namespace.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/percpu.h>
  15. #include <linux/init.h>
  16. #include <linux/kernel.h>
  17. #include <linux/acct.h>
  18. #include <linux/capability.h>
  19. #include <linux/cpumask.h>
  20. #include <linux/module.h>
  21. #include <linux/sysfs.h>
  22. #include <linux/seq_file.h>
  23. #include <linux/mnt_namespace.h>
  24. #include <linux/namei.h>
  25. #include <linux/nsproxy.h>
  26. #include <linux/security.h>
  27. #include <linux/mount.h>
  28. #include <linux/ramfs.h>
  29. #include <linux/log2.h>
  30. #include <linux/idr.h>
  31. #include <linux/fs_struct.h>
  32. #include <linux/fsnotify.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/unistd.h>
  35. #include "pnode.h"
  36. #include "internal.h"
  37. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  38. #define HASH_SIZE (1UL << HASH_SHIFT)
  39. static int event;
  40. static DEFINE_IDA(mnt_id_ida);
  41. static DEFINE_IDA(mnt_group_ida);
  42. static DEFINE_SPINLOCK(mnt_id_lock);
  43. static int mnt_id_start = 0;
  44. static int mnt_group_start = 1;
  45. static struct list_head *mount_hashtable __read_mostly;
  46. static struct kmem_cache *mnt_cache __read_mostly;
  47. static struct rw_semaphore namespace_sem;
  48. /* /sys/fs */
  49. struct kobject *fs_kobj;
  50. EXPORT_SYMBOL_GPL(fs_kobj);
  51. /*
  52. * vfsmount lock may be taken for read to prevent changes to the
  53. * vfsmount hash, ie. during mountpoint lookups or walking back
  54. * up the tree.
  55. *
  56. * It should be taken for write in all cases where the vfsmount
  57. * tree or hash is modified or when a vfsmount structure is modified.
  58. */
  59. DEFINE_BRLOCK(vfsmount_lock);
  60. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  61. {
  62. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  63. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  64. tmp = tmp + (tmp >> HASH_SHIFT);
  65. return tmp & (HASH_SIZE - 1);
  66. }
  67. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  68. /*
  69. * allocation is serialized by namespace_sem, but we need the spinlock to
  70. * serialize with freeing.
  71. */
  72. static int mnt_alloc_id(struct vfsmount *mnt)
  73. {
  74. int res;
  75. retry:
  76. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  77. spin_lock(&mnt_id_lock);
  78. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  79. if (!res)
  80. mnt_id_start = mnt->mnt_id + 1;
  81. spin_unlock(&mnt_id_lock);
  82. if (res == -EAGAIN)
  83. goto retry;
  84. return res;
  85. }
  86. static void mnt_free_id(struct vfsmount *mnt)
  87. {
  88. int id = mnt->mnt_id;
  89. spin_lock(&mnt_id_lock);
  90. ida_remove(&mnt_id_ida, id);
  91. if (mnt_id_start > id)
  92. mnt_id_start = id;
  93. spin_unlock(&mnt_id_lock);
  94. }
  95. /*
  96. * Allocate a new peer group ID
  97. *
  98. * mnt_group_ida is protected by namespace_sem
  99. */
  100. static int mnt_alloc_group_id(struct vfsmount *mnt)
  101. {
  102. int res;
  103. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  104. return -ENOMEM;
  105. res = ida_get_new_above(&mnt_group_ida,
  106. mnt_group_start,
  107. &mnt->mnt_group_id);
  108. if (!res)
  109. mnt_group_start = mnt->mnt_group_id + 1;
  110. return res;
  111. }
  112. /*
  113. * Release a peer group ID
  114. */
  115. void mnt_release_group_id(struct vfsmount *mnt)
  116. {
  117. int id = mnt->mnt_group_id;
  118. ida_remove(&mnt_group_ida, id);
  119. if (mnt_group_start > id)
  120. mnt_group_start = id;
  121. mnt->mnt_group_id = 0;
  122. }
  123. /*
  124. * vfsmount lock must be held for read
  125. */
  126. static inline void mnt_add_count(struct vfsmount *mnt, int n)
  127. {
  128. #ifdef CONFIG_SMP
  129. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  130. #else
  131. preempt_disable();
  132. mnt->mnt_count += n;
  133. preempt_enable();
  134. #endif
  135. }
  136. static inline void mnt_set_count(struct vfsmount *mnt, int n)
  137. {
  138. #ifdef CONFIG_SMP
  139. this_cpu_write(mnt->mnt_pcp->mnt_count, n);
  140. #else
  141. mnt->mnt_count = n;
  142. #endif
  143. }
  144. /*
  145. * vfsmount lock must be held for read
  146. */
  147. static inline void mnt_inc_count(struct vfsmount *mnt)
  148. {
  149. mnt_add_count(mnt, 1);
  150. }
  151. /*
  152. * vfsmount lock must be held for read
  153. */
  154. static inline void mnt_dec_count(struct vfsmount *mnt)
  155. {
  156. mnt_add_count(mnt, -1);
  157. }
  158. /*
  159. * vfsmount lock must be held for write
  160. */
  161. unsigned int mnt_get_count(struct vfsmount *mnt)
  162. {
  163. #ifdef CONFIG_SMP
  164. unsigned int count = 0;
  165. int cpu;
  166. for_each_possible_cpu(cpu) {
  167. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  168. }
  169. return count;
  170. #else
  171. return mnt->mnt_count;
  172. #endif
  173. }
  174. static struct vfsmount *alloc_vfsmnt(const char *name)
  175. {
  176. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  177. if (mnt) {
  178. int err;
  179. err = mnt_alloc_id(mnt);
  180. if (err)
  181. goto out_free_cache;
  182. if (name) {
  183. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  184. if (!mnt->mnt_devname)
  185. goto out_free_id;
  186. }
  187. #ifdef CONFIG_SMP
  188. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  189. if (!mnt->mnt_pcp)
  190. goto out_free_devname;
  191. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  192. #else
  193. mnt->mnt_count = 1;
  194. mnt->mnt_writers = 0;
  195. #endif
  196. INIT_LIST_HEAD(&mnt->mnt_hash);
  197. INIT_LIST_HEAD(&mnt->mnt_child);
  198. INIT_LIST_HEAD(&mnt->mnt_mounts);
  199. INIT_LIST_HEAD(&mnt->mnt_list);
  200. INIT_LIST_HEAD(&mnt->mnt_expire);
  201. INIT_LIST_HEAD(&mnt->mnt_share);
  202. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  203. INIT_LIST_HEAD(&mnt->mnt_slave);
  204. #ifdef CONFIG_FSNOTIFY
  205. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  206. #endif
  207. }
  208. return mnt;
  209. #ifdef CONFIG_SMP
  210. out_free_devname:
  211. kfree(mnt->mnt_devname);
  212. #endif
  213. out_free_id:
  214. mnt_free_id(mnt);
  215. out_free_cache:
  216. kmem_cache_free(mnt_cache, mnt);
  217. return NULL;
  218. }
  219. /*
  220. * Most r/o checks on a fs are for operations that take
  221. * discrete amounts of time, like a write() or unlink().
  222. * We must keep track of when those operations start
  223. * (for permission checks) and when they end, so that
  224. * we can determine when writes are able to occur to
  225. * a filesystem.
  226. */
  227. /*
  228. * __mnt_is_readonly: check whether a mount is read-only
  229. * @mnt: the mount to check for its write status
  230. *
  231. * This shouldn't be used directly ouside of the VFS.
  232. * It does not guarantee that the filesystem will stay
  233. * r/w, just that it is right *now*. This can not and
  234. * should not be used in place of IS_RDONLY(inode).
  235. * mnt_want/drop_write() will _keep_ the filesystem
  236. * r/w.
  237. */
  238. int __mnt_is_readonly(struct vfsmount *mnt)
  239. {
  240. if (mnt->mnt_flags & MNT_READONLY)
  241. return 1;
  242. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  243. return 1;
  244. return 0;
  245. }
  246. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  247. static inline void mnt_inc_writers(struct vfsmount *mnt)
  248. {
  249. #ifdef CONFIG_SMP
  250. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  251. #else
  252. mnt->mnt_writers++;
  253. #endif
  254. }
  255. static inline void mnt_dec_writers(struct vfsmount *mnt)
  256. {
  257. #ifdef CONFIG_SMP
  258. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  259. #else
  260. mnt->mnt_writers--;
  261. #endif
  262. }
  263. static unsigned int mnt_get_writers(struct vfsmount *mnt)
  264. {
  265. #ifdef CONFIG_SMP
  266. unsigned int count = 0;
  267. int cpu;
  268. for_each_possible_cpu(cpu) {
  269. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  270. }
  271. return count;
  272. #else
  273. return mnt->mnt_writers;
  274. #endif
  275. }
  276. /*
  277. * Most r/o checks on a fs are for operations that take
  278. * discrete amounts of time, like a write() or unlink().
  279. * We must keep track of when those operations start
  280. * (for permission checks) and when they end, so that
  281. * we can determine when writes are able to occur to
  282. * a filesystem.
  283. */
  284. /**
  285. * mnt_want_write - get write access to a mount
  286. * @mnt: the mount on which to take a write
  287. *
  288. * This tells the low-level filesystem that a write is
  289. * about to be performed to it, and makes sure that
  290. * writes are allowed before returning success. When
  291. * the write operation is finished, mnt_drop_write()
  292. * must be called. This is effectively a refcount.
  293. */
  294. int mnt_want_write(struct vfsmount *mnt)
  295. {
  296. int ret = 0;
  297. preempt_disable();
  298. mnt_inc_writers(mnt);
  299. /*
  300. * The store to mnt_inc_writers must be visible before we pass
  301. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  302. * incremented count after it has set MNT_WRITE_HOLD.
  303. */
  304. smp_mb();
  305. while (mnt->mnt_flags & MNT_WRITE_HOLD)
  306. cpu_relax();
  307. /*
  308. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  309. * be set to match its requirements. So we must not load that until
  310. * MNT_WRITE_HOLD is cleared.
  311. */
  312. smp_rmb();
  313. if (__mnt_is_readonly(mnt)) {
  314. mnt_dec_writers(mnt);
  315. ret = -EROFS;
  316. goto out;
  317. }
  318. out:
  319. preempt_enable();
  320. return ret;
  321. }
  322. EXPORT_SYMBOL_GPL(mnt_want_write);
  323. /**
  324. * mnt_clone_write - get write access to a mount
  325. * @mnt: the mount on which to take a write
  326. *
  327. * This is effectively like mnt_want_write, except
  328. * it must only be used to take an extra write reference
  329. * on a mountpoint that we already know has a write reference
  330. * on it. This allows some optimisation.
