delayed-inode.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 400
  24. #define BTRFS_DELAYED_BACKGROUND 100
  25. static struct kmem_cache *delayed_node_cache;
  26. int __init btrfs_delayed_inode_init(void)
  27. {
  28. delayed_node_cache = kmem_cache_create("delayed_node",
  29. sizeof(struct btrfs_delayed_node),
  30. 0,
  31. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  32. NULL);
  33. if (!delayed_node_cache)
  34. return -ENOMEM;
  35. return 0;
  36. }
  37. void btrfs_delayed_inode_exit(void)
  38. {
  39. if (delayed_node_cache)
  40. kmem_cache_destroy(delayed_node_cache);
  41. }
  42. static inline void btrfs_init_delayed_node(
  43. struct btrfs_delayed_node *delayed_node,
  44. struct btrfs_root *root, u64 inode_id)
  45. {
  46. delayed_node->root = root;
  47. delayed_node->inode_id = inode_id;
  48. atomic_set(&delayed_node->refs, 0);
  49. delayed_node->count = 0;
  50. delayed_node->in_list = 0;
  51. delayed_node->inode_dirty = 0;
  52. delayed_node->ins_root = RB_ROOT;
  53. delayed_node->del_root = RB_ROOT;
  54. mutex_init(&delayed_node->mutex);
  55. delayed_node->index_cnt = 0;
  56. INIT_LIST_HEAD(&delayed_node->n_list);
  57. INIT_LIST_HEAD(&delayed_node->p_list);
  58. delayed_node->bytes_reserved = 0;
  59. }
  60. static inline int btrfs_is_continuous_delayed_item(
  61. struct btrfs_delayed_item *item1,
  62. struct btrfs_delayed_item *item2)
  63. {
  64. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  65. item1->key.objectid == item2->key.objectid &&
  66. item1->key.type == item2->key.type &&
  67. item1->key.offset + 1 == item2->key.offset)
  68. return 1;
  69. return 0;
  70. }
  71. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  72. struct btrfs_root *root)
  73. {
  74. return root->fs_info->delayed_root;
  75. }
  76. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  77. {
  78. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  79. struct btrfs_root *root = btrfs_inode->root;
  80. u64 ino = btrfs_ino(inode);
  81. struct btrfs_delayed_node *node;
  82. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  83. if (node) {
  84. atomic_inc(&node->refs);
  85. return node;
  86. }
  87. spin_lock(&root->inode_lock);
  88. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  89. if (node) {
  90. if (btrfs_inode->delayed_node) {
  91. atomic_inc(&node->refs); /* can be accessed */
  92. BUG_ON(btrfs_inode->delayed_node != node);
  93. spin_unlock(&root->inode_lock);
  94. return node;
  95. }
  96. btrfs_inode->delayed_node = node;
  97. atomic_inc(&node->refs); /* can be accessed */
  98. atomic_inc(&node->refs); /* cached in the inode */
  99. spin_unlock(&root->inode_lock);
  100. return node;
  101. }
  102. spin_unlock(&root->inode_lock);
  103. return NULL;
  104. }
  105. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  106. struct inode *inode)
  107. {
  108. struct btrfs_delayed_node *node;
  109. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  110. struct btrfs_root *root = btrfs_inode->root;
  111. u64 ino = btrfs_ino(inode);
  112. int ret;
  113. again:
  114. node = btrfs_get_delayed_node(inode);
  115. if (node)
  116. return node;
  117. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  118. if (!node)
  119. return ERR_PTR(-ENOMEM);
  120. btrfs_init_delayed_node(node, root, ino);
  121. atomic_inc(&node->refs); /* cached in the btrfs inode */
  122. atomic_inc(&node->refs); /* can be accessed */
  123. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  124. if (ret) {
  125. kmem_cache_free(delayed_node_cache, node);
  126. return ERR_PTR(ret);
  127. }
  128. spin_lock(&root->inode_lock);
  129. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  130. if (ret == -EEXIST) {
  131. kmem_cache_free(delayed_node_cache, node);
  132. spin_unlock(&root->inode_lock);
  133. radix_tree_preload_end();
  134. goto again;
  135. }
  136. btrfs_inode->delayed_node = node;
  137. spin_unlock(&root->inode_lock);
  138. radix_tree_preload_end();
  139. return node;
  140. }
  141. /*
  142. * Call it when holding delayed_node->mutex
  143. *
  144. * If mod = 1, add this node into the prepared list.
  145. */
  146. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  147. struct btrfs_delayed_node *node,
  148. int mod)
  149. {
  150. spin_lock(&root->lock);
  151. if (node->in_list) {
  152. if (!list_empty(&node->p_list))
  153. list_move_tail(&node->p_list, &root->prepare_list);
  154. else if (mod)
  155. list_add_tail(&node->p_list, &root->prepare_list);
  156. } else {
  157. list_add_tail(&node->n_list, &root->node_list);
  158. list_add_tail(&node->p_list, &root->prepare_list);
  159. atomic_inc(&node->refs); /* inserted into list */
  160. root->nodes++;
  161. node->in_list = 1;
  162. }
  163. spin_unlock(&root->lock);
  164. }
  165. /* Call it when holding delayed_node->mutex */
  166. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  167. struct btrfs_delayed_node *node)
  168. {
  169. spin_lock(&root->lock);
  170. if (node->in_list) {
  171. root->nodes--;
  172. atomic_dec(&node->refs); /* not in the list */
  173. list_del_init(&node->n_list);
  174. if (!list_empty(&node->p_list))
  175. list_del_init(&node->p_list);
  176. node->in_list = 0;
  177. }
  178. spin_unlock(&root->lock);
  179. }
  180. struct btrfs_delayed_node *btrfs_first_delayed_node(
  181. struct btrfs_delayed_root *delayed_root)
  182. {
  183. struct list_head *p;
  184. struct btrfs_delayed_node *node = NULL;
  185. spin_lock(&delayed_root->lock);
  186. if (list_empty(&delayed_root->node_list))
  187. goto out;
  188. p = delayed_root->node_list.next;
  189. node = list_entry(p, struct btrfs_delayed_node, n_list);
  190. atomic_inc(&node->refs);
  191. out:
  192. spin_unlock(&delayed_root->lock);
  193. return node;
  194. }
  195. struct btrfs_delayed_node *btrfs_next_delayed_node(
  196. struct btrfs_delayed_node *node)
  197. {
  198. struct btrfs_delayed_root *delayed_root;
  199. struct list_head *p;
  200. struct btrfs_delayed_node *next = NULL;
  201. delayed_root = node->root->fs_info->delayed_root;
  202. spin_lock(&delayed_root->lock);
  203. if (!node->in_list) { /* not in the list */
  204. if (list_empty(&delayed_root->node_list))
  205. goto out;
  206. p = delayed_root->node_list.next;
