libfs.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009
  1. /*
  2. * fs/libfs.c
  3. * Library for filesystems writers.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/pagemap.h>
  7. #include <linux/slab.h>
  8. #include <linux/mount.h>
  9. #include <linux/vfs.h>
  10. #include <linux/quotaops.h>
  11. #include <linux/mutex.h>
  12. #include <linux/exportfs.h>
  13. #include <linux/writeback.h>
  14. #include <linux/buffer_head.h>
  15. #include <asm/uaccess.h>
  16. #include "internal.h"
  17. static inline int simple_positive(struct dentry *dentry)
  18. {
  19. return dentry->d_inode && !d_unhashed(dentry);
  20. }
  21. int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
  22. struct kstat *stat)
  23. {
  24. struct inode *inode = dentry->d_inode;
  25. generic_fillattr(inode, stat);
  26. stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
  27. return 0;
  28. }
  29. int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
  30. {
  31. buf->f_type = dentry->d_sb->s_magic;
  32. buf->f_bsize = PAGE_CACHE_SIZE;
  33. buf->f_namelen = NAME_MAX;
  34. return 0;
  35. }
  36. /*
  37. * Retaining negative dentries for an in-memory filesystem just wastes
  38. * memory and lookup time: arrange for them to be deleted immediately.
  39. */
  40. static int simple_delete_dentry(const struct dentry *dentry)
  41. {
  42. return 1;
  43. }
  44. /*
  45. * Lookup the data. This is trivial - if the dentry didn't already
  46. * exist, we know it is negative. Set d_op to delete negative dentries.
  47. */
  48. struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
  49. {
  50. static const struct dentry_operations simple_dentry_operations = {
  51. .d_delete = simple_delete_dentry,
  52. };
  53. if (dentry->d_name.len > NAME_MAX)
  54. return ERR_PTR(-ENAMETOOLONG);
  55. d_set_d_op(dentry, &simple_dentry_operations);
  56. d_add(dentry, NULL);
  57. return NULL;
  58. }
  59. int dcache_dir_open(struct inode *inode, struct file *file)
  60. {
  61. static struct qstr cursor_name = {.len = 1, .name = "."};
  62. file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
  63. return file->private_data ? 0 : -ENOMEM;
  64. }
  65. int dcache_dir_close(struct inode *inode, struct file *file)
  66. {
  67. dput(file->private_data);
  68. return 0;
  69. }
  70. loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
  71. {
  72. struct dentry *dentry = file->f_path.dentry;
  73. mutex_lock(&dentry->d_inode->i_mutex);
  74. switch (origin) {
  75. case 1:
  76. offset += file->f_pos;
  77. case 0:
  78. if (offset >= 0)
  79. break;
  80. default:
  81. mutex_unlock(&dentry->d_inode->i_mutex);
  82. return -EINVAL;
  83. }
  84. if (offset != file->f_pos) {
  85. file->f_pos = offset;
  86. if (file->f_pos >= 2) {
  87. struct list_head *p;
  88. struct dentry *cursor = file->private_data;
  89. loff_t n = file->f_pos - 2;
  90. spin_lock(&dentry->d_lock);
  91. /* d_lock not required for cursor */
  92. list_del(&cursor->d_u.d_child);
  93. p = dentry->d_subdirs.next;
  94. while (n && p != &dentry->d_subdirs) {
  95. struct dentry *next;
  96. next = list_entry(p, struct dentry, d_u.d_child);
  97. spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
  98. if (simple_positive(next))
  99. n--;
  100. spin_unlock(&next->d_lock);
  101. p = p->next;
  102. }
  103. list_add_tail(&cursor->d_u.d_child, p);
  104. spin_unlock(&dentry->d_lock);
  105. }
  106. }
  107. mutex_unlock(&dentry->d_inode->i_mutex);
  108. return offset;
  109. }
  110. /* Relationship between i_mode and the DT_xxx types */
  111. static inline unsigned char dt_type(struct inode *inode)
  112. {
  113. return (inode->i_mode >> 12) & 15;
  114. }
  115. /*
  116. * Directory is locked and all positive dentries in it are safe, since
  117. * for ramfs-type trees they can't go away without unlink() or rmdir(),
  118. * both impossible due to the lock on directory.
