xenbus_probe_frontend.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419
  1. #define DPRINTK(fmt, args...) \
  2. pr_debug("xenbus_probe (%s:%d) " fmt ".\n", \
  3. __func__, __LINE__, ##args)
  4. #include <linux/kernel.h>
  5. #include <linux/err.h>
  6. #include <linux/string.h>
  7. #include <linux/ctype.h>
  8. #include <linux/fcntl.h>
  9. #include <linux/mm.h>
  10. #include <linux/proc_fs.h>
  11. #include <linux/notifier.h>
  12. #include <linux/kthread.h>
  13. #include <linux/mutex.h>
  14. #include <linux/io.h>
  15. #include <linux/module.h>
  16. #include <asm/page.h>
  17. #include <asm/pgtable.h>
  18. #include <asm/xen/hypervisor.h>
  19. #include <xen/xenbus.h>
  20. #include <xen/events.h>
  21. #include <xen/page.h>
  22. #include <xen/platform_pci.h>
  23. #include "xenbus_comms.h"
  24. #include "xenbus_probe.h"
  25. /* device/<type>/<id> => <type>-<id> */
  26. static int frontend_bus_id(char bus_id[XEN_BUS_ID_SIZE], const char *nodename)
  27. {
  28. nodename = strchr(nodename, '/');
  29. if (!nodename || strlen(nodename + 1) >= XEN_BUS_ID_SIZE) {
  30. printk(KERN_WARNING "XENBUS: bad frontend %s\n", nodename);
  31. return -EINVAL;
  32. }
  33. strlcpy(bus_id, nodename + 1, XEN_BUS_ID_SIZE);
  34. if (!strchr(bus_id, '/')) {
  35. printk(KERN_WARNING "XENBUS: bus_id %s no slash\n", bus_id);
  36. return -EINVAL;
  37. }
  38. *strchr(bus_id, '/') = '-';
  39. return 0;
  40. }
  41. /* device/<typename>/<name> */
  42. static int xenbus_probe_frontend(struct xen_bus_type *bus, const char *type,
  43. const char *name)
  44. {
  45. char *nodename;
  46. int err;
  47. nodename = kasprintf(GFP_KERNEL, "%s/%s/%s", bus->root, type, name);
  48. if (!nodename)
  49. return -ENOMEM;
  50. DPRINTK("%s", nodename);
  51. err = xenbus_probe_node(bus, type, nodename);
  52. kfree(nodename);
  53. return err;
  54. }
  55. static int xenbus_uevent_frontend(struct device *_dev,
  56. struct kobj_uevent_env *env)
  57. {
  58. struct xenbus_device *dev = to_xenbus_device(_dev);
  59. if (add_uevent_var(env, "MODALIAS=xen:%s", dev->devicetype))
  60. return -ENOMEM;
  61. return 0;
  62. }
  63. static void backend_changed(struct xenbus_watch *watch,
  64. const char **vec, unsigned int len)
  65. {
  66. xenbus_otherend_changed(watch, vec, len, 1);
  67. }
  68. static const struct dev_pm_ops xenbus_pm_ops = {
  69. .suspend = xenbus_dev_suspend,
  70. .resume = xenbus_dev_resume,
  71. .freeze = xenbus_dev_suspend,
  72. .thaw = xenbus_dev_cancel,
  73. .restore = xenbus_dev_resume,
  74. };
  75. static struct xen_bus_type xenbus_frontend = {
  76. .root = "device",
  77. .levels = 2, /* device/type/<id> */
  78. .get_bus_id = frontend_bus_id,
  79. .probe = xenbus_probe_frontend,
  80. .otherend_changed = backend_changed,
  81. .bus = {
  82. .name = "xen",
  83. .match = xenbus_match,
  84. .uevent = xenbus_uevent_frontend,
  85. .probe = xenbus_dev_probe,
  86. .remove = xenbus_dev_remove,
  87. .shutdown = xenbus_dev_shutdown,
  88. .dev_attrs = xenbus_dev_attrs,
  89. .pm = &xenbus_pm_ops,
  90. },
  91. };
  92. static void frontend_changed(struct xenbus_watch *watch,
  93. const char **vec, unsigned int len)
  94. {
  95. DPRINTK("");
  96. xenbus_dev_changed(vec[XS_WATCH_PATH], &xenbus_frontend);
  97. }
  98. /* We watch for devices appearing and vanishing. */
  99. static struct xenbus_watch fe_watch = {
  100. .node = "device",
  101. .callback = frontend_changed,
  102. };
  103. static int read_backend_details(struct xenbus_device *xendev)
  104. {
  105. return xenbus_read_otherend_details(xendev, "backend-id", "backend");
  106. }
  107. static int is_device_connecting(struct device *dev, void *data)
  108. {
  109. struct xenbus_device *xendev = to_xenbus_device(dev);
  110. struct device_driver *drv = data;
  111. struct xenbus_driver *xendrv;
  112. /*
  113. * A device with no driver will never connect. We care only about
  114. * devices which should currently be in the process of connecting.