  207. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  208. goto out;
  209. else
  210. p = node->n_list.next;
  211. next = list_entry(p, struct btrfs_delayed_node, n_list);
  212. atomic_inc(&next->refs);
  213. out:
  214. spin_unlock(&delayed_root->lock);
  215. return next;
  216. }
  217. static void __btrfs_release_delayed_node(
  218. struct btrfs_delayed_node *delayed_node,
  219. int mod)
  220. {
  221. struct btrfs_delayed_root *delayed_root;
  222. if (!delayed_node)
  223. return;
  224. delayed_root = delayed_node->root->fs_info->delayed_root;
  225. mutex_lock(&delayed_node->mutex);
  226. if (delayed_node->count)
  227. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  228. else
  229. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  230. mutex_unlock(&delayed_node->mutex);
  231. if (atomic_dec_and_test(&delayed_node->refs)) {
  232. struct btrfs_root *root = delayed_node->root;
  233. spin_lock(&root->inode_lock);
  234. if (atomic_read(&delayed_node->refs) == 0) {
  235. radix_tree_delete(&root->delayed_nodes_tree,
  236. delayed_node->inode_id);
  237. kmem_cache_free(delayed_node_cache, delayed_node);
  238. }
  239. spin_unlock(&root->inode_lock);
  240. }
  241. }
  242. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  243. {
  244. __btrfs_release_delayed_node(node, 0);
  245. }
  246. struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  247. struct btrfs_delayed_root *delayed_root)
  248. {
  249. struct list_head *p;
  250. struct btrfs_delayed_node *node = NULL;
  251. spin_lock(&delayed_root->lock);
  252. if (list_empty(&delayed_root->prepare_list))
  253. goto out;
  254. p = delayed_root->prepare_list.next;
  255. list_del_init(p);
  256. node = list_entry(p, struct btrfs_delayed_node, p_list);
  257. atomic_inc(&node->refs);
  258. out:
  259. spin_unlock(&delayed_root->lock);
  260. return node;
  261. }
  262. static inline void btrfs_release_prepared_delayed_node(
  263. struct btrfs_delayed_node *node)
  264. {
  265. __btrfs_release_delayed_node(node, 1);
  266. }
  267. struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  268. {
  269. struct btrfs_delayed_item *item;
  270. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  271. if (item) {
  272. item->data_len = data_len;
  273. item->ins_or_del = 0;
  274. item->bytes_reserved = 0;
  275. item->delayed_node = NULL;
  276. atomic_set(&item->refs, 1);
  277. }
  278. return item;
  279. }
  280. /*
  281. * __btrfs_lookup_delayed_item - look up the delayed item by key
  282. * @delayed_node: pointer to the delayed node
  283. * @key: the key to look up
  284. * @prev: used to store the prev item if the right item isn't found
  285. * @next: used to store the next item if the right item isn't found
  286. *
  287. * Note: if we don't find the right item, we will return the prev item and
  288. * the next item.
  289. */
  290. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  291. struct rb_root *root,
  292. struct btrfs_key *key,
  293. struct btrfs_delayed_item **prev,
  294. struct btrfs_delayed_item **next)
  295. {
  296. struct rb_node *node, *prev_node = NULL;
  297. struct btrfs_delayed_item *delayed_item = NULL;
  298. int ret = 0;
  299. node = root->rb_node;
  300. while (node) {
  301. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  302. rb_node);
  303. prev_node = node;
  304. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  305. if (ret < 0)
  306. node = node->rb_right;
  307. else if (ret > 0)
  308. node = node->rb_left;
  309. else
  310. return delayed_item;
  311. }
  312. if (prev) {
  313. if (!prev_node)
  314. *prev = NULL;
  315. else if (ret < 0)
  316. *prev = delayed_item;
  317. else if ((node = rb_prev(prev_node)) != NULL) {
  318. *prev = rb_entry(node, struct btrfs_delayed_item,
  319. rb_node);
  320. } else
  321. *prev = NULL;
  322. }
  323. if (next) {
  324. if (!prev_node)
  325. *next = NULL;
  326. else if (ret > 0)
  327. *next = delayed_item;
  328. else if ((node = rb_next(prev_node)) != NULL) {
  329. *next = rb_entry(node, struct btrfs_delayed_item,
  330. rb_node);
  331. } else
  332. *next = NULL;
  333. }
  334. return NULL;
  335. }
  336. struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  337. struct btrfs_delayed_node *delayed_node,
  338. struct btrfs_key *key)
  339. {
  340. struct btrfs_delayed_item *item;
  341. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  342. NULL, NULL);
  343. return item;
  344. }
  345. struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
  346. struct btrfs_delayed_node *delayed_node,
  347. struct btrfs_key *key)
  348. {
  349. struct btrfs_delayed_item *item;
  350. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  351. NULL, NULL);
  352. return item;
  353. }
  354. struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
  355. struct btrfs_delayed_node *delayed_node,
  356. struct btrfs_key *key)
  357. {
  358. struct btrfs_delayed_item *item, *next;
  359. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  360. NULL, &next);
  361. if (!item)
  362. item = next;
  363. return item;
  364. }
  365. struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
  366. struct btrfs_delayed_node *delayed_node,
  367. struct btrfs_key *key)
  368. {
  369. struct btrfs_delayed_item *item, *next;
  370. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  371. NULL, &next);
  372. if (!item)
  373. item = next;
  374. return item;
  375. }
  376. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  377. struct btrfs_delayed_item *ins,
  378. int action)
  379. {
  380. struct rb_node **p, *node;
  381. struct rb_node *parent_node = NULL;
  382. struct rb_root *root;
  383. struct btrfs_delayed_item *item;
  384. int cmp;
  385. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  386. root = &delayed_node->ins_root;
  387. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  388. root = &delayed_node->del_root;
  389. else
  390. BUG();
  391. p = &root->rb_node;
  392. node = &ins->rb_node;
  393. while (*p) {
  394. parent_node = *p;
  395. item = rb_entry(parent_node, struct btrfs_delayed_item,
  396. rb_node);
  397. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  398. if (cmp < 0)
  399. p = &(*p)->rb_right;