  331. *
  332. * After finished, mnt_drop_write must be called as usual to
  333. * drop the reference.
  334. */
  335. int mnt_clone_write(struct vfsmount *mnt)
  336. {
  337. /* superblock may be r/o */
  338. if (__mnt_is_readonly(mnt))
  339. return -EROFS;
  340. preempt_disable();
  341. mnt_inc_writers(mnt);
  342. preempt_enable();
  343. return 0;
  344. }
  345. EXPORT_SYMBOL_GPL(mnt_clone_write);
  346. /**
  347. * mnt_want_write_file - get write access to a file's mount
  348. * @file: the file who's mount on which to take a write
  349. *
  350. * This is like mnt_want_write, but it takes a file and can
  351. * do some optimisations if the file is open for write already
  352. */
  353. int mnt_want_write_file(struct file *file)
  354. {
  355. struct inode *inode = file->f_dentry->d_inode;
  356. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  357. return mnt_want_write(file->f_path.mnt);
  358. else
  359. return mnt_clone_write(file->f_path.mnt);
  360. }
  361. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  362. /**
  363. * mnt_drop_write - give up write access to a mount
  364. * @mnt: the mount on which to give up write access
  365. *
  366. * Tells the low-level filesystem that we are done
  367. * performing writes to it. Must be matched with
  368. * mnt_want_write() call above.
  369. */
  370. void mnt_drop_write(struct vfsmount *mnt)
  371. {
  372. preempt_disable();
  373. mnt_dec_writers(mnt);
  374. preempt_enable();
  375. }
  376. EXPORT_SYMBOL_GPL(mnt_drop_write);
  377. static int mnt_make_readonly(struct vfsmount *mnt)
  378. {
  379. int ret = 0;
  380. br_write_lock(vfsmount_lock);
  381. mnt->mnt_flags |= MNT_WRITE_HOLD;
  382. /*
  383. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  384. * should be visible before we do.
  385. */
  386. smp_mb();
  387. /*
  388. * With writers on hold, if this value is zero, then there are
  389. * definitely no active writers (although held writers may subsequently
  390. * increment the count, they'll have to wait, and decrement it after
  391. * seeing MNT_READONLY).
  392. *
  393. * It is OK to have counter incremented on one CPU and decremented on
  394. * another: the sum will add up correctly. The danger would be when we
  395. * sum up each counter, if we read a counter before it is incremented,
  396. * but then read another CPU's count which it has been subsequently
  397. * decremented from -- we would see more decrements than we should.
  398. * MNT_WRITE_HOLD protects against this scenario, because
  399. * mnt_want_write first increments count, then smp_mb, then spins on
  400. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  401. * we're counting up here.
  402. */
  403. if (mnt_get_writers(mnt) > 0)
  404. ret = -EBUSY;
  405. else
  406. mnt->mnt_flags |= MNT_READONLY;
  407. /*
  408. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  409. * that become unheld will see MNT_READONLY.
  410. */
  411. smp_wmb();
  412. mnt->mnt_flags &= ~MNT_WRITE_HOLD;
  413. br_write_unlock(vfsmount_lock);
  414. return ret;
  415. }
  416. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  417. {
  418. br_write_lock(vfsmount_lock);
  419. mnt->mnt_flags &= ~MNT_READONLY;
  420. br_write_unlock(vfsmount_lock);
  421. }
  422. static void free_vfsmnt(struct vfsmount *mnt)
  423. {
  424. kfree(mnt->mnt_devname);
  425. mnt_free_id(mnt);
  426. #ifdef CONFIG_SMP
  427. free_percpu(mnt->mnt_pcp);
  428. #endif
  429. kmem_cache_free(mnt_cache, mnt);
  430. }
  431. /*
  432. * find the first or last mount at @dentry on vfsmount @mnt depending on
  433. * @dir. If @dir is set return the first mount else return the last mount.
  434. * vfsmount_lock must be held for read or write.
  435. */
  436. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  437. int dir)
  438. {
  439. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  440. struct list_head *tmp = head;
  441. struct vfsmount *p, *found = NULL;
  442. for (;;) {
  443. tmp = dir ? tmp->next : tmp->prev;
  444. p = NULL;
  445. if (tmp == head)
  446. break;
  447. p = list_entry(tmp, struct vfsmount, mnt_hash);
  448. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  449. found = p;
  450. break;
  451. }
  452. }
  453. return found;
  454. }
  455. /*
  456. * lookup_mnt increments the ref count before returning
  457. * the vfsmount struct.
  458. */
  459. struct vfsmount *lookup_mnt(struct path *path)
  460. {
  461. struct vfsmount *child_mnt;
  462. br_read_lock(vfsmount_lock);
  463. if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
  464. mntget(child_mnt);
  465. br_read_unlock(vfsmount_lock);
  466. return child_mnt;
  467. }
  468. static inline int check_mnt(struct vfsmount *mnt)
  469. {
  470. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  471. }
  472. /*
  473. * vfsmount lock must be held for write
  474. */
  475. static void touch_mnt_namespace(struct mnt_namespace *ns)
  476. {
  477. if (ns) {
  478. ns->event = ++event;
  479. wake_up_interruptible(&ns->poll);
  480. }
  481. }
  482. /*
  483. * vfsmount lock must be held for write
  484. */
  485. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  486. {
  487. if (ns && ns->event != event) {
  488. ns->event = event;
  489. wake_up_interruptible(&ns->poll);
  490. }
  491. }
  492. /*
  493. * Clear dentry's mounted state if it has no remaining mounts.
  494. * vfsmount_lock must be held for write.
  495. */
  496. static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
  497. {
  498. unsigned u;
  499. for (u = 0; u < HASH_SIZE; u++) {
  500. struct vfsmount *p;
  501. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  502. if (p->mnt_mountpoint == dentry)
  503. return;
  504. }
  505. }
  506. spin_lock(&dentry->d_lock);
  507. dentry->d_flags &= ~DCACHE_MOUNTED;
  508. spin_unlock(&dentry->d_lock);
  509. }
  510. /*
  511. * vfsmount lock must be held for write
  512. */
  513. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  514. {
  515. old_path->dentry = mnt->mnt_mountpoint;
  516. old_path->mnt = mnt->mnt_parent;
  517. mnt->mnt_parent = mnt;
  518. mnt->mnt_mountpoint = mnt->mnt_root;
  519. list_del_init(&mnt->mnt_child);
  520. list_del_init(&mnt->mnt_hash);
  521. dentry_reset_mounted(old_path->mnt, old_path->dentry);
  522. }
  523. /*
  524. * vfsmount lock must be held for write
  525. */
  526. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  527. struct vfsmount *child_mnt)
  528. {
  529. child_mnt->mnt_parent = mntget(mnt);
  530. child_mnt->mnt_mountpoint = dget(dentry);
  531. spin_lock(&dentry->d_lock);
  532. dentry->d_flags |= DCACHE_MOUNTED;
  533. spin_unlock(&dentry->d_lock);
  534. }
  535. /*
  536. * vfsmount lock must be held for write
  537. */
  538. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  539. {
  540. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  541. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  542. hash(path->mnt, path->dentry));
  543. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  544. }
  545. static inline void __mnt_make_longterm(struct vfsmount *mnt)
  546. {
  547. #ifdef CONFIG_SMP
  548. atomic_inc(&mnt->mnt_longterm);
  549. #endif
  550. }
  551. /* needs vfsmount lock for write */
  552. static inline void __mnt_make_shortterm(struct vfsmount *mnt)
  553. {
  554. #ifdef CONFIG_SMP
  555. atomic_dec(&mnt->mnt_longterm);
  556. #endif
  557. }
  558. /*
  559. * vfsmount lock must be held for write
  560. */
  561. static void commit_tree(struct vfsmount *mnt)
  562. {
  563. struct vfsmount *parent = mnt->mnt_parent;
  564. struct vfsmount *m;
  565. LIST_HEAD(head);
  566. struct mnt_namespace *n = parent->mnt_ns;
  567. BUG_ON(parent == mnt);
  568. list_add_tail(&head, &mnt->mnt_list);
  569. list_for_each_entry(m, &head, mnt_list) {
  570. m->mnt_ns = n;
  571. __mnt_make_longterm(m);
  572. }
  573. list_splice(&head, n->list.prev);
  574. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  575. hash(parent, mnt->mnt_mountpoint));
  576. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  577. touch_mnt_namespace(n);
  578. }
  579. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  580. {
  581. struct list_head *next = p->mnt_mounts.next;
  582. if (next == &p->mnt_mounts) {
  583. while (1) {
  584. if (p == root)
  585. return NULL;
  586. next = p->mnt_child.next;
  587. if (next != &p->mnt_parent->mnt_mounts)
  588. break;
  589. p = p->mnt_parent;
  590. }
  591. }
  592. return list_entry(next, struct vfsmount, mnt_child);
  593. }
  594. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  595. {
  596. struct list_head *prev = p->mnt_mounts.prev;
  597. while (prev != &p->mnt_mounts) {
  598. p = list_entry(prev, struct vfsmount, mnt_child);
  599. prev = p->mnt_mounts.prev;
  600. }
  601. return p;
  602. }
  603. struct vfsmount *
  604. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  605. {
  606. struct vfsmount *mnt;
  607. struct dentry *root;
  608. if (!type)
  609. return ERR_PTR(-ENODEV);
  610. mnt = alloc_vfsmnt(name);
  611. if (!mnt)
  612. return ERR_PTR(-ENOMEM);
  613. if (flags & MS_KERNMOUNT)
  614. mnt->mnt_flags = MNT_INTERNAL;
  615. root = mount_fs(type, flags, name, data);
  616. if (IS_ERR(root)) {
  617. free_vfsmnt(mnt);
  618. return ERR_CAST(root);
  619. }
  620. mnt->mnt_root = root;
  621. mnt->mnt_sb = root->d_sb;
  622. mnt->mnt_mountpoint = mnt->mnt_root;
  623. mnt->mnt_parent = mnt;
  624. return mnt;
  625. }
  626. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  627. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  628. int flag)
  629. {
  630. struct super_block *sb = old->mnt_sb;
  631. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  632. if (mnt) {
  633. if (flag & (CL_SLAVE | CL_PRIVATE))
  634. mnt->mnt_group_id = 0; /* not a peer of original */
  635. else
  636. mnt->mnt_group_id = old->mnt_group_id;
  637. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  638. int err = mnt_alloc_group_id(mnt);
  639. if (err)
  640. goto out_free;
  641. }
  642. mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
  643. atomic_inc(&sb->s_active);
  644. mnt->mnt_sb = sb;
  645. mnt->mnt_root = dget(root);
  646. mnt->mnt_mountpoint = mnt->mnt_root;
  647. mnt->mnt_parent = mnt;
  648. if (flag & CL_SLAVE) {
  649. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  650. mnt->mnt_master = old;
  651. CLEAR_MNT_SHARED(mnt);
  652. } else if (!(flag & CL_PRIVATE)) {
  653. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  654. list_add(&mnt->mnt_share, &old->mnt_share);
  655. if (IS_MNT_SLAVE(old))
  656. list_add(&mnt->mnt_slave, &old->mnt_slave);
  657. mnt->mnt_master = old->mnt_master;
  658. }
  659. if (flag & CL_MAKE_SHARED)
  660. set_mnt_shared(mnt);
  661. /* stick the duplicate mount on the same expiry list
  662. * as the original if that was on one */
  663. if (flag & CL_EXPIRE) {
  664. if (!list_empty(&old->mnt_expire))
  665. list_add(&mnt->mnt_expire, &old->mnt_expire);
  666. }
  667. }
  668. return mnt;
  669. out_free:
  670. free_vfsmnt(mnt);
  671. return NULL;
  672. }
  673. static inline void mntfree(struct vfsmount *mnt)
  674. {
  675. struct super_block *sb = mnt->mnt_sb;
  676. /*
  677. * This probably indicates that somebody messed
  678. * up a mnt_want/drop_write() pair. If this
  679. * happens, the filesystem was probably unable
  680. * to make r/w->r/o transitions.