  115. */
  116. if (!dev->driver)
  117. return 0;
  118. /* Is this search limited to a particular driver? */
  119. if (drv && (dev->driver != drv))
  120. return 0;
  121. xendrv = to_xenbus_driver(dev->driver);
  122. return (xendev->state < XenbusStateConnected ||
  123. (xendev->state == XenbusStateConnected &&
  124. xendrv->is_ready && !xendrv->is_ready(xendev)));
  125. }
  126. static int exists_connecting_device(struct device_driver *drv)
  127. {
  128. return bus_for_each_dev(&xenbus_frontend.bus, NULL, drv,
  129. is_device_connecting);
  130. }
  131. static int print_device_status(struct device *dev, void *data)
  132. {
  133. struct xenbus_device *xendev = to_xenbus_device(dev);
  134. struct device_driver *drv = data;
  135. /* Is this operation limited to a particular driver? */
  136. if (drv && (dev->driver != drv))
  137. return 0;
  138. if (!dev->driver) {
  139. /* Information only: is this too noisy? */
  140. printk(KERN_INFO "XENBUS: Device with no driver: %s\n",
  141. xendev->nodename);
  142. } else if (xendev->state < XenbusStateConnected) {
  143. enum xenbus_state rstate = XenbusStateUnknown;
  144. if (xendev->otherend)
  145. rstate = xenbus_read_driver_state(xendev->otherend);
  146. printk(KERN_WARNING "XENBUS: Timeout connecting "
  147. "to device: %s (local state %d, remote state %d)\n",
  148. xendev->nodename, xendev->state, rstate);
  149. }
  150. return 0;
  151. }
  152. /* We only wait for device setup after most initcalls have run. */
  153. static int ready_to_wait_for_devices;
  154. /*
  155. * On a 5-minute timeout, wait for all devices currently configured. We need
  156. * to do this to guarantee that the filesystems and / or network devices
  157. * needed for boot are available, before we can allow the boot to proceed.
  158. *
  159. * This needs to be on a late_initcall, to happen after the frontend device
  160. * drivers have been initialised, but before the root fs is mounted.
  161. *
  162. * A possible improvement here would be to have the tools add a per-device
  163. * flag to the store entry, indicating whether it is needed at boot time.
  164. * This would allow people who knew what they were doing to accelerate their
  165. * boot slightly, but of course needs tools or manual intervention to set up
  166. * those flags correctly.
  167. */
  168. static void wait_for_devices(struct xenbus_driver *xendrv)
  169. {
  170. unsigned long start = jiffies;
  171. struct device_driver *drv = xendrv ? &xendrv->driver : NULL;
  172. unsigned int seconds_waited = 0;
  173. if (!ready_to_wait_for_devices || !xen_domain())
  174. return;
  175. while (exists_connecting_device(drv)) {
  176. if (time_after(jiffies, start + (seconds_waited+5)*HZ)) {
  177. if (!seconds_waited)
  178. printk(KERN_WARNING "XENBUS: Waiting for "
  179. "devices to initialise: ");
  180. seconds_waited += 5;
  181. printk("%us...", 300 - seconds_waited);
  182. if (seconds_waited == 300)
  183. break;
  184. }
  185. schedule_timeout_interruptible(HZ/10);
  186. }
  187. if (seconds_waited)
  188. printk("\n");
  189. bus_for_each_dev(&xenbus_frontend.bus, NULL, drv,
  190. print_device_status);
  191. }
  192. int __xenbus_register_frontend(struct xenbus_driver *drv,
  193. struct module *owner, const char *mod_name)
  194. {
  195. int ret;
  196. drv->read_otherend_details = read_backend_details;
  197. ret = xenbus_register_driver_common(drv, &xenbus_frontend,
  198. owner, mod_name);
  199. if (ret)
  200. return ret;
  201. /* If this driver is loaded as a module wait for devices to attach. */
  202. wait_for_devices(drv);
  203. return 0;
  204. }
  205. EXPORT_SYMBOL_GPL(__xenbus_register_frontend);
  206. static DECLARE_WAIT_QUEUE_HEAD(backend_state_wq);
  207. static int backend_state;
  208. static void xenbus_reset_backend_state_changed(struct xenbus_watch *w,
  209. const char **v, unsigned int l)
  210. {
  211. xenbus_scanf(XBT_NIL, v[XS_WATCH_PATH], "", "%i", &backend_state);
  212. printk(KERN_DEBUG "XENBUS: backend %s %s\n",
  213. v[XS_WATCH_PATH], xenbus_strstate(backend_state));
  214. wake_up(&backend_state_wq);
  215. }
  216. static void xenbus_reset_wait_for_backend(char *be, int expected)
  217. {
  218. long timeout;
  219. timeout = wait_event_interruptible_timeout(backend_state_wq,
  220. backend_state == expected, 5 * HZ);
  221. if (timeout <= 0)
  222. printk(KERN_INFO "XENBUS: backend %s timed out.\n", be);
  223. }
  224. /*
  225. * Reset frontend if it is in Connected or Closed state.
  226. * Wait for backend to catch up.
  227. * State Connected happens during kdump, Closed after kexec.