  400. else if (cmp > 0)
  401. p = &(*p)->rb_left;
  402. else
  403. return -EEXIST;
  404. }
  405. rb_link_node(node, parent_node, p);
  406. rb_insert_color(node, root);
  407. ins->delayed_node = delayed_node;
  408. ins->ins_or_del = action;
  409. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  410. action == BTRFS_DELAYED_INSERTION_ITEM &&
  411. ins->key.offset >= delayed_node->index_cnt)
  412. delayed_node->index_cnt = ins->key.offset + 1;
  413. delayed_node->count++;
  414. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  415. return 0;
  416. }
  417. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  418. struct btrfs_delayed_item *item)
  419. {
  420. return __btrfs_add_delayed_item(node, item,
  421. BTRFS_DELAYED_INSERTION_ITEM);
  422. }
  423. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  424. struct btrfs_delayed_item *item)
  425. {
  426. return __btrfs_add_delayed_item(node, item,
  427. BTRFS_DELAYED_DELETION_ITEM);
  428. }
  429. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  430. {
  431. struct rb_root *root;
  432. struct btrfs_delayed_root *delayed_root;
  433. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  434. BUG_ON(!delayed_root);
  435. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  436. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  437. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  438. root = &delayed_item->delayed_node->ins_root;
  439. else
  440. root = &delayed_item->delayed_node->del_root;
  441. rb_erase(&delayed_item->rb_node, root);
  442. delayed_item->delayed_node->count--;
  443. atomic_dec(&delayed_root->items);
  444. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
  445. waitqueue_active(&delayed_root->wait))
  446. wake_up(&delayed_root->wait);
  447. }
  448. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  449. {
  450. if (item) {
  451. __btrfs_remove_delayed_item(item);
  452. if (atomic_dec_and_test(&item->refs))
  453. kfree(item);
  454. }
  455. }
  456. struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  457. struct btrfs_delayed_node *delayed_node)
  458. {
  459. struct rb_node *p;
  460. struct btrfs_delayed_item *item = NULL;
  461. p = rb_first(&delayed_node->ins_root);
  462. if (p)
  463. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  464. return item;
  465. }
  466. struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  467. struct btrfs_delayed_node *delayed_node)
  468. {
  469. struct rb_node *p;
  470. struct btrfs_delayed_item *item = NULL;
  471. p = rb_first(&delayed_node->del_root);
  472. if (p)
  473. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  474. return item;
  475. }
  476. struct btrfs_delayed_item *__btrfs_next_delayed_item(
  477. struct btrfs_delayed_item *item)
  478. {
  479. struct rb_node *p;
  480. struct btrfs_delayed_item *next = NULL;
  481. p = rb_next(&item->rb_node);
  482. if (p)
  483. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  484. return next;
  485. }
  486. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  487. u64 root_id)
  488. {
  489. struct btrfs_key root_key;
  490. if (root->objectid == root_id)
  491. return root;
  492. root_key.objectid = root_id;
  493. root_key.type = BTRFS_ROOT_ITEM_KEY;
  494. root_key.offset = (u64)-1;
  495. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  496. }
  497. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  498. struct btrfs_root *root,
  499. struct btrfs_delayed_item *item)
  500. {
  501. struct btrfs_block_rsv *src_rsv;
  502. struct btrfs_block_rsv *dst_rsv;
  503. u64 num_bytes;
  504. int ret;
  505. if (!trans->bytes_reserved)
  506. return 0;
  507. src_rsv = trans->block_rsv;
  508. dst_rsv = &root->fs_info->delayed_block_rsv;
  509. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  510. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  511. if (!ret)
  512. item->bytes_reserved = num_bytes;
  513. return ret;
  514. }
  515. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  516. struct btrfs_delayed_item *item)
  517. {
  518. struct btrfs_block_rsv *rsv;
  519. if (!item->bytes_reserved)
  520. return;
  521. rsv = &root->fs_info->delayed_block_rsv;
  522. btrfs_block_rsv_release(root, rsv,
  523. item->bytes_reserved);
  524. }
  525. static int btrfs_delayed_inode_reserve_metadata(
  526. struct btrfs_trans_handle *trans,
  527. struct btrfs_root *root,
  528. struct btrfs_delayed_node *node)
  529. {
  530. struct btrfs_block_rsv *src_rsv;
  531. struct btrfs_block_rsv *dst_rsv;
  532. u64 num_bytes;
  533. int ret;
  534. src_rsv = trans->block_rsv;
  535. dst_rsv = &root->fs_info->delayed_block_rsv;
  536. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  537. /*
  538. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  539. * which doesn't reserve space for speed. This is a problem since we
  540. * still need to reserve space for this update, so try to reserve the
  541. * space.
  542. *
  543. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  544. * we're accounted for.
  545. */
  546. if (!trans->bytes_reserved &&
  547. src_rsv != &root->fs_info->delalloc_block_rsv) {
  548. ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
  549. /*
  550. * Since we're under a transaction reserve_metadata_bytes could
  551. * try to commit the transaction which will make it return
  552. * EAGAIN to make us stop the transaction we have, so return
  553. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  554. */
  555. if (ret == -EAGAIN)
  556. ret = -ENOSPC;
  557. if (!ret)
  558. node->bytes_reserved = num_bytes;
  559. return ret;
  560. }
  561. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  562. if (!ret)
  563. node->bytes_reserved = num_bytes;
  564. return ret;
  565. }
  566. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  567. struct btrfs_delayed_node *node)
  568. {
  569. struct btrfs_block_rsv *rsv;
  570. if (!node->bytes_reserved)
  571. return;
  572. rsv = &root->fs_info->delayed_block_rsv;
  573. btrfs_block_rsv_release(root, rsv,
  574. node->bytes_reserved);
  575. node->bytes_reserved = 0;
  576. }
  577. /*
  578. * This helper will insert some continuous items into the same leaf according
  579. * to the free space of the leaf.
