ctree.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343
  1. /*
  2. * Copyright (C) 2007,2008 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include "ctree.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #include "print-tree.h"
  24. #include "locking.h"
  25. static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  26. *root, struct btrfs_path *path, int level);
  27. static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  28. *root, struct btrfs_key *ins_key,
  29. struct btrfs_path *path, int data_size, int extend);
  30. static int push_node_left(struct btrfs_trans_handle *trans,
  31. struct btrfs_root *root, struct extent_buffer *dst,
  32. struct extent_buffer *src, int empty);
  33. static int balance_node_right(struct btrfs_trans_handle *trans,
  34. struct btrfs_root *root,
  35. struct extent_buffer *dst_buf,
  36. struct extent_buffer *src_buf);
  37. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  38. struct btrfs_path *path, int level, int slot);
  39. struct btrfs_path *btrfs_alloc_path(void)
  40. {
  41. struct btrfs_path *path;
  42. path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  43. return path;
  44. }
  45. /*
  46. * set all locked nodes in the path to blocking locks. This should
  47. * be done before scheduling
  48. */
  49. noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  50. {
  51. int i;
  52. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  53. if (!p->nodes[i] || !p->locks[i])
  54. continue;
  55. btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  56. if (p->locks[i] == BTRFS_READ_LOCK)
  57. p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  58. else if (p->locks[i] == BTRFS_WRITE_LOCK)
  59. p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  60. }
  61. }
  62. /*
  63. * reset all the locked nodes in the patch to spinning locks.
  64. *
  65. * held is used to keep lockdep happy, when lockdep is enabled
  66. * we set held to a blocking lock before we go around and
  67. * retake all the spinlocks in the path. You can safely use NULL
  68. * for held
  69. */
  70. noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  71. struct extent_buffer *held, int held_rw)
  72. {
  73. int i;
  74. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  75. /* lockdep really cares that we take all of these spinlocks
  76. * in the right order. If any of the locks in the path are not
  77. * currently blocking, it is going to complain. So, make really
  78. * really sure by forcing the path to blocking before we clear
  79. * the path blocking.
  80. */
  81. if (held) {
  82. btrfs_set_lock_blocking_rw(held, held_rw);
  83. if (held_rw == BTRFS_WRITE_LOCK)
  84. held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  85. else if (held_rw == BTRFS_READ_LOCK)
  86. held_rw = BTRFS_READ_LOCK_BLOCKING;
  87. }
  88. btrfs_set_path_blocking(p);
  89. #endif
  90. for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  91. if (p->nodes[i] && p->locks[i]) {
  92. btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  93. if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  94. p->locks[i] = BTRFS_WRITE_LOCK;
  95. else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  96. p->locks[i] = BTRFS_READ_LOCK;
  97. }
  98. }
  99. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  100. if (held)
  101. btrfs_clear_lock_blocking_rw(held, held_rw);
  102. #endif
  103. }
  104. /* this also releases the path */
  105. void btrfs_free_path(struct btrfs_path *p)
  106. {
  107. if (!p)
  108. return;
  109. btrfs_release_path(p);
  110. kmem_cache_free(btrfs_path_cachep, p);
  111. }
  112. /*
  113. * path release drops references on the extent buffers in the path
  114. * and it drops any locks held by this path
  115. *
  116. * It is safe to call this on paths that no locks or extent buffers held.
  117. */
  118. noinline void btrfs_release_path(struct btrfs_path *p)
  119. {
  120. int i;
  121. for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  122. p->slots[i] = 0;
  123. if (!p->nodes[i])
  124. continue;
  125. if (p->locks[i]) {
  126. btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
  127. p->locks[i] = 0;
  128. }
  129. free_extent_buffer(p->nodes[i]);
  130. p->nodes[i] = NULL;
  131. }
  132. }
  133. /*
  134. * safely gets a reference on the root node of a tree. A lock
  135. * is not taken, so a concurrent writer may put a different node
  136. * at the root of the tree. See btrfs_lock_root_node for the
  137. * looping required.
  138. *
  139. * The extent buffer returned by this has a reference taken, so
  140. * it won't disappear. It may stop being the root of the tree
  141. * at any time because there are no locks held.
  142. */
  143. struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
  144. {
  145. struct extent_buffer *eb;
  146. rcu_read_lock();
  147. eb = rcu_dereference(root->node);
  148. extent_buffer_get(eb);
  149. rcu_read_unlock();
  150. return eb;
  151. }
  152. /* loop around taking references on and locking the root node of the
  153. * tree until you end up with a lock on the root. A locked buffer
  154. * is returned, with a reference held.
  155. */
  156. struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
  157. {
  158. struct extent_buffer *eb;
  159. while (1) {
  160. eb = btrfs_root_node(root);
  161. btrfs_tree_lock(eb);
  162. if (eb == root->node)
  163. break;
  164. btrfs_tree_unlock(eb);
  165. free_extent_buffer(eb);
  166. }
  167. return eb;
  168. }
  169. /* loop around taking references on and locking the root node of the
  170. * tree until you end up with a lock on the root. A locked buffer
  171. * is returned, with a reference held.
  172. */
  173. struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
  174. {
  175. struct extent_buffer *eb;
  176. while (1) {
  177. eb = btrfs_root_node(root);
  178. btrfs_tree_read_lock(eb);
  179. if (eb == root->node)
  180. break;
  181. btrfs_tree_read_unlock(eb);
  182. free_extent_buffer(eb);
  183. }
  184. return eb;
  185. }
  186. /* cowonly root (everything not a reference counted cow subvolume), just get
  187. * put onto a simple dirty list. transaction.c walks this to make sure they
  188. * get properly updated on disk.
  189. */
  190. static void add_root_to_dirty_list(struct btrfs_root *root)
  191. {
  192. if (root->track_dirty && list_empty(&root->dirty_list)) {
  193. list_add(&root->dirty_list,
  194. &root->fs_info->dirty_cowonly_roots);
  195. }
  196. }
  197. /*
  198. * used by snapshot creation to make a copy of a root for a tree with
  199. * a given objectid. The buffer with the new root node is returned in
  200. * cow_ret, and this func returns zero on success or a negative error code.
  201. */
  202. int btrfs_copy_root(struct btrfs_trans_handle *trans,
  203. struct btrfs_root *root,
  204. struct extent_buffer *buf,
  205. struct extent_buffer **cow_ret, u64 new_root_objectid)
  206. {
  207. struct extent_buffer *cow;
  208. int ret = 0;
  209. int level;
  210. struct btrfs_disk_key disk_key;
  211. WARN_ON(root->ref_cows && trans->transid !=
  212. root->fs_info->running_transaction->transid);
  213. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  214. level = btrfs_header_level(buf);
  215. if (level == 0)
  216. btrfs_item_key(buf, &disk_key, 0);
  217. else
  218. btrfs_node_key(buf, &disk_key, 0);
  219. cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
  220. new_root_objectid, &disk_key, level,
  221. buf->start, 0);
  222. if (IS_ERR(cow))
  223. return PTR_ERR(cow);
  224. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  225. btrfs_set_header_bytenr(cow, cow->start);
  226. btrfs_set_header_generation(cow, trans->transid);
  227. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  228. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  229. BTRFS_HEADER_FLAG_RELOC);
  230. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  231. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  232. else
  233. btrfs_set_header_owner(cow, new_root_objectid);
  234. write_extent_buffer(cow, root->fs_info->fsid,
  235. (unsigned long)btrfs_header_fsid(cow),
  236. BTRFS_FSID_SIZE);
  237. WARN_ON(btrfs_header_generation(buf) > trans->transid);
  238. if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
  239. ret = btrfs_inc_ref(trans, root, cow, 1);
  240. else
  241. ret = btrfs_inc_ref(trans, root, cow, 0);
  242. if (ret)
  243. return ret;
  244. btrfs_mark_buffer_dirty(cow);
  245. *cow_ret = cow;
  246. return 0;
  247. }
  248. /*
  249. * check if the tree block can be shared by multiple trees
  250. */
  251. int btrfs_block_can_be_shared(struct btrfs_root *root,
  252. struct extent_buffer *buf)
  253. {
  254. /*
  255. * Tree blocks not in refernece counted trees and tree roots
  256. * are never shared. If a block was allocated after the last
  257. * snapshot and the block was not allocated by tree relocation,
  258. * we know the block is not shared.
  259. */
  260. if (root->ref_cows &&
  261. buf != root->node && buf != root->commit_root &&
  262. (btrfs_header_generation(buf) <=
  263. btrfs_root_last_snapshot(&root->root_item) ||
  264. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  265. return 1;
  266. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  267. if (root->ref_cows &&
  268. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  269. return 1;
  270. #endif
  271. return 0;
  272. }
  273. static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
  274. struct btrfs_root *root,
  275. struct extent_buffer *buf,
  276. struct extent_buffer *cow,
  277. int *last_ref)
  278. {
  279. u64 refs;
  280. u64 owner;
  281. u64 flags;
  282. u64 new_flags = 0;
  283. int ret;
  284. /*
  285. * Backrefs update rules:
  286. *
  287. * Always use full backrefs for extent pointers in tree block
  288. * allocated by tree relocation.
  289. *
  290. * If a shared tree block is no longer referenced by its owner
  291. * tree (btrfs_header_owner(buf) == root->root_key.objectid),
  292. * use full backrefs for extent pointers in tree block.
  293. *
  294. * If a tree block is been relocating
  295. * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
  296. * use full backrefs for extent pointers in tree block.
  297. * The reason for this is some operations (such as drop tree)
  298. * are only allowed for blocks use full backrefs.
  299. */
  300. if (btrfs_block_can_be_shared(root, buf)) {
  301. ret = btrfs_lookup_extent_info(trans, root, buf->start,
  302. buf->len, &refs, &flags);
  303. BUG_ON(ret);
  304. BUG_ON(refs == 0);
  305. } else {
  306. refs = 1;
  307. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  308. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  309. flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  310. else
  311. flags = 0;
  312. }
  313. owner = btrfs_header_owner(buf);
  314. BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
  315. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  316. if (refs > 1) {
  317. if ((owner == root->root_key.objectid ||
  318. root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
  319. !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
  320. ret = btrfs_inc_ref(trans, root, buf, 1);
  321. BUG_ON(ret);
  322. if (root->root_key.objectid ==
  323. BTRFS_TREE_RELOC_OBJECTID) {
  324. ret = btrfs_dec_ref(trans, root, buf, 0);
  325. BUG_ON(ret);
  326. ret = btrfs_inc_ref(trans, root, cow, 1);
  327. BUG_ON(ret);
  328. }
  329. new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  330. } else {
  331. if (root->root_key.objectid ==
  332. BTRFS_TREE_RELOC_OBJECTID)
  333. ret = btrfs_inc_ref(trans, root, cow, 1);
  334. else
  335. ret = btrfs_inc_ref(trans, root, cow, 0);
  336. BUG_ON(ret);
  337. }
  338. if (new_flags != 0) {
  339. ret = btrfs_set_disk_extent_flags(trans, root,
  340. buf->start,
  341. buf->len,
  342. new_flags, 0);
  343. BUG_ON(ret);
  344. }
  345. } else {
  346. if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  347. if (root->root_key.objectid ==
  348. BTRFS_TREE_RELOC_OBJECTID)
  349. ret = btrfs_inc_ref(trans, root, cow, 1);
  350. else
  351. ret = btrfs_inc_ref(trans, root, cow, 0);
  352. BUG_ON(ret);
  353. ret = btrfs_dec_ref(trans, root, buf, 1);
  354. BUG_ON(ret);
  355. }
  356. clean_tree_block(trans, root, buf);
  357. *last_ref = 1;
  358. }
  359. return 0;
  360. }
  361. /*
  362. * does the dirty work in cow of a single block. The parent block (if
  363. * supplied) is updated to point to the new cow copy. The new buffer is marked
  364. * dirty and returned locked. If you modify the block it needs to be marked
  365. * dirty again.
  366. *
  367. * search_start -- an allocation hint for the new block
  368. *
  369. * empty_size -- a hint that you plan on doing more cow. This is the size in
  370. * bytes the allocator should try to find free next to the block it returns.
  371. * This is just a hint and may be ignored by the allocator.
  372. */
  373. static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
  374. struct btrfs_root *root,
  375. struct extent_buffer *buf,
  376. struct extent_buffer *parent, int parent_slot,
  377. struct extent_buffer **cow_ret,
  378. u64 search_start, u64 empty_size)
  379. {
  380. struct btrfs_disk_key disk_key;
  381. struct extent_buffer *cow;
  382. int level;
  383. int last_ref = 0;
  384. int unlock_orig = 0;
  385. u64 parent_start;
  386. if (*cow_ret == buf)
  387. unlock_orig = 1;
  388. btrfs_assert_tree_locked(buf);
  389. WARN_ON(root->ref_cows && trans->transid !=
  390. root->fs_info->running_transaction->transid);
  391. WARN_ON(root->ref_cows && trans->transid != root->last_trans);
  392. level = btrfs_header_level(buf);
  393. if (level == 0)
  394. btrfs_item_key(buf, &disk_key, 0);
  395. else
  396. btrfs_node_key(buf, &disk_key, 0);
  397. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
  398. if (parent)
  399. parent_start = parent->start;
  400. else
  401. parent_start = 0;
  402. } else
  403. parent_start = 0;
  404. cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
  405. root->root_key.objectid, &disk_key,
  406. level, search_start, empty_size);
  407. if (IS_ERR(cow))
  408. return PTR_ERR(cow);
  409. /* cow is set to blocking by btrfs_init_new_buffer */
  410. copy_extent_buffer(cow, buf, 0, 0, cow->len);
  411. btrfs_set_header_bytenr(cow, cow->start);
  412. btrfs_set_header_generation(cow, trans->transid);
  413. btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
  414. btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
  415. BTRFS_HEADER_FLAG_RELOC);
  416. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  417. btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
  418. else
  419. btrfs_set_header_owner(cow, root->root_key.objectid);
  420. write_extent_buffer(cow, root->fs_info->fsid,
  421. (unsigned long)btrfs_header_fsid(cow),
  422. BTRFS_FSID_SIZE);
  423. update_ref_for_cow(trans, root, buf, cow, &last_ref);
  424. if (root->ref_cows)
  425. btrfs_reloc_cow_block(trans, root, buf, cow);
  426. if (buf == root->node) {
  427. WARN_ON(parent && parent != buf);
  428. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
  429. btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
  430. parent_start = buf->start;
  431. else
  432. parent_start = 0;
  433. extent_buffer_get(cow);
  434. rcu_assign_pointer(root->node, cow);
  435. btrfs_free_tree_block(trans, root, buf, parent_start,
  436. last_ref);
  437. free_extent_buffer(buf);
  438. add_root_to_dirty_list(root);
  439. } else {
  440. if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
  441. parent_start = parent->start;
  442. else
  443. parent_start = 0;
  444. WARN_ON(trans->transid != btrfs_header_generation(parent));
  445. btrfs_set_node_blockptr(parent, parent_slot,
  446. cow->start);
  447. btrfs_set_node_ptr_generation(parent, parent_slot,
  448. trans->transid);
  449. btrfs_mark_buffer_dirty(parent);
  450. btrfs_free_tree_block(trans, root, buf, parent_start,
  451. last_ref);
  452. }
  453. if (unlock_orig)
  454. btrfs_tree_unlock(buf);
  455. free_extent_buffer(buf);
  456. btrfs_mark_buffer_dirty(cow);
  457. *cow_ret = cow;
  458. return 0;
  459. }
  460. static inline int should_cow_block(struct btrfs_trans_handle *trans,
  461. struct btrfs_root *root,
  462. struct extent_buffer *buf)
  463. {
  464. if (btrfs_header_generation(buf) == trans->transid &&
  465. !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
  466. !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
  467. btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
  468. return 0;
  469. return 1;
  470. }
  471. /*
  472. * cows a single block, see __btrfs_cow_block for the real work.
