bio.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #include <scsi/sg.h> /* for struct sg_iovec */
  29. #include <trace/events/block.h>
  30. /*
  31. * Test patch to inline a certain number of bi_io_vec's inside the bio
  32. * itself, to shrink a bio data allocation from two mempool calls to one
  33. */
  34. #define BIO_INLINE_VECS 4
  35. static mempool_t *bio_split_pool __read_mostly;
  36. /*
  37. * if you change this list, also change bvec_alloc or things will
  38. * break badly! cannot be bigger than what you can fit into an
  39. * unsigned short
  40. */
  41. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  42. static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  43. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  44. };
  45. #undef BV
  46. /*
  47. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  48. * IO code that does not need private memory pools.
  49. */
  50. struct bio_set *fs_bio_set;
  51. /*
  52. * Our slab pool management
  53. */
  54. struct bio_slab {
  55. struct kmem_cache *slab;
  56. unsigned int slab_ref;
  57. unsigned int slab_size;
  58. char name[8];
  59. };
  60. static DEFINE_MUTEX(bio_slab_lock);
  61. static struct bio_slab *bio_slabs;
  62. static unsigned int bio_slab_nr, bio_slab_max;
  63. static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  64. {
  65. unsigned int sz = sizeof(struct bio) + extra_size;
  66. struct kmem_cache *slab = NULL;
  67. struct bio_slab *bslab;
  68. unsigned int i, entry = -1;
  69. mutex_lock(&bio_slab_lock);
  70. i = 0;
  71. while (i < bio_slab_nr) {
  72. bslab = &bio_slabs[i];
  73. if (!bslab->slab && entry == -1)
  74. entry = i;
  75. else if (bslab->slab_size == sz) {
  76. slab = bslab->slab;
  77. bslab->slab_ref++;
  78. break;
  79. }
  80. i++;
  81. }
  82. if (slab)
  83. goto out_unlock;
  84. if (bio_slab_nr == bio_slab_max && entry == -1) {
  85. bio_slab_max <<= 1;
  86. bio_slabs = krealloc(bio_slabs,
  87. bio_slab_max * sizeof(struct bio_slab),
  88. GFP_KERNEL);
  89. if (!bio_slabs)
  90. goto out_unlock;
  91. }
  92. if (entry == -1)
  93. entry = bio_slab_nr++;
  94. bslab = &bio_slabs[entry];
  95. snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  96. slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
  97. if (!slab)
  98. goto out_unlock;
  99. printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
  100. bslab->slab = slab;
  101. bslab->slab_ref = 1;
  102. bslab->slab_size = sz;
  103. out_unlock:
  104. mutex_unlock(&bio_slab_lock);
  105. return slab;
  106. }
  107. static void bio_put_slab(struct bio_set *bs)
  108. {
  109. struct bio_slab *bslab = NULL;
  110. unsigned int i;
  111. mutex_lock(&bio_slab_lock);
  112. for (i = 0; i < bio_slab_nr; i++) {
  113. if (bs->bio_slab == bio_slabs[i].slab) {
  114. bslab = &bio_slabs[i];
  115. break;
  116. }
  117. }
  118. if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  119. goto out;
  120. WARN_ON(!bslab->slab_ref);
  121. if (--bslab->slab_ref)
  122. goto out;
  123. kmem_cache_destroy(bslab->slab);
  124. bslab->slab = NULL;
  125. out:
  126. mutex_unlock(&bio_slab_lock);
  127. }
  128. unsigned int bvec_nr_vecs(unsigned short idx)
  129. {
  130. return bvec_slabs[idx].nr_vecs;
  131. }
  132. void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
  133. {
  134. BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
  135. if (idx == BIOVEC_MAX_IDX)
  136. mempool_free(bv, bs->bvec_pool);
  137. else {
  138. struct biovec_slab *bvs = bvec_slabs + idx;
  139. kmem_cache_free(bvs->slab, bv);
  140. }
  141. }
  142. struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
  143. struct bio_set *bs)
  144. {
  145. struct bio_vec *bvl;
  146. /*
  147. * see comment near bvec_array define!
  148. */
  149. switch (nr) {
  150. case 1:
  151. *idx = 0;
  152. break;
  153. case 2 ... 4:
  154. *idx = 1;
  155. break;
  156. case 5 ... 16:
  157. *idx = 2;
  158. break;
  159. case 17 ... 64:
  160. *idx = 3;
  161. break;
  162. case 65 ... 128:
  163. *idx = 4;
  164. break;
  165. case 129 ... BIO_MAX_PAGES:
  166. *idx = 5;
  167. break;
  168. default:
  169. return NULL;
  170. }
  171. /*
  172. * idx now points to the pool we want to allocate from. only the
  173. * 1-vec entry pool is mempool backed.
  174. */
  175. if (*idx == BIOVEC_MAX_IDX) {
  176. fallback:
  177. bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
  178. } else {
  179. struct biovec_slab *bvs = bvec_slabs + *idx;
  180. gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
  181. /*
  182. * Make this allocation restricted and don't dump info on
  183. * allocation failures, since we'll fallback to the mempool
  184. * in case of failure.
  185. */
  186. __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  187. /*
  188. * Try a slab allocation. If this fails and __GFP_WAIT
  189. * is set, retry with the 1-entry mempool
  190. */
  191. bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  192. if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
  193. *idx = BIOVEC_MAX_IDX;
  194. goto fallback;
  195. }
  196. }
  197. return bvl;
  198. }
  199. void bio_free(struct bio *bio, struct bio_set *bs)
  200. {
  201. void *p;
  202. if (bio_has_allocated_vec(bio))
  203. bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
  204. if (bio_integrity(bio))
  205. bio_integrity_free(bio, bs);
  206. /*
  207. * If we have front padding, adjust the bio pointer before freeing
  208. */
  209. p = bio;
  210. if (bs->front_pad)
  211. p -= bs->front_pad;
  212. mempool_free(p, bs->bio_pool);
  213. }
  214. EXPORT_SYMBOL(bio_free);
  215. void bio_init(struct bio *bio)
  216. {
  217. memset(bio, 0, sizeof(*bio));
  218. bio->bi_flags = 1 << BIO_UPTODATE;
  219. atomic_set(&bio->bi_cnt, 1);
  220. }
  221. EXPORT_SYMBOL(bio_init);
  222. /**
  223. * bio_alloc_bioset - allocate a bio for I/O
  224. * @gfp_mask: the GFP_ mask given to the slab allocator
  225. * @nr_iovecs: number of iovecs to pre-allocate
  226. * @bs: the bio_set to allocate from.
