inode.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. /*
  2. * fs/logfs/inode.c - inode handling code
  3. *
  4. * As should be obvious for Linux kernel code, license is GPLv2
  5. *
  6. * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
  7. */
  8. #include "logfs.h"
  9. #include <linux/slab.h>
  10. #include <linux/writeback.h>
  11. #include <linux/backing-dev.h>
  12. /*
  13. * How soon to reuse old inode numbers? LogFS doesn't store deleted inodes
  14. * on the medium. It therefore also lacks a method to store the previous
  15. * generation number for deleted inodes. Instead a single generation number
  16. * is stored which will be used for new inodes. Being just a 32bit counter,
  17. * this can obvious wrap relatively quickly. So we only reuse inodes if we
  18. * know that a fair number of inodes can be created before we have to increment
  19. * the generation again - effectively adding some bits to the counter.
  20. * But being too aggressive here means we keep a very large and very sparse
  21. * inode file, wasting space on indirect blocks.
  22. * So what is a good value? Beats me. 64k seems moderately bad on both
  23. * fronts, so let's use that for now...
  24. *
  25. * NFS sucks, as everyone already knows.
  26. */
  27. #define INOS_PER_WRAP (0x10000)
  28. /*
  29. * Logfs' requirement to read inodes for garbage collection makes life a bit
  30. * harder. GC may have to read inodes that are in I_FREEING state, when they
  31. * are being written out - and waiting for GC to make progress, naturally.
  32. *
  33. * So we cannot just call iget() or some variant of it, but first have to check
  34. * wether the inode in question might be in I_FREEING state. Therefore we
  35. * maintain our own per-sb list of "almost deleted" inodes and check against
  36. * that list first. Normally this should be at most 1-2 entries long.
  37. *
  38. * Also, inodes have logfs-specific reference counting on top of what the vfs
  39. * does. When .destroy_inode is called, normally the reference count will drop
  40. * to zero and the inode gets deleted. But if GC accessed the inode, its
  41. * refcount will remain nonzero and final deletion will have to wait.
  42. *
  43. * As a result we have two sets of functions to get/put inodes:
  44. * logfs_safe_iget/logfs_safe_iput - safe to call from GC context
  45. * logfs_iget/iput - normal version
  46. */
  47. static struct kmem_cache *logfs_inode_cache;
  48. static DEFINE_SPINLOCK(logfs_inode_lock);
  49. static void logfs_inode_setops(struct inode *inode)
  50. {
  51. switch (inode->i_mode & S_IFMT) {
  52. case S_IFDIR:
  53. inode->i_op = &logfs_dir_iops;
  54. inode->i_fop = &logfs_dir_fops;
  55. inode->i_mapping->a_ops = &logfs_reg_aops;
  56. break;
  57. case S_IFREG:
  58. inode->i_op = &logfs_reg_iops;
  59. inode->i_fop = &logfs_reg_fops;
  60. inode->i_mapping->a_ops = &logfs_reg_aops;
  61. break;
  62. case S_IFLNK:
  63. inode->i_op = &logfs_symlink_iops;
  64. inode->i_mapping->a_ops = &logfs_reg_aops;
  65. break;
  66. case S_IFSOCK: /* fall through */
  67. case S_IFBLK: /* fall through */
  68. case S_IFCHR: /* fall through */
  69. case S_IFIFO:
  70. init_special_inode(inode, inode->i_mode, inode->i_rdev);
  71. break;
  72. default:
  73. BUG();
  74. }
  75. }
  76. static struct inode *__logfs_iget(struct super_block *sb, ino_t ino)
  77. {
  78. struct inode *inode = iget_locked(sb, ino);
  79. int err;
  80. if (!inode)
  81. return ERR_PTR(-ENOMEM);
  82. if (!(inode->i_state & I_NEW))
  83. return inode;
  84. err = logfs_read_inode(inode);
  85. if (err || inode->i_nlink == 0) {
  86. /* inode->i_nlink == 0 can be true when called from
  87. * block validator */
  88. /* set i_nlink to 0 to prevent caching */
  89. clear_nlink(inode);
  90. logfs_inode(inode)->li_flags |= LOGFS_IF_ZOMBIE;
  91. iget_failed(inode);
  92. if (!err)
  93. err = -ENOENT;
  94. return ERR_PTR(err);
  95. }
  96. logfs_inode_setops(inode);
  97. unlock_new_inode(inode);
  98. return inode;
  99. }
  100. struct inode *logfs_iget(struct super_block *sb, ino_t ino)
  101. {
  102. BUG_ON(ino == LOGFS_INO_MASTER);
  103. BUG_ON(ino == LOGFS_INO_SEGFILE);
  104. return __logfs_iget(sb, ino);
  105. }
  106. /*
  107. * is_cached is set to 1 if we hand out a cached inode, 0 otherwise.