  119. */
  120. int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
  121. {
  122. struct dentry *dentry = filp->f_path.dentry;
  123. struct dentry *cursor = filp->private_data;
  124. struct list_head *p, *q = &cursor->d_u.d_child;
  125. ino_t ino;
  126. int i = filp->f_pos;
  127. switch (i) {
  128. case 0:
  129. ino = dentry->d_inode->i_ino;
  130. if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
  131. break;
  132. filp->f_pos++;
  133. i++;
  134. /* fallthrough */
  135. case 1:
  136. ino = parent_ino(dentry);
  137. if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
  138. break;
  139. filp->f_pos++;
  140. i++;
  141. /* fallthrough */
  142. default:
  143. spin_lock(&dentry->d_lock);
  144. if (filp->f_pos == 2)
  145. list_move(q, &dentry->d_subdirs);
  146. for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
  147. struct dentry *next;
  148. next = list_entry(p, struct dentry, d_u.d_child);
  149. spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
  150. if (!simple_positive(next)) {
  151. spin_unlock(&next->d_lock);
  152. continue;
  153. }
  154. spin_unlock(&next->d_lock);
  155. spin_unlock(&dentry->d_lock);
  156. if (filldir(dirent, next->d_name.name,
  157. next->d_name.len, filp->f_pos,
  158. next->d_inode->i_ino,
  159. dt_type(next->d_inode)) < 0)
  160. return 0;
  161. spin_lock(&dentry->d_lock);
  162. spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
  163. /* next is still alive */
  164. list_move(q, p);
  165. spin_unlock(&next->d_lock);
  166. p = q;
  167. filp->f_pos++;
  168. }
  169. spin_unlock(&dentry->d_lock);
  170. }
  171. return 0;
  172. }
  173. ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
  174. {
  175. return -EISDIR;
  176. }
  177. const struct file_operations simple_dir_operations = {
  178. .open = dcache_dir_open,
  179. .release = dcache_dir_close,
  180. .llseek = dcache_dir_lseek,
  181. .read = generic_read_dir,
  182. .readdir = dcache_readdir,
  183. .fsync = noop_fsync,
  184. };
  185. const struct inode_operations simple_dir_inode_operations = {
  186. .lookup = simple_lookup,
  187. };
  188. static const struct super_operations simple_super_operations = {
  189. .statfs = simple_statfs,
  190. };
  191. /*
  192. * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
  193. * will never be mountable)
  194. */
  195. struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
  196. const struct super_operations *ops,
  197. const struct dentry_operations *dops, unsigned long magic)
  198. {
  199. struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
  200. struct dentry *dentry;
  201. struct inode *root;
  202. struct qstr d_name = {.name = name, .len = strlen(name)};
  203. if (IS_ERR(s))
  204. return ERR_CAST(s);
  205. s->s_flags = MS_NOUSER;
  206. s->s_maxbytes = MAX_LFS_FILESIZE;
  207. s->s_blocksize = PAGE_SIZE;
  208. s->s_blocksize_bits = PAGE_SHIFT;
  209. s->s_magic = magic;
  210. s->s_op = ops ? ops : &simple_super_operations;
  211. s->s_time_gran = 1;
  212. root = new_inode(s);
  213. if (!root)
  214. goto Enomem;
  215. /*
  216. * since this is the first inode, make it number 1. New inodes created
  217. * after this must take care not to collide with it (by passing
  218. * max_reserved of 1 to iunique).
