pch_udc.c 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003
  1. /*
  2. * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. */
  8. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9. #include <linux/kernel.h>
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/delay.h>
  13. #include <linux/errno.h>
  14. #include <linux/list.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/usb/ch9.h>
  17. #include <linux/usb/gadget.h>
  18. /* Address offset of Registers */
  19. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  20. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  21. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  22. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  23. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  24. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  25. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  26. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  27. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  28. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  29. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  30. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  31. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  32. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  33. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  34. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  35. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  36. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  37. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  38. /* Endpoint control register */
  39. /* Bit position */
  40. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  41. #define UDC_EPCTL_RRDY (1 << 9)
  42. #define UDC_EPCTL_CNAK (1 << 8)
  43. #define UDC_EPCTL_SNAK (1 << 7)
  44. #define UDC_EPCTL_NAK (1 << 6)
  45. #define UDC_EPCTL_P (1 << 3)
  46. #define UDC_EPCTL_F (1 << 1)
  47. #define UDC_EPCTL_S (1 << 0)
  48. #define UDC_EPCTL_ET_SHIFT 4
  49. /* Mask patern */
  50. #define UDC_EPCTL_ET_MASK 0x00000030
  51. /* Value for ET field */
  52. #define UDC_EPCTL_ET_CONTROL 0
  53. #define UDC_EPCTL_ET_ISO 1
  54. #define UDC_EPCTL_ET_BULK 2
  55. #define UDC_EPCTL_ET_INTERRUPT 3
  56. /* Endpoint status register */
  57. /* Bit position */
  58. #define UDC_EPSTS_XFERDONE (1 << 27)
  59. #define UDC_EPSTS_RSS (1 << 26)
  60. #define UDC_EPSTS_RCS (1 << 25)
  61. #define UDC_EPSTS_TXEMPTY (1 << 24)
  62. #define UDC_EPSTS_TDC (1 << 10)
  63. #define UDC_EPSTS_HE (1 << 9)
  64. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  65. #define UDC_EPSTS_BNA (1 << 7)
  66. #define UDC_EPSTS_IN (1 << 6)
  67. #define UDC_EPSTS_OUT_SHIFT 4
  68. /* Mask patern */
  69. #define UDC_EPSTS_OUT_MASK 0x00000030
  70. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  71. /* Value for OUT field */
  72. #define UDC_EPSTS_OUT_SETUP 2
  73. #define UDC_EPSTS_OUT_DATA 1
  74. /* Device configuration register */
  75. /* Bit position */
  76. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  77. #define UDC_DEVCFG_SP (1 << 3)
  78. /* SPD Valee */
  79. #define UDC_DEVCFG_SPD_HS 0x0
  80. #define UDC_DEVCFG_SPD_FS 0x1
  81. #define UDC_DEVCFG_SPD_LS 0x2
  82. /* Device control register */
  83. /* Bit position */
  84. #define UDC_DEVCTL_THLEN_SHIFT 24
  85. #define UDC_DEVCTL_BRLEN_SHIFT 16
  86. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  87. #define UDC_DEVCTL_SD (1 << 10)
  88. #define UDC_DEVCTL_MODE (1 << 9)
  89. #define UDC_DEVCTL_BREN (1 << 8)
  90. #define UDC_DEVCTL_THE (1 << 7)
  91. #define UDC_DEVCTL_DU (1 << 4)
  92. #define UDC_DEVCTL_TDE (1 << 3)
  93. #define UDC_DEVCTL_RDE (1 << 2)
  94. #define UDC_DEVCTL_RES (1 << 0)
  95. /* Device status register */
  96. /* Bit position */
  97. #define UDC_DEVSTS_TS_SHIFT 18
  98. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  99. #define UDC_DEVSTS_ALT_SHIFT 8
  100. #define UDC_DEVSTS_INTF_SHIFT 4
  101. #define UDC_DEVSTS_CFG_SHIFT 0
  102. /* Mask patern */
  103. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  104. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  105. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  106. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  107. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  108. /* value for maximum speed for SPEED field */
  109. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  110. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  111. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  112. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  113. /* Device irq register */
  114. /* Bit position */
  115. #define UDC_DEVINT_RWKP (1 << 7)
  116. #define UDC_DEVINT_ENUM (1 << 6)
  117. #define UDC_DEVINT_SOF (1 << 5)
  118. #define UDC_DEVINT_US (1 << 4)
  119. #define UDC_DEVINT_UR (1 << 3)
  120. #define UDC_DEVINT_ES (1 << 2)
  121. #define UDC_DEVINT_SI (1 << 1)
  122. #define UDC_DEVINT_SC (1 << 0)
  123. /* Mask patern */
  124. #define UDC_DEVINT_MSK 0x7f
  125. /* Endpoint irq register */
  126. /* Bit position */
  127. #define UDC_EPINT_IN_SHIFT 0
  128. #define UDC_EPINT_OUT_SHIFT 16
  129. #define UDC_EPINT_IN_EP0 (1 << 0)
  130. #define UDC_EPINT_OUT_EP0 (1 << 16)
  131. /* Mask patern */
  132. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  133. /* UDC_CSR_BUSY Status register */
  134. /* Bit position */
  135. #define UDC_CSR_BUSY (1 << 0)
  136. /* SOFT RESET register */
  137. /* Bit position */
  138. #define UDC_PSRST (1 << 1)
  139. #define UDC_SRST (1 << 0)
  140. /* USB_DEVICE endpoint register */
  141. /* Bit position */
  142. #define UDC_CSR_NE_NUM_SHIFT 0
  143. #define UDC_CSR_NE_DIR_SHIFT 4
  144. #define UDC_CSR_NE_TYPE_SHIFT 5
  145. #define UDC_CSR_NE_CFG_SHIFT 7
  146. #define UDC_CSR_NE_INTF_SHIFT 11
  147. #define UDC_CSR_NE_ALT_SHIFT 15
  148. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  149. /* Mask patern */
  150. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  151. #define UDC_CSR_NE_DIR_MASK 0x00000010
  152. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  153. #define UDC_CSR_NE_CFG_MASK 0x00000780
  154. #define UDC_CSR_NE_INTF_MASK 0x00007800
  155. #define UDC_CSR_NE_ALT_MASK 0x00078000
  156. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  157. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  158. #define PCH_UDC_EPINT(in, num)\
  159. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  160. /* Index of endpoint */
  161. #define UDC_EP0IN_IDX 0
  162. #define UDC_EP0OUT_IDX 1
  163. #define UDC_EPIN_IDX(ep) (ep * 2)
  164. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  165. #define PCH_UDC_EP0 0
  166. #define PCH_UDC_EP1 1
  167. #define PCH_UDC_EP2 2
  168. #define PCH_UDC_EP3 3
  169. /* Number of endpoint */
  170. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  171. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  172. /* Length Value */
  173. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  174. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  175. /* Value of EP Buffer Size */
  176. #define UDC_EP0IN_BUFF_SIZE 16
  177. #define UDC_EPIN_BUFF_SIZE 256
  178. #define UDC_EP0OUT_BUFF_SIZE 16
  179. #define UDC_EPOUT_BUFF_SIZE 256
  180. /* Value of EP maximum packet size */
  181. #define UDC_EP0IN_MAX_PKT_SIZE 64
  182. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  183. #define UDC_BULK_MAX_PKT_SIZE 512
  184. /* DMA */
  185. #define DMA_DIR_RX 1 /* DMA for data receive */
  186. #define DMA_DIR_TX 2 /* DMA for data transmit */
  187. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  188. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  189. /**