  681. */
  682. /*
  683. * The locking used to deal with mnt_count decrement provides barriers,
  684. * so mnt_get_writers() below is safe.
  685. */
  686. WARN_ON(mnt_get_writers(mnt));
  687. fsnotify_vfsmount_delete(mnt);
  688. dput(mnt->mnt_root);
  689. free_vfsmnt(mnt);
  690. deactivate_super(sb);
  691. }
  692. static void mntput_no_expire(struct vfsmount *mnt)
  693. {
  694. put_again:
  695. #ifdef CONFIG_SMP
  696. br_read_lock(vfsmount_lock);
  697. if (likely(atomic_read(&mnt->mnt_longterm))) {
  698. mnt_dec_count(mnt);
  699. br_read_unlock(vfsmount_lock);
  700. return;
  701. }
  702. br_read_unlock(vfsmount_lock);
  703. br_write_lock(vfsmount_lock);
  704. mnt_dec_count(mnt);
  705. if (mnt_get_count(mnt)) {
  706. br_write_unlock(vfsmount_lock);
  707. return;
  708. }
  709. #else
  710. mnt_dec_count(mnt);
  711. if (likely(mnt_get_count(mnt)))
  712. return;
  713. br_write_lock(vfsmount_lock);
  714. #endif
  715. if (unlikely(mnt->mnt_pinned)) {
  716. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  717. mnt->mnt_pinned = 0;
  718. br_write_unlock(vfsmount_lock);
  719. acct_auto_close_mnt(mnt);
  720. goto put_again;
  721. }
  722. br_write_unlock(vfsmount_lock);
  723. mntfree(mnt);
  724. }
  725. void mntput(struct vfsmount *mnt)
  726. {
  727. if (mnt) {
  728. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  729. if (unlikely(mnt->mnt_expiry_mark))
  730. mnt->mnt_expiry_mark = 0;
  731. mntput_no_expire(mnt);
  732. }
  733. }
  734. EXPORT_SYMBOL(mntput);
  735. struct vfsmount *mntget(struct vfsmount *mnt)
  736. {
  737. if (mnt)
  738. mnt_inc_count(mnt);
  739. return mnt;
  740. }
  741. EXPORT_SYMBOL(mntget);
  742. void mnt_pin(struct vfsmount *mnt)
  743. {
  744. br_write_lock(vfsmount_lock);
  745. mnt->mnt_pinned++;
  746. br_write_unlock(vfsmount_lock);
  747. }
  748. EXPORT_SYMBOL(mnt_pin);
  749. void mnt_unpin(struct vfsmount *mnt)
  750. {
  751. br_write_lock(vfsmount_lock);
  752. if (mnt->mnt_pinned) {
  753. mnt_inc_count(mnt);
  754. mnt->mnt_pinned--;
  755. }
  756. br_write_unlock(vfsmount_lock);
  757. }
  758. EXPORT_SYMBOL(mnt_unpin);
  759. static inline void mangle(struct seq_file *m, const char *s)
  760. {
  761. seq_escape(m, s, " \t\n\\");
  762. }
  763. /*
  764. * Simple .show_options callback for filesystems which don't want to
  765. * implement more complex mount option showing.
  766. *
  767. * See also save_mount_options().
  768. */
  769. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  770. {
  771. const char *options;
  772. rcu_read_lock();
  773. options = rcu_dereference(mnt->mnt_sb->s_options);
  774. if (options != NULL && options[0]) {
  775. seq_putc(m, ',');
  776. mangle(m, options);
  777. }
  778. rcu_read_unlock();
  779. return 0;
  780. }
  781. EXPORT_SYMBOL(generic_show_options);
  782. /*
  783. * If filesystem uses generic_show_options(), this function should be
  784. * called from the fill_super() callback.
  785. *
  786. * The .remount_fs callback usually needs to be handled in a special
  787. * way, to make sure, that previous options are not overwritten if the
  788. * remount fails.
  789. *
  790. * Also note, that if the filesystem's .remount_fs function doesn't
  791. * reset all options to their default value, but changes only newly
  792. * given options, then the displayed options will not reflect reality
  793. * any more.
  794. */
  795. void save_mount_options(struct super_block *sb, char *options)
  796. {
  797. BUG_ON(sb->s_options);
  798. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  799. }
  800. EXPORT_SYMBOL(save_mount_options);
  801. void replace_mount_options(struct super_block *sb, char *options)
  802. {
  803. char *old = sb->s_options;
  804. rcu_assign_pointer(sb->s_options, options);
  805. if (old) {
  806. synchronize_rcu();
  807. kfree(old);
  808. }
  809. }
  810. EXPORT_SYMBOL(replace_mount_options);
  811. #ifdef CONFIG_PROC_FS
  812. /* iterator */
  813. static void *m_start(struct seq_file *m, loff_t *pos)
  814. {
  815. struct proc_mounts *p = m->private;
  816. down_read(&namespace_sem);
  817. return seq_list_start(&p->ns->list, *pos);
  818. }
  819. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  820. {
  821. struct proc_mounts *p = m->private;
  822. return seq_list_next(v, &p->ns->list, pos);
  823. }
  824. static void m_stop(struct seq_file *m, void *v)
  825. {
  826. up_read(&namespace_sem);
  827. }
  828. int mnt_had_events(struct proc_mounts *p)
  829. {
  830. struct mnt_namespace *ns = p->ns;
  831. int res = 0;
  832. br_read_lock(vfsmount_lock);
  833. if (p->m.poll_event != ns->event) {
  834. p->m.poll_event = ns->event;
  835. res = 1;
  836. }
  837. br_read_unlock(vfsmount_lock);
  838. return res;
  839. }
  840. struct proc_fs_info {
  841. int flag;
  842. const char *str;
  843. };
  844. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  845. {
  846. static const struct proc_fs_info fs_info[] = {
  847. { MS_SYNCHRONOUS, ",sync" },
  848. { MS_DIRSYNC, ",dirsync" },
  849. { MS_MANDLOCK, ",mand" },
  850. { 0, NULL }
  851. };
  852. const struct proc_fs_info *fs_infop;
  853. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  854. if (sb->s_flags & fs_infop->flag)
  855. seq_puts(m, fs_infop->str);
  856. }
  857. return security_sb_show_options(m, sb);
  858. }
  859. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  860. {
  861. static const struct proc_fs_info mnt_info[] = {
  862. { MNT_NOSUID, ",nosuid" },
  863. { MNT_NODEV, ",nodev" },
  864. { MNT_NOEXEC, ",noexec" },
  865. { MNT_NOATIME, ",noatime" },
  866. { MNT_NODIRATIME, ",nodiratime" },
  867. { MNT_RELATIME, ",relatime" },
  868. { 0, NULL }
  869. };
  870. const struct proc_fs_info *fs_infop;
  871. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  872. if (mnt->mnt_flags & fs_infop->flag)
  873. seq_puts(m, fs_infop->str);
  874. }
  875. }
  876. static void show_type(struct seq_file *m, struct super_block *sb)
  877. {
  878. mangle(m, sb->s_type->name);
  879. if (sb->s_subtype && sb->s_subtype[0]) {
  880. seq_putc(m, '.');
  881. mangle(m, sb->s_subtype);
  882. }
  883. }
  884. static int show_vfsmnt(struct seq_file *m, void *v)
  885. {
  886. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  887. int err = 0;
  888. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  889. if (mnt->mnt_sb->s_op->show_devname) {
  890. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  891. if (err)
  892. goto out;
  893. } else {
  894. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  895. }
  896. seq_putc(m, ' ');
  897. seq_path(m, &mnt_path, " \t\n\\");
  898. seq_putc(m, ' ');
  899. show_type(m, mnt->mnt_sb);
  900. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  901. err = show_sb_opts(m, mnt->mnt_sb);
  902. if (err)
  903. goto out;
  904. show_mnt_opts(m, mnt);
  905. if (mnt->mnt_sb->s_op->show_options)
  906. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  907. seq_puts(m, " 0 0\n");
  908. out:
  909. return err;
  910. }
  911. const struct seq_operations mounts_op = {
  912. .start = m_start,
  913. .next = m_next,
  914. .stop = m_stop,
  915. .show = show_vfsmnt
  916. };
  917. static int show_mountinfo(struct seq_file *m, void *v)
  918. {
  919. struct proc_mounts *p = m->private;
  920. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  921. struct super_block *sb = mnt->mnt_sb;
  922. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  923. struct path root = p->root;
  924. int err = 0;
  925. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  926. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  927. if (sb->s_op->show_path)
  928. err = sb->s_op->show_path(m, mnt);
  929. else
  930. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  931. if (err)
  932. goto out;
  933. seq_putc(m, ' ');
  934. seq_path_root(m, &mnt_path, &root, " \t\n\\");
  935. if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
  936. /*
  937. * Mountpoint is outside root, discard that one. Ugly,
  938. * but less so than trying to do that in iterator in a
  939. * race-free way (due to renames).