  227. *
  228. * Description:
  229. * bio_alloc_bioset will try its own mempool to satisfy the allocation.
  230. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  231. * for a &struct bio to become free.
  232. *
  233. * Note that the caller must set ->bi_destructor on successful return
  234. * of a bio, to do the appropriate freeing of the bio once the reference
  235. * count drops to zero.
  236. **/
  237. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  238. {
  239. unsigned long idx = BIO_POOL_NONE;
  240. struct bio_vec *bvl = NULL;
  241. struct bio *bio;
  242. void *p;
  243. p = mempool_alloc(bs->bio_pool, gfp_mask);
  244. if (unlikely(!p))
  245. return NULL;
  246. bio = p + bs->front_pad;
  247. bio_init(bio);
  248. if (unlikely(!nr_iovecs))
  249. goto out_set;
  250. if (nr_iovecs <= BIO_INLINE_VECS) {
  251. bvl = bio->bi_inline_vecs;
  252. nr_iovecs = BIO_INLINE_VECS;
  253. } else {
  254. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  255. if (unlikely(!bvl))
  256. goto err_free;
  257. nr_iovecs = bvec_nr_vecs(idx);
  258. }
  259. out_set:
  260. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  261. bio->bi_max_vecs = nr_iovecs;
  262. bio->bi_io_vec = bvl;
  263. return bio;
  264. err_free:
  265. mempool_free(p, bs->bio_pool);
  266. return NULL;
  267. }
  268. EXPORT_SYMBOL(bio_alloc_bioset);
  269. static void bio_fs_destructor(struct bio *bio)
  270. {
  271. bio_free(bio, fs_bio_set);
  272. }
  273. /**
  274. * bio_alloc - allocate a new bio, memory pool backed
  275. * @gfp_mask: allocation mask to use
  276. * @nr_iovecs: number of iovecs
  277. *
  278. * bio_alloc will allocate a bio and associated bio_vec array that can hold
  279. * at least @nr_iovecs entries. Allocations will be done from the
  280. * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
  281. *
  282. * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
  283. * a bio. This is due to the mempool guarantees. To make this work, callers
  284. * must never allocate more than 1 bio at a time from this pool. Callers
  285. * that need to allocate more than 1 bio must always submit the previously
  286. * allocated bio for IO before attempting to allocate a new one. Failure to
  287. * do so can cause livelocks under memory pressure.
  288. *
  289. * RETURNS:
  290. * Pointer to new bio on success, NULL on failure.
  291. */
  292. struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
  293. {
  294. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  295. if (bio)
  296. bio->bi_destructor = bio_fs_destructor;
  297. return bio;
  298. }
  299. EXPORT_SYMBOL(bio_alloc);
  300. static void bio_kmalloc_destructor(struct bio *bio)
  301. {
  302. if (bio_integrity(bio))
  303. bio_integrity_free(bio, fs_bio_set);
  304. kfree(bio);
  305. }
  306. /**
  307. * bio_kmalloc - allocate a bio for I/O using kmalloc()
  308. * @gfp_mask: the GFP_ mask given to the slab allocator
  309. * @nr_iovecs: number of iovecs to pre-allocate
  310. *
  311. * Description:
  312. * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
  313. * %__GFP_WAIT, the allocation is guaranteed to succeed.
  314. *
  315. **/
  316. struct bio *bio_kmalloc(gfp_t gfp_mask, int nr_iovecs)
  317. {
  318. struct bio *bio;
  319. if (nr_iovecs > UIO_MAXIOV)
  320. return NULL;
  321. bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
  322. gfp_mask);
  323. if (unlikely(!bio))
  324. return NULL;
  325. bio_init(bio);
  326. bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
  327. bio->bi_max_vecs = nr_iovecs;
  328. bio->bi_io_vec = bio->bi_inline_vecs;
  329. bio->bi_destructor = bio_kmalloc_destructor;
  330. return bio;
  331. }
  332. EXPORT_SYMBOL(bio_kmalloc);
  333. void zero_fill_bio(struct bio *bio)
  334. {
  335. unsigned long flags;
  336. struct bio_vec *bv;
  337. int i;
  338. bio_for_each_segment(bv, bio, i) {
  339. char *data = bvec_kmap_irq(bv, &flags);
  340. memset(data, 0, bv->bv_len);
  341. flush_dcache_page(bv->bv_page);
  342. bvec_kunmap_irq(data, &flags);
  343. }
  344. }
  345. EXPORT_SYMBOL(zero_fill_bio);
  346. /**
  347. * bio_put - release a reference to a bio
  348. * @bio: bio to release reference to
  349. *
  350. * Description:
  351. * Put a reference to a &struct bio, either one you have gotten with
  352. * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
  353. **/
  354. void bio_put(struct bio *bio)
  355. {
  356. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  357. /*
  358. * last put frees it
  359. */
  360. if (atomic_dec_and_test(&bio->bi_cnt)) {
  361. bio->bi_next = NULL;
  362. bio->bi_destructor(bio);
  363. }
  364. }
  365. EXPORT_SYMBOL(bio_put);
  366. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  367. {
  368. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  369. blk_recount_segments(q, bio);
  370. return bio->bi_phys_segments;
  371. }
  372. EXPORT_SYMBOL(bio_phys_segments);
  373. /**
  374. * __bio_clone - clone a bio
  375. * @bio: destination bio
  376. * @bio_src: bio to clone
  377. *
  378. * Clone a &bio. Caller will own the returned bio, but not
  379. * the actual data it points to. Reference count of returned
  380. * bio will be one.