  190. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  191. * for data
  192. * @status: Status quadlet
  193. * @reserved: Reserved
  194. * @dataptr: Buffer descriptor
  195. * @next: Next descriptor
  196. */
  197. struct pch_udc_data_dma_desc {
  198. u32 status;
  199. u32 reserved;
  200. u32 dataptr;
  201. u32 next;
  202. };
  203. /**
  204. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  205. * for control data
  206. * @status: Status
  207. * @reserved: Reserved
  208. * @data12: First setup word
  209. * @data34: Second setup word
  210. */
  211. struct pch_udc_stp_dma_desc {
  212. u32 status;
  213. u32 reserved;
  214. struct usb_ctrlrequest request;
  215. } __attribute((packed));
  216. /* DMA status definitions */
  217. /* Buffer status */
  218. #define PCH_UDC_BUFF_STS 0xC0000000
  219. #define PCH_UDC_BS_HST_RDY 0x00000000
  220. #define PCH_UDC_BS_DMA_BSY 0x40000000
  221. #define PCH_UDC_BS_DMA_DONE 0x80000000
  222. #define PCH_UDC_BS_HST_BSY 0xC0000000
  223. /* Rx/Tx Status */
  224. #define PCH_UDC_RXTX_STS 0x30000000
  225. #define PCH_UDC_RTS_SUCC 0x00000000
  226. #define PCH_UDC_RTS_DESERR 0x10000000
  227. #define PCH_UDC_RTS_BUFERR 0x30000000
  228. /* Last Descriptor Indication */
  229. #define PCH_UDC_DMA_LAST 0x08000000
  230. /* Number of Rx/Tx Bytes Mask */
  231. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  232. /**
  233. * struct pch_udc_cfg_data - Structure to hold current configuration
  234. * and interface information
  235. * @cur_cfg: current configuration in use
  236. * @cur_intf: current interface in use
  237. * @cur_alt: current alt interface in use
  238. */
  239. struct pch_udc_cfg_data {
  240. u16 cur_cfg;
  241. u16 cur_intf;
  242. u16 cur_alt;
  243. };
  244. /**
  245. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  246. * @ep: embedded ep request
  247. * @td_stp_phys: for setup request
  248. * @td_data_phys: for data request
  249. * @td_stp: for setup request
  250. * @td_data: for data request
  251. * @dev: reference to device struct
  252. * @offset_addr: offset address of ep register
  253. * @desc: for this ep
  254. * @queue: queue for requests
  255. * @num: endpoint number
  256. * @in: endpoint is IN
  257. * @halted: endpoint halted?
  258. * @epsts: Endpoint status
  259. */
  260. struct pch_udc_ep {
  261. struct usb_ep ep;
  262. dma_addr_t td_stp_phys;
  263. dma_addr_t td_data_phys;
  264. struct pch_udc_stp_dma_desc *td_stp;
  265. struct pch_udc_data_dma_desc *td_data;
  266. struct pch_udc_dev *dev;
  267. unsigned long offset_addr;
  268. const struct usb_endpoint_descriptor *desc;
  269. struct list_head queue;
  270. unsigned num:5,
  271. in:1,
  272. halted:1;
  273. unsigned long epsts;
  274. };
  275. /**
  276. * struct pch_udc_dev - Structure holding complete information
  277. * of the PCH USB device
  278. * @gadget: gadget driver data
  279. * @driver: reference to gadget driver bound
  280. * @pdev: reference to the PCI device
  281. * @ep: array of endpoints
  282. * @lock: protects all state
  283. * @active: enabled the PCI device
  284. * @stall: stall requested
  285. * @prot_stall: protcol stall requested
  286. * @irq_registered: irq registered with system
  287. * @mem_region: device memory mapped
  288. * @registered: driver regsitered with system
  289. * @suspended: driver in suspended state
  290. * @connected: gadget driver associated
  291. * @set_cfg_not_acked: pending acknowledgement 4 setup
  292. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  293. * @data_requests: DMA pool for data requests
  294. * @stp_requests: DMA pool for setup requests
  295. * @dma_addr: DMA pool for received
  296. * @ep0out_buf: Buffer for DMA
  297. * @setup_data: Received setup data
  298. * @phys_addr: of device memory
  299. * @base_addr: for mapped device memory
  300. * @irq: IRQ line for the device
  301. * @cfg_data: current cfg, intf, and alt in use
  302. */
  303. struct pch_udc_dev {
  304. struct usb_gadget gadget;
  305. struct usb_gadget_driver *driver;
  306. struct pci_dev *pdev;
  307. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  308. spinlock_t lock; /* protects all state */
  309. unsigned active:1,
  310. stall:1,
  311. prot_stall:1,
  312. irq_registered:1,
  313. mem_region:1,
  314. registered:1,
  315. suspended:1,
  316. connected:1,
  317. set_cfg_not_acked:1,
  318. waiting_zlp_ack:1;
  319. struct pci_pool *data_requests;
  320. struct pci_pool *stp_requests;
  321. dma_addr_t dma_addr;
  322. void *ep0out_buf;
  323. struct usb_ctrlrequest setup_data;
  324. unsigned long phys_addr;
  325. void __iomem *base_addr;
  326. unsigned irq;
  327. struct pch_udc_cfg_data cfg_data;
  328. };
  329. #define PCH_UDC_PCI_BAR 1
  330. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  331. #define PCI_VENDOR_ID_ROHM 0x10DB
  332. #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
  333. static const char ep0_string[] = "ep0in";
  334. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  335. struct pch_udc_dev *pch_udc; /* pointer to device object */
  336. static int speed_fs;
  337. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  338. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  339. /**
  340. * struct pch_udc_request - Structure holding a PCH USB device request packet
  341. * @req: embedded ep request
  342. * @td_data_phys: phys. address
  343. * @td_data: first dma desc. of chain
  344. * @td_data_last: last dma desc. of chain
  345. * @queue: associated queue
  346. * @dma_going: DMA in progress for request
  347. * @dma_mapped: DMA memory mapped for request
  348. * @dma_done: DMA completed for request
  349. * @chain_len: chain length
  350. * @buf: Buffer memory for align adjustment
  351. * @dma: DMA memory for align adjustment
  352. */
  353. struct pch_udc_request {
  354. struct usb_request req;
  355. dma_addr_t td_data_phys;
  356. struct pch_udc_data_dma_desc *td_data;
  357. struct pch_udc_data_dma_desc *td_data_last;
  358. struct list_head queue;
  359. unsigned dma_going:1,
  360. dma_mapped:1,
  361. dma_done:1;
  362. unsigned chain_len;
  363. void *buf;
  364. dma_addr_t dma;
  365. };
  366. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  367. {
  368. return ioread32(dev->base_addr + reg);
  369. }
  370. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  371. unsigned long val, unsigned long reg)
  372. {
  373. iowrite32(val, dev->base_addr + reg);
  374. }
  375. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  376. unsigned long reg,
  377. unsigned long bitmask)
  378. {
  379. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  380. }
  381. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  382. unsigned long reg,
  383. unsigned long bitmask)
  384. {
  385. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  386. }
  387. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  388. {
  389. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  390. }
  391. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  392. unsigned long val, unsigned long reg)
  393. {
  394. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  395. }
  396. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  397. unsigned long reg,
  398. unsigned long bitmask)
  399. {
  400. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  401. }
  402. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  403. unsigned long reg,
  404. unsigned long bitmask)
  405. {
  406. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  407. }
  408. /**
  409. * pch_udc_csr_busy() - Wait till idle.