  108. * this allows logfs_iput to do the right thing later
  109. */
  110. struct inode *logfs_safe_iget(struct super_block *sb, ino_t ino, int *is_cached)
  111. {
  112. struct logfs_super *super = logfs_super(sb);
  113. struct logfs_inode *li;
  114. if (ino == LOGFS_INO_MASTER)
  115. return super->s_master_inode;
  116. if (ino == LOGFS_INO_SEGFILE)
  117. return super->s_segfile_inode;
  118. spin_lock(&logfs_inode_lock);
  119. list_for_each_entry(li, &super->s_freeing_list, li_freeing_list)
  120. if (li->vfs_inode.i_ino == ino) {
  121. li->li_refcount++;
  122. spin_unlock(&logfs_inode_lock);
  123. *is_cached = 1;
  124. return &li->vfs_inode;
  125. }
  126. spin_unlock(&logfs_inode_lock);
  127. *is_cached = 0;
  128. return __logfs_iget(sb, ino);
  129. }
  130. static void logfs_i_callback(struct rcu_head *head)
  131. {
  132. struct inode *inode = container_of(head, struct inode, i_rcu);
  133. INIT_LIST_HEAD(&inode->i_dentry);
  134. kmem_cache_free(logfs_inode_cache, logfs_inode(inode));
  135. }
  136. static void __logfs_destroy_inode(struct inode *inode)
  137. {
  138. struct logfs_inode *li = logfs_inode(inode);
  139. BUG_ON(li->li_block);
  140. list_del(&li->li_freeing_list);
  141. call_rcu(&inode->i_rcu, logfs_i_callback);
  142. }
  143. static void logfs_destroy_inode(struct inode *inode)
  144. {
  145. struct logfs_inode *li = logfs_inode(inode);
  146. BUG_ON(list_empty(&li->li_freeing_list));
  147. spin_lock(&logfs_inode_lock);
  148. li->li_refcount--;
  149. if (li->li_refcount == 0)
  150. __logfs_destroy_inode(inode);
  151. spin_unlock(&logfs_inode_lock);
  152. }
  153. void logfs_safe_iput(struct inode *inode, int is_cached)
  154. {
  155. if (inode->i_ino == LOGFS_INO_MASTER)
  156. return;
  157. if (inode->i_ino == LOGFS_INO_SEGFILE)
  158. return;
  159. if (is_cached) {
  160. logfs_destroy_inode(inode);
  161. return;
  162. }
  163. iput(inode);
  164. }
  165. static void logfs_init_inode(struct super_block *sb, struct inode *inode)
  166. {
  167. struct logfs_inode *li = logfs_inode(inode);
  168. int i;
  169. li->li_flags = 0;
  170. li->li_height = 0;
  171. li->li_used_bytes = 0;
  172. li->li_block = NULL;
  173. inode->i_uid = 0;
  174. inode->i_gid = 0;
  175. inode->i_size = 0;
  176. inode->i_blocks = 0;
  177. inode->i_ctime = CURRENT_TIME;
  178. inode->i_mtime = CURRENT_TIME;
  179. li->li_refcount = 1;
  180. INIT_LIST_HEAD(&li->li_freeing_list);
  181. for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
  182. li->li_data[i] = 0;
  183. return;
  184. }
  185. static struct inode *logfs_alloc_inode(struct super_block *sb)
  186. {
  187. struct logfs_inode *li;
  188. li = kmem_cache_alloc(logfs_inode_cache, GFP_NOFS);
  189. if (!li)
  190. return NULL;
  191. logfs_init_inode(sb, &li->vfs_inode);
  192. return &li->vfs_inode;
  193. }
  194. /*
  195. * In logfs inodes are written to an inode file. The inode file, like any
  196. * other file, is managed with a inode. The inode file's inode, aka master
  197. * inode, requires special handling in several respects. First, it cannot be
  198. * written to the inode file, so it is stored in the journal instead.
  199. *
  200. * Secondly, this inode cannot be written back and destroyed before all other
  201. * inodes have been written. The ordering is important. Linux' VFS is happily
  202. * unaware of the ordering constraint and would ordinarily destroy the master
  203. * inode at umount time while other inodes are still in use and dirty. Not
  204. * good.
  205. *
  206. * So logfs makes sure the master inode is not written until all other inodes
  207. * have been destroyed. Sadly, this method has another side-effect. The VFS
  208. * will notice one remaining inode and print a frightening warning message.
  209. * Worse, it is impossible to judge whether such a warning was caused by the
  210. * master inode or any other inodes have leaked as well.
  211. *
  212. * Our attempt of solving this is with logfs_new_meta_inode() below. Its
  213. * purpose is to create a new inode that will not trigger the warning if such
  214. * an inode is still in use. An ugly hack, no doubt. Suggections for
  215. * improvement are welcome.
  216. *
  217. * AV: that's what ->put_super() is for...