  580. */
  581. static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
  582. struct btrfs_root *root,
  583. struct btrfs_path *path,
  584. struct btrfs_delayed_item *item)
  585. {
  586. struct btrfs_delayed_item *curr, *next;
  587. int free_space;
  588. int total_data_size = 0, total_size = 0;
  589. struct extent_buffer *leaf;
  590. char *data_ptr;
  591. struct btrfs_key *keys;
  592. u32 *data_size;
  593. struct list_head head;
  594. int slot;
  595. int nitems;
  596. int i;
  597. int ret = 0;
  598. BUG_ON(!path->nodes[0]);
  599. leaf = path->nodes[0];
  600. free_space = btrfs_leaf_free_space(root, leaf);
  601. INIT_LIST_HEAD(&head);
  602. next = item;
  603. nitems = 0;
  604. /*
  605. * count the number of the continuous items that we can insert in batch
  606. */
  607. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  608. free_space) {
  609. total_data_size += next->data_len;
  610. total_size += next->data_len + sizeof(struct btrfs_item);
  611. list_add_tail(&next->tree_list, &head);
  612. nitems++;
  613. curr = next;
  614. next = __btrfs_next_delayed_item(curr);
  615. if (!next)
  616. break;
  617. if (!btrfs_is_continuous_delayed_item(curr, next))
  618. break;
  619. }
  620. if (!nitems) {
  621. ret = 0;
  622. goto out;
  623. }
  624. /*
  625. * we need allocate some memory space, but it might cause the task
  626. * to sleep, so we set all locked nodes in the path to blocking locks
  627. * first.
  628. */
  629. btrfs_set_path_blocking(path);
  630. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  631. if (!keys) {
  632. ret = -ENOMEM;
  633. goto out;
  634. }
  635. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  636. if (!data_size) {
  637. ret = -ENOMEM;
  638. goto error;
  639. }
  640. /* get keys of all the delayed items */
  641. i = 0;
  642. list_for_each_entry(next, &head, tree_list) {
  643. keys[i] = next->key;
  644. data_size[i] = next->data_len;
  645. i++;
  646. }
  647. /* reset all the locked nodes in the patch to spinning locks. */
  648. btrfs_clear_path_blocking(path, NULL, 0);
  649. /* insert the keys of the items */
  650. ret = setup_items_for_insert(trans, root, path, keys, data_size,
  651. total_data_size, total_size, nitems);
  652. if (ret)
  653. goto error;
  654. /* insert the dir index items */
  655. slot = path->slots[0];
  656. list_for_each_entry_safe(curr, next, &head, tree_list) {
  657. data_ptr = btrfs_item_ptr(leaf, slot, char);
  658. write_extent_buffer(leaf, &curr->data,
  659. (unsigned long)data_ptr,
  660. curr->data_len);
  661. slot++;
  662. btrfs_delayed_item_release_metadata(root, curr);
  663. list_del(&curr->tree_list);
  664. btrfs_release_delayed_item(curr);
  665. }
  666. error:
  667. kfree(data_size);
  668. kfree(keys);
  669. out:
  670. return ret;
  671. }
  672. /*
  673. * This helper can just do simple insertion that needn't extend item for new
  674. * data, such as directory name index insertion, inode insertion.
  675. */
  676. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  677. struct btrfs_root *root,
  678. struct btrfs_path *path,
  679. struct btrfs_delayed_item *delayed_item)
  680. {
  681. struct extent_buffer *leaf;
  682. struct btrfs_item *item;
  683. char *ptr;
  684. int ret;
  685. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  686. delayed_item->data_len);
  687. if (ret < 0 && ret != -EEXIST)
  688. return ret;
  689. leaf = path->nodes[0];
  690. item = btrfs_item_nr(leaf, path->slots[0]);
  691. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  692. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  693. delayed_item->data_len);
  694. btrfs_mark_buffer_dirty(leaf);
  695. btrfs_delayed_item_release_metadata(root, delayed_item);
  696. return 0;
  697. }
  698. /*
  699. * we insert an item first, then if there are some continuous items, we try
  700. * to insert those items into the same leaf.
  701. */
  702. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  703. struct btrfs_path *path,
  704. struct btrfs_root *root,
  705. struct btrfs_delayed_node *node)
  706. {
  707. struct btrfs_delayed_item *curr, *prev;
  708. int ret = 0;
  709. do_again:
  710. mutex_lock(&node->mutex);
  711. curr = __btrfs_first_delayed_insertion_item(node);
  712. if (!curr)
  713. goto insert_end;
  714. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  715. if (ret < 0) {
  716. btrfs_release_path(path);
  717. goto insert_end;
  718. }
  719. prev = curr;
  720. curr = __btrfs_next_delayed_item(prev);
  721. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  722. /* insert the continuous items into the same leaf */
  723. path->slots[0]++;
  724. btrfs_batch_insert_items(trans, root, path, curr);
  725. }
  726. btrfs_release_delayed_item(prev);
  727. btrfs_mark_buffer_dirty(path->nodes[0]);
  728. btrfs_release_path(path);
  729. mutex_unlock(&node->mutex);
  730. goto do_again;
  731. insert_end:
  732. mutex_unlock(&node->mutex);
  733. return ret;
  734. }
  735. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  736. struct btrfs_root *root,
  737. struct btrfs_path *path,
  738. struct btrfs_delayed_item *item)
  739. {
  740. struct btrfs_delayed_item *curr, *next;
  741. struct extent_buffer *leaf;
  742. struct btrfs_key key;
  743. struct list_head head;
  744. int nitems, i, last_item;
  745. int ret = 0;
  746. BUG_ON(!path->nodes[0]);
  747. leaf = path->nodes[0];
  748. i = path->slots[0];
  749. last_item = btrfs_header_nritems(leaf) - 1;
  750. if (i > last_item)
  751. return -ENOENT; /* FIXME: Is errno suitable? */
  752. next = item;
  753. INIT_LIST_HEAD(&head);
  754. btrfs_item_key_to_cpu(leaf, &key, i);
  755. nitems = 0;
  756. /*
  757. * count the number of the dir index items that we can delete in batch
  758. */
  759. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  760. list_add_tail(&next->tree_list, &head);
  761. nitems++;
  762. curr = next;
  763. next = __btrfs_next_delayed_item(curr);
  764. if (!next)
  765. break;
  766. if (!btrfs_is_continuous_delayed_item(curr, next))
  767. break;
  768. i++;
  769. if (i > last_item)
  770. break;
  771. btrfs_item_key_to_cpu(leaf, &key, i);
  772. }
  773. if (!nitems)
  774. return 0;
  775. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  776. if (ret)
  777. goto out;
  778. list_for_each_entry_safe(curr, next, &head, tree_list) {
  779. btrfs_delayed_item_release_metadata(root, curr);
  780. list_del(&curr->tree_list);
  781. btrfs_release_delayed_item(curr);
  782. }
  783. out:
  784. return ret;
  785. }
  786. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  787. struct btrfs_path *path,
  788. struct btrfs_root *root,
  789. struct btrfs_delayed_node *node)
  790. {
  791. struct btrfs_delayed_item *curr, *prev;
  792. int ret = 0;
  793. do_again:
  794. mutex_lock(&node->mutex);
  795. curr = __btrfs_first_delayed_deletion_item(node);
  796. if (!curr)
  797. goto delete_fail;
  798. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  799. if (ret < 0)
  800. goto delete_fail;
  801. else if (ret > 0) {
  802. /*
  803. * can't find the item which the node points to, so this node
  804. * is invalid, just drop it.
