fsync.c 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269
  1. /*
  2. * linux/fs/ext4/fsync.c
  3. *
  4. * Copyright (C) 1993 Stephen Tweedie (sct@redhat.com)
  5. * from
  6. * Copyright (C) 1992 Remy Card (card@masi.ibp.fr)
  7. * Laboratoire MASI - Institut Blaise Pascal
  8. * Universite Pierre et Marie Curie (Paris VI)
  9. * from
  10. * linux/fs/minix/truncate.c Copyright (C) 1991, 1992 Linus Torvalds
  11. *
  12. * ext4fs fsync primitive
  13. *
  14. * Big-endian to little-endian byte-swapping/bitmaps by
  15. * David S. Miller (davem@caip.rutgers.edu), 1995
  16. *
  17. * Removed unnecessary code duplication for little endian machines
  18. * and excessive __inline__s.
  19. * Andi Kleen, 1997
  20. *
  21. * Major simplications and cleanup - we only need to do the metadata, because
  22. * we can depend on generic_block_fdatasync() to sync the data blocks.
  23. */
  24. #include <linux/time.h>
  25. #include <linux/fs.h>
  26. #include <linux/sched.h>
  27. #include <linux/writeback.h>
  28. #include <linux/jbd2.h>
  29. #include <linux/blkdev.h>
  30. #include "ext4.h"
  31. #include "ext4_jbd2.h"
  32. #include <trace/events/ext4.h>
  33. static void dump_completed_IO(struct inode * inode)
  34. {
  35. #ifdef EXT4FS_DEBUG
  36. struct list_head *cur, *before, *after;
  37. ext4_io_end_t *io, *io0, *io1;
  38. unsigned long flags;
  39. if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
  40. ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
  41. return;
  42. }
  43. ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
  44. spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
  45. list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
  46. cur = &io->list;
  47. before = cur->prev;
  48. io0 = container_of(before, ext4_io_end_t, list);
  49. after = cur->next;
  50. io1 = container_of(after, ext4_io_end_t, list);
  51. ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
  52. io, inode->i_ino, io0, io1);
  53. }
  54. spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
  55. #endif
  56. }
  57. /*
  58. * This function is called from ext4_sync_file().
  59. *
  60. * When IO is completed, the work to convert unwritten extents to
  61. * written is queued on workqueue but may not get immediately
  62. * scheduled. When fsync is called, we need to ensure the
  63. * conversion is complete before fsync returns.
  64. * The inode keeps track of a list of pending/completed IO that
  65. * might needs to do the conversion. This function walks through
  66. * the list and convert the related unwritten extents for completed IO
  67. * to written.
  68. * The function return the number of pending IOs on success.
  69. */
  70. int ext4_flush_completed_IO(struct inode *inode)
  71. {
  72. ext4_io_end_t *io;
  73. struct ext4_inode_info *ei = EXT4_I(inode);
  74. unsigned long flags;
  75. int ret = 0;
  76. int ret2 = 0;
  77. dump_completed_IO(inode);
  78. spin_lock_irqsave(&ei->i_completed_io_lock, flags);
  79. while (!list_empty(&ei->i_completed_io_list)){
  80. io = list_entry(ei->i_completed_io_list.next,
  81. ext4_io_end_t, list);
  82. list_del_init(&io->list);
  83. /*
  84. * Calling ext4_end_io_nolock() to convert completed
  85. * IO to written.
  86. *
  87. * When ext4_sync_file() is called, run_queue() may already
  88. * about to flush the work corresponding to this io structure.
  89. * It will be upset if it founds the io structure related
  90. * to the work-to-be schedule is freed.
  91. *
  92. * Thus we need to keep the io structure still valid here after
  93. * conversion finished. The io structure has a flag to
  94. * avoid double converting from both fsync and background work
  95. * queue work.
  96. */
  97. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  98. ret = ext4_end_io_nolock(io);
  99. if (ret < 0)
  100. ret2 = ret;
  101. spin_lock_irqsave(&ei->i_completed_io_lock, flags);
  102. }
  103. spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
  104. return (ret2 < 0) ? ret2 : 0;
  105. }
  106. /*
  107. * If we're not journaling and this is a just-created file, we have to
  108. * sync our parent directory (if it was freshly created) since
  109. * otherwise it will only be written by writeback, leaving a huge
  110. * window during which a crash may lose the file. This may apply for
  111. * the parent directory's parent as well, and so on recursively, if
  112. * they are also freshly created.