  218. */
  219. struct inode *logfs_new_meta_inode(struct super_block *sb, u64 ino)
  220. {
  221. struct inode *inode;
  222. inode = new_inode(sb);
  223. if (!inode)
  224. return ERR_PTR(-ENOMEM);
  225. inode->i_mode = S_IFREG;
  226. inode->i_ino = ino;
  227. inode->i_data.a_ops = &logfs_reg_aops;
  228. mapping_set_gfp_mask(&inode->i_data, GFP_NOFS);
  229. return inode;
  230. }
  231. struct inode *logfs_read_meta_inode(struct super_block *sb, u64 ino)
  232. {
  233. struct inode *inode;
  234. int err;
  235. inode = logfs_new_meta_inode(sb, ino);
  236. if (IS_ERR(inode))
  237. return inode;
  238. err = logfs_read_inode(inode);
  239. if (err) {
  240. iput(inode);
  241. return ERR_PTR(err);
  242. }
  243. logfs_inode_setops(inode);
  244. return inode;
  245. }
  246. static int logfs_write_inode(struct inode *inode, struct writeback_control *wbc)
  247. {
  248. int ret;
  249. long flags = WF_LOCK;
  250. /* Can only happen if creat() failed. Safe to skip. */
  251. if (logfs_inode(inode)->li_flags & LOGFS_IF_STILLBORN)
  252. return 0;
  253. ret = __logfs_write_inode(inode, flags);
  254. LOGFS_BUG_ON(ret, inode->i_sb);
  255. return ret;
  256. }
  257. /* called with inode->i_lock held */
  258. static int logfs_drop_inode(struct inode *inode)
  259. {
  260. struct logfs_super *super = logfs_super(inode->i_sb);
  261. struct logfs_inode *li = logfs_inode(inode);
  262. spin_lock(&logfs_inode_lock);
  263. list_move(&li->li_freeing_list, &super->s_freeing_list);
  264. spin_unlock(&logfs_inode_lock);
  265. return generic_drop_inode(inode);
  266. }
  267. static void logfs_set_ino_generation(struct super_block *sb,
  268. struct inode *inode)
  269. {
  270. struct logfs_super *super = logfs_super(sb);
  271. u64 ino;
  272. mutex_lock(&super->s_journal_mutex);
  273. ino = logfs_seek_hole(super->s_master_inode, super->s_last_ino + 1);
  274. super->s_last_ino = ino;
  275. super->s_inos_till_wrap--;
  276. if (super->s_inos_till_wrap < 0) {
  277. super->s_last_ino = LOGFS_RESERVED_INOS;
  278. super->s_generation++;
  279. super->s_inos_till_wrap = INOS_PER_WRAP;
  280. }
  281. inode->i_ino = ino;
  282. inode->i_generation = super->s_generation;
  283. mutex_unlock(&super->s_journal_mutex);
  284. }
  285. struct inode *logfs_new_inode(struct inode *dir, int mode)
  286. {
  287. struct super_block *sb = dir->i_sb;
  288. struct inode *inode;
  289. inode = new_inode(sb);
  290. if (!inode)
  291. return ERR_PTR(-ENOMEM);
  292. logfs_init_inode(sb, inode);
  293. /* inherit parent flags */
  294. logfs_inode(inode)->li_flags |=
  295. logfs_inode(dir)->li_flags & LOGFS_FL_INHERITED;
  296. inode->i_mode = mode;
  297. logfs_set_ino_generation(sb, inode);
  298. inode_init_owner(inode, dir, mode);
  299. logfs_inode_setops(inode);
  300. insert_inode_hash(inode);
  301. return inode;
  302. }
  303. static void logfs_init_once(void *_li)
  304. {
  305. struct logfs_inode *li = _li;
  306. int i;
  307. li->li_flags = 0;
  308. li->li_used_bytes = 0;
  309. li->li_refcount = 1;
  310. for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
  311. li->li_data[i] = 0;
  312. inode_init_once(&li->vfs_inode);
  313. }
  314. static int logfs_sync_fs(struct super_block *sb, int wait)
  315. {
  316. logfs_write_anchor(sb);
  317. return 0;
  318. }
  319. static void logfs_put_super(struct super_block *sb)
  320. {
  321. struct logfs_super *super = logfs_super(sb);
  322. /* kill the meta-inodes */
  323. iput(super->s_master_inode);
  324. iput(super->s_segfile_inode);
  325. iput(super->s_mapping_inode);
  326. }
  327. const struct super_operations logfs_super_operations = {
  328. .alloc_inode = logfs_alloc_inode,
  329. .destroy_inode = logfs_destroy_inode,
  330. .evict_inode = logfs_evict_inode,
  331. .drop_inode = logfs_drop_inode,
  332. .put_super = logfs_put_super,
  333. .write_inode = logfs_write_inode,
  334. .statfs = logfs_statfs,
  335. .sync_fs = logfs_sync_fs,
  336. };
  337. int logfs_init_inode_cache(void)
  338. {
  339. logfs_inode_cache = kmem_cache_create("logfs_inode_cache",
  340. sizeof(struct logfs_inode), 0, SLAB_RECLAIM_ACCOUNT,
  341. logfs_init_once);
  342. if (!logfs_inode_cache)
  343. return -ENOMEM;
  344. return 0;
  345. }
  346. void logfs_destroy_inode_cache(void)
  347. {
  348. kmem_cache_destroy(logfs_inode_cache);
  349. }