  473. * This version of it has extra checks so that a block isn't cow'd more than
  474. * once per transaction, as long as it hasn't been written yet
  475. */
  476. noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
  477. struct btrfs_root *root, struct extent_buffer *buf,
  478. struct extent_buffer *parent, int parent_slot,
  479. struct extent_buffer **cow_ret)
  480. {
  481. u64 search_start;
  482. int ret;
  483. if (trans->transaction != root->fs_info->running_transaction) {
  484. printk(KERN_CRIT "trans %llu running %llu\n",
  485. (unsigned long long)trans->transid,
  486. (unsigned long long)
  487. root->fs_info->running_transaction->transid);
  488. WARN_ON(1);
  489. }
  490. if (trans->transid != root->fs_info->generation) {
  491. printk(KERN_CRIT "trans %llu running %llu\n",
  492. (unsigned long long)trans->transid,
  493. (unsigned long long)root->fs_info->generation);
  494. WARN_ON(1);
  495. }
  496. if (!should_cow_block(trans, root, buf)) {
  497. *cow_ret = buf;
  498. return 0;
  499. }
  500. search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
  501. if (parent)
  502. btrfs_set_lock_blocking(parent);
  503. btrfs_set_lock_blocking(buf);
  504. ret = __btrfs_cow_block(trans, root, buf, parent,
  505. parent_slot, cow_ret, search_start, 0);
  506. trace_btrfs_cow_block(root, buf, *cow_ret);
  507. return ret;
  508. }
  509. /*
  510. * helper function for defrag to decide if two blocks pointed to by a
  511. * node are actually close by
  512. */
  513. static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
  514. {
  515. if (blocknr < other && other - (blocknr + blocksize) < 32768)
  516. return 1;
  517. if (blocknr > other && blocknr - (other + blocksize) < 32768)
  518. return 1;
  519. return 0;
  520. }
  521. /*
  522. * compare two keys in a memcmp fashion
  523. */
  524. static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
  525. {
  526. struct btrfs_key k1;
  527. btrfs_disk_key_to_cpu(&k1, disk);
  528. return btrfs_comp_cpu_keys(&k1, k2);
  529. }
  530. /*
  531. * same as comp_keys only with two btrfs_key's
  532. */
  533. int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
  534. {
  535. if (k1->objectid > k2->objectid)
  536. return 1;
  537. if (k1->objectid < k2->objectid)
  538. return -1;
  539. if (k1->type > k2->type)
  540. return 1;
  541. if (k1->type < k2->type)
  542. return -1;
  543. if (k1->offset > k2->offset)
  544. return 1;
  545. if (k1->offset < k2->offset)
  546. return -1;
  547. return 0;
  548. }
  549. /*
  550. * this is used by the defrag code to go through all the
  551. * leaves pointed to by a node and reallocate them so that
  552. * disk order is close to key order
  553. */
  554. int btrfs_realloc_node(struct btrfs_trans_handle *trans,
  555. struct btrfs_root *root, struct extent_buffer *parent,
  556. int start_slot, int cache_only, u64 *last_ret,
  557. struct btrfs_key *progress)
  558. {
  559. struct extent_buffer *cur;
  560. u64 blocknr;
  561. u64 gen;
  562. u64 search_start = *last_ret;
  563. u64 last_block = 0;
  564. u64 other;
  565. u32 parent_nritems;
  566. int end_slot;
  567. int i;
  568. int err = 0;
  569. int parent_level;
  570. int uptodate;
  571. u32 blocksize;
  572. int progress_passed = 0;
  573. struct btrfs_disk_key disk_key;
  574. parent_level = btrfs_header_level(parent);
  575. if (cache_only && parent_level != 1)
  576. return 0;
  577. if (trans->transaction != root->fs_info->running_transaction)
  578. WARN_ON(1);
  579. if (trans->transid != root->fs_info->generation)
  580. WARN_ON(1);
  581. parent_nritems = btrfs_header_nritems(parent);
  582. blocksize = btrfs_level_size(root, parent_level - 1);
  583. end_slot = parent_nritems;
  584. if (parent_nritems == 1)
  585. return 0;
  586. btrfs_set_lock_blocking(parent);
  587. for (i = start_slot; i < end_slot; i++) {
  588. int close = 1;
  589. btrfs_node_key(parent, &disk_key, i);
  590. if (!progress_passed && comp_keys(&disk_key, progress) < 0)
  591. continue;
  592. progress_passed = 1;
  593. blocknr = btrfs_node_blockptr(parent, i);
  594. gen = btrfs_node_ptr_generation(parent, i);
  595. if (last_block == 0)
  596. last_block = blocknr;
  597. if (i > 0) {
  598. other = btrfs_node_blockptr(parent, i - 1);
  599. close = close_blocks(blocknr, other, blocksize);
  600. }
  601. if (!close && i < end_slot - 2) {
  602. other = btrfs_node_blockptr(parent, i + 1);
  603. close = close_blocks(blocknr, other, blocksize);
  604. }
  605. if (close) {
  606. last_block = blocknr;
  607. continue;
  608. }
  609. cur = btrfs_find_tree_block(root, blocknr, blocksize);
  610. if (cur)
  611. uptodate = btrfs_buffer_uptodate(cur, gen);
  612. else
  613. uptodate = 0;
  614. if (!cur || !uptodate) {
  615. if (cache_only) {
  616. free_extent_buffer(cur);
  617. continue;
  618. }
  619. if (!cur) {
  620. cur = read_tree_block(root, blocknr,
  621. blocksize, gen);
  622. if (!cur)
  623. return -EIO;
  624. } else if (!uptodate) {
  625. btrfs_read_buffer(cur, gen);
  626. }
  627. }
  628. if (search_start == 0)
  629. search_start = last_block;
  630. btrfs_tree_lock(cur);
  631. btrfs_set_lock_blocking(cur);
  632. err = __btrfs_cow_block(trans, root, cur, parent, i,
  633. &cur, search_start,
  634. min(16 * blocksize,
  635. (end_slot - i) * blocksize));
  636. if (err) {
  637. btrfs_tree_unlock(cur);
  638. free_extent_buffer(cur);
  639. break;
  640. }
  641. search_start = cur->start;
  642. last_block = cur->start;
  643. *last_ret = search_start;
  644. btrfs_tree_unlock(cur);
  645. free_extent_buffer(cur);
  646. }
  647. return err;
  648. }
  649. /*
  650. * The leaf data grows from end-to-front in the node.
  651. * this returns the address of the start of the last item,
  652. * which is the stop of the leaf data stack
  653. */
  654. static inline unsigned int leaf_data_end(struct btrfs_root *root,
  655. struct extent_buffer *leaf)
  656. {
  657. u32 nr = btrfs_header_nritems(leaf);
  658. if (nr == 0)
  659. return BTRFS_LEAF_DATA_SIZE(root);
  660. return btrfs_item_offset_nr(leaf, nr - 1);
  661. }
  662. /*
  663. * search for key in the extent_buffer. The items start at offset p,
  664. * and they are item_size apart. There are 'max' items in p.
  665. *
  666. * the slot in the array is returned via slot, and it points to
  667. * the place where you would insert key if it is not found in
  668. * the array.
  669. *
  670. * slot may point to max if the key is bigger than all of the keys
  671. */
  672. static noinline int generic_bin_search(struct extent_buffer *eb,
  673. unsigned long p,
  674. int item_size, struct btrfs_key *key,
  675. int max, int *slot)
  676. {
  677. int low = 0;
  678. int high = max;
  679. int mid;
  680. int ret;
  681. struct btrfs_disk_key *tmp = NULL;
  682. struct btrfs_disk_key unaligned;
  683. unsigned long offset;
  684. char *kaddr = NULL;
  685. unsigned long map_start = 0;
  686. unsigned long map_len = 0;
  687. int err;
  688. while (low < high) {
  689. mid = (low + high) / 2;
  690. offset = p + mid * item_size;
  691. if (!kaddr || offset < map_start ||
  692. (offset + sizeof(struct btrfs_disk_key)) >
  693. map_start + map_len) {
  694. err = map_private_extent_buffer(eb, offset,
  695. sizeof(struct btrfs_disk_key),
  696. &kaddr, &map_start, &map_len);
  697. if (!err) {
  698. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  699. map_start);
  700. } else {
  701. read_extent_buffer(eb, &unaligned,
  702. offset, sizeof(unaligned));
  703. tmp = &unaligned;
  704. }
  705. } else {
  706. tmp = (struct btrfs_disk_key *)(kaddr + offset -
  707. map_start);
  708. }
  709. ret = comp_keys(tmp, key);
  710. if (ret < 0)
  711. low = mid + 1;
  712. else if (ret > 0)
  713. high = mid;
  714. else {
  715. *slot = mid;
  716. return 0;
  717. }
  718. }
  719. *slot = low;
  720. return 1;
  721. }
  722. /*
  723. * simple bin_search frontend that does the right thing for
  724. * leaves vs nodes
  725. */
  726. static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  727. int level, int *slot)
  728. {
  729. if (level == 0) {
  730. return generic_bin_search(eb,
  731. offsetof(struct btrfs_leaf, items),
  732. sizeof(struct btrfs_item),
  733. key, btrfs_header_nritems(eb),
  734. slot);
  735. } else {
  736. return generic_bin_search(eb,
  737. offsetof(struct btrfs_node, ptrs),
  738. sizeof(struct btrfs_key_ptr),
  739. key, btrfs_header_nritems(eb),
  740. slot);
  741. }
  742. return -1;
  743. }
  744. int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
  745. int level, int *slot)
  746. {
  747. return bin_search(eb, key, level, slot);
  748. }
  749. static void root_add_used(struct btrfs_root *root, u32 size)
  750. {
  751. spin_lock(&root->accounting_lock);
  752. btrfs_set_root_used(&root->root_item,
  753. btrfs_root_used(&root->root_item) + size);
  754. spin_unlock(&root->accounting_lock);
  755. }
  756. static void root_sub_used(struct btrfs_root *root, u32 size)
  757. {
  758. spin_lock(&root->accounting_lock);
  759. btrfs_set_root_used(&root->root_item,
  760. btrfs_root_used(&root->root_item) - size);
  761. spin_unlock(&root->accounting_lock);
  762. }
  763. /* given a node and slot number, this reads the blocks it points to. The
  764. * extent buffer is returned with a reference taken (but unlocked).
  765. * NULL is returned on error.
  766. */
  767. static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
  768. struct extent_buffer *parent, int slot)
  769. {
  770. int level = btrfs_header_level(parent);
  771. if (slot < 0)
  772. return NULL;
  773. if (slot >= btrfs_header_nritems(parent))
  774. return NULL;
  775. BUG_ON(level == 0);
  776. return read_tree_block(root, btrfs_node_blockptr(parent, slot),
  777. btrfs_level_size(root, level - 1),
  778. btrfs_node_ptr_generation(parent, slot));
  779. }
  780. /*
  781. * node level balancing, used to make sure nodes are in proper order for
  782. * item deletion. We balance from the top down, so we have to make sure
  783. * that a deletion won't leave an node completely empty later on.
  784. */
  785. static noinline int balance_level(struct btrfs_trans_handle *trans,
  786. struct btrfs_root *root,
  787. struct btrfs_path *path, int level)
  788. {
  789. struct extent_buffer *right = NULL;
  790. struct extent_buffer *mid;
  791. struct extent_buffer *left = NULL;
  792. struct extent_buffer *parent = NULL;
  793. int ret = 0;
  794. int wret;
  795. int pslot;
  796. int orig_slot = path->slots[level];
  797. u64 orig_ptr;
  798. if (level == 0)
  799. return 0;
  800. mid = path->nodes[level];
  801. WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
  802. path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
  803. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  804. orig_ptr = btrfs_node_blockptr(mid, orig_slot);
  805. if (level < BTRFS_MAX_LEVEL - 1) {
  806. parent = path->nodes[level + 1];
  807. pslot = path->slots[level + 1];
  808. }
  809. /*
  810. * deal with the case where there is only one pointer in the root
  811. * by promoting the node below to a root
  812. */
  813. if (!parent) {
  814. struct extent_buffer *child;
  815. if (btrfs_header_nritems(mid) != 1)
  816. return 0;
  817. /* promote the child to a root */
  818. child = read_node_slot(root, mid, 0);
  819. BUG_ON(!child);
  820. btrfs_tree_lock(child);
  821. btrfs_set_lock_blocking(child);
  822. ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
  823. if (ret) {
  824. btrfs_tree_unlock(child);
  825. free_extent_buffer(child);
  826. goto enospc;
  827. }
  828. rcu_assign_pointer(root->node, child);
  829. add_root_to_dirty_list(root);
  830. btrfs_tree_unlock(child);
  831. path->locks[level] = 0;
  832. path->nodes[level] = NULL;
  833. clean_tree_block(trans, root, mid);
  834. btrfs_tree_unlock(mid);
  835. /* once for the path */
  836. free_extent_buffer(mid);
  837. root_sub_used(root, mid->len);
  838. btrfs_free_tree_block(trans, root, mid, 0, 1);
  839. /* once for the root ptr */
  840. free_extent_buffer(mid);
  841. return 0;
  842. }
  843. if (btrfs_header_nritems(mid) >
  844. BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
  845. return 0;
  846. btrfs_header_nritems(mid);
  847. left = read_node_slot(root, parent, pslot - 1);
  848. if (left) {
  849. btrfs_tree_lock(left);
  850. btrfs_set_lock_blocking(left);
  851. wret = btrfs_cow_block(trans, root, left,
  852. parent, pslot - 1, &left);
  853. if (wret) {
  854. ret = wret;
  855. goto enospc;
  856. }
  857. }
  858. right = read_node_slot(root, parent, pslot + 1);
  859. if (right) {
  860. btrfs_tree_lock(right);
  861. btrfs_set_lock_blocking(right);
  862. wret = btrfs_cow_block(trans, root, right,
  863. parent, pslot + 1, &right);
  864. if (wret) {
  865. ret = wret;
  866. goto enospc;
  867. }
  868. }
  869. /* first, try to make some room in the middle buffer */
  870. if (left) {
  871. orig_slot += btrfs_header_nritems(left);
  872. wret = push_node_left(trans, root, left, mid, 1);
  873. if (wret < 0)
  874. ret = wret;
  875. btrfs_header_nritems(mid);
  876. }
  877. /*
  878. * then try to empty the right most buffer into the middle
  879. */
  880. if (right) {
  881. wret = push_node_left(trans, root, mid, right, 1);
  882. if (wret < 0 && wret != -ENOSPC)
  883. ret = wret;
  884. if (btrfs_header_nritems(right) == 0) {
  885. clean_tree_block(trans, root, right);
  886. btrfs_tree_unlock(right);
  887. wret = del_ptr(trans, root, path, level + 1, pslot +
  888. 1);
  889. if (wret)
  890. ret = wret;
  891. root_sub_used(root, right->len);
  892. btrfs_free_tree_block(trans, root, right, 0, 1);
  893. free_extent_buffer(right);
  894. right = NULL;
  895. } else {
  896. struct btrfs_disk_key right_key;
  897. btrfs_node_key(right, &right_key, 0);
  898. btrfs_set_node_key(parent, &right_key, pslot + 1);
  899. btrfs_mark_buffer_dirty(parent);
  900. }
  901. }
  902. if (btrfs_header_nritems(mid) == 1) {
  903. /*
  904. * we're not allowed to leave a node with one item in the
  905. * tree during a delete. A deletion from lower in the tree
  906. * could try to delete the only pointer in this node.
  907. * So, pull some keys from the left.
  908. * There has to be a left pointer at this point because
  909. * otherwise we would have pulled some pointers from the
  910. * right
  911. */
  912. BUG_ON(!left);
  913. wret = balance_node_right(trans, root, mid, left);
  914. if (wret < 0) {
  915. ret = wret;
  916. goto enospc;
  917. }
  918. if (wret == 1) {
  919. wret = push_node_left(trans, root, left, mid, 1);
  920. if (wret < 0)
  921. ret = wret;
  922. }
  923. BUG_ON(wret == 1);
  924. }
  925. if (btrfs_header_nritems(mid) == 0) {
  926. clean_tree_block(trans, root, mid);
  927. btrfs_tree_unlock(mid);
  928. wret = del_ptr(trans, root, path, level + 1, pslot);
  929. if (wret)
  930. ret = wret;
  931. root_sub_used(root, mid->len);
  932. btrfs_free_tree_block(trans, root, mid, 0, 1);
  933. free_extent_buffer(mid);
  934. mid = NULL;
  935. } else {
  936. /* update the parent key to reflect our changes */
  937. struct btrfs_disk_key mid_key;
  938. btrfs_node_key(mid, &mid_key, 0);
  939. btrfs_set_node_key(parent, &mid_key, pslot);
  940. btrfs_mark_buffer_dirty(parent);
  941. }
  942. /* update the path */
  943. if (left) {
  944. if (btrfs_header_nritems(left) > orig_slot) {
  945. extent_buffer_get(left);
  946. /* left was locked after cow */
  947. path->nodes[level] = left;
  948. path->slots[level + 1] -= 1;
  949. path->slots[level] = orig_slot;
  950. if (mid) {
  951. btrfs_tree_unlock(mid);
  952. free_extent_buffer(mid);
  953. }
  954. } else {
  955. orig_slot -= btrfs_header_nritems(left);
  956. path->slots[level] = orig_slot;
  957. }
  958. }
  959. /* double check we haven't messed things up */
  960. if (orig_ptr !=
  961. btrfs_node_blockptr(path->nodes[level], path->slots[level]))
  962. BUG();
  963. enospc:
  964. if (right) {
  965. btrfs_tree_unlock(right);
  966. free_extent_buffer(right);
  967. }
  968. if (left) {
  969. if (path->nodes[level] != left)
  970. btrfs_tree_unlock(left);
  971. free_extent_buffer(left);
  972. }
  973. return ret;
  974. }
  975. /* Node balancing for insertion. Here we only split or push nodes around
  976. * when they are completely full. This is also done top down, so we
  977. * have to be pessimistic.