  381. */
  382. void __bio_clone(struct bio *bio, struct bio *bio_src)
  383. {
  384. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  385. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  386. /*
  387. * most users will be overriding ->bi_bdev with a new target,
  388. * so we don't set nor calculate new physical/hw segment counts here
  389. */
  390. bio->bi_sector = bio_src->bi_sector;
  391. bio->bi_bdev = bio_src->bi_bdev;
  392. bio->bi_flags |= 1 << BIO_CLONED;
  393. bio->bi_rw = bio_src->bi_rw;
  394. bio->bi_vcnt = bio_src->bi_vcnt;
  395. bio->bi_size = bio_src->bi_size;
  396. bio->bi_idx = bio_src->bi_idx;
  397. }
  398. EXPORT_SYMBOL(__bio_clone);
  399. /**
  400. * bio_clone - clone a bio
  401. * @bio: bio to clone
  402. * @gfp_mask: allocation priority
  403. *
  404. * Like __bio_clone, only also allocates the returned bio
  405. */
  406. struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
  407. {
  408. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  409. if (!b)
  410. return NULL;
  411. b->bi_destructor = bio_fs_destructor;
  412. __bio_clone(b, bio);
  413. if (bio_integrity(bio)) {
  414. int ret;
  415. ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
  416. if (ret < 0) {
  417. bio_put(b);
  418. return NULL;
  419. }
  420. }
  421. return b;
  422. }
  423. EXPORT_SYMBOL(bio_clone);
  424. /**
  425. * bio_get_nr_vecs - return approx number of vecs
  426. * @bdev: I/O target
  427. *
  428. * Return the approximate number of pages we can send to this target.
  429. * There's no guarantee that you will be able to fit this number of pages
  430. * into a bio, it does not account for dynamic restrictions that vary
  431. * on offset.
  432. */
  433. int bio_get_nr_vecs(struct block_device *bdev)
  434. {
  435. struct request_queue *q = bdev_get_queue(bdev);
  436. int nr_pages;
  437. nr_pages = ((queue_max_sectors(q) << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  438. if (nr_pages > queue_max_segments(q))
  439. nr_pages = queue_max_segments(q);
  440. return nr_pages;
  441. }
  442. EXPORT_SYMBOL(bio_get_nr_vecs);
  443. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  444. *page, unsigned int len, unsigned int offset,
  445. unsigned short max_sectors)
  446. {
  447. int retried_segments = 0;
  448. struct bio_vec *bvec;
  449. /*
  450. * cloned bio must not modify vec list
  451. */
  452. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  453. return 0;
  454. if (((bio->bi_size + len) >> 9) > max_sectors)
  455. return 0;
  456. /*
  457. * For filesystems with a blocksize smaller than the pagesize
  458. * we will often be called with the same page as last time and
  459. * a consecutive offset. Optimize this special case.
  460. */
  461. if (bio->bi_vcnt > 0) {
  462. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  463. if (page == prev->bv_page &&
  464. offset == prev->bv_offset + prev->bv_len) {
  465. unsigned int prev_bv_len = prev->bv_len;
  466. prev->bv_len += len;
  467. if (q->merge_bvec_fn) {
  468. struct bvec_merge_data bvm = {
  469. /* prev_bvec is already charged in
  470. bi_size, discharge it in order to
  471. simulate merging updated prev_bvec
  472. as new bvec. */
  473. .bi_bdev = bio->bi_bdev,
  474. .bi_sector = bio->bi_sector,
  475. .bi_size = bio->bi_size - prev_bv_len,
  476. .bi_rw = bio->bi_rw,
  477. };
  478. if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
  479. prev->bv_len -= len;
  480. return 0;
  481. }
  482. }
  483. goto done;
  484. }
  485. }
  486. if (bio->bi_vcnt >= bio->bi_max_vecs)
  487. return 0;
  488. /*
  489. * we might lose a segment or two here, but rather that than
  490. * make this too complex.
  491. */
  492. while (bio->bi_phys_segments >= queue_max_segments(q)) {
  493. if (retried_segments)
  494. return 0;
  495. retried_segments = 1;
  496. blk_recount_segments(q, bio);
  497. }
  498. /*
  499. * setup the new entry, we might clear it again later if we
  500. * cannot add the page
  501. */
  502. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  503. bvec->bv_page = page;
  504. bvec->bv_len = len;
  505. bvec->bv_offset = offset;
  506. /*
  507. * if queue has other restrictions (eg varying max sector size
  508. * depending on offset), it can specify a merge_bvec_fn in the
  509. * queue to get further control
  510. */
  511. if (q->merge_bvec_fn) {
  512. struct bvec_merge_data bvm = {
  513. .bi_bdev = bio->bi_bdev,
  514. .bi_sector = bio->bi_sector,
  515. .bi_size = bio->bi_size,
  516. .bi_rw = bio->bi_rw,
  517. };
  518. /*
  519. * merge_bvec_fn() returns number of bytes it can accept
  520. * at this offset
  521. */
  522. if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
  523. bvec->bv_page = NULL;
  524. bvec->bv_len = 0;
  525. bvec->bv_offset = 0;
  526. return 0;
  527. }
  528. }
  529. /* If we may be able to merge these biovecs, force a recount */
  530. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  531. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  532. bio->bi_vcnt++;
  533. bio->bi_phys_segments++;
  534. done:
  535. bio->bi_size += len;
  536. return len;
  537. }
  538. /**
  539. * bio_add_pc_page - attempt to add page to bio
  540. * @q: the target queue
  541. * @bio: destination bio
  542. * @page: page to add
  543. * @len: vec entry length
  544. * @offset: vec entry offset
  545. *
  546. * Attempt to add a page to the bio_vec maplist. This can fail for a
  547. * number of reasons, such as the bio being full or target block device
  548. * limitations. The target block device must allow bio's up to PAGE_SIZE,
  549. * so it is always possible to add a single page to an empty bio.
  550. *
  551. * This should only be used by REQ_PC bios.
  552. */
  553. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  554. unsigned int len, unsigned int offset)
  555. {
  556. return __bio_add_page(q, bio, page, len, offset,
  557. queue_max_hw_sectors(q));
  558. }
  559. EXPORT_SYMBOL(bio_add_pc_page);
  560. /**
  561. * bio_add_page - attempt to add page to bio
  562. * @bio: destination bio
  563. * @page: page to add
  564. * @len: vec entry length
  565. * @offset: vec entry offset
  566. *
  567. * Attempt to add a page to the bio_vec maplist. This can fail for a
  568. * number of reasons, such as the bio being full or target block device
  569. * limitations. The target block device must allow bio's up to PAGE_SIZE,
  570. * so it is always possible to add a single page to an empty bio.