  410. * @dev: Reference to pch_udc_dev structure
  411. */
  412. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  413. {
  414. unsigned int count = 200;
  415. /* Wait till idle */
  416. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  417. && --count)
  418. cpu_relax();
  419. if (!count)
  420. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  421. }
  422. /**
  423. * pch_udc_write_csr() - Write the command and status registers.
  424. * @dev: Reference to pch_udc_dev structure
  425. * @val: value to be written to CSR register
  426. * @addr: address of CSR register
  427. */
  428. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  429. unsigned int ep)
  430. {
  431. unsigned long reg = PCH_UDC_CSR(ep);
  432. pch_udc_csr_busy(dev); /* Wait till idle */
  433. pch_udc_writel(dev, val, reg);
  434. pch_udc_csr_busy(dev); /* Wait till idle */
  435. }
  436. /**
  437. * pch_udc_read_csr() - Read the command and status registers.
  438. * @dev: Reference to pch_udc_dev structure
  439. * @addr: address of CSR register
  440. *
  441. * Return codes: content of CSR register
  442. */
  443. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  444. {
  445. unsigned long reg = PCH_UDC_CSR(ep);
  446. pch_udc_csr_busy(dev); /* Wait till idle */
  447. pch_udc_readl(dev, reg); /* Dummy read */
  448. pch_udc_csr_busy(dev); /* Wait till idle */
  449. return pch_udc_readl(dev, reg);
  450. }
  451. /**
  452. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  453. * @dev: Reference to pch_udc_dev structure
  454. */
  455. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  456. {
  457. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  458. mdelay(1);
  459. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  460. }
  461. /**
  462. * pch_udc_get_frame() - Get the current frame from device status register
  463. * @dev: Reference to pch_udc_dev structure
  464. * Retern current frame
  465. */
  466. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  467. {
  468. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  469. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  470. }
  471. /**
  472. * pch_udc_clear_selfpowered() - Clear the self power control
  473. * @dev: Reference to pch_udc_regs structure
  474. */
  475. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  476. {
  477. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  478. }
  479. /**
  480. * pch_udc_set_selfpowered() - Set the self power control
  481. * @dev: Reference to pch_udc_regs structure
  482. */
  483. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  484. {
  485. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  486. }
  487. /**
  488. * pch_udc_set_disconnect() - Set the disconnect status.
  489. * @dev: Reference to pch_udc_regs structure
  490. */
  491. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  492. {
  493. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  494. }
  495. /**
  496. * pch_udc_clear_disconnect() - Clear the disconnect status.
  497. * @dev: Reference to pch_udc_regs structure
  498. */
  499. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  500. {
  501. /* Clear the disconnect */
  502. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  503. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  504. mdelay(1);
  505. /* Resume USB signalling */
  506. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  507. }
  508. /**
  509. * pch_udc_vbus_session() - set or clearr the disconnect status.
  510. * @dev: Reference to pch_udc_regs structure
  511. * @is_active: Parameter specifying the action
  512. * 0: indicating VBUS power is ending
  513. * !0: indicating VBUS power is starting
  514. */
  515. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  516. int is_active)
  517. {
  518. if (is_active)
  519. pch_udc_clear_disconnect(dev);
  520. else
  521. pch_udc_set_disconnect(dev);
  522. }
  523. /**
  524. * pch_udc_ep_set_stall() - Set the stall of endpoint
  525. * @ep: Reference to structure of type pch_udc_ep_regs
  526. */
  527. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  528. {
  529. if (ep->in) {
  530. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  531. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  532. } else {
  533. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  534. }
  535. }
  536. /**
  537. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  538. * @ep: Reference to structure of type pch_udc_ep_regs
  539. */
  540. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  541. {
  542. /* Clear the stall */
  543. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  544. /* Clear NAK by writing CNAK */
  545. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  546. }
  547. /**
  548. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  549. * @ep: Reference to structure of type pch_udc_ep_regs
  550. * @type: Type of endpoint
  551. */
  552. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  553. u8 type)
  554. {
  555. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  556. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  557. }
  558. /**
  559. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  560. * @ep: Reference to structure of type pch_udc_ep_regs
  561. * @buf_size: The buffer word size
  562. */
  563. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  564. u32 buf_size, u32 ep_in)
  565. {
  566. u32 data;
  567. if (ep_in) {
  568. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  569. data = (data & 0xffff0000) | (buf_size & 0xffff);
  570. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  571. } else {
  572. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  573. data = (buf_size << 16) | (data & 0xffff);
  574. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  575. }
  576. }
  577. /**
  578. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  579. * @ep: Reference to structure of type pch_udc_ep_regs
  580. * @pkt_size: The packet byte size
  581. */
  582. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  583. {
  584. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  585. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  586. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  587. }
  588. /**
  589. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  590. * @ep: Reference to structure of type pch_udc_ep_regs
  591. * @addr: Address of the register
  592. */
  593. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  594. {
  595. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  596. }
  597. /**
  598. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  599. * @ep: Reference to structure of type pch_udc_ep_regs
  600. * @addr: Address of the register
  601. */
  602. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  603. {
  604. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  605. }
  606. /**
  607. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  608. * @ep: Reference to structure of type pch_udc_ep_regs
  609. */
  610. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  611. {
  612. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  613. }
  614. /**
  615. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  616. * @ep: Reference to structure of type pch_udc_ep_regs
  617. */
  618. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  619. {
  620. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  621. }
  622. /**
  623. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  624. * @ep: Reference to structure of type pch_udc_ep_regs
  625. */
  626. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  627. {
  628. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  629. }
  630. /**
  631. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  632. * register depending on the direction specified
  633. * @dev: Reference to structure of type pch_udc_regs
  634. * @dir: whether Tx or Rx
  635. * DMA_DIR_RX: Receive
  636. * DMA_DIR_TX: Transmit
  637. */
  638. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  639. {
  640. if (dir == DMA_DIR_RX)
  641. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  642. else if (dir == DMA_DIR_TX)
  643. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  644. }
  645. /**
  646. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  647. * register depending on the direction specified
  648. * @dev: Reference to structure of type pch_udc_regs
  649. * @dir: Whether Tx or Rx
  650. * DMA_DIR_RX: Receive
  651. * DMA_DIR_TX: Transmit
  652. */