  219. */
  220. root->i_ino = 1;
  221. root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
  222. root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
  223. dentry = __d_alloc(s, &d_name);
  224. if (!dentry) {
  225. iput(root);
  226. goto Enomem;
  227. }
  228. d_instantiate(dentry, root);
  229. s->s_root = dentry;
  230. s->s_d_op = dops;
  231. s->s_flags |= MS_ACTIVE;
  232. return dget(s->s_root);
  233. Enomem:
  234. deactivate_locked_super(s);
  235. return ERR_PTR(-ENOMEM);
  236. }
  237. int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
  238. {
  239. struct inode *inode = old_dentry->d_inode;
  240. inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  241. inc_nlink(inode);
  242. ihold(inode);
  243. dget(dentry);
  244. d_instantiate(dentry, inode);
  245. return 0;
  246. }
  247. int simple_empty(struct dentry *dentry)
  248. {
  249. struct dentry *child;
  250. int ret = 0;
  251. spin_lock(&dentry->d_lock);
  252. list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
  253. spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
  254. if (simple_positive(child)) {
  255. spin_unlock(&child->d_lock);
  256. goto out;
  257. }
  258. spin_unlock(&child->d_lock);
  259. }
  260. ret = 1;
  261. out:
  262. spin_unlock(&dentry->d_lock);
  263. return ret;
  264. }
  265. int simple_unlink(struct inode *dir, struct dentry *dentry)
  266. {
  267. struct inode *inode = dentry->d_inode;
  268. inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  269. drop_nlink(inode);
  270. dput(dentry);
  271. return 0;
  272. }
  273. int simple_rmdir(struct inode *dir, struct dentry *dentry)
  274. {
  275. if (!simple_empty(dentry))
  276. return -ENOTEMPTY;
  277. drop_nlink(dentry->d_inode);
  278. simple_unlink(dir, dentry);
  279. drop_nlink(dir);
  280. return 0;
  281. }
  282. int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
  283. struct inode *new_dir, struct dentry *new_dentry)
  284. {
  285. struct inode *inode = old_dentry->d_inode;
  286. int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
  287. if (!simple_empty(new_dentry))
  288. return -ENOTEMPTY;
  289. if (new_dentry->d_inode) {
  290. simple_unlink(new_dir, new_dentry);
  291. if (they_are_dirs) {
  292. drop_nlink(new_dentry->d_inode);
  293. drop_nlink(old_dir);
  294. }
  295. } else if (they_are_dirs) {
  296. drop_nlink(old_dir);
  297. inc_nlink(new_dir);
  298. }
  299. old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
  300. new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
  301. return 0;
  302. }
  303. /**
  304. * simple_setattr - setattr for simple filesystem
  305. * @dentry: dentry
  306. * @iattr: iattr structure
  307. *
  308. * Returns 0 on success, -error on failure.
  309. *
  310. * simple_setattr is a simple ->setattr implementation without a proper
  311. * implementation of size changes.
  312. *
  313. * It can either be used for in-memory filesystems or special files
  314. * on simple regular filesystems. Anything that needs to change on-disk
  315. * or wire state on size changes needs its own setattr method.
  316. */
  317. int simple_setattr(struct dentry *dentry, struct iattr *iattr)
  318. {
  319. struct inode *inode = dentry->d_inode;
  320. int error;
  321. WARN_ON_ONCE(inode->i_op->truncate);
  322. error = inode_change_ok(inode, iattr);
  323. if (error)
  324. return error;
  325. if (iattr->ia_valid & ATTR_SIZE)
  326. truncate_setsize(inode, iattr->ia_size);
  327. setattr_copy(inode, iattr);
  328. mark_inode_dirty(inode);
  329. return 0;
  330. }
  331. EXPORT_SYMBOL(simple_setattr);
  332. int simple_readpage(struct file *file, struct page *page)
  333. {
  334. clear_highpage(page);
  335. flush_dcache_page(page);
  336. SetPageUptodate(page);
  337. unlock_page(page);
  338. return 0;
  339. }
  340. int simple_write_begin(struct file *file, struct address_space *mapping,
  341. loff_t pos, unsigned len, unsigned flags,
  342. struct page **pagep, void **fsdata)
  343. {
  344. struct page *page;
  345. pgoff_t index;
  346. index = pos >> PAGE_CACHE_SHIFT;
  347. page = grab_cache_page_write_begin(mapping, index, flags);
  348. if (!page)
  349. return -ENOMEM;
  350. *pagep = page;
  351. if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
  352. unsigned from = pos & (PAGE_CACHE_SIZE - 1);
  353. zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
  354. }
  355. return 0;
  356. }
  357. /**
  358. * simple_write_end - .write_end helper for non-block-device FSes
  359. * @available: See .write_end of address_space_operations
  360. * @file: "
  361. * @mapping: "
  362. * @pos: "
  363. * @len: "
  364. * @copied: "
  365. * @page: "
  366. * @fsdata: "
  367. *
  368. * simple_write_end does the minimum needed for updating a page after writing is
  369. * done. It has the same API signature as the .write_end of
  370. * address_space_operations vector. So it can just be set onto .write_end for
  371. * FSes that don't need any other processing. i_mutex is assumed to be held.