  805. */
  806. prev = curr;
  807. curr = __btrfs_next_delayed_item(prev);
  808. btrfs_release_delayed_item(prev);
  809. ret = 0;
  810. btrfs_release_path(path);
  811. if (curr)
  812. goto do_again;
  813. else
  814. goto delete_fail;
  815. }
  816. btrfs_batch_delete_items(trans, root, path, curr);
  817. btrfs_release_path(path);
  818. mutex_unlock(&node->mutex);
  819. goto do_again;
  820. delete_fail:
  821. btrfs_release_path(path);
  822. mutex_unlock(&node->mutex);
  823. return ret;
  824. }
  825. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  826. {
  827. struct btrfs_delayed_root *delayed_root;
  828. if (delayed_node && delayed_node->inode_dirty) {
  829. BUG_ON(!delayed_node->root);
  830. delayed_node->inode_dirty = 0;
  831. delayed_node->count--;
  832. delayed_root = delayed_node->root->fs_info->delayed_root;
  833. atomic_dec(&delayed_root->items);
  834. if (atomic_read(&delayed_root->items) <
  835. BTRFS_DELAYED_BACKGROUND &&
  836. waitqueue_active(&delayed_root->wait))
  837. wake_up(&delayed_root->wait);
  838. }
  839. }
  840. static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  841. struct btrfs_root *root,
  842. struct btrfs_path *path,
  843. struct btrfs_delayed_node *node)
  844. {
  845. struct btrfs_key key;
  846. struct btrfs_inode_item *inode_item;
  847. struct extent_buffer *leaf;
  848. int ret;
  849. mutex_lock(&node->mutex);
  850. if (!node->inode_dirty) {
  851. mutex_unlock(&node->mutex);
  852. return 0;
  853. }
  854. key.objectid = node->inode_id;
  855. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  856. key.offset = 0;
  857. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  858. if (ret > 0) {
  859. btrfs_release_path(path);
  860. mutex_unlock(&node->mutex);
  861. return -ENOENT;
  862. } else if (ret < 0) {
  863. mutex_unlock(&node->mutex);
  864. return ret;
  865. }
  866. btrfs_unlock_up_safe(path, 1);
  867. leaf = path->nodes[0];
  868. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  869. struct btrfs_inode_item);
  870. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  871. sizeof(struct btrfs_inode_item));
  872. btrfs_mark_buffer_dirty(leaf);
  873. btrfs_release_path(path);
  874. btrfs_delayed_inode_release_metadata(root, node);
  875. btrfs_release_delayed_inode(node);
  876. mutex_unlock(&node->mutex);
  877. return 0;
  878. }
  879. /* Called when committing the transaction. */
  880. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  881. struct btrfs_root *root)
  882. {
  883. struct btrfs_delayed_root *delayed_root;
  884. struct btrfs_delayed_node *curr_node, *prev_node;
  885. struct btrfs_path *path;
  886. struct btrfs_block_rsv *block_rsv;
  887. int ret = 0;
  888. path = btrfs_alloc_path();
  889. if (!path)
  890. return -ENOMEM;
  891. path->leave_spinning = 1;
  892. block_rsv = trans->block_rsv;
  893. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  894. delayed_root = btrfs_get_delayed_root(root);
  895. curr_node = btrfs_first_delayed_node(delayed_root);
  896. while (curr_node) {
  897. root = curr_node->root;
  898. ret = btrfs_insert_delayed_items(trans, path, root,
  899. curr_node);
  900. if (!ret)
  901. ret = btrfs_delete_delayed_items(trans, path, root,
  902. curr_node);
  903. if (!ret)
  904. ret = btrfs_update_delayed_inode(trans, root, path,
  905. curr_node);
  906. if (ret) {
  907. btrfs_release_delayed_node(curr_node);
  908. break;
  909. }
  910. prev_node = curr_node;
  911. curr_node = btrfs_next_delayed_node(curr_node);
  912. btrfs_release_delayed_node(prev_node);
  913. }
  914. btrfs_free_path(path);
  915. trans->block_rsv = block_rsv;
  916. return ret;
  917. }
  918. static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  919. struct btrfs_delayed_node *node)
  920. {
  921. struct btrfs_path *path;
  922. struct btrfs_block_rsv *block_rsv;
  923. int ret;
  924. path = btrfs_alloc_path();
  925. if (!path)
  926. return -ENOMEM;
  927. path->leave_spinning = 1;
  928. block_rsv = trans->block_rsv;
  929. trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
  930. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  931. if (!ret)
  932. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  933. if (!ret)
  934. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  935. btrfs_free_path(path);
  936. trans->block_rsv = block_rsv;
  937. return ret;
  938. }
  939. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  940. struct inode *inode)
  941. {
  942. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  943. int ret;
  944. if (!delayed_node)
  945. return 0;
  946. mutex_lock(&delayed_node->mutex);
  947. if (!delayed_node->count) {
  948. mutex_unlock(&delayed_node->mutex);
  949. btrfs_release_delayed_node(delayed_node);
  950. return 0;
  951. }
  952. mutex_unlock(&delayed_node->mutex);
  953. ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
  954. btrfs_release_delayed_node(delayed_node);
  955. return ret;
  956. }
  957. void btrfs_remove_delayed_node(struct inode *inode)
  958. {
  959. struct btrfs_delayed_node *delayed_node;
  960. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  961. if (!delayed_node)
  962. return;
  963. BTRFS_I(inode)->delayed_node = NULL;
  964. btrfs_release_delayed_node(delayed_node);
  965. }
  966. struct btrfs_async_delayed_node {
  967. struct btrfs_root *root;
  968. struct btrfs_delayed_node *delayed_node;
  969. struct btrfs_work work;
  970. };
  971. static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
  972. {
  973. struct btrfs_async_delayed_node *async_node;
  974. struct btrfs_trans_handle *trans;
  975. struct btrfs_path *path;
  976. struct btrfs_delayed_node *delayed_node = NULL;
  977. struct btrfs_root *root;
  978. struct btrfs_block_rsv *block_rsv;
  979. unsigned long nr = 0;
  980. int need_requeue = 0;
  981. int ret;
  982. async_node = container_of(work, struct btrfs_async_delayed_node, work);
  983. path = btrfs_alloc_path();
  984. if (!path)
  985. goto out;
  986. path->leave_spinning = 1;
  987. delayed_node = async_node->delayed_node;
  988. root = delayed_node->root;
  989. trans = btrfs_join_transaction(root);
  990. if (IS_ERR(trans))
  991. goto free_path;
  992. block_rsv = trans->block_rsv;
  993. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  994. ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
  995. if (!ret)
  996. ret = btrfs_delete_delayed_items(trans, path, root,
  997. delayed_node);
  998. if (!ret)
  999. btrfs_update_delayed_inode(trans, root, path, delayed_node);
  1000. /*
  1001. * Maybe new delayed items have been inserted, so we need requeue
  1002. * the work. Besides that, we must dequeue the empty delayed nodes
  1003. * to avoid the race between delayed items balance and the worker.