  653. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  654. {
  655. if (dir == DMA_DIR_RX)
  656. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  657. else if (dir == DMA_DIR_TX)
  658. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  659. }
  660. /**
  661. * pch_udc_set_csr_done() - Set the device control register
  662. * CSR done field (bit 13)
  663. * @dev: reference to structure of type pch_udc_regs
  664. */
  665. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  666. {
  667. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  668. }
  669. /**
  670. * pch_udc_disable_interrupts() - Disables the specified interrupts
  671. * @dev: Reference to structure of type pch_udc_regs
  672. * @mask: Mask to disable interrupts
  673. */
  674. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  675. u32 mask)
  676. {
  677. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  678. }
  679. /**
  680. * pch_udc_enable_interrupts() - Enable the specified interrupts
  681. * @dev: Reference to structure of type pch_udc_regs
  682. * @mask: Mask to enable interrupts
  683. */
  684. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  685. u32 mask)
  686. {
  687. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  688. }
  689. /**
  690. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  691. * @dev: Reference to structure of type pch_udc_regs
  692. * @mask: Mask to disable interrupts
  693. */
  694. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  695. u32 mask)
  696. {
  697. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  698. }
  699. /**
  700. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  701. * @dev: Reference to structure of type pch_udc_regs
  702. * @mask: Mask to enable interrupts
  703. */
  704. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  705. u32 mask)
  706. {
  707. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  708. }
  709. /**
  710. * pch_udc_read_device_interrupts() - Read the device interrupts
  711. * @dev: Reference to structure of type pch_udc_regs
  712. * Retern The device interrupts
  713. */
  714. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  715. {
  716. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  717. }
  718. /**
  719. * pch_udc_write_device_interrupts() - Write device interrupts
  720. * @dev: Reference to structure of type pch_udc_regs
  721. * @val: The value to be written to interrupt register
  722. */
  723. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  724. u32 val)
  725. {
  726. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  727. }
  728. /**
  729. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  730. * @dev: Reference to structure of type pch_udc_regs
  731. * Retern The endpoint interrupt
  732. */
  733. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  734. {
  735. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  736. }
  737. /**
  738. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  739. * @dev: Reference to structure of type pch_udc_regs
  740. * @val: The value to be written to interrupt register
  741. */
  742. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  743. u32 val)
  744. {
  745. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  746. }
  747. /**
  748. * pch_udc_read_device_status() - Read the device status
  749. * @dev: Reference to structure of type pch_udc_regs
  750. * Retern The device status
  751. */
  752. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  753. {
  754. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  755. }
  756. /**
  757. * pch_udc_read_ep_control() - Read the endpoint control
  758. * @ep: Reference to structure of type pch_udc_ep_regs
  759. * Retern The endpoint control register value
  760. */
  761. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  762. {
  763. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  764. }
  765. /**
  766. * pch_udc_clear_ep_control() - Clear the endpoint control register
  767. * @ep: Reference to structure of type pch_udc_ep_regs
  768. * Retern The endpoint control register value
  769. */
  770. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  771. {
  772. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  773. }
  774. /**
  775. * pch_udc_read_ep_status() - Read the endpoint status
  776. * @ep: Reference to structure of type pch_udc_ep_regs
  777. * Retern The endpoint status
  778. */
  779. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  780. {
  781. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  782. }
  783. /**
  784. * pch_udc_clear_ep_status() - Clear the endpoint status
  785. * @ep: Reference to structure of type pch_udc_ep_regs
  786. * @stat: Endpoint status
  787. */
  788. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  789. u32 stat)
  790. {
  791. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  792. }
  793. /**
  794. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  795. * of the endpoint control register
  796. * @ep: Reference to structure of type pch_udc_ep_regs
  797. */
  798. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  799. {
  800. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  801. }
  802. /**
  803. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  804. * of the endpoint control register
  805. * @ep: reference to structure of type pch_udc_ep_regs
  806. */
  807. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  808. {
  809. unsigned int loopcnt = 0;
  810. struct pch_udc_dev *dev = ep->dev;
  811. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  812. return;
  813. if (!ep->in) {
  814. loopcnt = 10000;
  815. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  816. --loopcnt)
  817. udelay(5);
  818. if (!loopcnt)
  819. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  820. __func__);
  821. }
  822. loopcnt = 10000;
  823. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  824. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  825. udelay(5);
  826. }
  827. if (!loopcnt)
  828. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  829. __func__, ep->num, (ep->in ? "in" : "out"));
  830. }
  831. /**
  832. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  833. * @ep: reference to structure of type pch_udc_ep_regs
  834. * @dir: direction of endpoint
  835. * 0: endpoint is OUT
  836. * !0: endpoint is IN
  837. */
  838. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  839. {
  840. if (dir) { /* IN ep */
  841. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  842. return;
  843. }
  844. }
  845. /**
  846. * pch_udc_ep_enable() - This api enables endpoint
  847. * @regs: Reference to structure pch_udc_ep_regs
  848. * @desc: endpoint descriptor
  849. */
  850. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  851. struct pch_udc_cfg_data *cfg,
  852. const struct usb_endpoint_descriptor *desc)
  853. {
  854. u32 val = 0;
  855. u32 buff_size = 0;
  856. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  857. if (ep->in)
  858. buff_size = UDC_EPIN_BUFF_SIZE;
  859. else
  860. buff_size = UDC_EPOUT_BUFF_SIZE;
  861. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  862. pch_udc_ep_set_maxpkt(ep, usb_endpoint_maxp(desc));
  863. pch_udc_ep_set_nak(ep);
  864. pch_udc_ep_fifo_flush(ep, ep->in);
  865. /* Configure the endpoint */
  866. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  867. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  868. UDC_CSR_NE_TYPE_SHIFT) |
  869. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  870. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  871. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  872. usb_endpoint_maxp(desc) << UDC_CSR_NE_MAX_PKT_SHIFT;
  873. if (ep->in)
  874. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  875. else
  876. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  877. }
  878. /**
  879. * pch_udc_ep_disable() - This api disables endpoint
  880. * @regs: Reference to structure pch_udc_ep_regs
  881. */
  882. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  883. {
  884. if (ep->in) {
  885. /* flush the fifo */
  886. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  887. /* set NAK */
  888. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  889. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  890. } else {
  891. /* set NAK */
  892. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  893. }
  894. /* reset desc pointer */
  895. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  896. }
  897. /**
  898. * pch_udc_wait_ep_stall() - Wait EP stall.