  372. * Block based filesystems should use generic_write_end().
  373. * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
  374. * is not called, so a filesystem that actually does store data in .write_inode
  375. * should extend on what's done here with a call to mark_inode_dirty() in the
  376. * case that i_size has changed.
  377. */
  378. int simple_write_end(struct file *file, struct address_space *mapping,
  379. loff_t pos, unsigned len, unsigned copied,
  380. struct page *page, void *fsdata)
  381. {
  382. struct inode *inode = page->mapping->host;
  383. loff_t last_pos = pos + copied;
  384. /* zero the stale part of the page if we did a short copy */
  385. if (copied < len) {
  386. unsigned from = pos & (PAGE_CACHE_SIZE - 1);
  387. zero_user(page, from + copied, len - copied);
  388. }
  389. if (!PageUptodate(page))
  390. SetPageUptodate(page);
  391. /*
  392. * No need to use i_size_read() here, the i_size
  393. * cannot change under us because we hold the i_mutex.
  394. */
  395. if (last_pos > inode->i_size)
  396. i_size_write(inode, last_pos);
  397. set_page_dirty(page);
  398. unlock_page(page);
  399. page_cache_release(page);
  400. return copied;
  401. }
  402. /*
  403. * the inodes created here are not hashed. If you use iunique to generate
  404. * unique inode values later for this filesystem, then you must take care
  405. * to pass it an appropriate max_reserved value to avoid collisions.
  406. */
  407. int simple_fill_super(struct super_block *s, unsigned long magic,
  408. struct tree_descr *files)
  409. {
  410. struct inode *inode;
  411. struct dentry *root;
  412. struct dentry *dentry;
  413. int i;
  414. s->s_blocksize = PAGE_CACHE_SIZE;
  415. s->s_blocksize_bits = PAGE_CACHE_SHIFT;
  416. s->s_magic = magic;
  417. s->s_op = &simple_super_operations;
  418. s->s_time_gran = 1;
  419. inode = new_inode(s);
  420. if (!inode)
  421. return -ENOMEM;
  422. /*
  423. * because the root inode is 1, the files array must not contain an
  424. * entry at index 1
  425. */
  426. inode->i_ino = 1;
  427. inode->i_mode = S_IFDIR | 0755;
  428. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  429. inode->i_op = &simple_dir_inode_operations;
  430. inode->i_fop = &simple_dir_operations;
  431. set_nlink(inode, 2);
  432. root = d_alloc_root(inode);
  433. if (!root) {
  434. iput(inode);
  435. return -ENOMEM;
  436. }
  437. for (i = 0; !files->name || files->name[0]; i++, files++) {
  438. if (!files->name)
  439. continue;
  440. /* warn if it tries to conflict with the root inode */
  441. if (unlikely(i == 1))
  442. printk(KERN_WARNING "%s: %s passed in a files array"
  443. "with an index of 1!\n", __func__,
  444. s->s_type->name);
  445. dentry = d_alloc_name(root, files->name);
  446. if (!dentry)
  447. goto out;
  448. inode = new_inode(s);
  449. if (!inode) {
  450. dput(dentry);
  451. goto out;
  452. }
  453. inode->i_mode = S_IFREG | files->mode;
  454. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  455. inode->i_fop = files->ops;
  456. inode->i_ino = i;
  457. d_add(dentry, inode);
  458. }
  459. s->s_root = root;
  460. return 0;
  461. out:
  462. d_genocide(root);
  463. dput(root);
  464. return -ENOMEM;
  465. }
  466. static DEFINE_SPINLOCK(pin_fs_lock);
  467. int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
  468. {
  469. struct vfsmount *mnt = NULL;
  470. spin_lock(&pin_fs_lock);
  471. if (unlikely(!*mount)) {
  472. spin_unlock(&pin_fs_lock);
  473. mnt = vfs_kern_mount(type, 0, type->name, NULL);