  1004. * The race like this:
  1005. * Task1 Worker thread
  1006. * count == 0, needn't requeue
  1007. * also needn't insert the
  1008. * delayed node into prepare
  1009. * list again.
  1010. * add lots of delayed items
  1011. * queue the delayed node
  1012. * already in the list,
  1013. * and not in the prepare
  1014. * list, it means the delayed
  1015. * node is being dealt with
  1016. * by the worker.
  1017. * do delayed items balance
  1018. * the delayed node is being
  1019. * dealt with by the worker
  1020. * now, just wait.
  1021. * the worker goto idle.
  1022. * Task1 will sleep until the transaction is commited.
  1023. */
  1024. mutex_lock(&delayed_node->mutex);
  1025. if (delayed_node->count)
  1026. need_requeue = 1;
  1027. else
  1028. btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
  1029. delayed_node);
  1030. mutex_unlock(&delayed_node->mutex);
  1031. nr = trans->blocks_used;
  1032. trans->block_rsv = block_rsv;
  1033. btrfs_end_transaction_dmeta(trans, root);
  1034. __btrfs_btree_balance_dirty(root, nr);
  1035. free_path:
  1036. btrfs_free_path(path);
  1037. out:
  1038. if (need_requeue)
  1039. btrfs_requeue_work(&async_node->work);
  1040. else {
  1041. btrfs_release_prepared_delayed_node(delayed_node);
  1042. kfree(async_node);
  1043. }
  1044. }
  1045. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1046. struct btrfs_root *root, int all)
  1047. {
  1048. struct btrfs_async_delayed_node *async_node;
  1049. struct btrfs_delayed_node *curr;
  1050. int count = 0;
  1051. again:
  1052. curr = btrfs_first_prepared_delayed_node(delayed_root);
  1053. if (!curr)
  1054. return 0;
  1055. async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
  1056. if (!async_node) {
  1057. btrfs_release_prepared_delayed_node(curr);
  1058. return -ENOMEM;
  1059. }
  1060. async_node->root = root;
  1061. async_node->delayed_node = curr;
  1062. async_node->work.func = btrfs_async_run_delayed_node_done;
  1063. async_node->work.flags = 0;
  1064. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
  1065. count++;
  1066. if (all || count < 4)
  1067. goto again;
  1068. return 0;
  1069. }
  1070. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1071. {
  1072. struct btrfs_delayed_root *delayed_root;
  1073. delayed_root = btrfs_get_delayed_root(root);
  1074. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1075. }
  1076. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1077. {
  1078. struct btrfs_delayed_root *delayed_root;
  1079. delayed_root = btrfs_get_delayed_root(root);
  1080. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1081. return;
  1082. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1083. int ret;
  1084. ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
  1085. if (ret)
  1086. return;
  1087. wait_event_interruptible_timeout(
  1088. delayed_root->wait,
  1089. (atomic_read(&delayed_root->items) <
  1090. BTRFS_DELAYED_BACKGROUND),
  1091. HZ);
  1092. return;
  1093. }
  1094. btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1095. }
  1096. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1097. struct btrfs_root *root, const char *name,
  1098. int name_len, struct inode *dir,
  1099. struct btrfs_disk_key *disk_key, u8 type,
  1100. u64 index)
  1101. {
  1102. struct btrfs_delayed_node *delayed_node;
  1103. struct btrfs_delayed_item *delayed_item;
  1104. struct btrfs_dir_item *dir_item;
  1105. int ret;
  1106. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1107. if (IS_ERR(delayed_node))
  1108. return PTR_ERR(delayed_node);
  1109. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1110. if (!delayed_item) {
  1111. ret = -ENOMEM;
  1112. goto release_node;
  1113. }
  1114. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1115. /*
  1116. * we have reserved enough space when we start a new transaction,
  1117. * so reserving metadata failure is impossible
  1118. */
  1119. BUG_ON(ret);
  1120. delayed_item->key.objectid = btrfs_ino(dir);
  1121. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1122. delayed_item->key.offset = index;
  1123. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1124. dir_item->location = *disk_key;
  1125. dir_item->transid = cpu_to_le64(trans->transid);
  1126. dir_item->data_len = 0;
  1127. dir_item->name_len = cpu_to_le16(name_len);
  1128. dir_item->type = type;
  1129. memcpy((char *)(dir_item + 1), name, name_len);
  1130. mutex_lock(&delayed_node->mutex);
  1131. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1132. if (unlikely(ret)) {
  1133. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1134. "the insertion tree of the delayed node"
  1135. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1136. name,
  1137. (unsigned long long)delayed_node->root->objectid,
  1138. (unsigned long long)delayed_node->inode_id,
  1139. ret);
  1140. BUG();
  1141. }
  1142. mutex_unlock(&delayed_node->mutex);
  1143. release_node:
  1144. btrfs_release_delayed_node(delayed_node);
  1145. return ret;
  1146. }
  1147. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1148. struct btrfs_delayed_node *node,
  1149. struct btrfs_key *key)
  1150. {
  1151. struct btrfs_delayed_item *item;
  1152. mutex_lock(&node->mutex);
  1153. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1154. if (!item) {
  1155. mutex_unlock(&node->mutex);
  1156. return 1;
  1157. }
  1158. btrfs_delayed_item_release_metadata(root, item);
  1159. btrfs_release_delayed_item(item);
  1160. mutex_unlock(&node->mutex);
  1161. return 0;
  1162. }
  1163. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1164. struct btrfs_root *root, struct inode *dir,
  1165. u64 index)
  1166. {
  1167. struct btrfs_delayed_node *node;
  1168. struct btrfs_delayed_item *item;
  1169. struct btrfs_key item_key;
  1170. int ret;
  1171. node = btrfs_get_or_create_delayed_node(dir);
  1172. if (IS_ERR(node))
  1173. return PTR_ERR(node);
  1174. item_key.objectid = btrfs_ino(dir);
  1175. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1176. item_key.offset = index;
  1177. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1178. if (!ret)
  1179. goto end;
  1180. item = btrfs_alloc_delayed_item(0);
  1181. if (!item) {
  1182. ret = -ENOMEM;
  1183. goto end;
  1184. }
  1185. item->key = item_key;
  1186. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1187. /*
  1188. * we have reserved enough space when we start a new transaction,
  1189. * so reserving metadata failure is impossible.