  940. */
  941. return SEQ_SKIP;
  942. }
  943. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  944. show_mnt_opts(m, mnt);
  945. /* Tagged fields ("foo:X" or "bar") */
  946. if (IS_MNT_SHARED(mnt))
  947. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  948. if (IS_MNT_SLAVE(mnt)) {
  949. int master = mnt->mnt_master->mnt_group_id;
  950. int dom = get_dominating_id(mnt, &p->root);
  951. seq_printf(m, " master:%i", master);
  952. if (dom && dom != master)
  953. seq_printf(m, " propagate_from:%i", dom);
  954. }
  955. if (IS_MNT_UNBINDABLE(mnt))
  956. seq_puts(m, " unbindable");
  957. /* Filesystem specific data */
  958. seq_puts(m, " - ");
  959. show_type(m, sb);
  960. seq_putc(m, ' ');
  961. if (sb->s_op->show_devname)
  962. err = sb->s_op->show_devname(m, mnt);
  963. else
  964. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  965. if (err)
  966. goto out;
  967. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  968. err = show_sb_opts(m, sb);
  969. if (err)
  970. goto out;
  971. if (sb->s_op->show_options)
  972. err = sb->s_op->show_options(m, mnt);
  973. seq_putc(m, '\n');
  974. out:
  975. return err;
  976. }
  977. const struct seq_operations mountinfo_op = {
  978. .start = m_start,
  979. .next = m_next,
  980. .stop = m_stop,
  981. .show = show_mountinfo,
  982. };
  983. static int show_vfsstat(struct seq_file *m, void *v)
  984. {
  985. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  986. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  987. int err = 0;
  988. /* device */
  989. if (mnt->mnt_sb->s_op->show_devname) {
  990. seq_puts(m, "device ");
  991. err = mnt->mnt_sb->s_op->show_devname(m, mnt);
  992. } else {
  993. if (mnt->mnt_devname) {
  994. seq_puts(m, "device ");
  995. mangle(m, mnt->mnt_devname);
  996. } else
  997. seq_puts(m, "no device");
  998. }
  999. /* mount point */
  1000. seq_puts(m, " mounted on ");
  1001. seq_path(m, &mnt_path, " \t\n\\");
  1002. seq_putc(m, ' ');
  1003. /* file system type */
  1004. seq_puts(m, "with fstype ");
  1005. show_type(m, mnt->mnt_sb);
  1006. /* optional statistics */
  1007. if (mnt->mnt_sb->s_op->show_stats) {
  1008. seq_putc(m, ' ');
  1009. if (!err)
  1010. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  1011. }
  1012. seq_putc(m, '\n');
  1013. return err;
  1014. }
  1015. const struct seq_operations mountstats_op = {
  1016. .start = m_start,
  1017. .next = m_next,
  1018. .stop = m_stop,
  1019. .show = show_vfsstat,
  1020. };
  1021. #endif /* CONFIG_PROC_FS */
  1022. /**
  1023. * may_umount_tree - check if a mount tree is busy
  1024. * @mnt: root of mount tree
  1025. *
  1026. * This is called to check if a tree of mounts has any
  1027. * open files, pwds, chroots or sub mounts that are
  1028. * busy.
  1029. */
  1030. int may_umount_tree(struct vfsmount *mnt)
  1031. {
  1032. int actual_refs = 0;
  1033. int minimum_refs = 0;
  1034. struct vfsmount *p;
  1035. /* write lock needed for mnt_get_count */
  1036. br_write_lock(vfsmount_lock);
  1037. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1038. actual_refs += mnt_get_count(p);
  1039. minimum_refs += 2;
  1040. }
  1041. br_write_unlock(vfsmount_lock);
  1042. if (actual_refs > minimum_refs)
  1043. return 0;
  1044. return 1;
  1045. }
  1046. EXPORT_SYMBOL(may_umount_tree);
  1047. /**
  1048. * may_umount - check if a mount point is busy
  1049. * @mnt: root of mount
  1050. *
  1051. * This is called to check if a mount point has any
  1052. * open files, pwds, chroots or sub mounts. If the
  1053. * mount has sub mounts this will return busy
  1054. * regardless of whether the sub mounts are busy.
  1055. *
  1056. * Doesn't take quota and stuff into account. IOW, in some cases it will
  1057. * give false negatives. The main reason why it's here is that we need
  1058. * a non-destructive way to look for easily umountable filesystems.
  1059. */
  1060. int may_umount(struct vfsmount *mnt)
  1061. {
  1062. int ret = 1;
  1063. down_read(&namespace_sem);
  1064. br_write_lock(vfsmount_lock);
  1065. if (propagate_mount_busy(mnt, 2))
  1066. ret = 0;
  1067. br_write_unlock(vfsmount_lock);
  1068. up_read(&namespace_sem);
  1069. return ret;
  1070. }
  1071. EXPORT_SYMBOL(may_umount);
  1072. void release_mounts(struct list_head *head)
  1073. {
  1074. struct vfsmount *mnt;
  1075. while (!list_empty(head)) {
  1076. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  1077. list_del_init(&mnt->mnt_hash);
  1078. if (mnt->mnt_parent != mnt) {
  1079. struct dentry *dentry;
  1080. struct vfsmount *m;
  1081. br_write_lock(vfsmount_lock);
  1082. dentry = mnt->mnt_mountpoint;
  1083. m = mnt->mnt_parent;
  1084. mnt->mnt_mountpoint = mnt->mnt_root;
  1085. mnt->mnt_parent = mnt;
  1086. m->mnt_ghosts--;
  1087. br_write_unlock(vfsmount_lock);
  1088. dput(dentry);
  1089. mntput(m);
  1090. }
  1091. mntput(mnt);
  1092. }
  1093. }
  1094. /*
  1095. * vfsmount lock must be held for write
  1096. * namespace_sem must be held for write
  1097. */
  1098. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  1099. {
  1100. LIST_HEAD(tmp_list);
  1101. struct vfsmount *p;
  1102. for (p = mnt; p; p = next_mnt(p, mnt))
  1103. list_move(&p->mnt_hash, &tmp_list);
  1104. if (propagate)
  1105. propagate_umount(&tmp_list);
  1106. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1107. list_del_init(&p->mnt_expire);
  1108. list_del_init(&p->mnt_list);
  1109. __touch_mnt_namespace(p->mnt_ns);
  1110. p->mnt_ns = NULL;
  1111. __mnt_make_shortterm(p);
  1112. list_del_init(&p->mnt_child);
  1113. if (p->mnt_parent != p) {
  1114. p->mnt_parent->mnt_ghosts++;
  1115. dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
  1116. }
  1117. change_mnt_propagation(p, MS_PRIVATE);
  1118. }
  1119. list_splice(&tmp_list, kill);
  1120. }
  1121. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  1122. static int do_umount(struct vfsmount *mnt, int flags)
  1123. {
  1124. struct super_block *sb = mnt->mnt_sb;
  1125. int retval;
  1126. LIST_HEAD(umount_list);
  1127. retval = security_sb_umount(mnt, flags);
  1128. if (retval)
  1129. return retval;
  1130. /*
  1131. * Allow userspace to request a mountpoint be expired rather than
  1132. * unmounting unconditionally. Unmount only happens if:
  1133. * (1) the mark is already set (the mark is cleared by mntput())
  1134. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1135. */
  1136. if (flags & MNT_EXPIRE) {
  1137. if (mnt == current->fs->root.mnt ||
  1138. flags & (MNT_FORCE | MNT_DETACH))
  1139. return -EINVAL;
  1140. /*
  1141. * probably don't strictly need the lock here if we examined
  1142. * all race cases, but it's a slowpath.
  1143. */
  1144. br_write_lock(vfsmount_lock);
  1145. if (mnt_get_count(mnt) != 2) {
  1146. br_write_unlock(vfsmount_lock);
  1147. return -EBUSY;
  1148. }
  1149. br_write_unlock(vfsmount_lock);
  1150. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1151. return -EAGAIN;
  1152. }
  1153. /*
  1154. * If we may have to abort operations to get out of this
  1155. * mount, and they will themselves hold resources we must
  1156. * allow the fs to do things. In the Unix tradition of
  1157. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1158. * might fail to complete on the first run through as other tasks
  1159. * must return, and the like. Thats for the mount program to worry
  1160. * about for the moment.
  1161. */
  1162. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1163. sb->s_op->umount_begin(sb);
  1164. }
  1165. /*
  1166. * No sense to grab the lock for this test, but test itself looks
  1167. * somewhat bogus. Suggestions for better replacement?
  1168. * Ho-hum... In principle, we might treat that as umount + switch
  1169. * to rootfs. GC would eventually take care of the old vfsmount.
  1170. * Actually it makes sense, especially if rootfs would contain a
  1171. * /reboot - static binary that would close all descriptors and
  1172. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1173. */
  1174. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1175. /*
  1176. * Special case for "unmounting" root ...
  1177. * we just try to remount it readonly.
  1178. */
  1179. down_write(&sb->s_umount);
  1180. if (!(sb->s_flags & MS_RDONLY))
  1181. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1182. up_write(&sb->s_umount);
  1183. return retval;
  1184. }
  1185. down_write(&namespace_sem);
  1186. br_write_lock(vfsmount_lock);
  1187. event++;
  1188. if (!(flags & MNT_DETACH))
  1189. shrink_submounts(mnt, &umount_list);
  1190. retval = -EBUSY;
  1191. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1192. if (!list_empty(&mnt->mnt_list))
  1193. umount_tree(mnt, 1, &umount_list);
  1194. retval = 0;
  1195. }
  1196. br_write_unlock(vfsmount_lock);
  1197. up_write(&namespace_sem);
  1198. release_mounts(&umount_list);
  1199. return retval;
  1200. }
  1201. /*
  1202. * Now umount can handle mount points as well as block devices.
  1203. * This is important for filesystems which use unnamed block devices.