  474. if (IS_ERR(mnt))
  475. return PTR_ERR(mnt);
  476. spin_lock(&pin_fs_lock);
  477. if (!*mount)
  478. *mount = mnt;
  479. }
  480. mntget(*mount);
  481. ++*count;
  482. spin_unlock(&pin_fs_lock);
  483. mntput(mnt);
  484. return 0;
  485. }
  486. void simple_release_fs(struct vfsmount **mount, int *count)
  487. {
  488. struct vfsmount *mnt;
  489. spin_lock(&pin_fs_lock);
  490. mnt = *mount;
  491. if (!--*count)
  492. *mount = NULL;
  493. spin_unlock(&pin_fs_lock);
  494. mntput(mnt);
  495. }
  496. /**
  497. * simple_read_from_buffer - copy data from the buffer to user space
  498. * @to: the user space buffer to read to
  499. * @count: the maximum number of bytes to read
  500. * @ppos: the current position in the buffer
  501. * @from: the buffer to read from
  502. * @available: the size of the buffer
  503. *
  504. * The simple_read_from_buffer() function reads up to @count bytes from the
  505. * buffer @from at offset @ppos into the user space address starting at @to.
  506. *
  507. * On success, the number of bytes read is returned and the offset @ppos is
  508. * advanced by this number, or negative value is returned on error.
  509. **/
  510. ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
  511. const void *from, size_t available)
  512. {
  513. loff_t pos = *ppos;
  514. size_t ret;
  515. if (pos < 0)
  516. return -EINVAL;
  517. if (pos >= available || !count)
  518. return 0;
  519. if (count > available - pos)
  520. count = available - pos;
  521. ret = copy_to_user(to, from + pos, count);
  522. if (ret == count)
  523. return -EFAULT;
  524. count -= ret;
  525. *ppos = pos + count;
  526. return count;
  527. }
  528. /**
  529. * simple_write_to_buffer - copy data from user space to the buffer
  530. * @to: the buffer to write to
  531. * @available: the size of the buffer
  532. * @ppos: the current position in the buffer
  533. * @from: the user space buffer to read from
  534. * @count: the maximum number of bytes to read
  535. *
  536. * The simple_write_to_buffer() function reads up to @count bytes from the user
  537. * space address starting at @from into the buffer @to at offset @ppos.
  538. *
  539. * On success, the number of bytes written is returned and the offset @ppos is
  540. * advanced by this number, or negative value is returned on error.
  541. **/
  542. ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
  543. const void __user *from, size_t count)
  544. {
  545. loff_t pos = *ppos;
  546. size_t res;
  547. if (pos < 0)
  548. return -EINVAL;
  549. if (pos >= available || !count)
  550. return 0;
  551. if (count > available - pos)
  552. count = available - pos;
  553. res = copy_from_user(to + pos, from, count);
  554. if (res == count)
  555. return -EFAULT;
  556. count -= res;
  557. *ppos = pos + count;
  558. return count;
  559. }
  560. /**
  561. * memory_read_from_buffer - copy data from the buffer
  562. * @to: the kernel space buffer to read to
  563. * @count: the maximum number of bytes to read
  564. * @ppos: the current position in the buffer
  565. * @from: the buffer to read from
  566. * @available: the size of the buffer
  567. *
  568. * The memory_read_from_buffer() function reads up to @count bytes from the
  569. * buffer @from at offset @ppos into the kernel space address starting at @to.
  570. *
  571. * On success, the number of bytes read is returned and the offset @ppos is
  572. * advanced by this number, or negative value is returned on error.