  899. * @dev: Reference to pch_udc_dev structure
  900. */
  901. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  902. {
  903. unsigned int count = 10000;
  904. /* Wait till idle */
  905. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  906. udelay(5);
  907. if (!count)
  908. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  909. }
  910. /**
  911. * pch_udc_init() - This API initializes usb device controller
  912. * @dev: Rreference to pch_udc_regs structure
  913. */
  914. static void pch_udc_init(struct pch_udc_dev *dev)
  915. {
  916. if (NULL == dev) {
  917. pr_err("%s: Invalid address\n", __func__);
  918. return;
  919. }
  920. /* Soft Reset and Reset PHY */
  921. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  922. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  923. mdelay(1);
  924. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  925. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  926. mdelay(1);
  927. /* mask and clear all device interrupts */
  928. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  929. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  930. /* mask and clear all ep interrupts */
  931. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  932. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  933. /* enable dynamic CSR programmingi, self powered and device speed */
  934. if (speed_fs)
  935. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  936. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  937. else /* defaul high speed */
  938. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  939. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  940. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  941. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  942. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  943. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  944. UDC_DEVCTL_THE);
  945. }
  946. /**
  947. * pch_udc_exit() - This API exit usb device controller
  948. * @dev: Reference to pch_udc_regs structure
  949. */
  950. static void pch_udc_exit(struct pch_udc_dev *dev)
  951. {
  952. /* mask all device interrupts */
  953. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  954. /* mask all ep interrupts */
  955. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  956. /* put device in disconnected state */
  957. pch_udc_set_disconnect(dev);
  958. }
  959. /**
  960. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  961. * @gadget: Reference to the gadget driver
  962. *
  963. * Return codes:
  964. * 0: Success
  965. * -EINVAL: If the gadget passed is NULL
  966. */
  967. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  968. {
  969. struct pch_udc_dev *dev;
  970. if (!gadget)
  971. return -EINVAL;
  972. dev = container_of(gadget, struct pch_udc_dev, gadget);
  973. return pch_udc_get_frame(dev);
  974. }
  975. /**
  976. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  977. * @gadget: Reference to the gadget driver
  978. *
  979. * Return codes:
  980. * 0: Success
  981. * -EINVAL: If the gadget passed is NULL
  982. */
  983. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  984. {
  985. struct pch_udc_dev *dev;
  986. unsigned long flags;
  987. if (!gadget)
  988. return -EINVAL;
  989. dev = container_of(gadget, struct pch_udc_dev, gadget);
  990. spin_lock_irqsave(&dev->lock, flags);
  991. pch_udc_rmt_wakeup(dev);
  992. spin_unlock_irqrestore(&dev->lock, flags);
  993. return 0;
  994. }
  995. /**
  996. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  997. * is self powered or not
  998. * @gadget: Reference to the gadget driver
  999. * @value: Specifies self powered or not
  1000. *
  1001. * Return codes:
  1002. * 0: Success
  1003. * -EINVAL: If the gadget passed is NULL
  1004. */
  1005. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1006. {
  1007. struct pch_udc_dev *dev;
  1008. if (!gadget)
  1009. return -EINVAL;
  1010. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1011. if (value)
  1012. pch_udc_set_selfpowered(dev);
  1013. else
  1014. pch_udc_clear_selfpowered(dev);
  1015. return 0;
  1016. }
  1017. /**
  1018. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1019. * visible/invisible to the host
  1020. * @gadget: Reference to the gadget driver
  1021. * @is_on: Specifies whether the pull up is made active or inactive
  1022. *
  1023. * Return codes:
  1024. * 0: Success
  1025. * -EINVAL: If the gadget passed is NULL
  1026. */
  1027. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1028. {
  1029. struct pch_udc_dev *dev;
  1030. if (!gadget)
  1031. return -EINVAL;
  1032. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1033. pch_udc_vbus_session(dev, is_on);
  1034. return 0;
  1035. }
  1036. /**
  1037. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1038. * transceiver (or GPIO) that
  1039. * detects a VBUS power session starting/ending
  1040. * @gadget: Reference to the gadget driver
  1041. * @is_active: specifies whether the session is starting or ending
  1042. *
  1043. * Return codes:
  1044. * 0: Success
  1045. * -EINVAL: If the gadget passed is NULL
  1046. */
  1047. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1048. {
  1049. struct pch_udc_dev *dev;
  1050. if (!gadget)
  1051. return -EINVAL;
  1052. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1053. pch_udc_vbus_session(dev, is_active);
  1054. return 0;
  1055. }
  1056. /**
  1057. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1058. * SET_CONFIGURATION calls to
  1059. * specify how much power the device can consume
  1060. * @gadget: Reference to the gadget driver
  1061. * @mA: specifies the current limit in 2mA unit
  1062. *
  1063. * Return codes:
  1064. * -EINVAL: If the gadget passed is NULL
  1065. * -EOPNOTSUPP:
  1066. */
  1067. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1068. {
  1069. return -EOPNOTSUPP;
  1070. }
  1071. static int pch_udc_start(struct usb_gadget_driver *driver,
  1072. int (*bind)(struct usb_gadget *));
  1073. static int pch_udc_stop(struct usb_gadget_driver *driver);
  1074. static const struct usb_gadget_ops pch_udc_ops = {
  1075. .get_frame = pch_udc_pcd_get_frame,
  1076. .wakeup = pch_udc_pcd_wakeup,
  1077. .set_selfpowered = pch_udc_pcd_selfpowered,
  1078. .pullup = pch_udc_pcd_pullup,
  1079. .vbus_session = pch_udc_pcd_vbus_session,
  1080. .vbus_draw = pch_udc_pcd_vbus_draw,
  1081. .start = pch_udc_start,
  1082. .stop = pch_udc_stop,
  1083. };
  1084. /**
  1085. * complete_req() - This API is invoked from the driver when processing
  1086. * of a request is complete
  1087. * @ep: Reference to the endpoint structure
  1088. * @req: Reference to the request structure
  1089. * @status: Indicates the success/failure of completion
  1090. */
  1091. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1092. int status)
  1093. {
  1094. struct pch_udc_dev *dev;
  1095. unsigned halted = ep->halted;
  1096. list_del_init(&req->queue);
  1097. /* set new status if pending */
  1098. if (req->req.status == -EINPROGRESS)
  1099. req->req.status = status;
  1100. else
  1101. status = req->req.status;
  1102. dev = ep->dev;
  1103. if (req->dma_mapped) {
  1104. if (req->dma == DMA_ADDR_INVALID) {
  1105. if (ep->in)
  1106. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1107. req->req.length,
  1108. DMA_TO_DEVICE);
  1109. else
  1110. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1111. req->req.length,
  1112. DMA_FROM_DEVICE);
  1113. req->req.dma = DMA_ADDR_INVALID;
  1114. } else {
  1115. if (ep->in)
  1116. dma_unmap_single(&dev->pdev->dev, req->dma,
  1117. req->req.length,
  1118. DMA_TO_DEVICE);
  1119. else {
  1120. dma_unmap_single(&dev->pdev->dev, req->dma,
  1121. req->req.length,
  1122. DMA_FROM_DEVICE);
  1123. memcpy(req->req.buf, req->buf, req->req.length);
  1124. }
  1125. kfree(req->buf);
  1126. req->dma = DMA_ADDR_INVALID;
  1127. }
  1128. req->dma_mapped = 0;
  1129. }
  1130. ep->halted = 1;
  1131. spin_unlock(&dev->lock);
  1132. if (!ep->in)
  1133. pch_udc_ep_clear_rrdy(ep);
