1340. int res;
  1341. res = nfs_commit_set_lock(NFS_I(inode), may_wait);
  1342. if (res <= 0)
  1343. goto out_mark_dirty;
  1344. res = nfs_scan_commit(inode, &head, 0, 0);
  1345. if (res) {
  1346. int error;
  1347. error = pnfs_commit_list(inode, &head, how);
  1348. if (error == PNFS_NOT_ATTEMPTED)
  1349. error = nfs_commit_list(inode, &head, how);
  1350. if (error < 0)
  1351. return error;
  1352. if (!may_wait)
  1353. goto out_mark_dirty;
  1354. error = wait_on_bit(&NFS_I(inode)->flags,
  1355. NFS_INO_COMMIT,
  1356. nfs_wait_bit_killable,
  1357. TASK_KILLABLE);
  1358. if (error < 0)
  1359. return error;
  1360. } else
  1361. nfs_commit_clear_lock(NFS_I(inode));
  1362. return res;
  1363. /* Note: If we exit without ensuring that the commit is complete,
  1364. * we must mark the inode as dirty. Otherwise, future calls to
  1365. * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
  1366. * that the data is on the disk.
  1367. */
  1368. out_mark_dirty:
  1369. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1370. return res;
  1371. }
  1372. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1373. {
  1374. struct nfs_inode *nfsi = NFS_I(inode);
  1375. int flags = FLUSH_SYNC;
  1376. int ret = 0;
  1377. /* no commits means nothing needs to be done */
  1378. if (!nfsi->ncommit)
  1379. return ret;
  1380. if (wbc->sync_mode == WB_SYNC_NONE) {
  1381. /* Don't commit yet if this is a non-blocking flush and there
  1382. * are a lot of outstanding writes for this mapping.
  1383. */
  1384. if (nfsi->ncommit <= (nfsi->npages >> 1))
  1385. goto out_mark_dirty;
  1386. /* don't wait for the COMMIT response */
  1387. flags = 0;
  1388. }
  1389. ret = nfs_commit_inode(inode, flags);
  1390. if (ret >= 0) {
  1391. if (wbc->sync_mode == WB_SYNC_NONE) {
  1392. if (ret < wbc->nr_to_write)
  1393. wbc->nr_to_write -= ret;
  1394. else
  1395. wbc->nr_to_write = 0;
  1396. }
  1397. return 0;
  1398. }
  1399. out_mark_dirty:
  1400. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1401. return ret;
  1402. }
  1403. #else
  1404. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1405. {
  1406. return 0;
  1407. }
  1408. #endif
  1409. int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
  1410. {
  1411. int ret;
  1412. ret = nfs_commit_unstable_pages(inode, wbc);
  1413. if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
  1414. int status;
  1415. bool sync = true;
  1416. if (wbc->sync_mode == WB_SYNC_NONE)
  1417. sync = false;
  1418. status = pnfs_layoutcommit_inode(inode, sync);
  1419. if (status < 0)
  1420. return status;
  1421. }
  1422. return ret;
  1423. }
  1424. /*
  1425. * flush the inode to disk.
  1426. */
  1427. int nfs_wb_all(struct inode *inode)
  1428. {
  1429. struct writeback_control wbc = {
  1430. .sync_mode = WB_SYNC_ALL,
  1431. .nr_to_write = LONG_MAX,
  1432. .range_start = 0,
  1433. .range_end = LLONG_MAX,
  1434. };
  1435. return sync_inode(inode, &wbc);
  1436. }
  1437. int nfs_wb_page_cancel(struct inode *inode, struct page *page)
  1438. {
  1439. struct nfs_page *req;
  1440. int ret = 0;
  1441. BUG_ON(!PageLocked(page));
  1442. for (;;) {
  1443. wait_on_page_writeback(page);
  1444. req = nfs_page_find_request(page);
  1445. if (req == NULL)
  1446. break;
  1447. if (nfs_lock_request_dontget(req)) {
  1448. nfs_inode_remove_request(req);
  1449. /*
  1450. * In case nfs_inode_remove_request has marked the
  1451. * page as being dirty
  1452. */
  1453. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  1454. nfs_unlock_request(req);
  1455. break;
  1456. }
  1457. ret = nfs_wait_on_request(req);
  1458. nfs_release_request(req);
  1459. if (ret < 0)
  1460. break;
  1461. }
  1462. return ret;
  1463. }
  1464. /*
  1465. * Write back all requests on one page - we do this before reading it.