  573. **/
  574. ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
  575. const void *from, size_t available)
  576. {
  577. loff_t pos = *ppos;
  578. if (pos < 0)
  579. return -EINVAL;
  580. if (pos >= available)
  581. return 0;
  582. if (count > available - pos)
  583. count = available - pos;
  584. memcpy(to, from + pos, count);
  585. *ppos = pos + count;
  586. return count;
  587. }
  588. /*
  589. * Transaction based IO.
  590. * The file expects a single write which triggers the transaction, and then
  591. * possibly a read which collects the result - which is stored in a
  592. * file-local buffer.
  593. */
  594. void simple_transaction_set(struct file *file, size_t n)
  595. {
  596. struct simple_transaction_argresp *ar = file->private_data;
  597. BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
  598. /*
  599. * The barrier ensures that ar->size will really remain zero until
  600. * ar->data is ready for reading.
  601. */
  602. smp_mb();
  603. ar->size = n;
  604. }
  605. char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
  606. {
  607. struct simple_transaction_argresp *ar;
  608. static DEFINE_SPINLOCK(simple_transaction_lock);
  609. if (size > SIMPLE_TRANSACTION_LIMIT - 1)
  610. return ERR_PTR(-EFBIG);
  611. ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
  612. if (!ar)
  613. return ERR_PTR(-ENOMEM);
  614. spin_lock(&simple_transaction_lock);
  615. /* only one write allowed per open */
  616. if (file->private_data) {
  617. spin_unlock(&simple_transaction_lock);
  618. free_page((unsigned long)ar);
  619. return ERR_PTR(-EBUSY);
  620. }
  621. file->private_data = ar;
  622. spin_unlock(&simple_transaction_lock);
  623. if (copy_from_user(ar->data, buf, size))
  624. return ERR_PTR(-EFAULT);
  625. return ar->data;
  626. }
  627. ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
  628. {
  629. struct simple_transaction_argresp *ar = file->private_data;
  630. if (!ar)
  631. return 0;
  632. return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
  633. }
  634. int simple_transaction_release(struct inode *inode, struct file *file)
  635. {
  636. free_page((unsigned long)file->private_data);
  637. return 0;
  638. }
  639. /* Simple attribute files */
  640. struct simple_attr {
  641. int (*get)(void *, u64 *);
  642. int (*set)(void *, u64);
  643. char get_buf[24]; /* enough to store a u64 and "\n\0" */
  644. char set_buf[24];
  645. void *data;
  646. const char *fmt; /* format for read operation */
  647. struct mutex mutex; /* protects access to these buffers */
  648. };
  649. /* simple_attr_open is called by an actual attribute open file operation
  650. * to set the attribute specific access operations. */
  651. int simple_attr_open(struct inode *inode, struct file *file,
  652. int (*get)(void *, u64 *), int (*set)(void *, u64),
  653. const char *fmt)
  654. {
  655. struct simple_attr *attr;
  656. attr = kmalloc(sizeof(*attr), GFP_KERNEL);
  657. if (!attr)
  658. return -ENOMEM;
  659. attr->get = get;
  660. attr->set = set;
  661. attr->data = inode->i_private;
  662. attr->fmt = fmt;
  663. mutex_init(&attr->mutex);
  664. file->private_data = attr;
  665. return nonseekable_open(inode, file);
  666. }
  667. int simple_attr_release(struct inode *inode, struct file *file)
  668. {
  669. kfree(file->private_data);
  670. return 0;
  671. }
  672. /* read from the buffer that is filled with the get function */
  673. ssize_t simple_attr_read(struct file *file, char __user *buf,
  674. size_t len, loff_t *ppos)
  675. {
  676. struct simple_attr *attr;
  677. size_t size;
  678. ssize_t ret;
  679. attr = file->private_data;
  680. if (!attr->get)
  681. return -EACCES;
  682. ret = mutex_lock_interruptible(&attr->mutex);
  683. if (ret)
  684. return ret;
  685. if (*ppos) { /* continued read */
  686. size = strlen(attr->get_buf);
  687. } else { /* first read */