  571. */
  572. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  573. unsigned int offset)
  574. {
  575. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  576. return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
  577. }
  578. EXPORT_SYMBOL(bio_add_page);
  579. struct bio_map_data {
  580. struct bio_vec *iovecs;
  581. struct sg_iovec *sgvecs;
  582. int nr_sgvecs;
  583. int is_our_pages;
  584. };
  585. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  586. struct sg_iovec *iov, int iov_count,
  587. int is_our_pages)
  588. {
  589. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  590. memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  591. bmd->nr_sgvecs = iov_count;
  592. bmd->is_our_pages = is_our_pages;
  593. bio->bi_private = bmd;
  594. }
  595. static void bio_free_map_data(struct bio_map_data *bmd)
  596. {
  597. kfree(bmd->iovecs);
  598. kfree(bmd->sgvecs);
  599. kfree(bmd);
  600. }
  601. static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
  602. gfp_t gfp_mask)
  603. {
  604. struct bio_map_data *bmd;
  605. if (iov_count > UIO_MAXIOV)
  606. return NULL;
  607. bmd = kmalloc(sizeof(*bmd), gfp_mask);
  608. if (!bmd)
  609. return NULL;
  610. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
  611. if (!bmd->iovecs) {
  612. kfree(bmd);
  613. return NULL;
  614. }
  615. bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
  616. if (bmd->sgvecs)
  617. return bmd;
  618. kfree(bmd->iovecs);
  619. kfree(bmd);
  620. return NULL;
  621. }
  622. static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
  623. struct sg_iovec *iov, int iov_count,
  624. int to_user, int from_user, int do_free_page)
  625. {
  626. int ret = 0, i;
  627. struct bio_vec *bvec;
  628. int iov_idx = 0;
  629. unsigned int iov_off = 0;
  630. __bio_for_each_segment(bvec, bio, i, 0) {
  631. char *bv_addr = page_address(bvec->bv_page);
  632. unsigned int bv_len = iovecs[i].bv_len;
  633. while (bv_len && iov_idx < iov_count) {
  634. unsigned int bytes;
  635. char __user *iov_addr;
  636. bytes = min_t(unsigned int,
  637. iov[iov_idx].iov_len - iov_off, bv_len);
  638. iov_addr = iov[iov_idx].iov_base + iov_off;
  639. if (!ret) {
  640. if (to_user)
  641. ret = copy_to_user(iov_addr, bv_addr,
  642. bytes);
  643. if (from_user)
  644. ret = copy_from_user(bv_addr, iov_addr,
  645. bytes);
  646. if (ret)
  647. ret = -EFAULT;
  648. }
  649. bv_len -= bytes;
  650. bv_addr += bytes;
  651. iov_addr += bytes;
  652. iov_off += bytes;
  653. if (iov[iov_idx].iov_len == iov_off) {
  654. iov_idx++;
  655. iov_off = 0;
  656. }
  657. }
  658. if (do_free_page)
  659. __free_page(bvec->bv_page);
  660. }
  661. return ret;
  662. }
  663. /**
  664. * bio_uncopy_user - finish previously mapped bio
  665. * @bio: bio being terminated
  666. *
  667. * Free pages allocated from bio_copy_user() and write back data
  668. * to user space in case of a read.
  669. */
  670. int bio_uncopy_user(struct bio *bio)
  671. {
  672. struct bio_map_data *bmd = bio->bi_private;
  673. int ret = 0;
  674. if (!bio_flagged(bio, BIO_NULL_MAPPED))
  675. ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
  676. bmd->nr_sgvecs, bio_data_dir(bio) == READ,
  677. 0, bmd->is_our_pages);
  678. bio_free_map_data(bmd);
  679. bio_put(bio);
  680. return ret;
  681. }
  682. EXPORT_SYMBOL(bio_uncopy_user);
  683. /**
  684. * bio_copy_user_iov - copy user data to bio
  685. * @q: destination block queue
  686. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  687. * @iov: the iovec.
  688. * @iov_count: number of elements in the iovec
  689. * @write_to_vm: bool indicating writing to pages or not
  690. * @gfp_mask: memory allocation flags
  691. *
  692. * Prepares and returns a bio for indirect user io, bouncing data
  693. * to/from kernel pages as necessary. Must be paired with
  694. * call bio_uncopy_user() on io completion.