  1134. req->req.complete(&ep->ep, &req->req);
  1135. spin_lock(&dev->lock);
  1136. ep->halted = halted;
  1137. }
  1138. /**
  1139. * empty_req_queue() - This API empties the request queue of an endpoint
  1140. * @ep: Reference to the endpoint structure
  1141. */
  1142. static void empty_req_queue(struct pch_udc_ep *ep)
  1143. {
  1144. struct pch_udc_request *req;
  1145. ep->halted = 1;
  1146. while (!list_empty(&ep->queue)) {
  1147. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1148. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1149. }
  1150. }
  1151. /**
  1152. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1153. * for the request
  1154. * @dev Reference to the driver structure
  1155. * @req Reference to the request to be freed
  1156. *
  1157. * Return codes:
  1158. * 0: Success
  1159. */
  1160. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1161. struct pch_udc_request *req)
  1162. {
  1163. struct pch_udc_data_dma_desc *td = req->td_data;
  1164. unsigned i = req->chain_len;
  1165. dma_addr_t addr2;
  1166. dma_addr_t addr = (dma_addr_t)td->next;
  1167. td->next = 0x00;
  1168. for (; i > 1; --i) {
  1169. /* do not free first desc., will be done by free for request */
  1170. td = phys_to_virt(addr);
  1171. addr2 = (dma_addr_t)td->next;
  1172. pci_pool_free(dev->data_requests, td, addr);
  1173. td->next = 0x00;
  1174. addr = addr2;
  1175. }
  1176. req->chain_len = 1;
  1177. }
  1178. /**
  1179. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1180. * a DMA chain
  1181. * @ep: Reference to the endpoint structure
  1182. * @req: Reference to the request
  1183. * @buf_len: The buffer length
  1184. * @gfp_flags: Flags to be used while mapping the data buffer
  1185. *
  1186. * Return codes:
  1187. * 0: success,
  1188. * -ENOMEM: pci_pool_alloc invocation fails
  1189. */
  1190. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1191. struct pch_udc_request *req,
  1192. unsigned long buf_len,
  1193. gfp_t gfp_flags)
  1194. {
  1195. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1196. unsigned long bytes = req->req.length, i = 0;
  1197. dma_addr_t dma_addr;
  1198. unsigned len = 1;
  1199. if (req->chain_len > 1)
  1200. pch_udc_free_dma_chain(ep->dev, req);
  1201. if (req->dma == DMA_ADDR_INVALID)
  1202. td->dataptr = req->req.dma;
  1203. else
  1204. td->dataptr = req->dma;
  1205. td->status = PCH_UDC_BS_HST_BSY;
  1206. for (; ; bytes -= buf_len, ++len) {
  1207. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1208. if (bytes <= buf_len)
  1209. break;
  1210. last = td;
  1211. td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
  1212. &dma_addr);
  1213. if (!td)
  1214. goto nomem;
  1215. i += buf_len;
  1216. td->dataptr = req->td_data->dataptr + i;
  1217. last->next = dma_addr;
  1218. }
  1219. req->td_data_last = td;
  1220. td->status |= PCH_UDC_DMA_LAST;
  1221. td->next = req->td_data_phys;
  1222. req->chain_len = len;
  1223. return 0;
  1224. nomem:
  1225. if (len > 1) {
  1226. req->chain_len = len;
  1227. pch_udc_free_dma_chain(ep->dev, req);
  1228. }
  1229. req->chain_len = 1;
  1230. return -ENOMEM;
  1231. }
  1232. /**
  1233. * prepare_dma() - This function creates and initializes the DMA chain
  1234. * for the request
  1235. * @ep: Reference to the endpoint structure
  1236. * @req: Reference to the request
  1237. * @gfp: Flag to be used while mapping the data buffer
  1238. *
  1239. * Return codes:
  1240. * 0: Success
  1241. * Other 0: linux error number on failure
  1242. */
  1243. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1244. gfp_t gfp)
  1245. {
  1246. int retval;
  1247. /* Allocate and create a DMA chain */
  1248. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1249. if (retval) {
  1250. pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
  1251. return retval;
  1252. }
  1253. if (ep->in)
  1254. req->td_data->status = (req->td_data->status &
  1255. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
  1256. return 0;
  1257. }
  1258. /**
  1259. * process_zlp() - This function process zero length packets
  1260. * from the gadget driver
  1261. * @ep: Reference to the endpoint structure
  1262. * @req: Reference to the request
  1263. */
  1264. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1265. {
  1266. struct pch_udc_dev *dev = ep->dev;
  1267. /* IN zlp's are handled by hardware */
  1268. complete_req(ep, req, 0);
  1269. /* if set_config or set_intf is waiting for ack by zlp
  1270. * then set CSR_DONE
  1271. */
  1272. if (dev->set_cfg_not_acked) {
  1273. pch_udc_set_csr_done(dev);
  1274. dev->set_cfg_not_acked = 0;
  1275. }
  1276. /* setup command is ACK'ed now by zlp */
  1277. if (!dev->stall && dev->waiting_zlp_ack) {
  1278. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1279. dev->waiting_zlp_ack = 0;
  1280. }
  1281. }
  1282. /**
  1283. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1284. * @ep: Reference to the endpoint structure
  1285. * @req: Reference to the request structure
  1286. */
  1287. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1288. struct pch_udc_request *req)
  1289. {
  1290. struct pch_udc_data_dma_desc *td_data;
  1291. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1292. td_data = req->td_data;
  1293. /* Set the status bits for all descriptors */
  1294. while (1) {
  1295. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1296. PCH_UDC_BS_HST_RDY;
  1297. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1298. break;
  1299. td_data = phys_to_virt(td_data->next);
  1300. }
  1301. /* Write the descriptor pointer */
  1302. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1303. req->dma_going = 1;
  1304. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1305. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1306. pch_udc_ep_clear_nak(ep);
  1307. pch_udc_ep_set_rrdy(ep);
  1308. }
  1309. /**
  1310. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1311. * from gadget driver
  1312. * @usbep: Reference to the USB endpoint structure
  1313. * @desc: Reference to the USB endpoint descriptor structure
  1314. *
  1315. * Return codes:
  1316. * 0: Success
  1317. * -EINVAL:
  1318. * -ESHUTDOWN:
  1319. */
  1320. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1321. const struct usb_endpoint_descriptor *desc)
  1322. {
  1323. struct pch_udc_ep *ep;
  1324. struct pch_udc_dev *dev;
  1325. unsigned long iflags;
  1326. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1327. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1328. return -EINVAL;
  1329. ep = container_of(usbep, struct pch_udc_ep, ep);
  1330. dev = ep->dev;
  1331. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1332. return -ESHUTDOWN;
  1333. spin_lock_irqsave(&dev->lock, iflags);
  1334. ep->desc = desc;
  1335. ep->halted = 0;
  1336. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1337. ep->ep.maxpacket = usb_endpoint_maxp(desc);
  1338. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1339. spin_unlock_irqrestore(&dev->lock, iflags);
  1340. return 0;
  1341. }
  1342. /**
  1343. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1344. * from gadget driver
  1345. * @usbep Reference to the USB endpoint structure
  1346. *
  1347. * Return codes:
  1348. * 0: Success
  1349. * -EINVAL:
  1350. */
  1351. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1352. {
  1353. struct pch_udc_ep *ep;
  1354. struct pch_udc_dev *dev;
  1355. unsigned long iflags;
  1356. if (!usbep)
  1357. return -EINVAL;
  1358. ep = container_of(usbep, struct pch_udc_ep, ep);
  1359. dev = ep->dev;
  1360. if ((usbep->name == ep0_string) || !ep->desc)
  1361. return -EINVAL;
  1362. spin_lock_irqsave(&ep->dev->lock, iflags);
  1363. empty_req_queue(ep);
  1364. ep->halted = 1;
  1365. pch_udc_ep_disable(ep);
  1366. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1367. ep->desc = NULL;
  1368. INIT_LIST_HEAD(&ep->queue);
  1369. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1370. return 0;
  1371. }
  1372. /**
  1373. * pch_udc_alloc_request() - This function allocates request structure.