  688. u64 val;
  689. ret = attr->get(attr->data, &val);
  690. if (ret)
  691. goto out;
  692. size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
  693. attr->fmt, (unsigned long long)val);
  694. }
  695. ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
  696. out:
  697. mutex_unlock(&attr->mutex);
  698. return ret;
  699. }
  700. /* interpret the buffer as a number to call the set function with */
  701. ssize_t simple_attr_write(struct file *file, const char __user *buf,
  702. size_t len, loff_t *ppos)
  703. {
  704. struct simple_attr *attr;
  705. u64 val;
  706. size_t size;
  707. ssize_t ret;
  708. attr = file->private_data;
  709. if (!attr->set)
  710. return -EACCES;
  711. ret = mutex_lock_interruptible(&attr->mutex);
  712. if (ret)
  713. return ret;
  714. ret = -EFAULT;
  715. size = min(sizeof(attr->set_buf) - 1, len);
  716. if (copy_from_user(attr->set_buf, buf, size))
  717. goto out;
  718. attr->set_buf[size] = '\0';
  719. val = simple_strtoll(attr->set_buf, NULL, 0);
  720. ret = attr->set(attr->data, val);
  721. if (ret == 0)
  722. ret = len; /* on success, claim we got the whole input */
  723. out:
  724. mutex_unlock(&attr->mutex);
  725. return ret;
  726. }
  727. /**
  728. * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
  729. * @sb: filesystem to do the file handle conversion on
  730. * @fid: file handle to convert
  731. * @fh_len: length of the file handle in bytes
  732. * @fh_type: type of file handle
  733. * @get_inode: filesystem callback to retrieve inode
  734. *
  735. * This function decodes @fid as long as it has one of the well-known
  736. * Linux filehandle types and calls @get_inode on it to retrieve the
  737. * inode for the object specified in the file handle.
  738. */
  739. struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
  740. int fh_len, int fh_type, struct inode *(*get_inode)
  741. (struct super_block *sb, u64 ino, u32 gen))
  742. {
  743. struct inode *inode = NULL;
  744. if (fh_len < 2)
  745. return NULL;
  746. switch (fh_type) {
  747. case FILEID_INO32_GEN:
  748. case FILEID_INO32_GEN_PARENT:
  749. inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
  750. break;
  751. }
  752. return d_obtain_alias(inode);
  753. }
  754. EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
  755. /**
  756. * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
  757. * @sb: filesystem to do the file handle conversion on
  758. * @fid: file handle to convert
  759. * @fh_len: length of the file handle in bytes
  760. * @fh_type: type of file handle
  761. * @get_inode: filesystem callback to retrieve inode
  762. *
  763. * This function decodes @fid as long as it has one of the well-known
  764. * Linux filehandle types and calls @get_inode on it to retrieve the
  765. * inode for the _parent_ object specified in the file handle if it
  766. * is specified in the file handle, or NULL otherwise.
  767. */
  768. struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
  769. int fh_len, int fh_type, struct inode *(*get_inode)
  770. (struct super_block *sb, u64 ino, u32 gen))
  771. {
  772. struct inode *inode = NULL;
  773. if (fh_len <= 2)
  774. return NULL;
  775. switch (fh_type) {
  776. case FILEID_INO32_GEN_PARENT:
  777. inode = get_inode(sb, fid->i32.parent_ino,
  778. (fh_len > 3 ? fid->i32.parent_gen : 0));
  779. break;
  780. }
  781. return d_obtain_alias(inode);
  782. }
  783. EXPORT_SYMBOL_GPL(generic_fh_to_parent);
  784. /**
  785. * generic_file_fsync - generic fsync implementation for simple filesystems
  786. * @file: file to synchronize
  787. * @datasync: only synchronize essential metadata if true
  788. *
  789. * This is a generic implementation of the fsync method for simple
  790. * filesystems which track all non-inode metadata in the buffers list
  791. * hanging off the address_space structure.