  1466. */
  1467. int nfs_wb_page(struct inode *inode, struct page *page)
  1468. {
  1469. loff_t range_start = page_offset(page);
  1470. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1471. struct writeback_control wbc = {
  1472. .sync_mode = WB_SYNC_ALL,
  1473. .nr_to_write = 0,
  1474. .range_start = range_start,
  1475. .range_end = range_end,
  1476. };
  1477. int ret;
  1478. for (;;) {
  1479. wait_on_page_writeback(page);
  1480. if (clear_page_dirty_for_io(page)) {
  1481. ret = nfs_writepage_locked(page, &wbc);
  1482. if (ret < 0)
  1483. goto out_error;
  1484. continue;
  1485. }
  1486. if (!PagePrivate(page))
  1487. break;
  1488. ret = nfs_commit_inode(inode, FLUSH_SYNC);
  1489. if (ret < 0)
  1490. goto out_error;
  1491. }
  1492. return 0;
  1493. out_error:
  1494. return ret;
  1495. }
  1496. #ifdef CONFIG_MIGRATION
  1497. int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
  1498. struct page *page)
  1499. {
  1500. /*
  1501. * If PagePrivate is set, then the page is currently associated with
  1502. * an in-progress read or write request. Don't try to migrate it.
  1503. *
  1504. * FIXME: we could do this in principle, but we'll need a way to ensure
  1505. * that we can safely release the inode reference while holding
  1506. * the page lock.
  1507. */
  1508. if (PagePrivate(page))
  1509. return -EBUSY;
  1510. nfs_fscache_release_page(page, GFP_KERNEL);
  1511. return migrate_page(mapping, newpage, page);
  1512. }
  1513. #endif
  1514. int __init nfs_init_writepagecache(void)
  1515. {
  1516. nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
  1517. sizeof(struct nfs_write_data),
  1518. 0, SLAB_HWCACHE_ALIGN,
  1519. NULL);
  1520. if (nfs_wdata_cachep == NULL)
  1521. return -ENOMEM;
  1522. nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
  1523. nfs_wdata_cachep);
  1524. if (nfs_wdata_mempool == NULL)
  1525. return -ENOMEM;
  1526. nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
  1527. nfs_wdata_cachep);
  1528. if (nfs_commit_mempool == NULL)
  1529. return -ENOMEM;
  1530. /*
  1531. * NFS congestion size, scale with available memory.
  1532. *
  1533. * 64MB: 8192k
  1534. * 128MB: 11585k
  1535. * 256MB: 16384k
  1536. * 512MB: 23170k
  1537. * 1GB: 32768k
  1538. * 2GB: 46340k
  1539. * 4GB: 65536k
  1540. * 8GB: 92681k
  1541. * 16GB: 131072k
  1542. *
  1543. * This allows larger machines to have larger/more transfers.
  1544. * Limit the default to 256M
  1545. */
  1546. nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
  1547. if (nfs_congestion_kb > 256*1024)
  1548. nfs_congestion_kb = 256*1024;
  1549. return 0;
  1550. }
  1551. void nfs_destroy_writepagecache(void)
  1552. {
  1553. mempool_destroy(nfs_commit_mempool);
  1554. mempool_destroy(nfs_wdata_mempool);
  1555. kmem_cache_destroy(nfs_wdata_cachep);
  1556. }