  695. */
  696. struct bio *bio_copy_user_iov(struct request_queue *q,
  697. struct rq_map_data *map_data,
  698. struct sg_iovec *iov, int iov_count,
  699. int write_to_vm, gfp_t gfp_mask)
  700. {
  701. struct bio_map_data *bmd;
  702. struct bio_vec *bvec;
  703. struct page *page;
  704. struct bio *bio;
  705. int i, ret;
  706. int nr_pages = 0;
  707. unsigned int len = 0;
  708. unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
  709. for (i = 0; i < iov_count; i++) {
  710. unsigned long uaddr;
  711. unsigned long end;
  712. unsigned long start;
  713. uaddr = (unsigned long)iov[i].iov_base;
  714. end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  715. start = uaddr >> PAGE_SHIFT;
  716. /*
  717. * Overflow, abort
  718. */
  719. if (end < start)
  720. return ERR_PTR(-EINVAL);
  721. nr_pages += end - start;
  722. len += iov[i].iov_len;
  723. }
  724. if (offset)
  725. nr_pages++;
  726. bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  727. if (!bmd)
  728. return ERR_PTR(-ENOMEM);
  729. ret = -ENOMEM;
  730. bio = bio_kmalloc(gfp_mask, nr_pages);
  731. if (!bio)
  732. goto out_bmd;
  733. if (!write_to_vm)
  734. bio->bi_rw |= REQ_WRITE;
  735. ret = 0;
  736. if (map_data) {
  737. nr_pages = 1 << map_data->page_order;
  738. i = map_data->offset / PAGE_SIZE;
  739. }
  740. while (len) {
  741. unsigned int bytes = PAGE_SIZE;
  742. bytes -= offset;
  743. if (bytes > len)
  744. bytes = len;
  745. if (map_data) {
  746. if (i == map_data->nr_entries * nr_pages) {
  747. ret = -ENOMEM;
  748. break;
  749. }
  750. page = map_data->pages[i / nr_pages];
  751. page += (i % nr_pages);
  752. i++;
  753. } else {
  754. page = alloc_page(q->bounce_gfp | gfp_mask);
  755. if (!page) {
  756. ret = -ENOMEM;
  757. break;
  758. }
  759. }
  760. if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
  761. break;
  762. len -= bytes;
  763. offset = 0;
  764. }
  765. if (ret)
  766. goto cleanup;
  767. /*
  768. * success
  769. */
  770. if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
  771. (map_data && map_data->from_user)) {
  772. ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
  773. if (ret)
  774. goto cleanup;
  775. }
  776. bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  777. return bio;
  778. cleanup:
  779. if (!map_data)
  780. bio_for_each_segment(bvec, bio, i)
  781. __free_page(bvec->bv_page);
  782. bio_put(bio);
  783. out_bmd:
  784. bio_free_map_data(bmd);
  785. return ERR_PTR(ret);
  786. }
  787. /**
  788. * bio_copy_user - copy user data to bio
  789. * @q: destination block queue
  790. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  791. * @uaddr: start of user address
  792. * @len: length in bytes
  793. * @write_to_vm: bool indicating writing to pages or not
  794. * @gfp_mask: memory allocation flags
  795. *
  796. * Prepares and returns a bio for indirect user io, bouncing data
  797. * to/from kernel pages as necessary. Must be paired with
  798. * call bio_uncopy_user() on io completion.
  799. */
  800. struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  801. unsigned long uaddr, unsigned int len,
  802. int write_to_vm, gfp_t gfp_mask)
  803. {
  804. struct sg_iovec iov;
  805. iov.iov_base = (void __user *)uaddr;
  806. iov.iov_len = len;
  807. return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  808. }
  809. EXPORT_SYMBOL(bio_copy_user);
  810. static struct bio *__bio_map_user_iov(struct request_queue *q,
  811. struct block_device *bdev,
  812. struct sg_iovec *iov, int iov_count,
  813. int write_to_vm, gfp_t gfp_mask)
  814. {
  815. int i, j;
  816. int nr_pages = 0;
  817. struct page **pages;
  818. struct bio *bio;
  819. int cur_page = 0;
  820. int ret, offset;
  821. for (i = 0; i < iov_count; i++) {
  822. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  823. unsigned long len = iov[i].iov_len;
  824. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  825. unsigned long start = uaddr >> PAGE_SHIFT;
  826. /*
  827. * Overflow, abort
  828. */
  829. if (end < start)
  830. return ERR_PTR(-EINVAL);
  831. nr_pages += end - start;
  832. /*
  833. * buffer must be aligned to at least hardsector size for now
  834. */
  835. if (uaddr & queue_dma_alignment(q))
  836. return ERR_PTR(-EINVAL);
  837. }
  838. if (!nr_pages)
  839. return ERR_PTR(-EINVAL);
  840. bio = bio_kmalloc(gfp_mask, nr_pages);
  841. if (!bio)
  842. return ERR_PTR(-ENOMEM);
  843. ret = -ENOMEM;
  844. pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  845. if (!pages)
  846. goto out;
  847. for (i = 0; i < iov_count; i++) {
  848. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  849. unsigned long len = iov[i].iov_len;
  850. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  851. unsigned long start = uaddr >> PAGE_SHIFT;
  852. const int local_nr_pages = end - start;
  853. const int page_limit = cur_page + local_nr_pages;
  854. ret = get_user_pages_fast(uaddr, local_nr_pages,
  855. write_to_vm, &pages[cur_page]);
  856. if (ret < local_nr_pages) {
  857. ret = -EFAULT;
  858. goto out_unmap;
  859. }
  860. offset = uaddr & ~PAGE_MASK;
  861. for (j = cur_page; j < page_limit; j++) {
  862. unsigned int bytes = PAGE_SIZE - offset;
  863. if (len <= 0)
  864. break;
  865. if (bytes > len)
  866. bytes = len;
  867. /*
  868. * sorry...
  869. */
  870. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  871. bytes)
  872. break;
  873. len -= bytes;
  874. offset = 0;
  875. }
  876. cur_page = j;
  877. /*
  878. * release the pages we didn't map into the bio, if any
  879. */
  880. while (j < page_limit)
  881. page_cache_release(pages[j++]);
  882. }
  883. kfree(pages);
  884. /*
  885. * set data direction, and check if mapped pages need bouncing
  886. */
  887. if (!write_to_vm)
  888. bio->bi_rw |= REQ_WRITE;
  889. bio->bi_bdev = bdev;
  890. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  891. return bio;
  892. out_unmap:
  893. for (i = 0; i < nr_pages; i++) {
  894. if(!pages[i])
  895. break;
  896. page_cache_release(pages[i]);
  897. }
  898. out:
  899. kfree(pages);
  900. bio_put(bio);
  901. return ERR_PTR(ret);
  902. }
  903. /**
  904. * bio_map_user - map user address into bio
  905. * @q: the struct request_queue for the bio
  906. * @bdev: destination block device
  907. * @uaddr: start of user address
  908. * @len: length in bytes
  909. * @write_to_vm: bool indicating writing to pages or not
  910. * @gfp_mask: memory allocation flags
  911. *
  912. * Map the user space address into a bio suitable for io to a block
  913. * device. Returns an error pointer in case of error.
  914. */
  915. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  916. unsigned long uaddr, unsigned int len, int write_to_vm,
  917. gfp_t gfp_mask)
  918. {
  919. struct sg_iovec iov;
  920. iov.iov_base = (void __user *)uaddr;
  921. iov.iov_len = len;
  922. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
  923. }
  924. EXPORT_SYMBOL(bio_map_user);
  925. /**
  926. * bio_map_user_iov - map user sg_iovec table into bio
  927. * @q: the struct request_queue for the bio
  928. * @bdev: destination block device
  929. * @iov: the iovec.