  1204. *
  1205. * We now support a flag for forced unmount like the other 'big iron'
  1206. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1207. */
  1208. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1209. {
  1210. struct path path;
  1211. int retval;
  1212. int lookup_flags = 0;
  1213. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1214. return -EINVAL;
  1215. if (!(flags & UMOUNT_NOFOLLOW))
  1216. lookup_flags |= LOOKUP_FOLLOW;
  1217. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1218. if (retval)
  1219. goto out;
  1220. retval = -EINVAL;
  1221. if (path.dentry != path.mnt->mnt_root)
  1222. goto dput_and_out;
  1223. if (!check_mnt(path.mnt))
  1224. goto dput_and_out;
  1225. retval = -EPERM;
  1226. if (!capable(CAP_SYS_ADMIN))
  1227. goto dput_and_out;
  1228. retval = do_umount(path.mnt, flags);
  1229. dput_and_out:
  1230. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1231. dput(path.dentry);
  1232. mntput_no_expire(path.mnt);
  1233. out:
  1234. return retval;
  1235. }
  1236. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1237. /*
  1238. * The 2.0 compatible umount. No flags.
  1239. */
  1240. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1241. {
  1242. return sys_umount(name, 0);
  1243. }
  1244. #endif
  1245. static int mount_is_safe(struct path *path)
  1246. {
  1247. if (capable(CAP_SYS_ADMIN))
  1248. return 0;
  1249. return -EPERM;
  1250. #ifdef notyet
  1251. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1252. return -EPERM;
  1253. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1254. if (current_uid() != path->dentry->d_inode->i_uid)
  1255. return -EPERM;
  1256. }
  1257. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1258. return -EPERM;
  1259. return 0;
  1260. #endif
  1261. }
  1262. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1263. int flag)
  1264. {
  1265. struct vfsmount *res, *p, *q, *r, *s;
  1266. struct path path;
  1267. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1268. return NULL;
  1269. res = q = clone_mnt(mnt, dentry, flag);
  1270. if (!q)
  1271. goto Enomem;
  1272. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1273. p = mnt;
  1274. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1275. if (!is_subdir(r->mnt_mountpoint, dentry))
  1276. continue;
  1277. for (s = r; s; s = next_mnt(s, r)) {
  1278. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1279. s = skip_mnt_tree(s);
  1280. continue;
  1281. }
  1282. while (p != s->mnt_parent) {
  1283. p = p->mnt_parent;
  1284. q = q->mnt_parent;
  1285. }
  1286. p = s;
  1287. path.mnt = q;
  1288. path.dentry = p->mnt_mountpoint;
  1289. q = clone_mnt(p, p->mnt_root, flag);
  1290. if (!q)
  1291. goto Enomem;
  1292. br_write_lock(vfsmount_lock);
  1293. list_add_tail(&q->mnt_list, &res->mnt_list);
  1294. attach_mnt(q, &path);
  1295. br_write_unlock(vfsmount_lock);
  1296. }
  1297. }
  1298. return res;
  1299. Enomem:
  1300. if (res) {
  1301. LIST_HEAD(umount_list);
  1302. br_write_lock(vfsmount_lock);
  1303. umount_tree(res, 0, &umount_list);
  1304. br_write_unlock(vfsmount_lock);
  1305. release_mounts(&umount_list);
  1306. }
  1307. return NULL;
  1308. }
  1309. struct vfsmount *collect_mounts(struct path *path)
  1310. {
  1311. struct vfsmount *tree;
  1312. down_write(&namespace_sem);
  1313. tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
  1314. up_write(&namespace_sem);
  1315. return tree;
  1316. }
  1317. void drop_collected_mounts(struct vfsmount *mnt)
  1318. {
  1319. LIST_HEAD(umount_list);
  1320. down_write(&namespace_sem);
  1321. br_write_lock(vfsmount_lock);
  1322. umount_tree(mnt, 0, &umount_list);
  1323. br_write_unlock(vfsmount_lock);
  1324. up_write(&namespace_sem);
  1325. release_mounts(&umount_list);
  1326. }
  1327. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1328. struct vfsmount *root)
  1329. {
  1330. struct vfsmount *mnt;
  1331. int res = f(root, arg);
  1332. if (res)
  1333. return res;
  1334. list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
  1335. res = f(mnt, arg);
  1336. if (res)
  1337. return res;
  1338. }
  1339. return 0;
  1340. }
  1341. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1342. {
  1343. struct vfsmount *p;
  1344. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1345. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1346. mnt_release_group_id(p);
  1347. }
  1348. }
  1349. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1350. {
  1351. struct vfsmount *p;
  1352. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1353. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1354. int err = mnt_alloc_group_id(p);
  1355. if (err) {
  1356. cleanup_group_ids(mnt, p);
  1357. return err;
  1358. }
  1359. }
  1360. }
  1361. return 0;
  1362. }
  1363. /*
  1364. * @source_mnt : mount tree to be attached
  1365. * @nd : place the mount tree @source_mnt is attached
  1366. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1367. * store the parent mount and mountpoint dentry.
  1368. * (done when source_mnt is moved)
  1369. *
  1370. * NOTE: in the table below explains the semantics when a source mount
  1371. * of a given type is attached to a destination mount of a given type.
  1372. * ---------------------------------------------------------------------------
  1373. * | BIND MOUNT OPERATION |
  1374. * |**************************************************************************
  1375. * | source-->| shared | private | slave | unbindable |
  1376. * | dest | | | | |
  1377. * | | | | | | |
  1378. * | v | | | | |
  1379. * |**************************************************************************
  1380. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1381. * | | | | | |
  1382. * |non-shared| shared (+) | private | slave (*) | invalid |
  1383. * ***************************************************************************
  1384. * A bind operation clones the source mount and mounts the clone on the
  1385. * destination mount.
  1386. *
  1387. * (++) the cloned mount is propagated to all the mounts in the propagation
  1388. * tree of the destination mount and the cloned mount is added to
  1389. * the peer group of the source mount.
  1390. * (+) the cloned mount is created under the destination mount and is marked
  1391. * as shared. The cloned mount is added to the peer group of the source
  1392. * mount.
  1393. * (+++) the mount is propagated to all the mounts in the propagation tree
  1394. * of the destination mount and the cloned mount is made slave
  1395. * of the same master as that of the source mount. The cloned mount
  1396. * is marked as 'shared and slave'.
  1397. * (*) the cloned mount is made a slave of the same master as that of the
  1398. * source mount.
  1399. *
  1400. * ---------------------------------------------------------------------------
  1401. * | MOVE MOUNT OPERATION |
  1402. * |**************************************************************************
  1403. * | source-->| shared | private | slave | unbindable |
  1404. * | dest | | | | |
  1405. * | | | | | | |
  1406. * | v | | | | |
  1407. * |**************************************************************************
  1408. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1409. * | | | | | |
  1410. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1411. * ***************************************************************************
  1412. *
  1413. * (+) the mount is moved to the destination. And is then propagated to
  1414. * all the mounts in the propagation tree of the destination mount.
  1415. * (+*) the mount is moved to the destination.
  1416. * (+++) the mount is moved to the destination and is then propagated to
  1417. * all the mounts belonging to the destination mount's propagation tree.
  1418. * the mount is marked as 'shared and slave'.
  1419. * (*) the mount continues to be a slave at the new location.
  1420. *
  1421. * if the source mount is a tree, the operations explained above is
  1422. * applied to each mount in the tree.
  1423. * Must be called without spinlocks held, since this function can sleep
  1424. * in allocations.
  1425. */
  1426. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1427. struct path *path, struct path *parent_path)
  1428. {
  1429. LIST_HEAD(tree_list);
  1430. struct vfsmount *dest_mnt = path->mnt;
  1431. struct dentry *dest_dentry = path->dentry;
  1432. struct vfsmount *child, *p;
  1433. int err;
  1434. if (IS_MNT_SHARED(dest_mnt)) {
  1435. err = invent_group_ids(source_mnt, true);
  1436. if (err)
  1437. goto out;
  1438. }
  1439. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1440. if (err)
  1441. goto out_cleanup_ids;
  1442. br_write_lock(vfsmount_lock);
  1443. if (IS_MNT_SHARED(dest_mnt)) {
  1444. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1445. set_mnt_shared(p);
  1446. }
  1447. if (parent_path) {
  1448. detach_mnt(source_mnt, parent_path);
  1449. attach_mnt(source_mnt, path);
  1450. touch_mnt_namespace(parent_path->mnt->mnt_ns);
  1451. } else {
  1452. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1453. commit_tree(source_mnt);
  1454. }
  1455. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1456. list_del_init(&child->mnt_hash);
  1457. commit_tree(child);
  1458. }
  1459. br_write_unlock(vfsmount_lock);
  1460. return 0;
  1461. out_cleanup_ids:
  1462. if (IS_MNT_SHARED(dest_mnt))
  1463. cleanup_group_ids(source_mnt, NULL);
  1464. out:
  1465. return err;
  1466. }
  1467. static int lock_mount(struct path *path)
  1468. {
  1469. struct vfsmount *mnt;
  1470. retry:
  1471. mutex_lock(&path->dentry->d_inode->i_mutex);
  1472. if (unlikely(cant_mount(path->dentry))) {
  1473. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1474. return -ENOENT;
  1475. }
  1476. down_write(&namespace_sem);
  1477. mnt = lookup_mnt(path);
  1478. if (likely(!mnt))
  1479. return 0;
  1480. up_write(&namespace_sem);
  1481. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1482. path_put(path);
  1483. path->mnt = mnt;
  1484. path->dentry = dget(mnt->mnt_root);
  1485. goto retry;
  1486. }
  1487. static void unlock_mount(struct path *path)
  1488. {
  1489. up_write(&namespace_sem);
  1490. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1491. }
  1492. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1493. {
  1494. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1495. return -EINVAL;
  1496. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1497. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1498. return -ENOTDIR;
  1499. if (d_unlinked(path->dentry))
  1500. return -ENOENT;
  1501. return attach_recursive_mnt(mnt, path, NULL);
  1502. }
  1503. /*
  1504. * Sanity check the flags to change_mnt_propagation.
  1505. */
  1506. static int flags_to_propagation_type(int flags)
  1507. {
  1508. int type = flags & ~(MS_REC | MS_SILENT);
  1509. /* Fail if any non-propagation flags are set */
  1510. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1511. return 0;
  1512. /* Only one propagation flag should be set */
  1513. if (!is_power_of_2(type))
  1514. return 0;
  1515. return type;
  1516. }
  1517. /*
  1518. * recursively change the type of the mountpoint.