  978. */
  979. static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
  980. struct btrfs_root *root,
  981. struct btrfs_path *path, int level)
  982. {
  983. struct extent_buffer *right = NULL;
  984. struct extent_buffer *mid;
  985. struct extent_buffer *left = NULL;
  986. struct extent_buffer *parent = NULL;
  987. int ret = 0;
  988. int wret;
  989. int pslot;
  990. int orig_slot = path->slots[level];
  991. if (level == 0)
  992. return 1;
  993. mid = path->nodes[level];
  994. WARN_ON(btrfs_header_generation(mid) != trans->transid);
  995. if (level < BTRFS_MAX_LEVEL - 1) {
  996. parent = path->nodes[level + 1];
  997. pslot = path->slots[level + 1];
  998. }
  999. if (!parent)
  1000. return 1;
  1001. left = read_node_slot(root, parent, pslot - 1);
  1002. /* first, try to make some room in the middle buffer */
  1003. if (left) {
  1004. u32 left_nr;
  1005. btrfs_tree_lock(left);
  1006. btrfs_set_lock_blocking(left);
  1007. left_nr = btrfs_header_nritems(left);
  1008. if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1009. wret = 1;
  1010. } else {
  1011. ret = btrfs_cow_block(trans, root, left, parent,
  1012. pslot - 1, &left);
  1013. if (ret)
  1014. wret = 1;
  1015. else {
  1016. wret = push_node_left(trans, root,
  1017. left, mid, 0);
  1018. }
  1019. }
  1020. if (wret < 0)
  1021. ret = wret;
  1022. if (wret == 0) {
  1023. struct btrfs_disk_key disk_key;
  1024. orig_slot += left_nr;
  1025. btrfs_node_key(mid, &disk_key, 0);
  1026. btrfs_set_node_key(parent, &disk_key, pslot);
  1027. btrfs_mark_buffer_dirty(parent);
  1028. if (btrfs_header_nritems(left) > orig_slot) {
  1029. path->nodes[level] = left;
  1030. path->slots[level + 1] -= 1;
  1031. path->slots[level] = orig_slot;
  1032. btrfs_tree_unlock(mid);
  1033. free_extent_buffer(mid);
  1034. } else {
  1035. orig_slot -=
  1036. btrfs_header_nritems(left);
  1037. path->slots[level] = orig_slot;
  1038. btrfs_tree_unlock(left);
  1039. free_extent_buffer(left);
  1040. }
  1041. return 0;
  1042. }
  1043. btrfs_tree_unlock(left);
  1044. free_extent_buffer(left);
  1045. }
  1046. right = read_node_slot(root, parent, pslot + 1);
  1047. /*
  1048. * then try to empty the right most buffer into the middle
  1049. */
  1050. if (right) {
  1051. u32 right_nr;
  1052. btrfs_tree_lock(right);
  1053. btrfs_set_lock_blocking(right);
  1054. right_nr = btrfs_header_nritems(right);
  1055. if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
  1056. wret = 1;
  1057. } else {
  1058. ret = btrfs_cow_block(trans, root, right,
  1059. parent, pslot + 1,
  1060. &right);
  1061. if (ret)
  1062. wret = 1;
  1063. else {
  1064. wret = balance_node_right(trans, root,
  1065. right, mid);
  1066. }
  1067. }
  1068. if (wret < 0)
  1069. ret = wret;
  1070. if (wret == 0) {
  1071. struct btrfs_disk_key disk_key;
  1072. btrfs_node_key(right, &disk_key, 0);
  1073. btrfs_set_node_key(parent, &disk_key, pslot + 1);
  1074. btrfs_mark_buffer_dirty(parent);
  1075. if (btrfs_header_nritems(mid) <= orig_slot) {
  1076. path->nodes[level] = right;
  1077. path->slots[level + 1] += 1;
  1078. path->slots[level] = orig_slot -
  1079. btrfs_header_nritems(mid);
  1080. btrfs_tree_unlock(mid);
  1081. free_extent_buffer(mid);
  1082. } else {
  1083. btrfs_tree_unlock(right);
  1084. free_extent_buffer(right);
  1085. }
  1086. return 0;
  1087. }
  1088. btrfs_tree_unlock(right);
  1089. free_extent_buffer(right);
  1090. }
  1091. return 1;
  1092. }
  1093. /*
  1094. * readahead one full node of leaves, finding things that are close
  1095. * to the block in 'slot', and triggering ra on them.
  1096. */
  1097. static void reada_for_search(struct btrfs_root *root,
  1098. struct btrfs_path *path,
  1099. int level, int slot, u64 objectid)
  1100. {
  1101. struct extent_buffer *node;
  1102. struct btrfs_disk_key disk_key;
  1103. u32 nritems;
  1104. u64 search;
  1105. u64 target;
  1106. u64 nread = 0;
  1107. u64 gen;
  1108. int direction = path->reada;
  1109. struct extent_buffer *eb;
  1110. u32 nr;
  1111. u32 blocksize;
  1112. u32 nscan = 0;
  1113. if (level != 1)
  1114. return;
  1115. if (!path->nodes[level])
  1116. return;
  1117. node = path->nodes[level];
  1118. search = btrfs_node_blockptr(node, slot);
  1119. blocksize = btrfs_level_size(root, level - 1);
  1120. eb = btrfs_find_tree_block(root, search, blocksize);
  1121. if (eb) {
  1122. free_extent_buffer(eb);
  1123. return;
  1124. }
  1125. target = search;
  1126. nritems = btrfs_header_nritems(node);
  1127. nr = slot;
  1128. while (1) {
  1129. if (direction < 0) {
  1130. if (nr == 0)
  1131. break;
  1132. nr--;
  1133. } else if (direction > 0) {
  1134. nr++;
  1135. if (nr >= nritems)
  1136. break;
  1137. }
  1138. if (path->reada < 0 && objectid) {
  1139. btrfs_node_key(node, &disk_key, nr);
  1140. if (btrfs_disk_key_objectid(&disk_key) != objectid)
  1141. break;
  1142. }
  1143. search = btrfs_node_blockptr(node, nr);
  1144. if ((search <= target && target - search <= 65536) ||
  1145. (search > target && search - target <= 65536)) {
  1146. gen = btrfs_node_ptr_generation(node, nr);
  1147. readahead_tree_block(root, search, blocksize, gen);
  1148. nread += blocksize;
  1149. }
  1150. nscan++;
  1151. if ((nread > 65536 || nscan > 32))
  1152. break;
  1153. }
  1154. }
  1155. /*
  1156. * returns -EAGAIN if it had to drop the path, or zero if everything was in
  1157. * cache
  1158. */
  1159. static noinline int reada_for_balance(struct btrfs_root *root,
  1160. struct btrfs_path *path, int level)
  1161. {
  1162. int slot;
  1163. int nritems;
  1164. struct extent_buffer *parent;
  1165. struct extent_buffer *eb;
  1166. u64 gen;
  1167. u64 block1 = 0;
  1168. u64 block2 = 0;
  1169. int ret = 0;
  1170. int blocksize;
  1171. parent = path->nodes[level + 1];
  1172. if (!parent)
  1173. return 0;
  1174. nritems = btrfs_header_nritems(parent);
  1175. slot = path->slots[level + 1];
  1176. blocksize = btrfs_level_size(root, level);
  1177. if (slot > 0) {
  1178. block1 = btrfs_node_blockptr(parent, slot - 1);
  1179. gen = btrfs_node_ptr_generation(parent, slot - 1);
  1180. eb = btrfs_find_tree_block(root, block1, blocksize);
  1181. if (eb && btrfs_buffer_uptodate(eb, gen))
  1182. block1 = 0;
  1183. free_extent_buffer(eb);
  1184. }
  1185. if (slot + 1 < nritems) {
  1186. block2 = btrfs_node_blockptr(parent, slot + 1);
  1187. gen = btrfs_node_ptr_generation(parent, slot + 1);
  1188. eb = btrfs_find_tree_block(root, block2, blocksize);
  1189. if (eb && btrfs_buffer_uptodate(eb, gen))
  1190. block2 = 0;
  1191. free_extent_buffer(eb);
  1192. }
  1193. if (block1 || block2) {
  1194. ret = -EAGAIN;
  1195. /* release the whole path */
  1196. btrfs_release_path(path);
  1197. /* read the blocks */
  1198. if (block1)
  1199. readahead_tree_block(root, block1, blocksize, 0);
  1200. if (block2)
  1201. readahead_tree_block(root, block2, blocksize, 0);
  1202. if (block1) {
  1203. eb = read_tree_block(root, block1, blocksize, 0);
  1204. free_extent_buffer(eb);
  1205. }
  1206. if (block2) {
  1207. eb = read_tree_block(root, block2, blocksize, 0);
  1208. free_extent_buffer(eb);
  1209. }
  1210. }
  1211. return ret;
  1212. }
  1213. /*
  1214. * when we walk down the tree, it is usually safe to unlock the higher layers
  1215. * in the tree. The exceptions are when our path goes through slot 0, because
  1216. * operations on the tree might require changing key pointers higher up in the
  1217. * tree.
  1218. *
  1219. * callers might also have set path->keep_locks, which tells this code to keep
  1220. * the lock if the path points to the last slot in the block. This is part of
  1221. * walking through the tree, and selecting the next slot in the higher block.
  1222. *
  1223. * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
  1224. * if lowest_unlock is 1, level 0 won't be unlocked
  1225. */
  1226. static noinline void unlock_up(struct btrfs_path *path, int level,
  1227. int lowest_unlock)
  1228. {
  1229. int i;
  1230. int skip_level = level;
  1231. int no_skips = 0;
  1232. struct extent_buffer *t;
  1233. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1234. if (!path->nodes[i])
  1235. break;
  1236. if (!path->locks[i])
  1237. break;
  1238. if (!no_skips && path->slots[i] == 0) {
  1239. skip_level = i + 1;
  1240. continue;
  1241. }
  1242. if (!no_skips && path->keep_locks) {
  1243. u32 nritems;
  1244. t = path->nodes[i];
  1245. nritems = btrfs_header_nritems(t);
  1246. if (nritems < 1 || path->slots[i] >= nritems - 1) {
  1247. skip_level = i + 1;
  1248. continue;
  1249. }
  1250. }
  1251. if (skip_level < i && i >= lowest_unlock)
  1252. no_skips = 1;
  1253. t = path->nodes[i];
  1254. if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
  1255. btrfs_tree_unlock_rw(t, path->locks[i]);
  1256. path->locks[i] = 0;
  1257. }
  1258. }
  1259. }
  1260. /*
  1261. * This releases any locks held in the path starting at level and
  1262. * going all the way up to the root.
  1263. *
  1264. * btrfs_search_slot will keep the lock held on higher nodes in a few
  1265. * corner cases, such as COW of the block at slot zero in the node. This
  1266. * ignores those rules, and it should only be called when there are no
  1267. * more updates to be done higher up in the tree.
  1268. */
  1269. noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
  1270. {
  1271. int i;
  1272. if (path->keep_locks)
  1273. return;
  1274. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1275. if (!path->nodes[i])
  1276. continue;
  1277. if (!path->locks[i])
  1278. continue;
  1279. btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
  1280. path->locks[i] = 0;
  1281. }
  1282. }
  1283. /*
  1284. * helper function for btrfs_search_slot. The goal is to find a block
  1285. * in cache without setting the path to blocking. If we find the block
  1286. * we return zero and the path is unchanged.
  1287. *
  1288. * If we can't find the block, we set the path blocking and do some
  1289. * reada. -EAGAIN is returned and the search must be repeated.
  1290. */
  1291. static int
  1292. read_block_for_search(struct btrfs_trans_handle *trans,
  1293. struct btrfs_root *root, struct btrfs_path *p,
  1294. struct extent_buffer **eb_ret, int level, int slot,
  1295. struct btrfs_key *key)
  1296. {
  1297. u64 blocknr;
  1298. u64 gen;
  1299. u32 blocksize;
  1300. struct extent_buffer *b = *eb_ret;
  1301. struct extent_buffer *tmp;
  1302. int ret;
  1303. blocknr = btrfs_node_blockptr(b, slot);
  1304. gen = btrfs_node_ptr_generation(b, slot);
  1305. blocksize = btrfs_level_size(root, level - 1);
  1306. tmp = btrfs_find_tree_block(root, blocknr, blocksize);
  1307. if (tmp) {
  1308. if (btrfs_buffer_uptodate(tmp, 0)) {
  1309. if (btrfs_buffer_uptodate(tmp, gen)) {
  1310. /*
  1311. * we found an up to date block without
  1312. * sleeping, return
  1313. * right away
  1314. */
  1315. *eb_ret = tmp;
  1316. return 0;
  1317. }
  1318. /* the pages were up to date, but we failed
  1319. * the generation number check. Do a full
  1320. * read for the generation number that is correct.
  1321. * We must do this without dropping locks so
  1322. * we can trust our generation number
  1323. */
  1324. free_extent_buffer(tmp);
  1325. btrfs_set_path_blocking(p);
  1326. tmp = read_tree_block(root, blocknr, blocksize, gen);
  1327. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  1328. *eb_ret = tmp;
  1329. return 0;
  1330. }
  1331. free_extent_buffer(tmp);
  1332. btrfs_release_path(p);
  1333. return -EIO;
  1334. }
  1335. }
  1336. /*
  1337. * reduce lock contention at high levels
  1338. * of the btree by dropping locks before
  1339. * we read. Don't release the lock on the current
  1340. * level because we need to walk this node to figure
  1341. * out which blocks to read.
  1342. */
  1343. btrfs_unlock_up_safe(p, level + 1);
  1344. btrfs_set_path_blocking(p);
  1345. free_extent_buffer(tmp);
  1346. if (p->reada)
  1347. reada_for_search(root, p, level, slot, key->objectid);
  1348. btrfs_release_path(p);
  1349. ret = -EAGAIN;
  1350. tmp = read_tree_block(root, blocknr, blocksize, 0);
  1351. if (tmp) {
  1352. /*
  1353. * If the read above didn't mark this buffer up to date,
  1354. * it will never end up being up to date. Set ret to EIO now
  1355. * and give up so that our caller doesn't loop forever
  1356. * on our EAGAINs.
  1357. */
  1358. if (!btrfs_buffer_uptodate(tmp, 0))
  1359. ret = -EIO;
  1360. free_extent_buffer(tmp);
  1361. }
  1362. return ret;
  1363. }
  1364. /*
  1365. * helper function for btrfs_search_slot. This does all of the checks
  1366. * for node-level blocks and does any balancing required based on
  1367. * the ins_len.
  1368. *
  1369. * If no extra work was required, zero is returned. If we had to
  1370. * drop the path, -EAGAIN is returned and btrfs_search_slot must
  1371. * start over
  1372. */
  1373. static int
  1374. setup_nodes_for_search(struct btrfs_trans_handle *trans,
  1375. struct btrfs_root *root, struct btrfs_path *p,
  1376. struct extent_buffer *b, int level, int ins_len,
  1377. int *write_lock_level)
  1378. {
  1379. int ret;
  1380. if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
  1381. BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
  1382. int sret;
  1383. if (*write_lock_level < level + 1) {
  1384. *write_lock_level = level + 1;
  1385. btrfs_release_path(p);
  1386. goto again;
  1387. }
  1388. sret = reada_for_balance(root, p, level);
  1389. if (sret)
  1390. goto again;
  1391. btrfs_set_path_blocking(p);
  1392. sret = split_node(trans, root, p, level);
  1393. btrfs_clear_path_blocking(p, NULL, 0);
  1394. BUG_ON(sret > 0);
  1395. if (sret) {
  1396. ret = sret;
  1397. goto done;
  1398. }
  1399. b = p->nodes[level];
  1400. } else if (ins_len < 0 && btrfs_header_nritems(b) <
  1401. BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
  1402. int sret;
  1403. if (*write_lock_level < level + 1) {
  1404. *write_lock_level = level + 1;
  1405. btrfs_release_path(p);
  1406. goto again;
  1407. }
  1408. sret = reada_for_balance(root, p, level);
  1409. if (sret)
  1410. goto again;
  1411. btrfs_set_path_blocking(p);
  1412. sret = balance_level(trans, root, p, level);
  1413. btrfs_clear_path_blocking(p, NULL, 0);
  1414. if (sret) {
  1415. ret = sret;
  1416. goto done;
  1417. }
  1418. b = p->nodes[level];
  1419. if (!b) {
  1420. btrfs_release_path(p);
  1421. goto again;
  1422. }
  1423. BUG_ON(btrfs_header_nritems(b) == 1);
  1424. }
  1425. return 0;
  1426. again:
  1427. ret = -EAGAIN;
  1428. done:
  1429. return ret;
  1430. }
  1431. /*
  1432. * look for key in the tree. path is filled in with nodes along the way
  1433. * if key is found, we return zero and you can find the item in the leaf
  1434. * level of the path (level 0)
  1435. *
  1436. * If the key isn't found, the path points to the slot where it should
  1437. * be inserted, and 1 is returned. If there are other errors during the
  1438. * search a negative error number is returned.
  1439. *
  1440. * if ins_len > 0, nodes and leaves will be split as we walk down the
  1441. * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
  1442. * possible)
  1443. */
  1444. int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
  1445. *root, struct btrfs_key *key, struct btrfs_path *p, int
  1446. ins_len, int cow)
  1447. {
  1448. struct extent_buffer *b;
  1449. int slot;
  1450. int ret;
  1451. int err;
  1452. int level;
  1453. int lowest_unlock = 1;
  1454. int root_lock;
  1455. /* everything at write_lock_level or lower must be write locked */
  1456. int write_lock_level = 0;
  1457. u8 lowest_level = 0;
  1458. lowest_level = p->lowest_level;
  1459. WARN_ON(lowest_level && ins_len > 0);
  1460. WARN_ON(p->nodes[0] != NULL);
  1461. if (ins_len < 0) {
  1462. lowest_unlock = 2;
  1463. /* when we are removing items, we might have to go up to level
  1464. * two as we update tree pointers Make sure we keep write
  1465. * for those levels as well
  1466. */
  1467. write_lock_level = 2;
  1468. } else if (ins_len > 0) {
  1469. /*
  1470. * for inserting items, make sure we have a write lock on
  1471. * level 1 so we can update keys
  1472. */
  1473. write_lock_level = 1;
  1474. }
  1475. if (!cow)
  1476. write_lock_level = -1;
  1477. if (cow && (p->keep_locks || p->lowest_level))
  1478. write_lock_level = BTRFS_MAX_LEVEL;
  1479. again:
  1480. /*
  1481. * we try very hard to do read locks on the root
  1482. */
  1483. root_lock = BTRFS_READ_LOCK;
  1484. level = 0;
  1485. if (p->search_commit_root) {
  1486. /*
  1487. * the commit roots are read only
  1488. * so we always do read locks
  1489. */
  1490. b = root->commit_root;
  1491. extent_buffer_get(b);
  1492. level = btrfs_header_level(b);
  1493. if (!p->skip_locking)
  1494. btrfs_tree_read_lock(b);
  1495. } else {
  1496. if (p->skip_locking) {
  1497. b = btrfs_root_node(root);
  1498. level = btrfs_header_level(b);
  1499. } else {
  1500. /* we don't know the level of the root node
  1501. * until we actually have it read locked
  1502. */
  1503. b = btrfs_read_lock_root_node(root);
  1504. level = btrfs_header_level(b);
  1505. if (level <= write_lock_level) {
  1506. /* whoops, must trade for write lock */
  1507. btrfs_tree_read_unlock(b);
  1508. free_extent_buffer(b);
  1509. b = btrfs_lock_root_node(root);
  1510. root_lock = BTRFS_WRITE_LOCK;
  1511. /* the level might have changed, check again */
  1512. level = btrfs_header_level(b);
  1513. }
  1514. }
  1515. }
  1516. p->nodes[level] = b;
  1517. if (!p->skip_locking)
  1518. p->locks[level] = root_lock;
  1519. while (b) {
  1520. level = btrfs_header_level(b);
  1521. /*
  1522. * setup the path here so we can release it under lock
  1523. * contention with the cow code
  1524. */
  1525. if (cow) {
  1526. /*
  1527. * if we don't really need to cow this block
  1528. * then we don't want to set the path blocking,
  1529. * so we test it here
  1530. */
  1531. if (!should_cow_block(trans, root, b))
  1532. goto cow_done;
  1533. btrfs_set_path_blocking(p);
  1534. /*
  1535. * must have write locks on this node and the
  1536. * parent
  1537. */
  1538. if (level + 1 > write_lock_level) {
  1539. write_lock_level = level + 1;
  1540. btrfs_release_path(p);
  1541. goto again;
  1542. }
  1543. err = btrfs_cow_block(trans, root, b,
  1544. p->nodes[level + 1],
  1545. p->slots[level + 1], &b);
  1546. if (err) {
  1547. ret = err;
  1548. goto done;
  1549. }
  1550. }
  1551. cow_done:
  1552. BUG_ON(!cow && ins_len);
  1553. p->nodes[level] = b;
  1554. btrfs_clear_path_blocking(p, NULL, 0);
  1555. /*
  1556. * we have a lock on b and as long as we aren't changing
  1557. * the tree, there is no way to for the items in b to change.