  930. * @iov_count: number of elements in the iovec
  931. * @write_to_vm: bool indicating writing to pages or not
  932. * @gfp_mask: memory allocation flags
  933. *
  934. * Map the user space address into a bio suitable for io to a block
  935. * device. Returns an error pointer in case of error.
  936. */
  937. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  938. struct sg_iovec *iov, int iov_count,
  939. int write_to_vm, gfp_t gfp_mask)
  940. {
  941. struct bio *bio;
  942. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
  943. gfp_mask);
  944. if (IS_ERR(bio))
  945. return bio;
  946. /*
  947. * subtle -- if __bio_map_user() ended up bouncing a bio,
  948. * it would normally disappear when its bi_end_io is run.
  949. * however, we need it for the unmap, so grab an extra
  950. * reference to it
  951. */
  952. bio_get(bio);
  953. return bio;
  954. }
  955. static void __bio_unmap_user(struct bio *bio)
  956. {
  957. struct bio_vec *bvec;
  958. int i;
  959. /*
  960. * make sure we dirty pages we wrote to
  961. */
  962. __bio_for_each_segment(bvec, bio, i, 0) {
  963. if (bio_data_dir(bio) == READ)
  964. set_page_dirty_lock(bvec->bv_page);
  965. page_cache_release(bvec->bv_page);
  966. }
  967. bio_put(bio);
  968. }
  969. /**
  970. * bio_unmap_user - unmap a bio
  971. * @bio: the bio being unmapped
  972. *
  973. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  974. * a process context.
  975. *
  976. * bio_unmap_user() may sleep.
  977. */
  978. void bio_unmap_user(struct bio *bio)
  979. {
  980. __bio_unmap_user(bio);
  981. bio_put(bio);
  982. }
  983. EXPORT_SYMBOL(bio_unmap_user);
  984. static void bio_map_kern_endio(struct bio *bio, int err)
  985. {
  986. bio_put(bio);
  987. }
  988. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  989. unsigned int len, gfp_t gfp_mask)
  990. {
  991. unsigned long kaddr = (unsigned long)data;
  992. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  993. unsigned long start = kaddr >> PAGE_SHIFT;
  994. const int nr_pages = end - start;
  995. int offset, i;
  996. struct bio *bio;
  997. bio = bio_kmalloc(gfp_mask, nr_pages);
  998. if (!bio)
  999. return ERR_PTR(-ENOMEM);
  1000. offset = offset_in_page(kaddr);
  1001. for (i = 0; i < nr_pages; i++) {
  1002. unsigned int bytes = PAGE_SIZE - offset;
  1003. if (len <= 0)
  1004. break;
  1005. if (bytes > len)
  1006. bytes = len;
  1007. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  1008. offset) < bytes)
  1009. break;
  1010. data += bytes;
  1011. len -= bytes;
  1012. offset = 0;
  1013. }
  1014. bio->bi_end_io = bio_map_kern_endio;
  1015. return bio;
  1016. }
  1017. /**
  1018. * bio_map_kern - map kernel address into bio
  1019. * @q: the struct request_queue for the bio
  1020. * @data: pointer to buffer to map
  1021. * @len: length in bytes
  1022. * @gfp_mask: allocation flags for bio allocation
  1023. *
  1024. * Map the kernel address into a bio suitable for io to a block
  1025. * device. Returns an error pointer in case of error.
  1026. */
  1027. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  1028. gfp_t gfp_mask)
  1029. {
  1030. struct bio *bio;
  1031. bio = __bio_map_kern(q, data, len, gfp_mask);
  1032. if (IS_ERR(bio))
  1033. return bio;
  1034. if (bio->bi_size == len)
  1035. return bio;
  1036. /*
  1037. * Don't support partial mappings.
  1038. */
  1039. bio_put(bio);
  1040. return ERR_PTR(-EINVAL);
  1041. }
  1042. EXPORT_SYMBOL(bio_map_kern);
  1043. static void bio_copy_kern_endio(struct bio *bio, int err)
  1044. {
  1045. struct bio_vec *bvec;
  1046. const int read = bio_data_dir(bio) == READ;
  1047. struct bio_map_data *bmd = bio->bi_private;
  1048. int i;
  1049. char *p = bmd->sgvecs[0].iov_base;
  1050. __bio_for_each_segment(bvec, bio, i, 0) {
  1051. char *addr = page_address(bvec->bv_page);
  1052. int len = bmd->iovecs[i].bv_len;
  1053. if (read)
  1054. memcpy(p, addr, len);
  1055. __free_page(bvec->bv_page);
  1056. p += len;
  1057. }
  1058. bio_free_map_data(bmd);
  1059. bio_put(bio);
  1060. }
  1061. /**
  1062. * bio_copy_kern - copy kernel address into bio
  1063. * @q: the struct request_queue for the bio
  1064. * @data: pointer to buffer to copy
  1065. * @len: length in bytes
  1066. * @gfp_mask: allocation flags for bio and page allocation
  1067. * @reading: data direction is READ
  1068. *
  1069. * copy the kernel address into a bio suitable for io to a block
  1070. * device. Returns an error pointer in case of error.
  1071. */
  1072. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  1073. gfp_t gfp_mask, int reading)
  1074. {
  1075. struct bio *bio;
  1076. struct bio_vec *bvec;
  1077. int i;
  1078. bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
  1079. if (IS_ERR(bio))
  1080. return bio;
  1081. if (!reading) {
  1082. void *p = data;
  1083. bio_for_each_segment(bvec, bio, i) {
  1084. char *addr = page_address(bvec->bv_page);
  1085. memcpy(addr, p, bvec->bv_len);
  1086. p += bvec->bv_len;
  1087. }
  1088. }
  1089. bio->bi_end_io = bio_copy_kern_endio;
  1090. return bio;
  1091. }
  1092. EXPORT_SYMBOL(bio_copy_kern);
  1093. /*
  1094. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  1095. * for performing direct-IO in BIOs.
  1096. *
  1097. * The problem is that we cannot run set_page_dirty() from interrupt context
  1098. * because the required locks are not interrupt-safe. So what we can do is to
  1099. * mark the pages dirty _before_ performing IO. And in interrupt context,
  1100. * check that the pages are still dirty. If so, fine. If not, redirty them
  1101. * in process context.