  792. */
  793. int generic_file_fsync(struct file *file, loff_t start, loff_t end,
  794. int datasync)
  795. {
  796. struct inode *inode = file->f_mapping->host;
  797. int err;
  798. int ret;
  799. err = filemap_write_and_wait_range(inode->i_mapping, start, end);
  800. if (err)
  801. return err;
  802. mutex_lock(&inode->i_mutex);
  803. ret = sync_mapping_buffers(inode->i_mapping);
  804. if (!(inode->i_state & I_DIRTY))
  805. goto out;
  806. if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
  807. goto out;
  808. err = sync_inode_metadata(inode, 1);
  809. if (ret == 0)
  810. ret = err;
  811. out:
  812. mutex_unlock(&inode->i_mutex);
  813. return ret;
  814. }
  815. EXPORT_SYMBOL(generic_file_fsync);
  816. /**
  817. * generic_check_addressable - Check addressability of file system
  818. * @blocksize_bits: log of file system block size
  819. * @num_blocks: number of blocks in file system
  820. *
  821. * Determine whether a file system with @num_blocks blocks (and a
  822. * block size of 2**@blocksize_bits) is addressable by the sector_t
  823. * and page cache of the system. Return 0 if so and -EFBIG otherwise.
  824. */
  825. int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
  826. {
  827. u64 last_fs_block = num_blocks - 1;
  828. u64 last_fs_page =
  829. last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
  830. if (unlikely(num_blocks == 0))
  831. return 0;
  832. if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
  833. return -EINVAL;
  834. if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
  835. (last_fs_page > (pgoff_t)(~0ULL))) {
  836. return -EFBIG;
  837. }
  838. return 0;
  839. }
  840. EXPORT_SYMBOL(generic_check_addressable);
  841. /*
  842. * No-op implementation of ->fsync for in-memory filesystems.
  843. */
  844. int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
  845. {
  846. return 0;
  847. }
  848. EXPORT_SYMBOL(dcache_dir_close);
  849. EXPORT_SYMBOL(dcache_dir_lseek);
  850. EXPORT_SYMBOL(dcache_dir_open);
  851. EXPORT_SYMBOL(dcache_readdir);
  852. EXPORT_SYMBOL(generic_read_dir);
  853. EXPORT_SYMBOL(mount_pseudo);
  854. EXPORT_SYMBOL(simple_write_begin);
  855. EXPORT_SYMBOL(simple_write_end);
  856. EXPORT_SYMBOL(simple_dir_inode_operations);
  857. EXPORT_SYMBOL(simple_dir_operations);
  858. EXPORT_SYMBOL(simple_empty);
  859. EXPORT_SYMBOL(simple_fill_super);
  860. EXPORT_SYMBOL(simple_getattr);
  861. EXPORT_SYMBOL(simple_link);
  862. EXPORT_SYMBOL(simple_lookup);
  863. EXPORT_SYMBOL(simple_pin_fs);
  864. EXPORT_SYMBOL(simple_readpage);
  865. EXPORT_SYMBOL(simple_release_fs);
  866. EXPORT_SYMBOL(simple_rename);
  867. EXPORT_SYMBOL(simple_rmdir);
  868. EXPORT_SYMBOL(simple_statfs);
  869. EXPORT_SYMBOL(noop_fsync);
  870. EXPORT_SYMBOL(simple_unlink);
  871. EXPORT_SYMBOL(simple_read_from_buffer);
  872. EXPORT_SYMBOL(simple_write_to_buffer);
  873. EXPORT_SYMBOL(memory_read_from_buffer);
  874. EXPORT_SYMBOL(simple_transaction_set);
  875. EXPORT_SYMBOL(simple_transaction_get);
  876. EXPORT_SYMBOL(simple_transaction_read);
  877. EXPORT_SYMBOL(simple_transaction_release);
  878. EXPORT_SYMBOL_GPL(simple_attr_open);
  879. EXPORT_SYMBOL_GPL(simple_attr_release);
  880. EXPORT_SYMBOL_GPL(simple_attr_read);
  881. EXPORT_SYMBOL_GPL(simple_attr_write);