  113. */
  114. static int ext4_sync_parent(struct inode *inode)
  115. {
  116. struct writeback_control wbc;
  117. struct dentry *dentry = NULL;
  118. struct inode *next;
  119. int ret = 0;
  120. if (!ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY))
  121. return 0;
  122. inode = igrab(inode);
  123. while (ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
  124. ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
  125. dentry = NULL;
  126. spin_lock(&inode->i_lock);
  127. if (!list_empty(&inode->i_dentry)) {
  128. dentry = list_first_entry(&inode->i_dentry,
  129. struct dentry, d_alias);
  130. dget(dentry);
  131. }
  132. spin_unlock(&inode->i_lock);
  133. if (!dentry)
  134. break;
  135. next = igrab(dentry->d_parent->d_inode);
  136. dput(dentry);
  137. if (!next)
  138. break;
  139. iput(inode);
  140. inode = next;
  141. ret = sync_mapping_buffers(inode->i_mapping);
  142. if (ret)
  143. break;
  144. memset(&wbc, 0, sizeof(wbc));
  145. wbc.sync_mode = WB_SYNC_ALL;
  146. wbc.nr_to_write = 0; /* only write out the inode */
  147. ret = sync_inode(inode, &wbc);
  148. if (ret)
  149. break;
  150. }
  151. iput(inode);
  152. return ret;
  153. }
  154. /**
  155. * __sync_file - generic_file_fsync without the locking and filemap_write
  156. * @inode: inode to sync
  157. * @datasync: only sync essential metadata if true
  158. *
  159. * This is just generic_file_fsync without the locking. This is needed for
  160. * nojournal mode to make sure this inodes data/metadata makes it to disk
  161. * properly. The i_mutex should be held already.
  162. */
  163. static int __sync_inode(struct inode *inode, int datasync)
  164. {
  165. int err;
  166. int ret;
  167. ret = sync_mapping_buffers(inode->i_mapping);
  168. if (!(inode->i_state & I_DIRTY))
  169. return ret;
  170. if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
  171. return ret;
  172. err = sync_inode_metadata(inode, 1);
  173. if (ret == 0)
  174. ret = err;
  175. return ret;
  176. }
  177. /*
  178. * akpm: A new design for ext4_sync_file().
  179. *
  180. * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
  181. * There cannot be a transaction open by this task.
  182. * Another task could have dirtied this inode. Its data can be in any
  183. * state in the journalling system.
  184. *
  185. * What we do is just kick off a commit and wait on it. This will snapshot the
  186. * inode to disk.
  187. *
  188. * i_mutex lock is held when entering and exiting this function
  189. */
  190. int ext4_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  191. {
  192. struct inode *inode = file->f_mapping->host;
  193. struct ext4_inode_info *ei = EXT4_I(inode);
  194. journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
  195. int ret;
  196. tid_t commit_tid;
  197. bool needs_barrier = false;
  198. J_ASSERT(ext4_journal_current_handle() == NULL);
  199. trace_ext4_sync_file_enter(file, datasync);
  200. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  201. if (ret)
  202. return ret;
  203. mutex_lock(&inode->i_mutex);
  204. if (inode->i_sb->s_flags & MS_RDONLY)
  205. goto out;
  206. ret = ext4_flush_completed_IO(inode);
  207. if (ret < 0)
  208. goto out;
  209. if (!journal) {
  210. ret = __sync_inode(inode, datasync);
  211. if (!ret && !list_empty(&inode->i_dentry))
  212. ret = ext4_sync_parent(inode);
  213. goto out;
  214. }
  215. /*
  216. * data=writeback,ordered:
  217. * The caller's filemap_fdatawrite()/wait will sync the data.
  218. * Metadata is in the journal, we wait for proper transaction to
  219. * commit here.
  220. *
  221. * data=journal:
  222. * filemap_fdatawrite won't do anything (the buffers are clean).
  223. * ext4_force_commit will write the file data into the journal and
  224. * will wait on that.
  225. * filemap_fdatawait() will encounter a ton of newly-dirtied pages
  226. * (they were dirtied by commit). But that's OK - the blocks are
  227. * safe in-journal, which is all fsync() needs to ensure.
  228. */
  229. if (ext4_should_journal_data(inode)) {
  230. ret = ext4_force_commit(inode->i_sb);
  231. goto out;
  232. }
  233. commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
  234. if (journal->j_flags & JBD2_BARRIER &&
  235. !jbd2_trans_will_send_data_barrier(journal, commit_tid))
  236. needs_barrier = true;
  237. jbd2_log_start_commit(journal, commit_tid);
  238. ret = jbd2_log_wait_commit(journal, commit_tid);
  239. if (needs_barrier)
  240. blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
  241. out:
  242. mutex_unlock(&inode->i_mutex);
  243. trace_ext4_sync_file_exit(inode, ret);
  244. return ret;
  245. }