  1558. * It is safe to drop the lock on our parent before we
  1559. * go through the expensive btree search on b.
  1560. *
  1561. * If cow is true, then we might be changing slot zero,
  1562. * which may require changing the parent. So, we can't
  1563. * drop the lock until after we know which slot we're
  1564. * operating on.
  1565. */
  1566. if (!cow)
  1567. btrfs_unlock_up_safe(p, level + 1);
  1568. ret = bin_search(b, key, level, &slot);
  1569. if (level != 0) {
  1570. int dec = 0;
  1571. if (ret && slot > 0) {
  1572. dec = 1;
  1573. slot -= 1;
  1574. }
  1575. p->slots[level] = slot;
  1576. err = setup_nodes_for_search(trans, root, p, b, level,
  1577. ins_len, &write_lock_level);
  1578. if (err == -EAGAIN)
  1579. goto again;
  1580. if (err) {
  1581. ret = err;
  1582. goto done;
  1583. }
  1584. b = p->nodes[level];
  1585. slot = p->slots[level];
  1586. /*
  1587. * slot 0 is special, if we change the key
  1588. * we have to update the parent pointer
  1589. * which means we must have a write lock
  1590. * on the parent
  1591. */
  1592. if (slot == 0 && cow &&
  1593. write_lock_level < level + 1) {
  1594. write_lock_level = level + 1;
  1595. btrfs_release_path(p);
  1596. goto again;
  1597. }
  1598. unlock_up(p, level, lowest_unlock);
  1599. if (level == lowest_level) {
  1600. if (dec)
  1601. p->slots[level]++;
  1602. goto done;
  1603. }
  1604. err = read_block_for_search(trans, root, p,
  1605. &b, level, slot, key);
  1606. if (err == -EAGAIN)
  1607. goto again;
  1608. if (err) {
  1609. ret = err;
  1610. goto done;
  1611. }
  1612. if (!p->skip_locking) {
  1613. level = btrfs_header_level(b);
  1614. if (level <= write_lock_level) {
  1615. err = btrfs_try_tree_write_lock(b);
  1616. if (!err) {
  1617. btrfs_set_path_blocking(p);
  1618. btrfs_tree_lock(b);
  1619. btrfs_clear_path_blocking(p, b,
  1620. BTRFS_WRITE_LOCK);
  1621. }
  1622. p->locks[level] = BTRFS_WRITE_LOCK;
  1623. } else {
  1624. err = btrfs_try_tree_read_lock(b);
  1625. if (!err) {
  1626. btrfs_set_path_blocking(p);
  1627. btrfs_tree_read_lock(b);
  1628. btrfs_clear_path_blocking(p, b,
  1629. BTRFS_READ_LOCK);
  1630. }
  1631. p->locks[level] = BTRFS_READ_LOCK;
  1632. }
  1633. p->nodes[level] = b;
  1634. }
  1635. } else {
  1636. p->slots[level] = slot;
  1637. if (ins_len > 0 &&
  1638. btrfs_leaf_free_space(root, b) < ins_len) {
  1639. if (write_lock_level < 1) {
  1640. write_lock_level = 1;
  1641. btrfs_release_path(p);
  1642. goto again;
  1643. }
  1644. btrfs_set_path_blocking(p);
  1645. err = split_leaf(trans, root, key,
  1646. p, ins_len, ret == 0);
  1647. btrfs_clear_path_blocking(p, NULL, 0);
  1648. BUG_ON(err > 0);
  1649. if (err) {
  1650. ret = err;
  1651. goto done;
  1652. }
  1653. }
  1654. if (!p->search_for_split)
  1655. unlock_up(p, level, lowest_unlock);
  1656. goto done;
  1657. }
  1658. }
  1659. ret = 1;
  1660. done:
  1661. /*
  1662. * we don't really know what they plan on doing with the path
  1663. * from here on, so for now just mark it as blocking
  1664. */
  1665. if (!p->leave_spinning)
  1666. btrfs_set_path_blocking(p);
  1667. if (ret < 0)
  1668. btrfs_release_path(p);
  1669. return ret;
  1670. }
  1671. /*
  1672. * adjust the pointers going up the tree, starting at level
  1673. * making sure the right key of each node is points to 'key'.
  1674. * This is used after shifting pointers to the left, so it stops
  1675. * fixing up pointers when a given leaf/node is not in slot 0 of the
  1676. * higher levels
  1677. *
  1678. * If this fails to write a tree block, it returns -1, but continues
  1679. * fixing up the blocks in ram so the tree is consistent.
  1680. */
  1681. static int fixup_low_keys(struct btrfs_trans_handle *trans,
  1682. struct btrfs_root *root, struct btrfs_path *path,
  1683. struct btrfs_disk_key *key, int level)
  1684. {
  1685. int i;
  1686. int ret = 0;
  1687. struct extent_buffer *t;
  1688. for (i = level; i < BTRFS_MAX_LEVEL; i++) {
  1689. int tslot = path->slots[i];
  1690. if (!path->nodes[i])
  1691. break;
  1692. t = path->nodes[i];
  1693. btrfs_set_node_key(t, key, tslot);
  1694. btrfs_mark_buffer_dirty(path->nodes[i]);
  1695. if (tslot != 0)
  1696. break;
  1697. }
  1698. return ret;
  1699. }
  1700. /*
  1701. * update item key.
  1702. *
  1703. * This function isn't completely safe. It's the caller's responsibility
  1704. * that the new key won't break the order
  1705. */
  1706. int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
  1707. struct btrfs_root *root, struct btrfs_path *path,
  1708. struct btrfs_key *new_key)
  1709. {
  1710. struct btrfs_disk_key disk_key;
  1711. struct extent_buffer *eb;
  1712. int slot;
  1713. eb = path->nodes[0];
  1714. slot = path->slots[0];
  1715. if (slot > 0) {
  1716. btrfs_item_key(eb, &disk_key, slot - 1);
  1717. if (comp_keys(&disk_key, new_key) >= 0)
  1718. return -1;
  1719. }
  1720. if (slot < btrfs_header_nritems(eb) - 1) {
  1721. btrfs_item_key(eb, &disk_key, slot + 1);
  1722. if (comp_keys(&disk_key, new_key) <= 0)
  1723. return -1;
  1724. }
  1725. btrfs_cpu_key_to_disk(&disk_key, new_key);
  1726. btrfs_set_item_key(eb, &disk_key, slot);
  1727. btrfs_mark_buffer_dirty(eb);
  1728. if (slot == 0)
  1729. fixup_low_keys(trans, root, path, &disk_key, 1);
  1730. return 0;
  1731. }
  1732. /*
  1733. * try to push data from one node into the next node left in the
  1734. * tree.
  1735. *
  1736. * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
  1737. * error, and > 0 if there was no room in the left hand block.
  1738. */
  1739. static int push_node_left(struct btrfs_trans_handle *trans,
  1740. struct btrfs_root *root, struct extent_buffer *dst,
  1741. struct extent_buffer *src, int empty)
  1742. {
  1743. int push_items = 0;
  1744. int src_nritems;
  1745. int dst_nritems;
  1746. int ret = 0;
  1747. src_nritems = btrfs_header_nritems(src);
  1748. dst_nritems = btrfs_header_nritems(dst);
  1749. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1750. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1751. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1752. if (!empty && src_nritems <= 8)
  1753. return 1;
  1754. if (push_items <= 0)
  1755. return 1;
  1756. if (empty) {
  1757. push_items = min(src_nritems, push_items);
  1758. if (push_items < src_nritems) {
  1759. /* leave at least 8 pointers in the node if
  1760. * we aren't going to empty it
  1761. */
  1762. if (src_nritems - push_items < 8) {
  1763. if (push_items <= 8)
  1764. return 1;
  1765. push_items -= 8;
  1766. }
  1767. }
  1768. } else
  1769. push_items = min(src_nritems - 8, push_items);
  1770. copy_extent_buffer(dst, src,
  1771. btrfs_node_key_ptr_offset(dst_nritems),
  1772. btrfs_node_key_ptr_offset(0),
  1773. push_items * sizeof(struct btrfs_key_ptr));
  1774. if (push_items < src_nritems) {
  1775. memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
  1776. btrfs_node_key_ptr_offset(push_items),
  1777. (src_nritems - push_items) *
  1778. sizeof(struct btrfs_key_ptr));
  1779. }
  1780. btrfs_set_header_nritems(src, src_nritems - push_items);
  1781. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1782. btrfs_mark_buffer_dirty(src);
  1783. btrfs_mark_buffer_dirty(dst);
  1784. return ret;
  1785. }
  1786. /*
  1787. * try to push data from one node into the next node right in the
  1788. * tree.
  1789. *
  1790. * returns 0 if some ptrs were pushed, < 0 if there was some horrible
  1791. * error, and > 0 if there was no room in the right hand block.
  1792. *
  1793. * this will only push up to 1/2 the contents of the left node over
  1794. */
  1795. static int balance_node_right(struct btrfs_trans_handle *trans,
  1796. struct btrfs_root *root,
  1797. struct extent_buffer *dst,
  1798. struct extent_buffer *src)
  1799. {
  1800. int push_items = 0;
  1801. int max_push;
  1802. int src_nritems;
  1803. int dst_nritems;
  1804. int ret = 0;
  1805. WARN_ON(btrfs_header_generation(src) != trans->transid);
  1806. WARN_ON(btrfs_header_generation(dst) != trans->transid);
  1807. src_nritems = btrfs_header_nritems(src);
  1808. dst_nritems = btrfs_header_nritems(dst);
  1809. push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
  1810. if (push_items <= 0)
  1811. return 1;
  1812. if (src_nritems < 4)
  1813. return 1;
  1814. max_push = src_nritems / 2 + 1;
  1815. /* don't try to empty the node */
  1816. if (max_push >= src_nritems)
  1817. return 1;
  1818. if (max_push < push_items)
  1819. push_items = max_push;
  1820. memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
  1821. btrfs_node_key_ptr_offset(0),
  1822. (dst_nritems) *
  1823. sizeof(struct btrfs_key_ptr));
  1824. copy_extent_buffer(dst, src,
  1825. btrfs_node_key_ptr_offset(0),
  1826. btrfs_node_key_ptr_offset(src_nritems - push_items),
  1827. push_items * sizeof(struct btrfs_key_ptr));
  1828. btrfs_set_header_nritems(src, src_nritems - push_items);
  1829. btrfs_set_header_nritems(dst, dst_nritems + push_items);
  1830. btrfs_mark_buffer_dirty(src);
  1831. btrfs_mark_buffer_dirty(dst);
  1832. return ret;
  1833. }
  1834. /*
  1835. * helper function to insert a new root level in the tree.
  1836. * A new node is allocated, and a single item is inserted to
  1837. * point to the existing root
  1838. *
  1839. * returns zero on success or < 0 on failure.
  1840. */
  1841. static noinline int insert_new_root(struct btrfs_trans_handle *trans,
  1842. struct btrfs_root *root,
  1843. struct btrfs_path *path, int level)
  1844. {
  1845. u64 lower_gen;
  1846. struct extent_buffer *lower;
  1847. struct extent_buffer *c;
  1848. struct extent_buffer *old;
  1849. struct btrfs_disk_key lower_key;
  1850. BUG_ON(path->nodes[level]);
  1851. BUG_ON(path->nodes[level-1] != root->node);
  1852. lower = path->nodes[level-1];
  1853. if (level == 1)
  1854. btrfs_item_key(lower, &lower_key, 0);
  1855. else
  1856. btrfs_node_key(lower, &lower_key, 0);
  1857. c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1858. root->root_key.objectid, &lower_key,
  1859. level, root->node->start, 0);
  1860. if (IS_ERR(c))
  1861. return PTR_ERR(c);
  1862. root_add_used(root, root->nodesize);
  1863. memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
  1864. btrfs_set_header_nritems(c, 1);
  1865. btrfs_set_header_level(c, level);
  1866. btrfs_set_header_bytenr(c, c->start);
  1867. btrfs_set_header_generation(c, trans->transid);
  1868. btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
  1869. btrfs_set_header_owner(c, root->root_key.objectid);
  1870. write_extent_buffer(c, root->fs_info->fsid,
  1871. (unsigned long)btrfs_header_fsid(c),
  1872. BTRFS_FSID_SIZE);
  1873. write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
  1874. (unsigned long)btrfs_header_chunk_tree_uuid(c),
  1875. BTRFS_UUID_SIZE);
  1876. btrfs_set_node_key(c, &lower_key, 0);
  1877. btrfs_set_node_blockptr(c, 0, lower->start);
  1878. lower_gen = btrfs_header_generation(lower);
  1879. WARN_ON(lower_gen != trans->transid);
  1880. btrfs_set_node_ptr_generation(c, 0, lower_gen);
  1881. btrfs_mark_buffer_dirty(c);
  1882. old = root->node;
  1883. rcu_assign_pointer(root->node, c);
  1884. /* the super has an extra ref to root->node */
  1885. free_extent_buffer(old);
  1886. add_root_to_dirty_list(root);
  1887. extent_buffer_get(c);
  1888. path->nodes[level] = c;
  1889. path->locks[level] = BTRFS_WRITE_LOCK;
  1890. path->slots[level] = 0;
  1891. return 0;
  1892. }
  1893. /*
  1894. * worker function to insert a single pointer in a node.
  1895. * the node should have enough room for the pointer already
  1896. *
  1897. * slot and level indicate where you want the key to go, and
  1898. * blocknr is the block the key points to.
  1899. *
  1900. * returns zero on success and < 0 on any error
  1901. */
  1902. static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
  1903. *root, struct btrfs_path *path, struct btrfs_disk_key
  1904. *key, u64 bytenr, int slot, int level)
  1905. {
  1906. struct extent_buffer *lower;
  1907. int nritems;
  1908. BUG_ON(!path->nodes[level]);
  1909. btrfs_assert_tree_locked(path->nodes[level]);
  1910. lower = path->nodes[level];
  1911. nritems = btrfs_header_nritems(lower);
  1912. BUG_ON(slot > nritems);
  1913. if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
  1914. BUG();
  1915. if (slot != nritems) {
  1916. memmove_extent_buffer(lower,
  1917. btrfs_node_key_ptr_offset(slot + 1),
  1918. btrfs_node_key_ptr_offset(slot),
  1919. (nritems - slot) * sizeof(struct btrfs_key_ptr));
  1920. }
  1921. btrfs_set_node_key(lower, key, slot);
  1922. btrfs_set_node_blockptr(lower, slot, bytenr);
  1923. WARN_ON(trans->transid == 0);
  1924. btrfs_set_node_ptr_generation(lower, slot, trans->transid);
  1925. btrfs_set_header_nritems(lower, nritems + 1);
  1926. btrfs_mark_buffer_dirty(lower);
  1927. return 0;
  1928. }
  1929. /*
  1930. * split the node at the specified level in path in two.
  1931. * The path is corrected to point to the appropriate node after the split
  1932. *
  1933. * Before splitting this tries to make some room in the node by pushing
  1934. * left and right, if either one works, it returns right away.