  1374. * It is called by gadget driver
  1375. * @usbep: Reference to the USB endpoint structure
  1376. * @gfp: Flag to be used while allocating memory
  1377. *
  1378. * Return codes:
  1379. * NULL: Failure
  1380. * Allocated address: Success
  1381. */
  1382. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1383. gfp_t gfp)
  1384. {
  1385. struct pch_udc_request *req;
  1386. struct pch_udc_ep *ep;
  1387. struct pch_udc_data_dma_desc *dma_desc;
  1388. struct pch_udc_dev *dev;
  1389. if (!usbep)
  1390. return NULL;
  1391. ep = container_of(usbep, struct pch_udc_ep, ep);
  1392. dev = ep->dev;
  1393. req = kzalloc(sizeof *req, gfp);
  1394. if (!req)
  1395. return NULL;
  1396. req->req.dma = DMA_ADDR_INVALID;
  1397. req->dma = DMA_ADDR_INVALID;
  1398. INIT_LIST_HEAD(&req->queue);
  1399. if (!ep->dev->dma_addr)
  1400. return &req->req;
  1401. /* ep0 in requests are allocated from data pool here */
  1402. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  1403. &req->td_data_phys);
  1404. if (NULL == dma_desc) {
  1405. kfree(req);
  1406. return NULL;
  1407. }
  1408. /* prevent from using desc. - set HOST BUSY */
  1409. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1410. dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
  1411. req->td_data = dma_desc;
  1412. req->td_data_last = dma_desc;
  1413. req->chain_len = 1;
  1414. return &req->req;
  1415. }
  1416. /**
  1417. * pch_udc_free_request() - This function frees request structure.
  1418. * It is called by gadget driver
  1419. * @usbep: Reference to the USB endpoint structure
  1420. * @usbreq: Reference to the USB request
  1421. */
  1422. static void pch_udc_free_request(struct usb_ep *usbep,
  1423. struct usb_request *usbreq)
  1424. {
  1425. struct pch_udc_ep *ep;
  1426. struct pch_udc_request *req;
  1427. struct pch_udc_dev *dev;
  1428. if (!usbep || !usbreq)
  1429. return;
  1430. ep = container_of(usbep, struct pch_udc_ep, ep);
  1431. req = container_of(usbreq, struct pch_udc_request, req);
  1432. dev = ep->dev;
  1433. if (!list_empty(&req->queue))
  1434. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1435. __func__, usbep->name, req);
  1436. if (req->td_data != NULL) {
  1437. if (req->chain_len > 1)
  1438. pch_udc_free_dma_chain(ep->dev, req);
  1439. pci_pool_free(ep->dev->data_requests, req->td_data,
  1440. req->td_data_phys);
  1441. }
  1442. kfree(req);
  1443. }
  1444. /**
  1445. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1446. * by gadget driver
  1447. * @usbep: Reference to the USB endpoint structure
  1448. * @usbreq: Reference to the USB request
  1449. * @gfp: Flag to be used while mapping the data buffer
  1450. *
  1451. * Return codes:
  1452. * 0: Success
  1453. * linux error number: Failure
  1454. */
  1455. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1456. gfp_t gfp)
  1457. {
  1458. int retval = 0;
  1459. struct pch_udc_ep *ep;
  1460. struct pch_udc_dev *dev;
  1461. struct pch_udc_request *req;
  1462. unsigned long iflags;
  1463. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1464. return -EINVAL;
  1465. ep = container_of(usbep, struct pch_udc_ep, ep);
  1466. dev = ep->dev;
  1467. if (!ep->desc && ep->num)
  1468. return -EINVAL;
  1469. req = container_of(usbreq, struct pch_udc_request, req);
  1470. if (!list_empty(&req->queue))
  1471. return -EINVAL;
  1472. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1473. return -ESHUTDOWN;
  1474. spin_lock_irqsave(&dev->lock, iflags);
  1475. /* map the buffer for dma */
  1476. if (usbreq->length &&
  1477. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1478. if (!((unsigned long)(usbreq->buf) & 0x03)) {
  1479. if (ep->in)
  1480. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1481. usbreq->buf,
  1482. usbreq->length,
  1483. DMA_TO_DEVICE);
  1484. else
  1485. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1486. usbreq->buf,
  1487. usbreq->length,
  1488. DMA_FROM_DEVICE);
  1489. } else {
  1490. req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
  1491. if (!req->buf) {
  1492. retval = -ENOMEM;
  1493. goto probe_end;
  1494. }
  1495. if (ep->in) {
  1496. memcpy(req->buf, usbreq->buf, usbreq->length);
  1497. req->dma = dma_map_single(&dev->pdev->dev,
  1498. req->buf,
  1499. usbreq->length,
  1500. DMA_TO_DEVICE);
  1501. } else
  1502. req->dma = dma_map_single(&dev->pdev->dev,
  1503. req->buf,
  1504. usbreq->length,
  1505. DMA_FROM_DEVICE);
  1506. }
  1507. req->dma_mapped = 1;
  1508. }
  1509. if (usbreq->length > 0) {
  1510. retval = prepare_dma(ep, req, GFP_ATOMIC);
  1511. if (retval)
  1512. goto probe_end;
  1513. }
  1514. usbreq->actual = 0;
  1515. usbreq->status = -EINPROGRESS;
  1516. req->dma_done = 0;
  1517. if (list_empty(&ep->queue) && !ep->halted) {
  1518. /* no pending transfer, so start this req */
  1519. if (!usbreq->length) {
  1520. process_zlp(ep, req);
  1521. retval = 0;
  1522. goto probe_end;
  1523. }
  1524. if (!ep->in) {
  1525. pch_udc_start_rxrequest(ep, req);
  1526. } else {
  1527. /*
  1528. * For IN trfr the descriptors will be programmed and
  1529. * P bit will be set when
  1530. * we get an IN token
  1531. */
  1532. pch_udc_wait_ep_stall(ep);
  1533. pch_udc_ep_clear_nak(ep);
  1534. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1535. }
  1536. }
  1537. /* Now add this request to the ep's pending requests */
  1538. if (req != NULL)
  1539. list_add_tail(&req->queue, &ep->queue);
  1540. probe_end:
  1541. spin_unlock_irqrestore(&dev->lock, iflags);
  1542. return retval;
  1543. }
  1544. /**
  1545. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1546. * It is called by gadget driver
  1547. * @usbep: Reference to the USB endpoint structure
  1548. * @usbreq: Reference to the USB request
  1549. *
  1550. * Return codes:
  1551. * 0: Success
  1552. * linux error number: Failure
  1553. */
  1554. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1555. struct usb_request *usbreq)
  1556. {
  1557. struct pch_udc_ep *ep;
  1558. struct pch_udc_request *req;
  1559. struct pch_udc_dev *dev;
  1560. unsigned long flags;
  1561. int ret = -EINVAL;
  1562. ep = container_of(usbep, struct pch_udc_ep, ep);
  1563. dev = ep->dev;
  1564. if (!usbep || !usbreq || (!ep->desc && ep->num))
  1565. return ret;