  1102. *
  1103. * We special-case compound pages here: normally this means reads into hugetlb
  1104. * pages. The logic in here doesn't really work right for compound pages
  1105. * because the VM does not uniformly chase down the head page in all cases.
  1106. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  1107. * handle them at all. So we skip compound pages here at an early stage.
  1108. *
  1109. * Note that this code is very hard to test under normal circumstances because
  1110. * direct-io pins the pages with get_user_pages(). This makes
  1111. * is_page_cache_freeable return false, and the VM will not clean the pages.
  1112. * But other code (eg, pdflush) could clean the pages if they are mapped
  1113. * pagecache.
  1114. *
  1115. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  1116. * deferred bio dirtying paths.
  1117. */
  1118. /*
  1119. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  1120. */
  1121. void bio_set_pages_dirty(struct bio *bio)
  1122. {
  1123. struct bio_vec *bvec = bio->bi_io_vec;
  1124. int i;
  1125. for (i = 0; i < bio->bi_vcnt; i++) {
  1126. struct page *page = bvec[i].bv_page;
  1127. if (page && !PageCompound(page))
  1128. set_page_dirty_lock(page);
  1129. }
  1130. }
  1131. static void bio_release_pages(struct bio *bio)
  1132. {
  1133. struct bio_vec *bvec = bio->bi_io_vec;
  1134. int i;
  1135. for (i = 0; i < bio->bi_vcnt; i++) {
  1136. struct page *page = bvec[i].bv_page;
  1137. if (page)
  1138. put_page(page);
  1139. }
  1140. }
  1141. /*
  1142. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  1143. * If they are, then fine. If, however, some pages are clean then they must
  1144. * have been written out during the direct-IO read. So we take another ref on
  1145. * the BIO and the offending pages and re-dirty the pages in process context.
  1146. *
  1147. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  1148. * here on. It will run one page_cache_release() against each page and will
  1149. * run one bio_put() against the BIO.
  1150. */
  1151. static void bio_dirty_fn(struct work_struct *work);
  1152. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  1153. static DEFINE_SPINLOCK(bio_dirty_lock);
  1154. static struct bio *bio_dirty_list;
  1155. /*
  1156. * This runs in process context
  1157. */
  1158. static void bio_dirty_fn(struct work_struct *work)
  1159. {
  1160. unsigned long flags;
  1161. struct bio *bio;
  1162. spin_lock_irqsave(&bio_dirty_lock, flags);
  1163. bio = bio_dirty_list;
  1164. bio_dirty_list = NULL;
  1165. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1166. while (bio) {
  1167. struct bio *next = bio->bi_private;
  1168. bio_set_pages_dirty(bio);
  1169. bio_release_pages(bio);
  1170. bio_put(bio);
  1171. bio = next;
  1172. }
  1173. }
  1174. void bio_check_pages_dirty(struct bio *bio)
  1175. {
  1176. struct bio_vec *bvec = bio->bi_io_vec;
  1177. int nr_clean_pages = 0;
  1178. int i;
  1179. for (i = 0; i < bio->bi_vcnt; i++) {
  1180. struct page *page = bvec[i].bv_page;
  1181. if (PageDirty(page) || PageCompound(page)) {
  1182. page_cache_release(page);
  1183. bvec[i].bv_page = NULL;
  1184. } else {
  1185. nr_clean_pages++;
  1186. }
  1187. }
  1188. if (nr_clean_pages) {
  1189. unsigned long flags;
  1190. spin_lock_irqsave(&bio_dirty_lock, flags);
  1191. bio->bi_private = bio_dirty_list;
  1192. bio_dirty_list = bio;
  1193. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1194. schedule_work(&bio_dirty_work);
  1195. } else {
  1196. bio_put(bio);
  1197. }
  1198. }
  1199. #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
  1200. void bio_flush_dcache_pages(struct bio *bi)
  1201. {
  1202. int i;
  1203. struct bio_vec *bvec;
  1204. bio_for_each_segment(bvec, bi, i)
  1205. flush_dcache_page(bvec->bv_page);
  1206. }
  1207. EXPORT_SYMBOL(bio_flush_dcache_pages);
  1208. #endif
  1209. /**
  1210. * bio_endio - end I/O on a bio
  1211. * @bio: bio
  1212. * @error: error, if any
  1213. *
  1214. * Description:
  1215. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  1216. * preferred way to end I/O on a bio, it takes care of clearing
  1217. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  1218. * established -Exxxx (-EIO, for instance) error values in case
  1219. * something went wrong. No one should call bi_end_io() directly on a
  1220. * bio unless they own it and thus know that it has an end_io
  1221. * function.