  1190. */
  1191. BUG_ON(ret);
  1192. mutex_lock(&node->mutex);
  1193. ret = __btrfs_add_delayed_deletion_item(node, item);
  1194. if (unlikely(ret)) {
  1195. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1196. "into the deletion tree of the delayed node"
  1197. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1198. (unsigned long long)index,
  1199. (unsigned long long)node->root->objectid,
  1200. (unsigned long long)node->inode_id,
  1201. ret);
  1202. BUG();
  1203. }
  1204. mutex_unlock(&node->mutex);
  1205. end:
  1206. btrfs_release_delayed_node(node);
  1207. return ret;
  1208. }
  1209. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1210. {
  1211. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1212. if (!delayed_node)
  1213. return -ENOENT;
  1214. /*
  1215. * Since we have held i_mutex of this directory, it is impossible that
  1216. * a new directory index is added into the delayed node and index_cnt
  1217. * is updated now. So we needn't lock the delayed node.
  1218. */
  1219. if (!delayed_node->index_cnt) {
  1220. btrfs_release_delayed_node(delayed_node);
  1221. return -EINVAL;
  1222. }
  1223. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1224. btrfs_release_delayed_node(delayed_node);
  1225. return 0;
  1226. }
  1227. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1228. struct list_head *del_list)
  1229. {
  1230. struct btrfs_delayed_node *delayed_node;
  1231. struct btrfs_delayed_item *item;
  1232. delayed_node = btrfs_get_delayed_node(inode);
  1233. if (!delayed_node)
  1234. return;
  1235. mutex_lock(&delayed_node->mutex);
  1236. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1237. while (item) {
  1238. atomic_inc(&item->refs);
  1239. list_add_tail(&item->readdir_list, ins_list);
  1240. item = __btrfs_next_delayed_item(item);
  1241. }
  1242. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1243. while (item) {
  1244. atomic_inc(&item->refs);
  1245. list_add_tail(&item->readdir_list, del_list);
  1246. item = __btrfs_next_delayed_item(item);
  1247. }
  1248. mutex_unlock(&delayed_node->mutex);
  1249. /*
  1250. * This delayed node is still cached in the btrfs inode, so refs
  1251. * must be > 1 now, and we needn't check it is going to be freed
  1252. * or not.
  1253. *
  1254. * Besides that, this function is used to read dir, we do not
  1255. * insert/delete delayed items in this period. So we also needn't
  1256. * requeue or dequeue this delayed node.
  1257. */
  1258. atomic_dec(&delayed_node->refs);
  1259. }
  1260. void btrfs_put_delayed_items(struct list_head *ins_list,
  1261. struct list_head *del_list)
  1262. {
  1263. struct btrfs_delayed_item *curr, *next;
  1264. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1265. list_del(&curr->readdir_list);
  1266. if (atomic_dec_and_test(&curr->refs))
  1267. kfree(curr);
  1268. }
  1269. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1270. list_del(&curr->readdir_list);
  1271. if (atomic_dec_and_test(&curr->refs))
  1272. kfree(curr);
  1273. }
  1274. }
  1275. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1276. u64 index)
  1277. {
  1278. struct btrfs_delayed_item *curr, *next;
  1279. int ret;
  1280. if (list_empty(del_list))
  1281. return 0;
  1282. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1283. if (curr->key.offset > index)
  1284. break;
  1285. list_del(&curr->readdir_list);
  1286. ret = (curr->key.offset == index);
  1287. if (atomic_dec_and_test(&curr->refs))
  1288. kfree(curr);
  1289. if (ret)
  1290. return 1;
  1291. else
  1292. continue;
  1293. }
  1294. return 0;
  1295. }
  1296. /*
  1297. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1298. *
  1299. */
  1300. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1301. filldir_t filldir,
  1302. struct list_head *ins_list)
  1303. {
  1304. struct btrfs_dir_item *di;
  1305. struct btrfs_delayed_item *curr, *next;
  1306. struct btrfs_key location;
  1307. char *name;
  1308. int name_len;
  1309. int over = 0;
  1310. unsigned char d_type;
  1311. if (list_empty(ins_list))
  1312. return 0;
  1313. /*
  1314. * Changing the data of the delayed item is impossible. So
  1315. * we needn't lock them. And we have held i_mutex of the
  1316. * directory, nobody can delete any directory indexes now.