  228. */
  229. static void xenbus_reset_frontend(char *fe, char *be, int be_state)
  230. {
  231. struct xenbus_watch be_watch;
  232. printk(KERN_DEBUG "XENBUS: backend %s %s\n",
  233. be, xenbus_strstate(be_state));
  234. memset(&be_watch, 0, sizeof(be_watch));
  235. be_watch.node = kasprintf(GFP_NOIO | __GFP_HIGH, "%s/state", be);
  236. if (!be_watch.node)
  237. return;
  238. be_watch.callback = xenbus_reset_backend_state_changed;
  239. backend_state = XenbusStateUnknown;
  240. printk(KERN_INFO "XENBUS: triggering reconnect on %s\n", be);
  241. register_xenbus_watch(&be_watch);
  242. /* fall through to forward backend to state XenbusStateInitialising */
  243. switch (be_state) {
  244. case XenbusStateConnected:
  245. xenbus_printf(XBT_NIL, fe, "state", "%d", XenbusStateClosing);
  246. xenbus_reset_wait_for_backend(be, XenbusStateClosing);
  247. case XenbusStateClosing:
  248. xenbus_printf(XBT_NIL, fe, "state", "%d", XenbusStateClosed);
  249. xenbus_reset_wait_for_backend(be, XenbusStateClosed);
  250. case XenbusStateClosed:
  251. xenbus_printf(XBT_NIL, fe, "state", "%d", XenbusStateInitialising);
  252. xenbus_reset_wait_for_backend(be, XenbusStateInitWait);
  253. }
  254. unregister_xenbus_watch(&be_watch);
  255. printk(KERN_INFO "XENBUS: reconnect done on %s\n", be);
  256. kfree(be_watch.node);
  257. }
  258. static void xenbus_check_frontend(char *class, char *dev)
  259. {
  260. int be_state, fe_state, err;
  261. char *backend, *frontend;
  262. frontend = kasprintf(GFP_NOIO | __GFP_HIGH, "device/%s/%s", class, dev);
  263. if (!frontend)
  264. return;
  265. err = xenbus_scanf(XBT_NIL, frontend, "state", "%i", &fe_state);
  266. if (err != 1)
  267. goto out;
  268. switch (fe_state) {
  269. case XenbusStateConnected:
  270. case XenbusStateClosed:
  271. printk(KERN_DEBUG "XENBUS: frontend %s %s\n",
  272. frontend, xenbus_strstate(fe_state));
  273. backend = xenbus_read(XBT_NIL, frontend, "backend", NULL);
  274. if (!backend || IS_ERR(backend))
  275. goto out;
  276. err = xenbus_scanf(XBT_NIL, backend, "state", "%i", &be_state);
  277. if (err == 1)
  278. xenbus_reset_frontend(frontend, backend, be_state);
  279. kfree(backend);
  280. break;
  281. default:
  282. break;
  283. }
  284. out:
  285. kfree(frontend);
  286. }
  287. static void xenbus_reset_state(void)
  288. {
  289. char **devclass, **dev;
  290. int devclass_n, dev_n;
  291. int i, j;
  292. devclass = xenbus_directory(XBT_NIL, "device", "", &devclass_n);
  293. if (IS_ERR(devclass))
  294. return;
  295. for (i = 0; i < devclass_n; i++) {
  296. dev = xenbus_directory(XBT_NIL, "device", devclass[i], &dev_n);
  297. if (IS_ERR(dev))
  298. continue;
  299. for (j = 0; j < dev_n; j++)
  300. xenbus_check_frontend(devclass[i], dev[j]);
  301. kfree(dev);
  302. }
  303. kfree(devclass);
  304. }
  305. static int frontend_probe_and_watch(struct notifier_block *notifier,
  306. unsigned long event,
  307. void *data)
  308. {
  309. /* reset devices in Connected or Closed state */
  310. if (xen_hvm_domain())
  311. xenbus_reset_state();
  312. /* Enumerate devices in xenstore and watch for changes. */
  313. xenbus_probe_devices(&xenbus_frontend);
  314. register_xenbus_watch(&fe_watch);
  315. return NOTIFY_DONE;
  316. }
  317. static int __init xenbus_probe_frontend_init(void)
  318. {
  319. static struct notifier_block xenstore_notifier = {
  320. .notifier_call = frontend_probe_and_watch
  321. };
  322. int err;
  323. DPRINTK("");
  324. /* Register ourselves with the kernel bus subsystem */
  325. err = bus_register(&xenbus_frontend.bus);
  326. if (err)
  327. return err;
  328. register_xenstore_notifier(&xenstore_notifier);
  329. return 0;
  330. }
  331. subsys_initcall(xenbus_probe_frontend_init);
  332. #ifndef MODULE
  333. static int __init boot_wait_for_devices(void)
  334. {
  335. if (xen_hvm_domain() && !xen_platform_pci_unplug)
  336. return -ENODEV;
  337. ready_to_wait_for_devices = 1;
  338. wait_for_devices(NULL);
  339. return 0;
  340. }
  341. late_initcall(boot_wait_for_devices);
  342. #endif
  343. MODULE_LICENSE("GPL");