  1222. **/
  1223. void bio_endio(struct bio *bio, int error)
  1224. {
  1225. if (error)
  1226. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1227. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1228. error = -EIO;
  1229. if (bio->bi_end_io)
  1230. bio->bi_end_io(bio, error);
  1231. }
  1232. EXPORT_SYMBOL(bio_endio);
  1233. void bio_pair_release(struct bio_pair *bp)
  1234. {
  1235. if (atomic_dec_and_test(&bp->cnt)) {
  1236. struct bio *master = bp->bio1.bi_private;
  1237. bio_endio(master, bp->error);
  1238. mempool_free(bp, bp->bio2.bi_private);
  1239. }
  1240. }
  1241. EXPORT_SYMBOL(bio_pair_release);
  1242. static void bio_pair_end_1(struct bio *bi, int err)
  1243. {
  1244. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  1245. if (err)
  1246. bp->error = err;
  1247. bio_pair_release(bp);
  1248. }
  1249. static void bio_pair_end_2(struct bio *bi, int err)
  1250. {
  1251. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  1252. if (err)
  1253. bp->error = err;
  1254. bio_pair_release(bp);
  1255. }
  1256. /*
  1257. * split a bio - only worry about a bio with a single page in its iovec
  1258. */
  1259. struct bio_pair *bio_split(struct bio *bi, int first_sectors)
  1260. {
  1261. struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
  1262. if (!bp)
  1263. return bp;
  1264. trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
  1265. bi->bi_sector + first_sectors);
  1266. BUG_ON(bi->bi_vcnt != 1);
  1267. BUG_ON(bi->bi_idx != 0);
  1268. atomic_set(&bp->cnt, 3);
  1269. bp->error = 0;
  1270. bp->bio1 = *bi;
  1271. bp->bio2 = *bi;
  1272. bp->bio2.bi_sector += first_sectors;
  1273. bp->bio2.bi_size -= first_sectors << 9;
  1274. bp->bio1.bi_size = first_sectors << 9;
  1275. bp->bv1 = bi->bi_io_vec[0];
  1276. bp->bv2 = bi->bi_io_vec[0];
  1277. bp->bv2.bv_offset += first_sectors << 9;
  1278. bp->bv2.bv_len -= first_sectors << 9;
  1279. bp->bv1.bv_len = first_sectors << 9;
  1280. bp->bio1.bi_io_vec = &bp->bv1;
  1281. bp->bio2.bi_io_vec = &bp->bv2;
  1282. bp->bio1.bi_max_vecs = 1;
  1283. bp->bio2.bi_max_vecs = 1;
  1284. bp->bio1.bi_end_io = bio_pair_end_1;
  1285. bp->bio2.bi_end_io = bio_pair_end_2;
  1286. bp->bio1.bi_private = bi;
  1287. bp->bio2.bi_private = bio_split_pool;
  1288. if (bio_integrity(bi))
  1289. bio_integrity_split(bi, bp, first_sectors);
  1290. return bp;
  1291. }
  1292. EXPORT_SYMBOL(bio_split);
  1293. /**
  1294. * bio_sector_offset - Find hardware sector offset in bio
  1295. * @bio: bio to inspect
  1296. * @index: bio_vec index
  1297. * @offset: offset in bv_page
  1298. *
  1299. * Return the number of hardware sectors between beginning of bio
  1300. * and an end point indicated by a bio_vec index and an offset
  1301. * within that vector's page.
  1302. */
  1303. sector_t bio_sector_offset(struct bio *bio, unsigned short index,
  1304. unsigned int offset)
  1305. {
  1306. unsigned int sector_sz;
  1307. struct bio_vec *bv;
  1308. sector_t sectors;
  1309. int i;
  1310. sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
  1311. sectors = 0;
  1312. if (index >= bio->bi_idx)
  1313. index = bio->bi_vcnt - 1;
  1314. __bio_for_each_segment(bv, bio, i, 0) {
  1315. if (i == index) {
  1316. if (offset > bv->bv_offset)
  1317. sectors += (offset - bv->bv_offset) / sector_sz;
  1318. break;
  1319. }
  1320. sectors += bv->bv_len / sector_sz;
  1321. }
  1322. return sectors;
  1323. }
  1324. EXPORT_SYMBOL(bio_sector_offset);
  1325. /*
  1326. * create memory pools for biovec's in a bio_set.
  1327. * use the global biovec slabs created for general use.
  1328. */
  1329. static int biovec_create_pools(struct bio_set *bs, int pool_entries)
  1330. {
  1331. struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
  1332. bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
  1333. if (!bs->bvec_pool)
  1334. return -ENOMEM;
  1335. return 0;
  1336. }
  1337. static void biovec_free_pools(struct bio_set *bs)
  1338. {
  1339. mempool_destroy(bs->bvec_pool);
  1340. }
  1341. void bioset_free(struct bio_set *bs)
  1342. {
  1343. if (bs->bio_pool)
  1344. mempool_destroy(bs->bio_pool);
  1345. bioset_integrity_free(bs);
  1346. biovec_free_pools(bs);
  1347. bio_put_slab(bs);
  1348. kfree(bs);
  1349. }
  1350. EXPORT_SYMBOL(bioset_free);
  1351. /**
  1352. * bioset_create - Create a bio_set
  1353. * @pool_size: Number of bio and bio_vecs to cache in the mempool
  1354. * @front_pad: Number of bytes to allocate in front of the returned bio
  1355. *
  1356. * Description:
  1357. * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
  1358. * to ask for a number of bytes to be allocated in front of the bio.
  1359. * Front pad allocation is useful for embedding the bio inside
  1360. * another structure, to avoid allocating extra data to go with the bio.
  1361. * Note that the bio must be embedded at the END of that structure always,
  1362. * or things will break badly.
  1363. */
  1364. struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
  1365. {
  1366. unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
  1367. struct bio_set *bs;
  1368. bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  1369. if (!bs)
  1370. return NULL;
  1371. bs->front_pad = front_pad;
  1372. bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
  1373. if (!bs->bio_slab) {
  1374. kfree(bs);
  1375. return NULL;
  1376. }
  1377. bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
  1378. if (!bs->bio_pool)
  1379. goto bad;
  1380. if (!biovec_create_pools(bs, pool_size))
  1381. return bs;
  1382. bad:
  1383. bioset_free(bs);
  1384. return NULL;
  1385. }
  1386. EXPORT_SYMBOL(bioset_create);
  1387. static void __init biovec_init_slabs(void)
  1388. {
  1389. int i;
  1390. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1391. int size;
  1392. struct biovec_slab *bvs = bvec_slabs + i;
  1393. if (bvs->nr_vecs <= BIO_INLINE_VECS) {
  1394. bvs->slab = NULL;
  1395. continue;
  1396. }
  1397. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1398. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1399. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1400. }
  1401. }
  1402. static int __init init_bio(void)
  1403. {
  1404. bio_slab_max = 2;
  1405. bio_slab_nr = 0;
  1406. bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
  1407. if (!bio_slabs)
  1408. panic("bio: can't allocate bios\n");
  1409. bio_integrity_init();
  1410. biovec_init_slabs();
  1411. fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
  1412. if (!fs_bio_set)
  1413. panic("bio: can't allocate bios\n");
  1414. if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
  1415. panic("bio: can't create integrity pool\n");
  1416. bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
  1417. sizeof(struct bio_pair));
  1418. if (!bio_split_pool)
  1419. panic("bio: can't create split pool\n");
  1420. return 0;
  1421. }
  1422. subsys_initcall(init_bio);