  1317. */
  1318. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1319. list_del(&curr->readdir_list);
  1320. if (curr->key.offset < filp->f_pos) {
  1321. if (atomic_dec_and_test(&curr->refs))
  1322. kfree(curr);
  1323. continue;
  1324. }
  1325. filp->f_pos = curr->key.offset;
  1326. di = (struct btrfs_dir_item *)curr->data;
  1327. name = (char *)(di + 1);
  1328. name_len = le16_to_cpu(di->name_len);
  1329. d_type = btrfs_filetype_table[di->type];
  1330. btrfs_disk_key_to_cpu(&location, &di->location);
  1331. over = filldir(dirent, name, name_len, curr->key.offset,
  1332. location.objectid, d_type);
  1333. if (atomic_dec_and_test(&curr->refs))
  1334. kfree(curr);
  1335. if (over)
  1336. return 1;
  1337. }
  1338. return 0;
  1339. }
  1340. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1341. generation, 64);
  1342. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1343. sequence, 64);
  1344. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1345. transid, 64);
  1346. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1347. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1348. nbytes, 64);
  1349. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1350. block_group, 64);
  1351. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1352. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1353. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1354. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1355. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1356. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1357. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1358. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1359. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1360. struct btrfs_inode_item *inode_item,
  1361. struct inode *inode)
  1362. {
  1363. btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
  1364. btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
  1365. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1366. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1367. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1368. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1369. btrfs_set_stack_inode_generation(inode_item,
  1370. BTRFS_I(inode)->generation);
  1371. btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
  1372. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1373. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1374. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1375. btrfs_set_stack_inode_block_group(inode_item, 0);
  1376. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1377. inode->i_atime.tv_sec);
  1378. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1379. inode->i_atime.tv_nsec);
  1380. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1381. inode->i_mtime.tv_sec);
  1382. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1383. inode->i_mtime.tv_nsec);
  1384. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1385. inode->i_ctime.tv_sec);
  1386. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1387. inode->i_ctime.tv_nsec);
  1388. }
  1389. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1390. {
  1391. struct btrfs_delayed_node *delayed_node;
  1392. struct btrfs_inode_item *inode_item;
  1393. struct btrfs_timespec *tspec;
  1394. delayed_node = btrfs_get_delayed_node(inode);
  1395. if (!delayed_node)
  1396. return -ENOENT;
  1397. mutex_lock(&delayed_node->mutex);
  1398. if (!delayed_node->inode_dirty) {
  1399. mutex_unlock(&delayed_node->mutex);
  1400. btrfs_release_delayed_node(delayed_node);
  1401. return -ENOENT;
  1402. }
  1403. inode_item = &delayed_node->inode_item;
  1404. inode->i_uid = btrfs_stack_inode_uid(inode_item);
  1405. inode->i_gid = btrfs_stack_inode_gid(inode_item);
  1406. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1407. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1408. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1409. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1410. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1411. BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
  1412. inode->i_rdev = 0;
  1413. *rdev = btrfs_stack_inode_rdev(inode_item);
  1414. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1415. tspec = btrfs_inode_atime(inode_item);
  1416. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1417. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1418. tspec = btrfs_inode_mtime(inode_item);
  1419. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1420. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1421. tspec = btrfs_inode_ctime(inode_item);
  1422. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1423. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1424. inode->i_generation = BTRFS_I(inode)->generation;
  1425. BTRFS_I(inode)->index_cnt = (u64)-1;
  1426. mutex_unlock(&delayed_node->mutex);
  1427. btrfs_release_delayed_node(delayed_node);
  1428. return 0;
  1429. }
  1430. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1431. struct btrfs_root *root, struct inode *inode)
  1432. {
  1433. struct btrfs_delayed_node *delayed_node;
  1434. int ret = 0;
  1435. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1436. if (IS_ERR(delayed_node))
  1437. return PTR_ERR(delayed_node);
  1438. mutex_lock(&delayed_node->mutex);
  1439. if (delayed_node->inode_dirty) {
  1440. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1441. goto release_node;
  1442. }
  1443. ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
  1444. if (ret)
  1445. goto release_node;
  1446. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1447. delayed_node->inode_dirty = 1;
  1448. delayed_node->count++;
  1449. atomic_inc(&root->fs_info->delayed_root->items);
  1450. release_node:
  1451. mutex_unlock(&delayed_node->mutex);
  1452. btrfs_release_delayed_node(delayed_node);
  1453. return ret;
  1454. }
  1455. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1456. {
  1457. struct btrfs_root *root = delayed_node->root;
  1458. struct btrfs_delayed_item *curr_item, *prev_item;
  1459. mutex_lock(&delayed_node->mutex);
  1460. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1461. while (curr_item) {
  1462. btrfs_delayed_item_release_metadata(root, curr_item);
  1463. prev_item = curr_item;
  1464. curr_item = __btrfs_next_delayed_item(prev_item);
  1465. btrfs_release_delayed_item(prev_item);
  1466. }
  1467. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1468. while (curr_item) {
  1469. btrfs_delayed_item_release_metadata(root, curr_item);
  1470. prev_item = curr_item;
  1471. curr_item = __btrfs_next_delayed_item(prev_item);
  1472. btrfs_release_delayed_item(prev_item);
  1473. }
  1474. if (delayed_node->inode_dirty) {
  1475. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1476. btrfs_release_delayed_inode(delayed_node);
  1477. }
  1478. mutex_unlock(&delayed_node->mutex);
  1479. }
  1480. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1481. {
  1482. struct btrfs_delayed_node *delayed_node;
  1483. delayed_node = btrfs_get_delayed_node(inode);
  1484. if (!delayed_node)
  1485. return;
  1486. __btrfs_kill_delayed_node(delayed_node);
  1487. btrfs_release_delayed_node(delayed_node);
  1488. }
  1489. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1490. {
  1491. u64 inode_id = 0;
  1492. struct btrfs_delayed_node *delayed_nodes[8];
  1493. int i, n;
  1494. while (1) {
  1495. spin_lock(&root->inode_lock);
  1496. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1497. (void **)delayed_nodes, inode_id,
  1498. ARRAY_SIZE(delayed_nodes));
  1499. if (!n) {
  1500. spin_unlock(&root->inode_lock);
  1501. break;
  1502. }
  1503. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1504. for (i = 0; i < n; i++)
  1505. atomic_inc(&delayed_nodes[i]->refs);
  1506. spin_unlock(&root->inode_lock);
  1507. for (i = 0; i < n; i++) {
  1508. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1509. btrfs_release_delayed_node(delayed_nodes[i]);
  1510. }
  1511. }
  1512. }