  1935. *
  1936. * returns 0 on success and < 0 on failure
  1937. */
  1938. static noinline int split_node(struct btrfs_trans_handle *trans,
  1939. struct btrfs_root *root,
  1940. struct btrfs_path *path, int level)
  1941. {
  1942. struct extent_buffer *c;
  1943. struct extent_buffer *split;
  1944. struct btrfs_disk_key disk_key;
  1945. int mid;
  1946. int ret;
  1947. int wret;
  1948. u32 c_nritems;
  1949. c = path->nodes[level];
  1950. WARN_ON(btrfs_header_generation(c) != trans->transid);
  1951. if (c == root->node) {
  1952. /* trying to split the root, lets make a new one */
  1953. ret = insert_new_root(trans, root, path, level + 1);
  1954. if (ret)
  1955. return ret;
  1956. } else {
  1957. ret = push_nodes_for_insert(trans, root, path, level);
  1958. c = path->nodes[level];
  1959. if (!ret && btrfs_header_nritems(c) <
  1960. BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
  1961. return 0;
  1962. if (ret < 0)
  1963. return ret;
  1964. }
  1965. c_nritems = btrfs_header_nritems(c);
  1966. mid = (c_nritems + 1) / 2;
  1967. btrfs_node_key(c, &disk_key, mid);
  1968. split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
  1969. root->root_key.objectid,
  1970. &disk_key, level, c->start, 0);
  1971. if (IS_ERR(split))
  1972. return PTR_ERR(split);
  1973. root_add_used(root, root->nodesize);
  1974. memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
  1975. btrfs_set_header_level(split, btrfs_header_level(c));
  1976. btrfs_set_header_bytenr(split, split->start);
  1977. btrfs_set_header_generation(split, trans->transid);
  1978. btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
  1979. btrfs_set_header_owner(split, root->root_key.objectid);
  1980. write_extent_buffer(split, root->fs_info->fsid,
  1981. (unsigned long)btrfs_header_fsid(split),
  1982. BTRFS_FSID_SIZE);
  1983. write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
  1984. (unsigned long)btrfs_header_chunk_tree_uuid(split),
  1985. BTRFS_UUID_SIZE);
  1986. copy_extent_buffer(split, c,
  1987. btrfs_node_key_ptr_offset(0),
  1988. btrfs_node_key_ptr_offset(mid),
  1989. (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
  1990. btrfs_set_header_nritems(split, c_nritems - mid);
  1991. btrfs_set_header_nritems(c, mid);
  1992. ret = 0;
  1993. btrfs_mark_buffer_dirty(c);
  1994. btrfs_mark_buffer_dirty(split);
  1995. wret = insert_ptr(trans, root, path, &disk_key, split->start,
  1996. path->slots[level + 1] + 1,
  1997. level + 1);
  1998. if (wret)
  1999. ret = wret;
  2000. if (path->slots[level] >= mid) {
  2001. path->slots[level] -= mid;
  2002. btrfs_tree_unlock(c);
  2003. free_extent_buffer(c);
  2004. path->nodes[level] = split;
  2005. path->slots[level + 1] += 1;
  2006. } else {
  2007. btrfs_tree_unlock(split);
  2008. free_extent_buffer(split);
  2009. }
  2010. return ret;
  2011. }
  2012. /*
  2013. * how many bytes are required to store the items in a leaf. start
  2014. * and nr indicate which items in the leaf to check. This totals up the
  2015. * space used both by the item structs and the item data
  2016. */
  2017. static int leaf_space_used(struct extent_buffer *l, int start, int nr)
  2018. {
  2019. int data_len;
  2020. int nritems = btrfs_header_nritems(l);
  2021. int end = min(nritems, start + nr) - 1;
  2022. if (!nr)
  2023. return 0;
  2024. data_len = btrfs_item_end_nr(l, start);
  2025. data_len = data_len - btrfs_item_offset_nr(l, end);
  2026. data_len += sizeof(struct btrfs_item) * nr;
  2027. WARN_ON(data_len < 0);
  2028. return data_len;
  2029. }
  2030. /*
  2031. * The space between the end of the leaf items and
  2032. * the start of the leaf data. IOW, how much room
  2033. * the leaf has left for both items and data
  2034. */
  2035. noinline int btrfs_leaf_free_space(struct btrfs_root *root,
  2036. struct extent_buffer *leaf)
  2037. {
  2038. int nritems = btrfs_header_nritems(leaf);
  2039. int ret;
  2040. ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
  2041. if (ret < 0) {
  2042. printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
  2043. "used %d nritems %d\n",
  2044. ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
  2045. leaf_space_used(leaf, 0, nritems), nritems);
  2046. }
  2047. return ret;
  2048. }
  2049. /*
  2050. * min slot controls the lowest index we're willing to push to the
  2051. * right. We'll push up to and including min_slot, but no lower
  2052. */
  2053. static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
  2054. struct btrfs_root *root,
  2055. struct btrfs_path *path,
  2056. int data_size, int empty,
  2057. struct extent_buffer *right,
  2058. int free_space, u32 left_nritems,
  2059. u32 min_slot)
  2060. {
  2061. struct extent_buffer *left = path->nodes[0];
  2062. struct extent_buffer *upper = path->nodes[1];
  2063. struct btrfs_disk_key disk_key;
  2064. int slot;
  2065. u32 i;
  2066. int push_space = 0;
  2067. int push_items = 0;
  2068. struct btrfs_item *item;
  2069. u32 nr;
  2070. u32 right_nritems;
  2071. u32 data_end;
  2072. u32 this_item_size;
  2073. if (empty)
  2074. nr = 0;
  2075. else
  2076. nr = max_t(u32, 1, min_slot);
  2077. if (path->slots[0] >= left_nritems)
  2078. push_space += data_size;
  2079. slot = path->slots[1];
  2080. i = left_nritems - 1;
  2081. while (i >= nr) {
  2082. item = btrfs_item_nr(left, i);
  2083. if (!empty && push_items > 0) {
  2084. if (path->slots[0] > i)
  2085. break;
  2086. if (path->slots[0] == i) {
  2087. int space = btrfs_leaf_free_space(root, left);
  2088. if (space + push_space * 2 > free_space)
  2089. break;
  2090. }
  2091. }
  2092. if (path->slots[0] == i)
  2093. push_space += data_size;
  2094. this_item_size = btrfs_item_size(left, item);
  2095. if (this_item_size + sizeof(*item) + push_space > free_space)
  2096. break;
  2097. push_items++;
  2098. push_space += this_item_size + sizeof(*item);
  2099. if (i == 0)
  2100. break;
  2101. i--;
  2102. }
  2103. if (push_items == 0)
  2104. goto out_unlock;
  2105. if (!empty && push_items == left_nritems)
  2106. WARN_ON(1);
  2107. /* push left to right */
  2108. right_nritems = btrfs_header_nritems(right);
  2109. push_space = btrfs_item_end_nr(left, left_nritems - push_items);
  2110. push_space -= leaf_data_end(root, left);
  2111. /* make room in the right data area */
  2112. data_end = leaf_data_end(root, right);
  2113. memmove_extent_buffer(right,
  2114. btrfs_leaf_data(right) + data_end - push_space,
  2115. btrfs_leaf_data(right) + data_end,
  2116. BTRFS_LEAF_DATA_SIZE(root) - data_end);
  2117. /* copy from the left data area */
  2118. copy_extent_buffer(right, left, btrfs_leaf_data(right) +
  2119. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2120. btrfs_leaf_data(left) + leaf_data_end(root, left),
  2121. push_space);
  2122. memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
  2123. btrfs_item_nr_offset(0),
  2124. right_nritems * sizeof(struct btrfs_item));
  2125. /* copy the items from left to right */
  2126. copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
  2127. btrfs_item_nr_offset(left_nritems - push_items),
  2128. push_items * sizeof(struct btrfs_item));
  2129. /* update the item pointers */
  2130. right_nritems += push_items;
  2131. btrfs_set_header_nritems(right, right_nritems);
  2132. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2133. for (i = 0; i < right_nritems; i++) {
  2134. item = btrfs_item_nr(right, i);
  2135. push_space -= btrfs_item_size(right, item);
  2136. btrfs_set_item_offset(right, item, push_space);
  2137. }
  2138. left_nritems -= push_items;
  2139. btrfs_set_header_nritems(left, left_nritems);
  2140. if (left_nritems)
  2141. btrfs_mark_buffer_dirty(left);
  2142. else
  2143. clean_tree_block(trans, root, left);
  2144. btrfs_mark_buffer_dirty(right);
  2145. btrfs_item_key(right, &disk_key, 0);
  2146. btrfs_set_node_key(upper, &disk_key, slot + 1);
  2147. btrfs_mark_buffer_dirty(upper);
  2148. /* then fixup the leaf pointer in the path */
  2149. if (path->slots[0] >= left_nritems) {
  2150. path->slots[0] -= left_nritems;
  2151. if (btrfs_header_nritems(path->nodes[0]) == 0)
  2152. clean_tree_block(trans, root, path->nodes[0]);
  2153. btrfs_tree_unlock(path->nodes[0]);
  2154. free_extent_buffer(path->nodes[0]);
  2155. path->nodes[0] = right;
  2156. path->slots[1] += 1;
  2157. } else {
  2158. btrfs_tree_unlock(right);
  2159. free_extent_buffer(right);
  2160. }
  2161. return 0;
  2162. out_unlock:
  2163. btrfs_tree_unlock(right);
  2164. free_extent_buffer(right);
  2165. return 1;
  2166. }
  2167. /*
  2168. * push some data in the path leaf to the right, trying to free up at
  2169. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2170. *
  2171. * returns 1 if the push failed because the other node didn't have enough
  2172. * room, 0 if everything worked out and < 0 if there were major errors.
  2173. *
  2174. * this will push starting from min_slot to the end of the leaf. It won't
  2175. * push any slot lower than min_slot
  2176. */
  2177. static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
  2178. *root, struct btrfs_path *path,
  2179. int min_data_size, int data_size,
  2180. int empty, u32 min_slot)
  2181. {
  2182. struct extent_buffer *left = path->nodes[0];
  2183. struct extent_buffer *right;
  2184. struct extent_buffer *upper;
  2185. int slot;
  2186. int free_space;
  2187. u32 left_nritems;
  2188. int ret;
  2189. if (!path->nodes[1])
  2190. return 1;
  2191. slot = path->slots[1];
  2192. upper = path->nodes[1];
  2193. if (slot >= btrfs_header_nritems(upper) - 1)
  2194. return 1;
  2195. btrfs_assert_tree_locked(path->nodes[1]);
  2196. right = read_node_slot(root, upper, slot + 1);
  2197. if (right == NULL)
  2198. return 1;
  2199. btrfs_tree_lock(right);
  2200. btrfs_set_lock_blocking(right);
  2201. free_space = btrfs_leaf_free_space(root, right);
  2202. if (free_space < data_size)
  2203. goto out_unlock;
  2204. /* cow and double check */
  2205. ret = btrfs_cow_block(trans, root, right, upper,
  2206. slot + 1, &right);
  2207. if (ret)
  2208. goto out_unlock;
  2209. free_space = btrfs_leaf_free_space(root, right);
  2210. if (free_space < data_size)
  2211. goto out_unlock;
  2212. left_nritems = btrfs_header_nritems(left);
  2213. if (left_nritems == 0)
  2214. goto out_unlock;
  2215. return __push_leaf_right(trans, root, path, min_data_size, empty,
  2216. right, free_space, left_nritems, min_slot);
  2217. out_unlock:
  2218. btrfs_tree_unlock(right);
  2219. free_extent_buffer(right);
  2220. return 1;
  2221. }
  2222. /*
  2223. * push some data in the path leaf to the left, trying to free up at
  2224. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2225. *
  2226. * max_slot can put a limit on how far into the leaf we'll push items. The
  2227. * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
  2228. * items
  2229. */
  2230. static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
  2231. struct btrfs_root *root,
  2232. struct btrfs_path *path, int data_size,
  2233. int empty, struct extent_buffer *left,
  2234. int free_space, u32 right_nritems,
  2235. u32 max_slot)
  2236. {
  2237. struct btrfs_disk_key disk_key;
  2238. struct extent_buffer *right = path->nodes[0];
  2239. int i;
  2240. int push_space = 0;
  2241. int push_items = 0;
  2242. struct btrfs_item *item;
  2243. u32 old_left_nritems;
  2244. u32 nr;
  2245. int ret = 0;
  2246. int wret;
  2247. u32 this_item_size;
  2248. u32 old_left_item_size;
  2249. if (empty)
  2250. nr = min(right_nritems, max_slot);
  2251. else
  2252. nr = min(right_nritems - 1, max_slot);
  2253. for (i = 0; i < nr; i++) {
  2254. item = btrfs_item_nr(right, i);
  2255. if (!empty && push_items > 0) {
  2256. if (path->slots[0] < i)
  2257. break;
  2258. if (path->slots[0] == i) {
  2259. int space = btrfs_leaf_free_space(root, right);
  2260. if (space + push_space * 2 > free_space)
  2261. break;
  2262. }
  2263. }
  2264. if (path->slots[0] == i)
  2265. push_space += data_size;
  2266. this_item_size = btrfs_item_size(right, item);
  2267. if (this_item_size + sizeof(*item) + push_space > free_space)
  2268. break;
  2269. push_items++;
  2270. push_space += this_item_size + sizeof(*item);
  2271. }
  2272. if (push_items == 0) {
  2273. ret = 1;
  2274. goto out;
  2275. }
  2276. if (!empty && push_items == btrfs_header_nritems(right))
  2277. WARN_ON(1);
  2278. /* push data from right to left */
  2279. copy_extent_buffer(left, right,
  2280. btrfs_item_nr_offset(btrfs_header_nritems(left)),
  2281. btrfs_item_nr_offset(0),
  2282. push_items * sizeof(struct btrfs_item));
  2283. push_space = BTRFS_LEAF_DATA_SIZE(root) -
  2284. btrfs_item_offset_nr(right, push_items - 1);
  2285. copy_extent_buffer(left, right, btrfs_leaf_data(left) +
  2286. leaf_data_end(root, left) - push_space,
  2287. btrfs_leaf_data(right) +
  2288. btrfs_item_offset_nr(right, push_items - 1),
  2289. push_space);
  2290. old_left_nritems = btrfs_header_nritems(left);
  2291. BUG_ON(old_left_nritems <= 0);
  2292. old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
  2293. for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
  2294. u32 ioff;
  2295. item = btrfs_item_nr(left, i);
  2296. ioff = btrfs_item_offset(left, item);
  2297. btrfs_set_item_offset(left, item,
  2298. ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
  2299. }
  2300. btrfs_set_header_nritems(left, old_left_nritems + push_items);
  2301. /* fixup right node */
  2302. if (push_items > right_nritems) {
  2303. printk(KERN_CRIT "push items %d nr %u\n", push_items,
  2304. right_nritems);
  2305. WARN_ON(1);
  2306. }
  2307. if (push_items < right_nritems) {
  2308. push_space = btrfs_item_offset_nr(right, push_items - 1) -
  2309. leaf_data_end(root, right);
  2310. memmove_extent_buffer(right, btrfs_leaf_data(right) +
  2311. BTRFS_LEAF_DATA_SIZE(root) - push_space,
  2312. btrfs_leaf_data(right) +
  2313. leaf_data_end(root, right), push_space);
  2314. memmove_extent_buffer(right, btrfs_item_nr_offset(0),
  2315. btrfs_item_nr_offset(push_items),
  2316. (btrfs_header_nritems(right) - push_items) *
  2317. sizeof(struct btrfs_item));
  2318. }
  2319. right_nritems -= push_items;
  2320. btrfs_set_header_nritems(right, right_nritems);
  2321. push_space = BTRFS_LEAF_DATA_SIZE(root);
  2322. for (i = 0; i < right_nritems; i++) {
  2323. item = btrfs_item_nr(right, i);
  2324. push_space = push_space - btrfs_item_size(right, item);
  2325. btrfs_set_item_offset(right, item, push_space);
  2326. }
  2327. btrfs_mark_buffer_dirty(left);
  2328. if (right_nritems)
  2329. btrfs_mark_buffer_dirty(right);
  2330. else
  2331. clean_tree_block(trans, root, right);
  2332. btrfs_item_key(right, &disk_key, 0);
  2333. wret = fixup_low_keys(trans, root, path, &disk_key, 1);
  2334. if (wret)
  2335. ret = wret;
  2336. /* then fixup the leaf pointer in the path */
  2337. if (path->slots[0] < push_items) {
  2338. path->slots[0] += old_left_nritems;
  2339. btrfs_tree_unlock(path->nodes[0]);
  2340. free_extent_buffer(path->nodes[0]);
  2341. path->nodes[0] = left;
  2342. path->slots[1] -= 1;
  2343. } else {
  2344. btrfs_tree_unlock(left);
  2345. free_extent_buffer(left);
  2346. path->slots[0] -= push_items;
  2347. }
  2348. BUG_ON(path->slots[0] < 0);
  2349. return ret;
  2350. out:
  2351. btrfs_tree_unlock(left);
  2352. free_extent_buffer(left);
  2353. return ret;
  2354. }
  2355. /*
  2356. * push some data in the path leaf to the left, trying to free up at
  2357. * least data_size bytes. returns zero if the push worked, nonzero otherwise
  2358. *
  2359. * max_slot can put a limit on how far into the leaf we'll push items. The
  2360. * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
  2361. * items
  2362. */
  2363. static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
  2364. *root, struct btrfs_path *path, int min_data_size,
  2365. int data_size, int empty, u32 max_slot)
  2366. {
  2367. struct extent_buffer *right = path->nodes[0];
  2368. struct extent_buffer *left;
  2369. int slot;
  2370. int free_space;
  2371. u32 right_nritems;
  2372. int ret = 0;
  2373. slot = path->slots[1];
  2374. if (slot == 0)
  2375. return 1;
  2376. if (!path->nodes[1])
  2377. return 1;
  2378. right_nritems = btrfs_header_nritems(right);
  2379. if (right_nritems == 0)
  2380. return 1;
  2381. btrfs_assert_tree_locked(path->nodes[1]);
  2382. left = read_node_slot(root, path->nodes[1], slot - 1);
  2383. if (left == NULL)
  2384. return 1;
  2385. btrfs_tree_lock(left);
  2386. btrfs_set_lock_blocking(left);
  2387. free_space = btrfs_leaf_free_space(root, left);
  2388. if (free_space < data_size) {
  2389. ret = 1;
  2390. goto out;
  2391. }
  2392. /* cow and double check */
  2393. ret = btrfs_cow_block(trans, root, left,
  2394. path->nodes[1], slot - 1, &left);
  2395. if (ret) {
  2396. /* we hit -ENOSPC, but it isn't fatal here */
  2397. ret = 1;
  2398. goto out;
  2399. }
  2400. free_space = btrfs_leaf_free_space(root, left);
  2401. if (free_space < data_size) {
  2402. ret = 1;
  2403. goto out;
  2404. }
  2405. return __push_leaf_left(trans, root, path, min_data_size,
  2406. empty, left, free_space, right_nritems,
  2407. max_slot);
  2408. out:
  2409. btrfs_tree_unlock(left);
  2410. free_extent_buffer(left);
  2411. return ret;
  2412. }
  2413. /*
  2414. * split the path's leaf in two, making sure there is at least data_size
  2415. * available for the resulting leaf level of the path.