  1519. */
  1520. static int do_change_type(struct path *path, int flag)
  1521. {
  1522. struct vfsmount *m, *mnt = path->mnt;
  1523. int recurse = flag & MS_REC;
  1524. int type;
  1525. int err = 0;
  1526. if (!capable(CAP_SYS_ADMIN))
  1527. return -EPERM;
  1528. if (path->dentry != path->mnt->mnt_root)
  1529. return -EINVAL;
  1530. type = flags_to_propagation_type(flag);
  1531. if (!type)
  1532. return -EINVAL;
  1533. down_write(&namespace_sem);
  1534. if (type == MS_SHARED) {
  1535. err = invent_group_ids(mnt, recurse);
  1536. if (err)
  1537. goto out_unlock;
  1538. }
  1539. br_write_lock(vfsmount_lock);
  1540. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1541. change_mnt_propagation(m, type);
  1542. br_write_unlock(vfsmount_lock);
  1543. out_unlock:
  1544. up_write(&namespace_sem);
  1545. return err;
  1546. }
  1547. /*
  1548. * do loopback mount.
  1549. */
  1550. static int do_loopback(struct path *path, char *old_name,
  1551. int recurse)
  1552. {
  1553. LIST_HEAD(umount_list);
  1554. struct path old_path;
  1555. struct vfsmount *mnt = NULL;
  1556. int err = mount_is_safe(path);
  1557. if (err)
  1558. return err;
  1559. if (!old_name || !*old_name)
  1560. return -EINVAL;
  1561. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1562. if (err)
  1563. return err;
  1564. err = lock_mount(path);
  1565. if (err)
  1566. goto out;
  1567. err = -EINVAL;
  1568. if (IS_MNT_UNBINDABLE(old_path.mnt))
  1569. goto out2;
  1570. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1571. goto out2;
  1572. err = -ENOMEM;
  1573. if (recurse)
  1574. mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
  1575. else
  1576. mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
  1577. if (!mnt)
  1578. goto out2;
  1579. err = graft_tree(mnt, path);
  1580. if (err) {
  1581. br_write_lock(vfsmount_lock);
  1582. umount_tree(mnt, 0, &umount_list);
  1583. br_write_unlock(vfsmount_lock);
  1584. }
  1585. out2:
  1586. unlock_mount(path);
  1587. release_mounts(&umount_list);
  1588. out:
  1589. path_put(&old_path);
  1590. return err;
  1591. }
  1592. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1593. {
  1594. int error = 0;
  1595. int readonly_request = 0;
  1596. if (ms_flags & MS_RDONLY)
  1597. readonly_request = 1;
  1598. if (readonly_request == __mnt_is_readonly(mnt))
  1599. return 0;
  1600. if (readonly_request)
  1601. error = mnt_make_readonly(mnt);
  1602. else
  1603. __mnt_unmake_readonly(mnt);
  1604. return error;
  1605. }
  1606. /*
  1607. * change filesystem flags. dir should be a physical root of filesystem.
  1608. * If you've mounted a non-root directory somewhere and want to do remount
  1609. * on it - tough luck.
  1610. */
  1611. static int do_remount(struct path *path, int flags, int mnt_flags,
  1612. void *data)
  1613. {
  1614. int err;
  1615. struct super_block *sb = path->mnt->mnt_sb;
  1616. if (!capable(CAP_SYS_ADMIN))
  1617. return -EPERM;
  1618. if (!check_mnt(path->mnt))
  1619. return -EINVAL;
  1620. if (path->dentry != path->mnt->mnt_root)
  1621. return -EINVAL;
  1622. err = security_sb_remount(sb, data);
  1623. if (err)
  1624. return err;
  1625. down_write(&sb->s_umount);
  1626. if (flags & MS_BIND)
  1627. err = change_mount_flags(path->mnt, flags);
  1628. else
  1629. err = do_remount_sb(sb, flags, data, 0);
  1630. if (!err) {
  1631. br_write_lock(vfsmount_lock);
  1632. mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
  1633. path->mnt->mnt_flags = mnt_flags;
  1634. br_write_unlock(vfsmount_lock);
  1635. }
  1636. up_write(&sb->s_umount);
  1637. if (!err) {
  1638. br_write_lock(vfsmount_lock);
  1639. touch_mnt_namespace(path->mnt->mnt_ns);
  1640. br_write_unlock(vfsmount_lock);
  1641. }
  1642. return err;
  1643. }
  1644. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1645. {
  1646. struct vfsmount *p;
  1647. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1648. if (IS_MNT_UNBINDABLE(p))
  1649. return 1;
  1650. }
  1651. return 0;
  1652. }
  1653. static int do_move_mount(struct path *path, char *old_name)
  1654. {
  1655. struct path old_path, parent_path;
  1656. struct vfsmount *p;
  1657. int err = 0;
  1658. if (!capable(CAP_SYS_ADMIN))
  1659. return -EPERM;
  1660. if (!old_name || !*old_name)
  1661. return -EINVAL;
  1662. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1663. if (err)
  1664. return err;
  1665. err = lock_mount(path);
  1666. if (err < 0)
  1667. goto out;
  1668. err = -EINVAL;
  1669. if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
  1670. goto out1;
  1671. if (d_unlinked(path->dentry))
  1672. goto out1;
  1673. err = -EINVAL;
  1674. if (old_path.dentry != old_path.mnt->mnt_root)
  1675. goto out1;
  1676. if (old_path.mnt == old_path.mnt->mnt_parent)
  1677. goto out1;
  1678. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1679. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1680. goto out1;
  1681. /*
  1682. * Don't move a mount residing in a shared parent.
  1683. */
  1684. if (old_path.mnt->mnt_parent &&
  1685. IS_MNT_SHARED(old_path.mnt->mnt_parent))
  1686. goto out1;
  1687. /*
  1688. * Don't move a mount tree containing unbindable mounts to a destination
  1689. * mount which is shared.
  1690. */
  1691. if (IS_MNT_SHARED(path->mnt) &&
  1692. tree_contains_unbindable(old_path.mnt))
  1693. goto out1;
  1694. err = -ELOOP;
  1695. for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
  1696. if (p == old_path.mnt)
  1697. goto out1;
  1698. err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
  1699. if (err)
  1700. goto out1;
  1701. /* if the mount is moved, it should no longer be expire
  1702. * automatically */
  1703. list_del_init(&old_path.mnt->mnt_expire);
  1704. out1:
  1705. unlock_mount(path);
  1706. out:
  1707. if (!err)
  1708. path_put(&parent_path);
  1709. path_put(&old_path);
  1710. return err;
  1711. }
  1712. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1713. {
  1714. int err;
  1715. const char *subtype = strchr(fstype, '.');
  1716. if (subtype) {
  1717. subtype++;
  1718. err = -EINVAL;
  1719. if (!subtype[0])
  1720. goto err;
  1721. } else
  1722. subtype = "";
  1723. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1724. err = -ENOMEM;
  1725. if (!mnt->mnt_sb->s_subtype)
  1726. goto err;
  1727. return mnt;
  1728. err:
  1729. mntput(mnt);
  1730. return ERR_PTR(err);
  1731. }
  1732. struct vfsmount *
  1733. do_kern_mount(const char *fstype, int flags, const char *name, void *data)
  1734. {
  1735. struct file_system_type *type = get_fs_type(fstype);
  1736. struct vfsmount *mnt;
  1737. if (!type)
  1738. return ERR_PTR(-ENODEV);
  1739. mnt = vfs_kern_mount(type, flags, name, data);
  1740. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1741. !mnt->mnt_sb->s_subtype)
  1742. mnt = fs_set_subtype(mnt, fstype);
  1743. put_filesystem(type);
  1744. return mnt;
  1745. }
  1746. EXPORT_SYMBOL_GPL(do_kern_mount);
  1747. /*
  1748. * add a mount into a namespace's mount tree
  1749. */
  1750. static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
  1751. {
  1752. int err;
  1753. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1754. err = lock_mount(path);
  1755. if (err)
  1756. return err;
  1757. err = -EINVAL;
  1758. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
  1759. goto unlock;
  1760. /* Refuse the same filesystem on the same mount point */
  1761. err = -EBUSY;
  1762. if (path->mnt->mnt_sb == newmnt->mnt_sb &&
  1763. path->mnt->mnt_root == path->dentry)
  1764. goto unlock;
  1765. err = -EINVAL;
  1766. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1767. goto unlock;
  1768. newmnt->mnt_flags = mnt_flags;
  1769. err = graft_tree(newmnt, path);
  1770. unlock:
  1771. unlock_mount(path);
  1772. return err;
  1773. }
  1774. /*
  1775. * create a new mount for userspace and request it to be added into the
  1776. * namespace's tree
  1777. */
  1778. static int do_new_mount(struct path *path, char *type, int flags,
  1779. int mnt_flags, char *name, void *data)
  1780. {
  1781. struct vfsmount *mnt;
  1782. int err;
  1783. if (!type)
  1784. return -EINVAL;
  1785. /* we need capabilities... */
  1786. if (!capable(CAP_SYS_ADMIN))
  1787. return -EPERM;
  1788. mnt = do_kern_mount(type, flags, name, data);
  1789. if (IS_ERR(mnt))
  1790. return PTR_ERR(mnt);
  1791. err = do_add_mount(mnt, path, mnt_flags);
  1792. if (err)
  1793. mntput(mnt);
  1794. return err;
  1795. }
  1796. int finish_automount(struct vfsmount *m, struct path *path)
  1797. {
  1798. int err;
  1799. /* The new mount record should have at least 2 refs to prevent it being
  1800. * expired before we get a chance to add it
  1801. */
  1802. BUG_ON(mnt_get_count(m) < 2);
  1803. if (m->mnt_sb == path->mnt->mnt_sb &&
  1804. m->mnt_root == path->dentry) {
  1805. err = -ELOOP;
  1806. goto fail;
  1807. }
  1808. err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1809. if (!err)
  1810. return 0;
  1811. fail:
  1812. /* remove m from any expiration list it may be on */
  1813. if (!list_empty(&m->mnt_expire)) {
  1814. down_write(&namespace_sem);
  1815. br_write_lock(vfsmount_lock);
  1816. list_del_init(&m->mnt_expire);
  1817. br_write_unlock(vfsmount_lock);
  1818. up_write(&namespace_sem);
  1819. }
  1820. mntput(m);
  1821. mntput(m);
  1822. return err;
  1823. }
  1824. /**
  1825. * mnt_set_expiry - Put a mount on an expiration list
  1826. * @mnt: The mount to list.
  1827. * @expiry_list: The list to add the mount to.