  2416. *
  2417. * returns 0 if all went well and < 0 on failure.
  2418. */
  2419. static noinline int copy_for_split(struct btrfs_trans_handle *trans,
  2420. struct btrfs_root *root,
  2421. struct btrfs_path *path,
  2422. struct extent_buffer *l,
  2423. struct extent_buffer *right,
  2424. int slot, int mid, int nritems)
  2425. {
  2426. int data_copy_size;
  2427. int rt_data_off;
  2428. int i;
  2429. int ret = 0;
  2430. int wret;
  2431. struct btrfs_disk_key disk_key;
  2432. nritems = nritems - mid;
  2433. btrfs_set_header_nritems(right, nritems);
  2434. data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
  2435. copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
  2436. btrfs_item_nr_offset(mid),
  2437. nritems * sizeof(struct btrfs_item));
  2438. copy_extent_buffer(right, l,
  2439. btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
  2440. data_copy_size, btrfs_leaf_data(l) +
  2441. leaf_data_end(root, l), data_copy_size);
  2442. rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
  2443. btrfs_item_end_nr(l, mid);
  2444. for (i = 0; i < nritems; i++) {
  2445. struct btrfs_item *item = btrfs_item_nr(right, i);
  2446. u32 ioff;
  2447. ioff = btrfs_item_offset(right, item);
  2448. btrfs_set_item_offset(right, item, ioff + rt_data_off);
  2449. }
  2450. btrfs_set_header_nritems(l, mid);
  2451. ret = 0;
  2452. btrfs_item_key(right, &disk_key, 0);
  2453. wret = insert_ptr(trans, root, path, &disk_key, right->start,
  2454. path->slots[1] + 1, 1);
  2455. if (wret)
  2456. ret = wret;
  2457. btrfs_mark_buffer_dirty(right);
  2458. btrfs_mark_buffer_dirty(l);
  2459. BUG_ON(path->slots[0] != slot);
  2460. if (mid <= slot) {
  2461. btrfs_tree_unlock(path->nodes[0]);
  2462. free_extent_buffer(path->nodes[0]);
  2463. path->nodes[0] = right;
  2464. path->slots[0] -= mid;
  2465. path->slots[1] += 1;
  2466. } else {
  2467. btrfs_tree_unlock(right);
  2468. free_extent_buffer(right);
  2469. }
  2470. BUG_ON(path->slots[0] < 0);
  2471. return ret;
  2472. }
  2473. /*
  2474. * double splits happen when we need to insert a big item in the middle
  2475. * of a leaf. A double split can leave us with 3 mostly empty leaves:
  2476. * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
  2477. * A B C
  2478. *
  2479. * We avoid this by trying to push the items on either side of our target
  2480. * into the adjacent leaves. If all goes well we can avoid the double split
  2481. * completely.
  2482. */
  2483. static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
  2484. struct btrfs_root *root,
  2485. struct btrfs_path *path,
  2486. int data_size)
  2487. {
  2488. int ret;
  2489. int progress = 0;
  2490. int slot;
  2491. u32 nritems;
  2492. slot = path->slots[0];
  2493. /*
  2494. * try to push all the items after our slot into the
  2495. * right leaf
  2496. */
  2497. ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
  2498. if (ret < 0)
  2499. return ret;
  2500. if (ret == 0)
  2501. progress++;
  2502. nritems = btrfs_header_nritems(path->nodes[0]);
  2503. /*
  2504. * our goal is to get our slot at the start or end of a leaf. If
  2505. * we've done so we're done
  2506. */
  2507. if (path->slots[0] == 0 || path->slots[0] == nritems)
  2508. return 0;
  2509. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2510. return 0;
  2511. /* try to push all the items before our slot into the next leaf */
  2512. slot = path->slots[0];
  2513. ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
  2514. if (ret < 0)
  2515. return ret;
  2516. if (ret == 0)
  2517. progress++;
  2518. if (progress)
  2519. return 0;
  2520. return 1;
  2521. }
  2522. /*
  2523. * split the path's leaf in two, making sure there is at least data_size
  2524. * available for the resulting leaf level of the path.
  2525. *
  2526. * returns 0 if all went well and < 0 on failure.
  2527. */
  2528. static noinline int split_leaf(struct btrfs_trans_handle *trans,
  2529. struct btrfs_root *root,
  2530. struct btrfs_key *ins_key,
  2531. struct btrfs_path *path, int data_size,
  2532. int extend)
  2533. {
  2534. struct btrfs_disk_key disk_key;
  2535. struct extent_buffer *l;
  2536. u32 nritems;
  2537. int mid;
  2538. int slot;
  2539. struct extent_buffer *right;
  2540. int ret = 0;
  2541. int wret;
  2542. int split;
  2543. int num_doubles = 0;
  2544. int tried_avoid_double = 0;
  2545. l = path->nodes[0];
  2546. slot = path->slots[0];
  2547. if (extend && data_size + btrfs_item_size_nr(l, slot) +
  2548. sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
  2549. return -EOVERFLOW;
  2550. /* first try to make some room by pushing left and right */
  2551. if (data_size) {
  2552. wret = push_leaf_right(trans, root, path, data_size,
  2553. data_size, 0, 0);
  2554. if (wret < 0)
  2555. return wret;
  2556. if (wret) {
  2557. wret = push_leaf_left(trans, root, path, data_size,
  2558. data_size, 0, (u32)-1);
  2559. if (wret < 0)
  2560. return wret;
  2561. }
  2562. l = path->nodes[0];
  2563. /* did the pushes work? */
  2564. if (btrfs_leaf_free_space(root, l) >= data_size)
  2565. return 0;
  2566. }
  2567. if (!path->nodes[1]) {
  2568. ret = insert_new_root(trans, root, path, 1);
  2569. if (ret)
  2570. return ret;
  2571. }
  2572. again:
  2573. split = 1;
  2574. l = path->nodes[0];
  2575. slot = path->slots[0];
  2576. nritems = btrfs_header_nritems(l);
  2577. mid = (nritems + 1) / 2;
  2578. if (mid <= slot) {
  2579. if (nritems == 1 ||
  2580. leaf_space_used(l, mid, nritems - mid) + data_size >
  2581. BTRFS_LEAF_DATA_SIZE(root)) {
  2582. if (slot >= nritems) {
  2583. split = 0;
  2584. } else {
  2585. mid = slot;
  2586. if (mid != nritems &&
  2587. leaf_space_used(l, mid, nritems - mid) +
  2588. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2589. if (data_size && !tried_avoid_double)
  2590. goto push_for_double;
  2591. split = 2;
  2592. }
  2593. }
  2594. }
  2595. } else {
  2596. if (leaf_space_used(l, 0, mid) + data_size >
  2597. BTRFS_LEAF_DATA_SIZE(root)) {
  2598. if (!extend && data_size && slot == 0) {
  2599. split = 0;
  2600. } else if ((extend || !data_size) && slot == 0) {
  2601. mid = 1;
  2602. } else {
  2603. mid = slot;
  2604. if (mid != nritems &&
  2605. leaf_space_used(l, mid, nritems - mid) +
  2606. data_size > BTRFS_LEAF_DATA_SIZE(root)) {
  2607. if (data_size && !tried_avoid_double)
  2608. goto push_for_double;
  2609. split = 2 ;
  2610. }
  2611. }
  2612. }
  2613. }
  2614. if (split == 0)
  2615. btrfs_cpu_key_to_disk(&disk_key, ins_key);
  2616. else
  2617. btrfs_item_key(l, &disk_key, mid);
  2618. right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
  2619. root->root_key.objectid,
  2620. &disk_key, 0, l->start, 0);
  2621. if (IS_ERR(right))
  2622. return PTR_ERR(right);
  2623. root_add_used(root, root->leafsize);
  2624. memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
  2625. btrfs_set_header_bytenr(right, right->start);
  2626. btrfs_set_header_generation(right, trans->transid);
  2627. btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
  2628. btrfs_set_header_owner(right, root->root_key.objectid);
  2629. btrfs_set_header_level(right, 0);
  2630. write_extent_buffer(right, root->fs_info->fsid,
  2631. (unsigned long)btrfs_header_fsid(right),
  2632. BTRFS_FSID_SIZE);
  2633. write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
  2634. (unsigned long)btrfs_header_chunk_tree_uuid(right),
  2635. BTRFS_UUID_SIZE);
  2636. if (split == 0) {
  2637. if (mid <= slot) {
  2638. btrfs_set_header_nritems(right, 0);
  2639. wret = insert_ptr(trans, root, path,
  2640. &disk_key, right->start,
  2641. path->slots[1] + 1, 1);
  2642. if (wret)
  2643. ret = wret;
  2644. btrfs_tree_unlock(path->nodes[0]);
  2645. free_extent_buffer(path->nodes[0]);
  2646. path->nodes[0] = right;
  2647. path->slots[0] = 0;
  2648. path->slots[1] += 1;
  2649. } else {
  2650. btrfs_set_header_nritems(right, 0);
  2651. wret = insert_ptr(trans, root, path,
  2652. &disk_key,
  2653. right->start,
  2654. path->slots[1], 1);
  2655. if (wret)
  2656. ret = wret;
  2657. btrfs_tree_unlock(path->nodes[0]);
  2658. free_extent_buffer(path->nodes[0]);
  2659. path->nodes[0] = right;
  2660. path->slots[0] = 0;
  2661. if (path->slots[1] == 0) {
  2662. wret = fixup_low_keys(trans, root,
  2663. path, &disk_key, 1);
  2664. if (wret)
  2665. ret = wret;
  2666. }
  2667. }
  2668. btrfs_mark_buffer_dirty(right);
  2669. return ret;
  2670. }
  2671. ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
  2672. BUG_ON(ret);
  2673. if (split == 2) {
  2674. BUG_ON(num_doubles != 0);
  2675. num_doubles++;
  2676. goto again;
  2677. }
  2678. return ret;
  2679. push_for_double:
  2680. push_for_double_split(trans, root, path, data_size);
  2681. tried_avoid_double = 1;
  2682. if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
  2683. return 0;
  2684. goto again;
  2685. }
  2686. static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
  2687. struct btrfs_root *root,
  2688. struct btrfs_path *path, int ins_len)
  2689. {
  2690. struct btrfs_key key;
  2691. struct extent_buffer *leaf;
  2692. struct btrfs_file_extent_item *fi;
  2693. u64 extent_len = 0;
  2694. u32 item_size;
  2695. int ret;
  2696. leaf = path->nodes[0];
  2697. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2698. BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
  2699. key.type != BTRFS_EXTENT_CSUM_KEY);
  2700. if (btrfs_leaf_free_space(root, leaf) >= ins_len)
  2701. return 0;
  2702. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2703. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2704. fi = btrfs_item_ptr(leaf, path->slots[0],
  2705. struct btrfs_file_extent_item);
  2706. extent_len = btrfs_file_extent_num_bytes(leaf, fi);
  2707. }
  2708. btrfs_release_path(path);
  2709. path->keep_locks = 1;
  2710. path->search_for_split = 1;
  2711. ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
  2712. path->search_for_split = 0;
  2713. if (ret < 0)
  2714. goto err;
  2715. ret = -EAGAIN;
  2716. leaf = path->nodes[0];
  2717. /* if our item isn't there or got smaller, return now */
  2718. if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
  2719. goto err;
  2720. /* the leaf has changed, it now has room. return now */
  2721. if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
  2722. goto err;
  2723. if (key.type == BTRFS_EXTENT_DATA_KEY) {
  2724. fi = btrfs_item_ptr(leaf, path->slots[0],
  2725. struct btrfs_file_extent_item);
  2726. if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
  2727. goto err;
  2728. }
  2729. btrfs_set_path_blocking(path);
  2730. ret = split_leaf(trans, root, &key, path, ins_len, 1);
  2731. if (ret)
  2732. goto err;
  2733. path->keep_locks = 0;
  2734. btrfs_unlock_up_safe(path, 1);
  2735. return 0;
  2736. err:
  2737. path->keep_locks = 0;
  2738. return ret;
  2739. }
  2740. static noinline int split_item(struct btrfs_trans_handle *trans,
  2741. struct btrfs_root *root,
  2742. struct btrfs_path *path,
  2743. struct btrfs_key *new_key,
  2744. unsigned long split_offset)
  2745. {
  2746. struct extent_buffer *leaf;
  2747. struct btrfs_item *item;
  2748. struct btrfs_item *new_item;
  2749. int slot;
  2750. char *buf;
  2751. u32 nritems;
  2752. u32 item_size;
  2753. u32 orig_offset;
  2754. struct btrfs_disk_key disk_key;
  2755. leaf = path->nodes[0];
  2756. BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
  2757. btrfs_set_path_blocking(path);
  2758. item = btrfs_item_nr(leaf, path->slots[0]);
  2759. orig_offset = btrfs_item_offset(leaf, item);
  2760. item_size = btrfs_item_size(leaf, item);
  2761. buf = kmalloc(item_size, GFP_NOFS);
  2762. if (!buf)
  2763. return -ENOMEM;
  2764. read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
  2765. path->slots[0]), item_size);
  2766. slot = path->slots[0] + 1;
  2767. nritems = btrfs_header_nritems(leaf);
  2768. if (slot != nritems) {
  2769. /* shift the items */
  2770. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
  2771. btrfs_item_nr_offset(slot),
  2772. (nritems - slot) * sizeof(struct btrfs_item));
  2773. }
  2774. btrfs_cpu_key_to_disk(&disk_key, new_key);
  2775. btrfs_set_item_key(leaf, &disk_key, slot);
  2776. new_item = btrfs_item_nr(leaf, slot);
  2777. btrfs_set_item_offset(leaf, new_item, orig_offset);
  2778. btrfs_set_item_size(leaf, new_item, item_size - split_offset);
  2779. btrfs_set_item_offset(leaf, item,
  2780. orig_offset + item_size - split_offset);
  2781. btrfs_set_item_size(leaf, item, split_offset);
  2782. btrfs_set_header_nritems(leaf, nritems + 1);
  2783. /* write the data for the start of the original item */
  2784. write_extent_buffer(leaf, buf,
  2785. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2786. split_offset);
  2787. /* write the data for the new item */
  2788. write_extent_buffer(leaf, buf + split_offset,
  2789. btrfs_item_ptr_offset(leaf, slot),
  2790. item_size - split_offset);
  2791. btrfs_mark_buffer_dirty(leaf);
  2792. BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
  2793. kfree(buf);
  2794. return 0;
  2795. }
  2796. /*
  2797. * This function splits a single item into two items,
  2798. * giving 'new_key' to the new item and splitting the
  2799. * old one at split_offset (from the start of the item).
  2800. *
  2801. * The path may be released by this operation. After
  2802. * the split, the path is pointing to the old item. The
  2803. * new item is going to be in the same node as the old one.
  2804. *
  2805. * Note, the item being split must be smaller enough to live alone on
  2806. * a tree block with room for one extra struct btrfs_item
  2807. *
  2808. * This allows us to split the item in place, keeping a lock on the
  2809. * leaf the entire time.
  2810. */
  2811. int btrfs_split_item(struct btrfs_trans_handle *trans,
  2812. struct btrfs_root *root,
  2813. struct btrfs_path *path,
  2814. struct btrfs_key *new_key,
  2815. unsigned long split_offset)
  2816. {
  2817. int ret;
  2818. ret = setup_leaf_for_split(trans, root, path,
  2819. sizeof(struct btrfs_item));
  2820. if (ret)
  2821. return ret;
  2822. ret = split_item(trans, root, path, new_key, split_offset);
  2823. return ret;
  2824. }
  2825. /*
  2826. * This function duplicate a item, giving 'new_key' to the new item.
  2827. * It guarantees both items live in the same tree leaf and the new item
  2828. * is contiguous with the original item.
  2829. *
  2830. * This allows us to split file extent in place, keeping a lock on the
  2831. * leaf the entire time.
  2832. */
  2833. int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
  2834. struct btrfs_root *root,
  2835. struct btrfs_path *path,
  2836. struct btrfs_key *new_key)
  2837. {
  2838. struct extent_buffer *leaf;
  2839. int ret;
  2840. u32 item_size;
  2841. leaf = path->nodes[0];
  2842. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2843. ret = setup_leaf_for_split(trans, root, path,
  2844. item_size + sizeof(struct btrfs_item));
  2845. if (ret)
  2846. return ret;
  2847. path->slots[0]++;
  2848. ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
  2849. item_size, item_size +
  2850. sizeof(struct btrfs_item), 1);
  2851. BUG_ON(ret);
  2852. leaf = path->nodes[0];
  2853. memcpy_extent_buffer(leaf,
  2854. btrfs_item_ptr_offset(leaf, path->slots[0]),
  2855. btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
  2856. item_size);
  2857. return 0;
  2858. }
  2859. /*
  2860. * make the item pointed to by the path smaller. new_size indicates
  2861. * how small to make it, and from_end tells us if we just chop bytes
  2862. * off the end of the item or if we shift the item to chop bytes off
  2863. * the front.
  2864. */
  2865. int btrfs_truncate_item(struct btrfs_trans_handle *trans,
  2866. struct btrfs_root *root,
  2867. struct btrfs_path *path,
  2868. u32 new_size, int from_end)
  2869. {
  2870. int slot;
  2871. struct extent_buffer *leaf;
  2872. struct btrfs_item *item;
  2873. u32 nritems;
  2874. unsigned int data_end;
  2875. unsigned int old_data_start;
  2876. unsigned int old_size;
  2877. unsigned int size_diff;
  2878. int i;
  2879. leaf = path->nodes[0];
  2880. slot = path->slots[0];
  2881. old_size = btrfs_item_size_nr(leaf, slot);
  2882. if (old_size == new_size)
  2883. return 0;
  2884. nritems = btrfs_header_nritems(leaf);
  2885. data_end = leaf_data_end(root, leaf);
  2886. old_data_start = btrfs_item_offset_nr(leaf, slot);
  2887. size_diff = old_size - new_size;
  2888. BUG_ON(slot < 0);
  2889. BUG_ON(slot >= nritems);
  2890. /*
  2891. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2892. */
  2893. /* first correct the data pointers */
  2894. for (i = slot; i < nritems; i++) {
  2895. u32 ioff;
  2896. item = btrfs_item_nr(leaf, i);
  2897. ioff = btrfs_item_offset(leaf, item);
  2898. btrfs_set_item_offset(leaf, item, ioff + size_diff);
  2899. }
  2900. /* shift the data */
  2901. if (from_end) {
  2902. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2903. data_end + size_diff, btrfs_leaf_data(leaf) +
  2904. data_end, old_data_start + new_size - data_end);
  2905. } else {
  2906. struct btrfs_disk_key disk_key;
  2907. u64 offset;
  2908. btrfs_item_key(leaf, &disk_key, slot);
  2909. if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
  2910. unsigned long ptr;
  2911. struct btrfs_file_extent_item *fi;
  2912. fi = btrfs_item_ptr(leaf, slot,
  2913. struct btrfs_file_extent_item);
  2914. fi = (struct btrfs_file_extent_item *)(
  2915. (unsigned long)fi - size_diff);
  2916. if (btrfs_file_extent_type(leaf, fi) ==
  2917. BTRFS_FILE_EXTENT_INLINE) {
  2918. ptr = btrfs_item_ptr_offset(leaf, slot);
  2919. memmove_extent_buffer(leaf, ptr,
  2920. (unsigned long)fi,
  2921. offsetof(struct btrfs_file_extent_item,
  2922. disk_bytenr));
  2923. }
  2924. }
  2925. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2926. data_end + size_diff, btrfs_leaf_data(leaf) +
  2927. data_end, old_data_start - data_end);
  2928. offset = btrfs_disk_key_offset(&disk_key);
  2929. btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
  2930. btrfs_set_item_key(leaf, &disk_key, slot);
  2931. if (slot == 0)
  2932. fixup_low_keys(trans, root, path, &disk_key, 1);
  2933. }
  2934. item = btrfs_item_nr(leaf, slot);
  2935. btrfs_set_item_size(leaf, item, new_size);
  2936. btrfs_mark_buffer_dirty(leaf);
  2937. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2938. btrfs_print_leaf(root, leaf);
  2939. BUG();
  2940. }
  2941. return 0;
  2942. }
  2943. /*
  2944. * make the item pointed to by the path bigger, data_size is the new size.
  2945. */
  2946. int btrfs_extend_item(struct btrfs_trans_handle *trans,
  2947. struct btrfs_root *root, struct btrfs_path *path,
  2948. u32 data_size)
  2949. {
  2950. int slot;
  2951. struct extent_buffer *leaf;
  2952. struct btrfs_item *item;
  2953. u32 nritems;
  2954. unsigned int data_end;
  2955. unsigned int old_data;
  2956. unsigned int old_size;
  2957. int i;
  2958. leaf = path->nodes[0];
  2959. nritems = btrfs_header_nritems(leaf);
  2960. data_end = leaf_data_end(root, leaf);
  2961. if (btrfs_leaf_free_space(root, leaf) < data_size) {
  2962. btrfs_print_leaf(root, leaf);
  2963. BUG();
  2964. }
  2965. slot = path->slots[0];
  2966. old_data = btrfs_item_end_nr(leaf, slot);
  2967. BUG_ON(slot < 0);
  2968. if (slot >= nritems) {
  2969. btrfs_print_leaf(root, leaf);
  2970. printk(KERN_CRIT "slot %d too large, nritems %d\n",
  2971. slot, nritems);
  2972. BUG_ON(1);
  2973. }
  2974. /*
  2975. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  2976. */
  2977. /* first correct the data pointers */
  2978. for (i = slot; i < nritems; i++) {
  2979. u32 ioff;
  2980. item = btrfs_item_nr(leaf, i);
  2981. ioff = btrfs_item_offset(leaf, item);
  2982. btrfs_set_item_offset(leaf, item, ioff - data_size);
  2983. }
  2984. /* shift the data */
  2985. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  2986. data_end - data_size, btrfs_leaf_data(leaf) +
  2987. data_end, old_data - data_end);
  2988. data_end = old_data;
  2989. old_size = btrfs_item_size_nr(leaf, slot);
  2990. item = btrfs_item_nr(leaf, slot);
  2991. btrfs_set_item_size(leaf, item, old_size + data_size);
  2992. btrfs_mark_buffer_dirty(leaf);
  2993. if (btrfs_leaf_free_space(root, leaf) < 0) {
  2994. btrfs_print_leaf(root, leaf);
  2995. BUG();
  2996. }
  2997. return 0;
  2998. }
  2999. /*
  3000. * Given a key and some data, insert items into the tree.
  3001. * This does all the path init required, making room in the tree if needed.
  3002. * Returns the number of keys that were inserted.
  3003. */
  3004. int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
  3005. struct btrfs_root *root,
  3006. struct btrfs_path *path,
  3007. struct btrfs_key *cpu_key, u32 *data_size,
  3008. int nr)
  3009. {
  3010. struct extent_buffer *leaf;
  3011. struct btrfs_item *item;
  3012. int ret = 0;
  3013. int slot;
  3014. int i;
  3015. u32 nritems;
  3016. u32 total_data = 0;
  3017. u32 total_size = 0;
  3018. unsigned int data_end;
  3019. struct btrfs_disk_key disk_key;
  3020. struct btrfs_key found_key;
  3021. for (i = 0; i < nr; i++) {
  3022. if (total_size + data_size[i] + sizeof(struct btrfs_item) >
  3023. BTRFS_LEAF_DATA_SIZE(root)) {
  3024. break;
  3025. nr = i;
  3026. }
  3027. total_data += data_size[i];
  3028. total_size += data_size[i] + sizeof(struct btrfs_item);
  3029. }
  3030. BUG_ON(nr == 0);
  3031. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3032. if (ret == 0)
  3033. return -EEXIST;
  3034. if (ret < 0)
  3035. goto out;
  3036. leaf = path->nodes[0];
  3037. nritems = btrfs_header_nritems(leaf);
  3038. data_end = leaf_data_end(root, leaf);
  3039. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3040. for (i = nr; i >= 0; i--) {
  3041. total_data -= data_size[i];
  3042. total_size -= data_size[i] + sizeof(struct btrfs_item);
  3043. if (total_size < btrfs_leaf_free_space(root, leaf))
  3044. break;
  3045. }
  3046. nr = i;
  3047. }
  3048. slot = path->slots[0];
  3049. BUG_ON(slot < 0);
  3050. if (slot != nritems) {
  3051. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3052. item = btrfs_item_nr(leaf, slot);
  3053. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  3054. /* figure out how many keys we can insert in here */
  3055. total_data = data_size[0];
  3056. for (i = 1; i < nr; i++) {
  3057. if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
  3058. break;
  3059. total_data += data_size[i];
  3060. }
  3061. nr = i;
  3062. if (old_data < data_end) {
  3063. btrfs_print_leaf(root, leaf);
  3064. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3065. slot, old_data, data_end);
  3066. BUG_ON(1);
  3067. }
  3068. /*
  3069. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3070. */
  3071. /* first correct the data pointers */
  3072. for (i = slot; i < nritems; i++) {
  3073. u32 ioff;
  3074. item = btrfs_item_nr(leaf, i);
  3075. ioff = btrfs_item_offset(leaf, item);
  3076. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3077. }
  3078. /* shift the items */
  3079. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3080. btrfs_item_nr_offset(slot),
  3081. (nritems - slot) * sizeof(struct btrfs_item));
  3082. /* shift the data */
  3083. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3084. data_end - total_data, btrfs_leaf_data(leaf) +
  3085. data_end, old_data - data_end);
  3086. data_end = old_data;
  3087. } else {
  3088. /*
  3089. * this sucks but it has to be done, if we are inserting at
  3090. * the end of the leaf only insert 1 of the items, since we
  3091. * have no way of knowing whats on the next leaf and we'd have
  3092. * to drop our current locks to figure it out
  3093. */
  3094. nr = 1;
  3095. }
  3096. /* setup the item for the new data */
  3097. for (i = 0; i < nr; i++) {
  3098. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3099. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3100. item = btrfs_item_nr(leaf, slot + i);
  3101. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3102. data_end -= data_size[i];
  3103. btrfs_set_item_size(leaf, item, data_size[i]);
  3104. }
  3105. btrfs_set_header_nritems(leaf, nritems + nr);
  3106. btrfs_mark_buffer_dirty(leaf);
  3107. ret = 0;
  3108. if (slot == 0) {
  3109. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3110. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3111. }
  3112. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3113. btrfs_print_leaf(root, leaf);
  3114. BUG();
  3115. }
  3116. out:
  3117. if (!ret)
  3118. ret = nr;
  3119. return ret;
  3120. }
  3121. /*
  3122. * this is a helper for btrfs_insert_empty_items, the main goal here is
  3123. * to save stack depth by doing the bulk of the work in a function
  3124. * that doesn't call btrfs_search_slot
  3125. */
  3126. int setup_items_for_insert(struct btrfs_trans_handle *trans,
  3127. struct btrfs_root *root, struct btrfs_path *path,
  3128. struct btrfs_key *cpu_key, u32 *data_size,
  3129. u32 total_data, u32 total_size, int nr)
  3130. {
  3131. struct btrfs_item *item;
  3132. int i;
  3133. u32 nritems;
  3134. unsigned int data_end;
  3135. struct btrfs_disk_key disk_key;
  3136. int ret;
  3137. struct extent_buffer *leaf;
  3138. int slot;
  3139. leaf = path->nodes[0];
  3140. slot = path->slots[0];
  3141. nritems = btrfs_header_nritems(leaf);
  3142. data_end = leaf_data_end(root, leaf);
  3143. if (btrfs_leaf_free_space(root, leaf) < total_size) {
  3144. btrfs_print_leaf(root, leaf);
  3145. printk(KERN_CRIT "not enough freespace need %u have %d\n",
  3146. total_size, btrfs_leaf_free_space(root, leaf));
  3147. BUG();
  3148. }
  3149. if (slot != nritems) {
  3150. unsigned int old_data = btrfs_item_end_nr(leaf, slot);
  3151. if (old_data < data_end) {
  3152. btrfs_print_leaf(root, leaf);
  3153. printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
  3154. slot, old_data, data_end);
  3155. BUG_ON(1);
  3156. }
  3157. /*
  3158. * item0..itemN ... dataN.offset..dataN.size .. data0.size
  3159. */
  3160. /* first correct the data pointers */
  3161. for (i = slot; i < nritems; i++) {
  3162. u32 ioff;
  3163. item = btrfs_item_nr(leaf, i);
  3164. ioff = btrfs_item_offset(leaf, item);
  3165. btrfs_set_item_offset(leaf, item, ioff - total_data);
  3166. }
  3167. /* shift the items */
  3168. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
  3169. btrfs_item_nr_offset(slot),
  3170. (nritems - slot) * sizeof(struct btrfs_item));
  3171. /* shift the data */
  3172. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3173. data_end - total_data, btrfs_leaf_data(leaf) +
  3174. data_end, old_data - data_end);
  3175. data_end = old_data;
  3176. }
  3177. /* setup the item for the new data */
  3178. for (i = 0; i < nr; i++) {
  3179. btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
  3180. btrfs_set_item_key(leaf, &disk_key, slot + i);
  3181. item = btrfs_item_nr(leaf, slot + i);
  3182. btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
  3183. data_end -= data_size[i];
  3184. btrfs_set_item_size(leaf, item, data_size[i]);
  3185. }
  3186. btrfs_set_header_nritems(leaf, nritems + nr);
  3187. ret = 0;
  3188. if (slot == 0) {
  3189. btrfs_cpu_key_to_disk(&disk_key, cpu_key);
  3190. ret = fixup_low_keys(trans, root, path, &disk_key, 1);
  3191. }
  3192. btrfs_unlock_up_safe(path, 1);
  3193. btrfs_mark_buffer_dirty(leaf);
  3194. if (btrfs_leaf_free_space(root, leaf) < 0) {
  3195. btrfs_print_leaf(root, leaf);
  3196. BUG();
  3197. }
  3198. return ret;
  3199. }
  3200. /*
  3201. * Given a key and some data, insert items into the tree.
  3202. * This does all the path init required, making room in the tree if needed.
  3203. */
  3204. int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
  3205. struct btrfs_root *root,
  3206. struct btrfs_path *path,
  3207. struct btrfs_key *cpu_key, u32 *data_size,
  3208. int nr)
  3209. {
  3210. int ret = 0;
  3211. int slot;
  3212. int i;
  3213. u32 total_size = 0;
  3214. u32 total_data = 0;
  3215. for (i = 0; i < nr; i++)
  3216. total_data += data_size[i];
  3217. total_size = total_data + (nr * sizeof(struct btrfs_item));
  3218. ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
  3219. if (ret == 0)
  3220. return -EEXIST;
  3221. if (ret < 0)
  3222. goto out;
  3223. slot = path->slots[0];
  3224. BUG_ON(slot < 0);
  3225. ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
  3226. total_data, total_size, nr);
  3227. out:
  3228. return ret;
  3229. }
  3230. /*
  3231. * Given a key and some data, insert an item into the tree.
  3232. * This does all the path init required, making room in the tree if needed.
  3233. */
  3234. int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
  3235. *root, struct btrfs_key *cpu_key, void *data, u32
  3236. data_size)
  3237. {
  3238. int ret = 0;
  3239. struct btrfs_path *path;
  3240. struct extent_buffer *leaf;
  3241. unsigned long ptr;
  3242. path = btrfs_alloc_path();
  3243. if (!path)
  3244. return -ENOMEM;
  3245. ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
  3246. if (!ret) {
  3247. leaf = path->nodes[0];
  3248. ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
  3249. write_extent_buffer(leaf, data, ptr, data_size);
  3250. btrfs_mark_buffer_dirty(leaf);
  3251. }
  3252. btrfs_free_path(path);
  3253. return ret;
  3254. }
  3255. /*
  3256. * delete the pointer from a given node.
  3257. *
  3258. * the tree should have been previously balanced so the deletion does not
  3259. * empty a node.
  3260. */
  3261. static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3262. struct btrfs_path *path, int level, int slot)
  3263. {
  3264. struct extent_buffer *parent = path->nodes[level];
  3265. u32 nritems;
  3266. int ret = 0;
  3267. int wret;
  3268. nritems = btrfs_header_nritems(parent);
  3269. if (slot != nritems - 1) {
  3270. memmove_extent_buffer(parent,
  3271. btrfs_node_key_ptr_offset(slot),
  3272. btrfs_node_key_ptr_offset(slot + 1),
  3273. sizeof(struct btrfs_key_ptr) *
  3274. (nritems - slot - 1));
  3275. }
  3276. nritems--;
  3277. btrfs_set_header_nritems(parent, nritems);
  3278. if (nritems == 0 && parent == root->node) {
  3279. BUG_ON(btrfs_header_level(root->node) != 1);
  3280. /* just turn the root into a leaf and break */
  3281. btrfs_set_header_level(root->node, 0);
  3282. } else if (slot == 0) {
  3283. struct btrfs_disk_key disk_key;
  3284. btrfs_node_key(parent, &disk_key, 0);
  3285. wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
  3286. if (wret)
  3287. ret = wret;
  3288. }
  3289. btrfs_mark_buffer_dirty(parent);
  3290. return ret;
  3291. }
  3292. /*
  3293. * a helper function to delete the leaf pointed to by path->slots[1] and
  3294. * path->nodes[1].
  3295. *
  3296. * This deletes the pointer in path->nodes[1] and frees the leaf
  3297. * block extent. zero is returned if it all worked out, < 0 otherwise.
  3298. *
  3299. * The path must have already been setup for deleting the leaf, including
  3300. * all the proper balancing. path->nodes[1] must be locked.
  3301. */
  3302. static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
  3303. struct btrfs_root *root,
  3304. struct btrfs_path *path,
  3305. struct extent_buffer *leaf)
  3306. {
  3307. int ret;
  3308. WARN_ON(btrfs_header_generation(leaf) != trans->transid);
  3309. ret = del_ptr(trans, root, path, 1, path->slots[1]);
  3310. if (ret)
  3311. return ret;
  3312. /*
  3313. * btrfs_free_extent is expensive, we want to make sure we
  3314. * aren't holding any locks when we call it
  3315. */
  3316. btrfs_unlock_up_safe(path, 0);
  3317. root_sub_used(root, leaf->len);
  3318. btrfs_free_tree_block(trans, root, leaf, 0, 1);
  3319. return 0;
  3320. }
  3321. /*
  3322. * delete the item at the leaf level in path. If that empties
  3323. * the leaf, remove it from the tree
  3324. */
  3325. int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  3326. struct btrfs_path *path, int slot, int nr)
  3327. {
  3328. struct extent_buffer *leaf;
  3329. struct btrfs_item *item;
  3330. int last_off;
  3331. int dsize = 0;
  3332. int ret = 0;
  3333. int wret;
  3334. int i;
  3335. u32 nritems;
  3336. leaf = path->nodes[0];
  3337. last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
  3338. for (i = 0; i < nr; i++)
  3339. dsize += btrfs_item_size_nr(leaf, slot + i);
  3340. nritems = btrfs_header_nritems(leaf);
  3341. if (slot + nr != nritems) {
  3342. int data_end = leaf_data_end(root, leaf);
  3343. memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
  3344. data_end + dsize,
  3345. btrfs_leaf_data(leaf) + data_end,
  3346. last_off - data_end);
  3347. for (i = slot + nr; i < nritems; i++) {
  3348. u32 ioff;
  3349. item = btrfs_item_nr(leaf, i);
  3350. ioff = btrfs_item_offset(leaf, item);
  3351. btrfs_set_item_offset(leaf, item, ioff + dsize);
  3352. }
  3353. memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
  3354. btrfs_item_nr_offset(slot + nr),
  3355. sizeof(struct btrfs_item) *
  3356. (nritems - slot - nr));
  3357. }
  3358. btrfs_set_header_nritems(leaf, nritems - nr);
  3359. nritems -= nr;
  3360. /* delete the leaf if we've emptied it */
  3361. if (nritems == 0) {
  3362. if (leaf == root->node) {
  3363. btrfs_set_header_level(leaf, 0);
  3364. } else {
  3365. btrfs_set_path_blocking(path);
  3366. clean_tree_block(trans, root, leaf);
  3367. ret = btrfs_del_leaf(trans, root, path, leaf);
  3368. BUG_ON(ret);
  3369. }
  3370. } else {
  3371. int used = leaf_space_used(leaf, 0, nritems);
  3372. if (slot == 0) {
  3373. struct btrfs_disk_key disk_key;
  3374. btrfs_item_key(leaf, &disk_key, 0);
  3375. wret = fixup_low_keys(trans, root, path,
  3376. &disk_key, 1);
  3377. if (wret)
  3378. ret = wret;
  3379. }
  3380. /* delete the leaf if it is mostly empty */
  3381. if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
  3382. /* push_leaf_left fixes the path.