  1828. */
  1829. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1830. {
  1831. down_write(&namespace_sem);
  1832. br_write_lock(vfsmount_lock);
  1833. list_add_tail(&mnt->mnt_expire, expiry_list);
  1834. br_write_unlock(vfsmount_lock);
  1835. up_write(&namespace_sem);
  1836. }
  1837. EXPORT_SYMBOL(mnt_set_expiry);
  1838. /*
  1839. * process a list of expirable mountpoints with the intent of discarding any
  1840. * mountpoints that aren't in use and haven't been touched since last we came
  1841. * here
  1842. */
  1843. void mark_mounts_for_expiry(struct list_head *mounts)
  1844. {
  1845. struct vfsmount *mnt, *next;
  1846. LIST_HEAD(graveyard);
  1847. LIST_HEAD(umounts);
  1848. if (list_empty(mounts))
  1849. return;
  1850. down_write(&namespace_sem);
  1851. br_write_lock(vfsmount_lock);
  1852. /* extract from the expiration list every vfsmount that matches the
  1853. * following criteria:
  1854. * - only referenced by its parent vfsmount
  1855. * - still marked for expiry (marked on the last call here; marks are
  1856. * cleared by mntput())
  1857. */
  1858. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1859. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1860. propagate_mount_busy(mnt, 1))
  1861. continue;
  1862. list_move(&mnt->mnt_expire, &graveyard);
  1863. }
  1864. while (!list_empty(&graveyard)) {
  1865. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1866. touch_mnt_namespace(mnt->mnt_ns);
  1867. umount_tree(mnt, 1, &umounts);
  1868. }
  1869. br_write_unlock(vfsmount_lock);
  1870. up_write(&namespace_sem);
  1871. release_mounts(&umounts);
  1872. }
  1873. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1874. /*
  1875. * Ripoff of 'select_parent()'
  1876. *
  1877. * search the list of submounts for a given mountpoint, and move any
  1878. * shrinkable submounts to the 'graveyard' list.
  1879. */
  1880. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1881. {
  1882. struct vfsmount *this_parent = parent;
  1883. struct list_head *next;
  1884. int found = 0;
  1885. repeat:
  1886. next = this_parent->mnt_mounts.next;
  1887. resume:
  1888. while (next != &this_parent->mnt_mounts) {
  1889. struct list_head *tmp = next;
  1890. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1891. next = tmp->next;
  1892. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1893. continue;
  1894. /*
  1895. * Descend a level if the d_mounts list is non-empty.
  1896. */
  1897. if (!list_empty(&mnt->mnt_mounts)) {
  1898. this_parent = mnt;
  1899. goto repeat;
  1900. }
  1901. if (!propagate_mount_busy(mnt, 1)) {
  1902. list_move_tail(&mnt->mnt_expire, graveyard);
  1903. found++;
  1904. }
  1905. }
  1906. /*
  1907. * All done at this level ... ascend and resume the search
  1908. */
  1909. if (this_parent != parent) {
  1910. next = this_parent->mnt_child.next;
  1911. this_parent = this_parent->mnt_parent;
  1912. goto resume;
  1913. }
  1914. return found;
  1915. }
  1916. /*
  1917. * process a list of expirable mountpoints with the intent of discarding any
  1918. * submounts of a specific parent mountpoint
  1919. *
  1920. * vfsmount_lock must be held for write
  1921. */
  1922. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1923. {
  1924. LIST_HEAD(graveyard);
  1925. struct vfsmount *m;
  1926. /* extract submounts of 'mountpoint' from the expiration list */
  1927. while (select_submounts(mnt, &graveyard)) {
  1928. while (!list_empty(&graveyard)) {
  1929. m = list_first_entry(&graveyard, struct vfsmount,
  1930. mnt_expire);
  1931. touch_mnt_namespace(m->mnt_ns);
  1932. umount_tree(m, 1, umounts);
  1933. }
  1934. }
  1935. }
  1936. /*
  1937. * Some copy_from_user() implementations do not return the exact number of
  1938. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1939. * Note that this function differs from copy_from_user() in that it will oops
  1940. * on bad values of `to', rather than returning a short copy.
  1941. */
  1942. static long exact_copy_from_user(void *to, const void __user * from,
  1943. unsigned long n)
  1944. {
  1945. char *t = to;
  1946. const char __user *f = from;
  1947. char c;
  1948. if (!access_ok(VERIFY_READ, from, n))
  1949. return n;
  1950. while (n) {
  1951. if (__get_user(c, f)) {
  1952. memset(t, 0, n);
  1953. break;
  1954. }
  1955. *t++ = c;
  1956. f++;
  1957. n--;
  1958. }
  1959. return n;
  1960. }
  1961. int copy_mount_options(const void __user * data, unsigned long *where)
  1962. {
  1963. int i;
  1964. unsigned long page;
  1965. unsigned long size;
  1966. *where = 0;
  1967. if (!data)
  1968. return 0;
  1969. if (!(page = __get_free_page(GFP_KERNEL)))
  1970. return -ENOMEM;
  1971. /* We only care that *some* data at the address the user
  1972. * gave us is valid. Just in case, we'll zero
  1973. * the remainder of the page.
  1974. */
  1975. /* copy_from_user cannot cross TASK_SIZE ! */
  1976. size = TASK_SIZE - (unsigned long)data;
  1977. if (size > PAGE_SIZE)
  1978. size = PAGE_SIZE;
  1979. i = size - exact_copy_from_user((void *)page, data, size);
  1980. if (!i) {
  1981. free_page(page);
  1982. return -EFAULT;
  1983. }
  1984. if (i != PAGE_SIZE)
  1985. memset((char *)page + i, 0, PAGE_SIZE - i);
  1986. *where = page;
  1987. return 0;
  1988. }
  1989. int copy_mount_string(const void __user *data, char **where)
  1990. {
  1991. char *tmp;
  1992. if (!data) {
  1993. *where = NULL;
  1994. return 0;
  1995. }
  1996. tmp = strndup_user(data, PAGE_SIZE);
  1997. if (IS_ERR(tmp))
  1998. return PTR_ERR(tmp);
  1999. *where = tmp;
  2000. return 0;
  2001. }
  2002. /*
  2003. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  2004. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  2005. *
  2006. * data is a (void *) that can point to any structure up to
  2007. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  2008. * information (or be NULL).
  2009. *
  2010. * Pre-0.97 versions of mount() didn't have a flags word.
  2011. * When the flags word was introduced its top half was required
  2012. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  2013. * Therefore, if this magic number is present, it carries no information
  2014. * and must be discarded.
  2015. */
  2016. long do_mount(char *dev_name, char *dir_name, char *type_page,
  2017. unsigned long flags, void *data_page)
  2018. {
  2019. struct path path;
  2020. int retval = 0;
  2021. int mnt_flags = 0;
  2022. /* Discard magic */
  2023. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  2024. flags &= ~MS_MGC_MSK;
  2025. /* Basic sanity checks */
  2026. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  2027. return -EINVAL;
  2028. if (data_page)
  2029. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  2030. /* ... and get the mountpoint */
  2031. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  2032. if (retval)
  2033. return retval;
  2034. retval = security_sb_mount(dev_name, &path,
  2035. type_page, flags, data_page);
  2036. if (retval)
  2037. goto dput_out;
  2038. /* Default to relatime unless overriden */
  2039. if (!(flags & MS_NOATIME))
  2040. mnt_flags |= MNT_RELATIME;
  2041. /* Separate the per-mountpoint flags */
  2042. if (flags & MS_NOSUID)
  2043. mnt_flags |= MNT_NOSUID;
  2044. if (flags & MS_NODEV)
  2045. mnt_flags |= MNT_NODEV;
  2046. if (flags & MS_NOEXEC)
  2047. mnt_flags |= MNT_NOEXEC;
  2048. if (flags & MS_NOATIME)
  2049. mnt_flags |= MNT_NOATIME;
  2050. if (flags & MS_NODIRATIME)
  2051. mnt_flags |= MNT_NODIRATIME;
  2052. if (flags & MS_STRICTATIME)
  2053. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  2054. if (flags & MS_RDONLY)
  2055. mnt_flags |= MNT_READONLY;
  2056. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  2057. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  2058. MS_STRICTATIME);
  2059. if (flags & MS_REMOUNT)
  2060. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  2061. data_page);
  2062. else if (flags & MS_BIND)
  2063. retval = do_loopback(&path, dev_name, flags & MS_REC);
  2064. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  2065. retval = do_change_type(&path, flags);
  2066. else if (flags & MS_MOVE)
  2067. retval = do_move_mount(&path, dev_name);
  2068. else
  2069. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  2070. dev_name, data_page);
  2071. dput_out:
  2072. path_put(&path);
  2073. return retval;
  2074. }
  2075. static struct mnt_namespace *alloc_mnt_ns(void)
  2076. {
  2077. struct mnt_namespace *new_ns;
  2078. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  2079. if (!new_ns)
  2080. return ERR_PTR(-ENOMEM);
  2081. atomic_set(&new_ns->count, 1);
  2082. new_ns->root = NULL;
  2083. INIT_LIST_HEAD(&new_ns->list);
  2084. init_waitqueue_head(&new_ns->poll);
  2085. new_ns->event = 0;
  2086. return new_ns;
  2087. }
  2088. void mnt_make_longterm(struct vfsmount *mnt)
  2089. {
  2090. __mnt_make_longterm(mnt);
  2091. }
  2092. void mnt_make_shortterm(struct vfsmount *mnt)
  2093. {
  2094. #ifdef CONFIG_SMP
  2095. if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
  2096. return;
  2097. br_write_lock(vfsmount_lock);
  2098. atomic_dec(&mnt->mnt_longterm);
  2099. br_write_unlock(vfsmount_lock);
  2100. #endif
  2101. }
  2102. /*
  2103. * Allocate a new namespace structure and populate it with contents
  2104. * copied from the namespace of the passed in task structure.
  2105. */
  2106. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  2107. struct fs_struct *fs)
  2108. {
  2109. struct mnt_namespace *new_ns;
  2110. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2111. struct vfsmount *p, *q;
  2112. new_ns = alloc_mnt_ns();
  2113. if (IS_ERR(new_ns))
  2114. return new_ns;
  2115. down_write(&namespace_sem);
  2116. /* First pass: copy the tree topology */
  2117. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  2118. CL_COPY_ALL | CL_EXPIRE);
  2119. if (!new_ns->root) {
  2120. up_write(&namespace_sem);
  2121. kfree(new_ns);
  2122. return ERR_PTR(-ENOMEM);
  2123. }
  2124. br_write_lock(vfsmount_lock);
  2125. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  2126. br_write_unlock(vfsmount_lock);
  2127. /*
  2128. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2129. * as belonging to new namespace. We have already acquired a private
  2130. * fs_struct, so tsk->fs->lock is not needed.