  3383. * make sure the path still points to our leaf
  3384. * for possible call to del_ptr below
  3385. */
  3386. slot = path->slots[1];
  3387. extent_buffer_get(leaf);
  3388. btrfs_set_path_blocking(path);
  3389. wret = push_leaf_left(trans, root, path, 1, 1,
  3390. 1, (u32)-1);
  3391. if (wret < 0 && wret != -ENOSPC)
  3392. ret = wret;
  3393. if (path->nodes[0] == leaf &&
  3394. btrfs_header_nritems(leaf)) {
  3395. wret = push_leaf_right(trans, root, path, 1,
  3396. 1, 1, 0);
  3397. if (wret < 0 && wret != -ENOSPC)
  3398. ret = wret;
  3399. }
  3400. if (btrfs_header_nritems(leaf) == 0) {
  3401. path->slots[1] = slot;
  3402. ret = btrfs_del_leaf(trans, root, path, leaf);
  3403. BUG_ON(ret);
  3404. free_extent_buffer(leaf);
  3405. } else {
  3406. /* if we're still in the path, make sure
  3407. * we're dirty. Otherwise, one of the
  3408. * push_leaf functions must have already
  3409. * dirtied this buffer
  3410. */
  3411. if (path->nodes[0] == leaf)
  3412. btrfs_mark_buffer_dirty(leaf);
  3413. free_extent_buffer(leaf);
  3414. }
  3415. } else {
  3416. btrfs_mark_buffer_dirty(leaf);
  3417. }
  3418. }
  3419. return ret;
  3420. }
  3421. /*
  3422. * search the tree again to find a leaf with lesser keys
  3423. * returns 0 if it found something or 1 if there are no lesser leaves.
  3424. * returns < 0 on io errors.
  3425. *
  3426. * This may release the path, and so you may lose any locks held at the
  3427. * time you call it.
  3428. */
  3429. int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3430. {
  3431. struct btrfs_key key;
  3432. struct btrfs_disk_key found_key;
  3433. int ret;
  3434. btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
  3435. if (key.offset > 0)
  3436. key.offset--;
  3437. else if (key.type > 0)
  3438. key.type--;
  3439. else if (key.objectid > 0)
  3440. key.objectid--;
  3441. else
  3442. return 1;
  3443. btrfs_release_path(path);
  3444. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3445. if (ret < 0)
  3446. return ret;
  3447. btrfs_item_key(path->nodes[0], &found_key, 0);
  3448. ret = comp_keys(&found_key, &key);
  3449. if (ret < 0)
  3450. return 0;
  3451. return 1;
  3452. }
  3453. /*
  3454. * A helper function to walk down the tree starting at min_key, and looking
  3455. * for nodes or leaves that are either in cache or have a minimum
  3456. * transaction id. This is used by the btree defrag code, and tree logging
  3457. *
  3458. * This does not cow, but it does stuff the starting key it finds back
  3459. * into min_key, so you can call btrfs_search_slot with cow=1 on the
  3460. * key and get a writable path.
  3461. *
  3462. * This does lock as it descends, and path->keep_locks should be set
  3463. * to 1 by the caller.
  3464. *
  3465. * This honors path->lowest_level to prevent descent past a given level
  3466. * of the tree.
  3467. *
  3468. * min_trans indicates the oldest transaction that you are interested
  3469. * in walking through. Any nodes or leaves older than min_trans are
  3470. * skipped over (without reading them).
  3471. *
  3472. * returns zero if something useful was found, < 0 on error and 1 if there
  3473. * was nothing in the tree that matched the search criteria.
  3474. */
  3475. int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
  3476. struct btrfs_key *max_key,
  3477. struct btrfs_path *path, int cache_only,
  3478. u64 min_trans)
  3479. {
  3480. struct extent_buffer *cur;
  3481. struct btrfs_key found_key;
  3482. int slot;
  3483. int sret;
  3484. u32 nritems;
  3485. int level;
  3486. int ret = 1;
  3487. WARN_ON(!path->keep_locks);
  3488. again:
  3489. cur = btrfs_read_lock_root_node(root);
  3490. level = btrfs_header_level(cur);
  3491. WARN_ON(path->nodes[level]);
  3492. path->nodes[level] = cur;
  3493. path->locks[level] = BTRFS_READ_LOCK;
  3494. if (btrfs_header_generation(cur) < min_trans) {
  3495. ret = 1;
  3496. goto out;
  3497. }
  3498. while (1) {
  3499. nritems = btrfs_header_nritems(cur);
  3500. level = btrfs_header_level(cur);
  3501. sret = bin_search(cur, min_key, level, &slot);
  3502. /* at the lowest level, we're done, setup the path and exit */
  3503. if (level == path->lowest_level) {
  3504. if (slot >= nritems)
  3505. goto find_next_key;
  3506. ret = 0;
  3507. path->slots[level] = slot;
  3508. btrfs_item_key_to_cpu(cur, &found_key, slot);
  3509. goto out;
  3510. }
  3511. if (sret && slot > 0)
  3512. slot--;
  3513. /*
  3514. * check this node pointer against the cache_only and
  3515. * min_trans parameters. If it isn't in cache or is too
  3516. * old, skip to the next one.
  3517. */
  3518. while (slot < nritems) {
  3519. u64 blockptr;
  3520. u64 gen;
  3521. struct extent_buffer *tmp;
  3522. struct btrfs_disk_key disk_key;
  3523. blockptr = btrfs_node_blockptr(cur, slot);
  3524. gen = btrfs_node_ptr_generation(cur, slot);
  3525. if (gen < min_trans) {
  3526. slot++;
  3527. continue;
  3528. }
  3529. if (!cache_only)
  3530. break;
  3531. if (max_key) {
  3532. btrfs_node_key(cur, &disk_key, slot);
  3533. if (comp_keys(&disk_key, max_key) >= 0) {
  3534. ret = 1;
  3535. goto out;
  3536. }
  3537. }
  3538. tmp = btrfs_find_tree_block(root, blockptr,
  3539. btrfs_level_size(root, level - 1));
  3540. if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
  3541. free_extent_buffer(tmp);
  3542. break;
  3543. }
  3544. if (tmp)
  3545. free_extent_buffer(tmp);
  3546. slot++;
  3547. }
  3548. find_next_key:
  3549. /*
  3550. * we didn't find a candidate key in this node, walk forward
  3551. * and find another one
  3552. */
  3553. if (slot >= nritems) {
  3554. path->slots[level] = slot;
  3555. btrfs_set_path_blocking(path);
  3556. sret = btrfs_find_next_key(root, path, min_key, level,
  3557. cache_only, min_trans);
  3558. if (sret == 0) {
  3559. btrfs_release_path(path);
  3560. goto again;
  3561. } else {
  3562. goto out;
  3563. }
  3564. }
  3565. /* save our key for returning back */
  3566. btrfs_node_key_to_cpu(cur, &found_key, slot);
  3567. path->slots[level] = slot;
  3568. if (level == path->lowest_level) {
  3569. ret = 0;
  3570. unlock_up(path, level, 1);
  3571. goto out;
  3572. }
  3573. btrfs_set_path_blocking(path);
  3574. cur = read_node_slot(root, cur, slot);
  3575. BUG_ON(!cur);
  3576. btrfs_tree_read_lock(cur);
  3577. path->locks[level - 1] = BTRFS_READ_LOCK;
  3578. path->nodes[level - 1] = cur;
  3579. unlock_up(path, level, 1);
  3580. btrfs_clear_path_blocking(path, NULL, 0);
  3581. }
  3582. out:
  3583. if (ret == 0)
  3584. memcpy(min_key, &found_key, sizeof(found_key));
  3585. btrfs_set_path_blocking(path);
  3586. return ret;
  3587. }
  3588. /*
  3589. * this is similar to btrfs_next_leaf, but does not try to preserve
  3590. * and fixup the path. It looks for and returns the next key in the
  3591. * tree based on the current path and the cache_only and min_trans
  3592. * parameters.
  3593. *
  3594. * 0 is returned if another key is found, < 0 if there are any errors
  3595. * and 1 is returned if there are no higher keys in the tree
  3596. *
  3597. * path->keep_locks should be set to 1 on the search made before
  3598. * calling this function.
  3599. */
  3600. int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
  3601. struct btrfs_key *key, int level,
  3602. int cache_only, u64 min_trans)
  3603. {
  3604. int slot;
  3605. struct extent_buffer *c;
  3606. WARN_ON(!path->keep_locks);
  3607. while (level < BTRFS_MAX_LEVEL) {
  3608. if (!path->nodes[level])
  3609. return 1;
  3610. slot = path->slots[level] + 1;
  3611. c = path->nodes[level];
  3612. next:
  3613. if (slot >= btrfs_header_nritems(c)) {
  3614. int ret;
  3615. int orig_lowest;
  3616. struct btrfs_key cur_key;
  3617. if (level + 1 >= BTRFS_MAX_LEVEL ||
  3618. !path->nodes[level + 1])
  3619. return 1;
  3620. if (path->locks[level + 1]) {
  3621. level++;
  3622. continue;
  3623. }
  3624. slot = btrfs_header_nritems(c) - 1;
  3625. if (level == 0)
  3626. btrfs_item_key_to_cpu(c, &cur_key, slot);
  3627. else
  3628. btrfs_node_key_to_cpu(c, &cur_key, slot);
  3629. orig_lowest = path->lowest_level;
  3630. btrfs_release_path(path);
  3631. path->lowest_level = level;
  3632. ret = btrfs_search_slot(NULL, root, &cur_key, path,
  3633. 0, 0);
  3634. path->lowest_level = orig_lowest;
  3635. if (ret < 0)
  3636. return ret;
  3637. c = path->nodes[level];
  3638. slot = path->slots[level];
  3639. if (ret == 0)
  3640. slot++;
  3641. goto next;
  3642. }
  3643. if (level == 0)
  3644. btrfs_item_key_to_cpu(c, key, slot);
  3645. else {
  3646. u64 blockptr = btrfs_node_blockptr(c, slot);
  3647. u64 gen = btrfs_node_ptr_generation(c, slot);
  3648. if (cache_only) {
  3649. struct extent_buffer *cur;
  3650. cur = btrfs_find_tree_block(root, blockptr,
  3651. btrfs_level_size(root, level - 1));
  3652. if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
  3653. slot++;
  3654. if (cur)
  3655. free_extent_buffer(cur);
  3656. goto next;
  3657. }
  3658. free_extent_buffer(cur);
  3659. }
  3660. if (gen < min_trans) {
  3661. slot++;
  3662. goto next;
  3663. }
  3664. btrfs_node_key_to_cpu(c, key, slot);
  3665. }
  3666. return 0;
  3667. }
  3668. return 1;
  3669. }
  3670. /*
  3671. * search the tree again to find a leaf with greater keys
  3672. * returns 0 if it found something or 1 if there are no greater leaves.
  3673. * returns < 0 on io errors.
  3674. */
  3675. int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
  3676. {
  3677. int slot;
  3678. int level;
  3679. struct extent_buffer *c;
  3680. struct extent_buffer *next;
  3681. struct btrfs_key key;
  3682. u32 nritems;
  3683. int ret;
  3684. int old_spinning = path->leave_spinning;
  3685. int next_rw_lock = 0;
  3686. nritems = btrfs_header_nritems(path->nodes[0]);
  3687. if (nritems == 0)
  3688. return 1;
  3689. btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
  3690. again:
  3691. level = 1;
  3692. next = NULL;
  3693. next_rw_lock = 0;
  3694. btrfs_release_path(path);
  3695. path->keep_locks = 1;
  3696. path->leave_spinning = 1;
  3697. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  3698. path->keep_locks = 0;
  3699. if (ret < 0)
  3700. return ret;
  3701. nritems = btrfs_header_nritems(path->nodes[0]);
  3702. /*
  3703. * by releasing the path above we dropped all our locks. A balance
  3704. * could have added more items next to the key that used to be
  3705. * at the very end of the block. So, check again here and
  3706. * advance the path if there are now more items available.
  3707. */
  3708. if (nritems > 0 && path->slots[0] < nritems - 1) {
  3709. if (ret == 0)
  3710. path->slots[0]++;
  3711. ret = 0;
  3712. goto done;
  3713. }
  3714. while (level < BTRFS_MAX_LEVEL) {
  3715. if (!path->nodes[level]) {
  3716. ret = 1;
  3717. goto done;
  3718. }
  3719. slot = path->slots[level] + 1;
  3720. c = path->nodes[level];
  3721. if (slot >= btrfs_header_nritems(c)) {
  3722. level++;
  3723. if (level == BTRFS_MAX_LEVEL) {
  3724. ret = 1;
  3725. goto done;
  3726. }
  3727. continue;
  3728. }
  3729. if (next) {
  3730. btrfs_tree_unlock_rw(next, next_rw_lock);
  3731. free_extent_buffer(next);
  3732. }
  3733. next = c;
  3734. next_rw_lock = path->locks[level];
  3735. ret = read_block_for_search(NULL, root, path, &next, level,
  3736. slot, &key);
  3737. if (ret == -EAGAIN)
  3738. goto again;
  3739. if (ret < 0) {
  3740. btrfs_release_path(path);
  3741. goto done;
  3742. }
  3743. if (!path->skip_locking) {
  3744. ret = btrfs_try_tree_read_lock(next);
  3745. if (!ret) {
  3746. btrfs_set_path_blocking(path);
  3747. btrfs_tree_read_lock(next);
  3748. btrfs_clear_path_blocking(path, next,
  3749. BTRFS_READ_LOCK);
  3750. }
  3751. next_rw_lock = BTRFS_READ_LOCK;
  3752. }
  3753. break;
  3754. }
  3755. path->slots[level] = slot;
  3756. while (1) {
  3757. level--;
  3758. c = path->nodes[level];
  3759. if (path->locks[level])
  3760. btrfs_tree_unlock_rw(c, path->locks[level]);
  3761. free_extent_buffer(c);
  3762. path->nodes[level] = next;
  3763. path->slots[level] = 0;
  3764. if (!path->skip_locking)
  3765. path->locks[level] = next_rw_lock;
  3766. if (!level)
  3767. break;
  3768. ret = read_block_for_search(NULL, root, path, &next, level,
  3769. 0, &key);
  3770. if (ret == -EAGAIN)
  3771. goto again;
  3772. if (ret < 0) {
  3773. btrfs_release_path(path);
  3774. goto done;
  3775. }
  3776. if (!path->skip_locking) {
  3777. ret = btrfs_try_tree_read_lock(next);
  3778. if (!ret) {
  3779. btrfs_set_path_blocking(path);
  3780. btrfs_tree_read_lock(next);
  3781. btrfs_clear_path_blocking(path, next,
  3782. BTRFS_READ_LOCK);
  3783. }
  3784. next_rw_lock = BTRFS_READ_LOCK;
  3785. }
  3786. }
  3787. ret = 0;
  3788. done:
  3789. unlock_up(path, 0, 1);
  3790. path->leave_spinning = old_spinning;
  3791. if (!old_spinning)
  3792. btrfs_set_path_blocking(path);
  3793. return ret;
  3794. }
  3795. /*
  3796. * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
  3797. * searching until it gets past min_objectid or finds an item of 'type'
  3798. *
  3799. * returns 0 if something is found, 1 if nothing was found and < 0 on error
  3800. */
  3801. int btrfs_previous_item(struct btrfs_root *root,
  3802. struct btrfs_path *path, u64 min_objectid,
  3803. int type)
  3804. {
  3805. struct btrfs_key found_key;
  3806. struct extent_buffer *leaf;
  3807. u32 nritems;
  3808. int ret;
  3809. while (1) {
  3810. if (path->slots[0] == 0) {
  3811. btrfs_set_path_blocking(path);
  3812. ret = btrfs_prev_leaf(root, path);
  3813. if (ret != 0)
  3814. return ret;
  3815. } else {
  3816. path->slots[0]--;
  3817. }
  3818. leaf = path->nodes[0];
  3819. nritems = btrfs_header_nritems(leaf);
  3820. if (nritems == 0)
  3821. return 1;
  3822. if (path->slots[0] == nritems)
  3823. path->slots[0]--;
  3824. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  3825. if (found_key.objectid < min_objectid)
  3826. break;
  3827. if (found_key.type == type)
  3828. return 0;
  3829. if (found_key.objectid == min_objectid &&
  3830. found_key.type < type)
  3831. break;
  3832. }
  3833. return 1;
  3834. }