  2131. */
  2132. p = mnt_ns->root;
  2133. q = new_ns->root;
  2134. while (p) {
  2135. q->mnt_ns = new_ns;
  2136. __mnt_make_longterm(q);
  2137. if (fs) {
  2138. if (p == fs->root.mnt) {
  2139. fs->root.mnt = mntget(q);
  2140. __mnt_make_longterm(q);
  2141. mnt_make_shortterm(p);
  2142. rootmnt = p;
  2143. }
  2144. if (p == fs->pwd.mnt) {
  2145. fs->pwd.mnt = mntget(q);
  2146. __mnt_make_longterm(q);
  2147. mnt_make_shortterm(p);
  2148. pwdmnt = p;
  2149. }
  2150. }
  2151. p = next_mnt(p, mnt_ns->root);
  2152. q = next_mnt(q, new_ns->root);
  2153. }
  2154. up_write(&namespace_sem);
  2155. if (rootmnt)
  2156. mntput(rootmnt);
  2157. if (pwdmnt)
  2158. mntput(pwdmnt);
  2159. return new_ns;
  2160. }
  2161. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2162. struct fs_struct *new_fs)
  2163. {
  2164. struct mnt_namespace *new_ns;
  2165. BUG_ON(!ns);
  2166. get_mnt_ns(ns);
  2167. if (!(flags & CLONE_NEWNS))
  2168. return ns;
  2169. new_ns = dup_mnt_ns(ns, new_fs);
  2170. put_mnt_ns(ns);
  2171. return new_ns;
  2172. }
  2173. /**
  2174. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2175. * @mnt: pointer to the new root filesystem mountpoint
  2176. */
  2177. struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
  2178. {
  2179. struct mnt_namespace *new_ns;
  2180. new_ns = alloc_mnt_ns();
  2181. if (!IS_ERR(new_ns)) {
  2182. mnt->mnt_ns = new_ns;
  2183. __mnt_make_longterm(mnt);
  2184. new_ns->root = mnt;
  2185. list_add(&new_ns->list, &new_ns->root->mnt_list);
  2186. }
  2187. return new_ns;
  2188. }
  2189. EXPORT_SYMBOL(create_mnt_ns);
  2190. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2191. char __user *, type, unsigned long, flags, void __user *, data)
  2192. {
  2193. int ret;
  2194. char *kernel_type;
  2195. char *kernel_dir;
  2196. char *kernel_dev;
  2197. unsigned long data_page;
  2198. ret = copy_mount_string(type, &kernel_type);
  2199. if (ret < 0)
  2200. goto out_type;
  2201. kernel_dir = getname(dir_name);
  2202. if (IS_ERR(kernel_dir)) {
  2203. ret = PTR_ERR(kernel_dir);
  2204. goto out_dir;
  2205. }
  2206. ret = copy_mount_string(dev_name, &kernel_dev);
  2207. if (ret < 0)
  2208. goto out_dev;
  2209. ret = copy_mount_options(data, &data_page);
  2210. if (ret < 0)
  2211. goto out_data;
  2212. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  2213. (void *) data_page);
  2214. free_page(data_page);
  2215. out_data:
  2216. kfree(kernel_dev);
  2217. out_dev:
  2218. putname(kernel_dir);
  2219. out_dir:
  2220. kfree(kernel_type);
  2221. out_type:
  2222. return ret;
  2223. }
  2224. /*
  2225. * pivot_root Semantics:
  2226. * Moves the root file system of the current process to the directory put_old,
  2227. * makes new_root as the new root file system of the current process, and sets
  2228. * root/cwd of all processes which had them on the current root to new_root.
  2229. *
  2230. * Restrictions:
  2231. * The new_root and put_old must be directories, and must not be on the
  2232. * same file system as the current process root. The put_old must be
  2233. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2234. * pointed to by put_old must yield the same directory as new_root. No other
  2235. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2236. *
  2237. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2238. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2239. * in this situation.
  2240. *
  2241. * Notes:
  2242. * - we don't move root/cwd if they are not at the root (reason: if something
  2243. * cared enough to change them, it's probably wrong to force them elsewhere)
  2244. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2245. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2246. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2247. * first.
  2248. */
  2249. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2250. const char __user *, put_old)
  2251. {
  2252. struct vfsmount *tmp;
  2253. struct path new, old, parent_path, root_parent, root;
  2254. int error;
  2255. if (!capable(CAP_SYS_ADMIN))
  2256. return -EPERM;
  2257. error = user_path_dir(new_root, &new);
  2258. if (error)
  2259. goto out0;
  2260. error = user_path_dir(put_old, &old);
  2261. if (error)
  2262. goto out1;
  2263. error = security_sb_pivotroot(&old, &new);
  2264. if (error)
  2265. goto out2;
  2266. get_fs_root(current->fs, &root);
  2267. error = lock_mount(&old);
  2268. if (error)
  2269. goto out3;
  2270. error = -EINVAL;
  2271. if (IS_MNT_SHARED(old.mnt) ||
  2272. IS_MNT_SHARED(new.mnt->mnt_parent) ||
  2273. IS_MNT_SHARED(root.mnt->mnt_parent))
  2274. goto out4;
  2275. if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
  2276. goto out4;
  2277. error = -ENOENT;
  2278. if (d_unlinked(new.dentry))
  2279. goto out4;
  2280. if (d_unlinked(old.dentry))
  2281. goto out4;
  2282. error = -EBUSY;
  2283. if (new.mnt == root.mnt ||
  2284. old.mnt == root.mnt)
  2285. goto out4; /* loop, on the same file system */
  2286. error = -EINVAL;
  2287. if (root.mnt->mnt_root != root.dentry)
  2288. goto out4; /* not a mountpoint */
  2289. if (root.mnt->mnt_parent == root.mnt)
  2290. goto out4; /* not attached */
  2291. if (new.mnt->mnt_root != new.dentry)
  2292. goto out4; /* not a mountpoint */
  2293. if (new.mnt->mnt_parent == new.mnt)
  2294. goto out4; /* not attached */
  2295. /* make sure we can reach put_old from new_root */
  2296. tmp = old.mnt;
  2297. if (tmp != new.mnt) {
  2298. for (;;) {
  2299. if (tmp->mnt_parent == tmp)
  2300. goto out4; /* already mounted on put_old */
  2301. if (tmp->mnt_parent == new.mnt)
  2302. break;
  2303. tmp = tmp->mnt_parent;
  2304. }
  2305. if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
  2306. goto out4;
  2307. } else if (!is_subdir(old.dentry, new.dentry))
  2308. goto out4;
  2309. br_write_lock(vfsmount_lock);
  2310. detach_mnt(new.mnt, &parent_path);
  2311. detach_mnt(root.mnt, &root_parent);
  2312. /* mount old root on put_old */
  2313. attach_mnt(root.mnt, &old);
  2314. /* mount new_root on / */
  2315. attach_mnt(new.mnt, &root_parent);
  2316. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2317. br_write_unlock(vfsmount_lock);
  2318. chroot_fs_refs(&root, &new);
  2319. error = 0;
  2320. out4:
  2321. unlock_mount(&old);
  2322. if (!error) {
  2323. path_put(&root_parent);
  2324. path_put(&parent_path);
  2325. }
  2326. out3:
  2327. path_put(&root);
  2328. out2:
  2329. path_put(&old);
  2330. out1:
  2331. path_put(&new);
  2332. out0:
  2333. return error;
  2334. }
  2335. static void __init init_mount_tree(void)
  2336. {
  2337. struct vfsmount *mnt;
  2338. struct mnt_namespace *ns;
  2339. struct path root;
  2340. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2341. if (IS_ERR(mnt))
  2342. panic("Can't create rootfs");
  2343. ns = create_mnt_ns(mnt);
  2344. if (IS_ERR(ns))
  2345. panic("Can't allocate initial namespace");
  2346. init_task.nsproxy->mnt_ns = ns;
  2347. get_mnt_ns(ns);
  2348. root.mnt = ns->root;
  2349. root.dentry = ns->root->mnt_root;
  2350. set_fs_pwd(current->fs, &root);
  2351. set_fs_root(current->fs, &root);
  2352. }
  2353. void __init mnt_init(void)
  2354. {
  2355. unsigned u;
  2356. int err;
  2357. init_rwsem(&namespace_sem);
  2358. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  2359. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2360. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2361. if (!mount_hashtable)
  2362. panic("Failed to allocate mount hash table\n");
  2363. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2364. for (u = 0; u < HASH_SIZE; u++)
  2365. INIT_LIST_HEAD(&mount_hashtable[u]);
  2366. br_lock_init(vfsmount_lock);
  2367. err = sysfs_init();
  2368. if (err)
  2369. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2370. __func__, err);
  2371. fs_kobj = kobject_create_and_add("fs", NULL);
  2372. if (!fs_kobj)
  2373. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2374. init_rootfs();
  2375. init_mount_tree();
  2376. }
  2377. void put_mnt_ns(struct mnt_namespace *ns)
  2378. {
  2379. LIST_HEAD(umount_list);
  2380. if (!atomic_dec_and_test(&ns->count))
  2381. return;
  2382. down_write(&namespace_sem);
  2383. br_write_lock(vfsmount_lock);
  2384. umount_tree(ns->root, 0, &umount_list);
  2385. br_write_unlock(vfsmount_lock);
  2386. up_write(&namespace_sem);
  2387. release_mounts(&umount_list);
  2388. kfree(ns);
  2389. }
  2390. EXPORT_SYMBOL(put_mnt_ns);
  2391. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2392. {
  2393. struct vfsmount *mnt;
  2394. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2395. if (!IS_ERR(mnt)) {
  2396. /*
  2397. * it is a longterm mount, don't release mnt until
  2398. * we unmount before file sys is unregistered
  2399. */
  2400. mnt_make_longterm(mnt);
  2401. }
  2402. return mnt;
  2403. }
  2404. EXPORT_SYMBOL_GPL(kern_mount_data);
  2405. void kern_unmount(struct vfsmount *mnt)
  2406. {
  2407. /* release long term mount so mount point can be released */
  2408. if (!IS_ERR_OR_NULL(mnt)) {
  2409. mnt_make_shortterm(mnt);
  2410. mntput(mnt);
  2411. }
  2412. }
  2413. EXPORT_SYMBOL(kern_unmount);