  1566. req = container_of(usbreq, struct pch_udc_request, req);
  1567. spin_lock_irqsave(&ep->dev->lock, flags);
  1568. /* make sure it's still queued on this endpoint */
  1569. list_for_each_entry(req, &ep->queue, queue) {
  1570. if (&req->req == usbreq) {
  1571. pch_udc_ep_set_nak(ep);
  1572. if (!list_empty(&req->queue))
  1573. complete_req(ep, req, -ECONNRESET);
  1574. ret = 0;
  1575. break;
  1576. }
  1577. }
  1578. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1579. return ret;
  1580. }
  1581. /**
  1582. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1583. * feature
  1584. * @usbep: Reference to the USB endpoint structure
  1585. * @halt: Specifies whether to set or clear the feature
  1586. *
  1587. * Return codes:
  1588. * 0: Success
  1589. * linux error number: Failure
  1590. */
  1591. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1592. {
  1593. struct pch_udc_ep *ep;
  1594. struct pch_udc_dev *dev;
  1595. unsigned long iflags;
  1596. int ret;
  1597. if (!usbep)
  1598. return -EINVAL;
  1599. ep = container_of(usbep, struct pch_udc_ep, ep);
  1600. dev = ep->dev;
  1601. if (!ep->desc && !ep->num)
  1602. return -EINVAL;
  1603. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1604. return -ESHUTDOWN;
  1605. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1606. if (list_empty(&ep->queue)) {
  1607. if (halt) {
  1608. if (ep->num == PCH_UDC_EP0)
  1609. ep->dev->stall = 1;
  1610. pch_udc_ep_set_stall(ep);
  1611. pch_udc_enable_ep_interrupts(ep->dev,
  1612. PCH_UDC_EPINT(ep->in,
  1613. ep->num));
  1614. } else {
  1615. pch_udc_ep_clear_stall(ep);
  1616. }
  1617. ret = 0;
  1618. } else {
  1619. ret = -EAGAIN;
  1620. }
  1621. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1622. return ret;
  1623. }
  1624. /**
  1625. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1626. * halt feature
  1627. * @usbep: Reference to the USB endpoint structure
  1628. * @halt: Specifies whether to set or clear the feature
  1629. *
  1630. * Return codes:
  1631. * 0: Success
  1632. * linux error number: Failure
  1633. */
  1634. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1635. {
  1636. struct pch_udc_ep *ep;
  1637. struct pch_udc_dev *dev;
  1638. unsigned long iflags;
  1639. int ret;
  1640. if (!usbep)
  1641. return -EINVAL;
  1642. ep = container_of(usbep, struct pch_udc_ep, ep);
  1643. dev = ep->dev;
  1644. if (!ep->desc && !ep->num)
  1645. return -EINVAL;
  1646. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1647. return -ESHUTDOWN;
  1648. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1649. if (!list_empty(&ep->queue)) {
  1650. ret = -EAGAIN;
  1651. } else {
  1652. if (ep->num == PCH_UDC_EP0)
  1653. ep->dev->stall = 1;
  1654. pch_udc_ep_set_stall(ep);
  1655. pch_udc_enable_ep_interrupts(ep->dev,
  1656. PCH_UDC_EPINT(ep->in, ep->num));
  1657. ep->dev->prot_stall = 1;
  1658. ret = 0;
  1659. }
  1660. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1661. return ret;
  1662. }
  1663. /**
  1664. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1665. * @usbep: Reference to the USB endpoint structure
  1666. */
  1667. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1668. {
  1669. struct pch_udc_ep *ep;
  1670. if (!usbep)
  1671. return;
  1672. ep = container_of(usbep, struct pch_udc_ep, ep);
  1673. if (ep->desc || !ep->num)
  1674. pch_udc_ep_fifo_flush(ep, ep->in);
  1675. }
  1676. static const struct usb_ep_ops pch_udc_ep_ops = {
  1677. .enable = pch_udc_pcd_ep_enable,
  1678. .disable = pch_udc_pcd_ep_disable,
  1679. .alloc_request = pch_udc_alloc_request,
  1680. .free_request = pch_udc_free_request,
  1681. .queue = pch_udc_pcd_queue,
  1682. .dequeue = pch_udc_pcd_dequeue,
  1683. .set_halt = pch_udc_pcd_set_halt,
  1684. .set_wedge = pch_udc_pcd_set_wedge,
  1685. .fifo_status = NULL,
  1686. .fifo_flush = pch_udc_pcd_fifo_flush,
  1687. };
  1688. /**
  1689. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1690. * @td_stp: Reference to the SETP buffer structure
  1691. */
  1692. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1693. {
  1694. static u32 pky_marker;
  1695. if (!td_stp)
  1696. return;
  1697. td_stp->reserved = ++pky_marker;
  1698. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1699. td_stp->status = PCH_UDC_BS_HST_RDY;
  1700. }
  1701. /**
  1702. * pch_udc_start_next_txrequest() - This function starts
  1703. * the next transmission requirement
  1704. * @ep: Reference to the endpoint structure
  1705. */
  1706. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1707. {
  1708. struct pch_udc_request *req;
  1709. struct pch_udc_data_dma_desc *td_data;
  1710. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1711. return;
  1712. if (list_empty(&ep->queue))
  1713. return;
  1714. /* next request */
  1715. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1716. if (req->dma_going)
  1717. return;
  1718. if (!req->td_data)
  1719. return;
  1720. pch_udc_wait_ep_stall(ep);
  1721. req->dma_going = 1;
  1722. pch_udc_ep_set_ddptr(ep, 0);
  1723. td_data = req->td_data;
  1724. while (1) {
  1725. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1726. PCH_UDC_BS_HST_RDY;
  1727. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1728. break;
  1729. td_data = phys_to_virt(td_data->next);
  1730. }
  1731. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1732. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1733. pch_udc_ep_set_pd(ep);
  1734. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1735. pch_udc_ep_clear_nak(ep);
  1736. }
  1737. /**
  1738. * pch_udc_complete_transfer() - This function completes a transfer
  1739. * @ep: Reference to the endpoint structure
  1740. */
  1741. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1742. {
  1743. struct pch_udc_request *req;
  1744. struct pch_udc_dev *dev = ep->dev;
  1745. if (list_empty(&ep->queue))
  1746. return;
  1747. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1748. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1749. PCH_UDC_BS_DMA_DONE)
  1750. return;
  1751. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1752. PCH_UDC_RTS_SUCC) {
  1753. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1754. "epstatus=0x%08x\n",
  1755. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1756. (int)(ep->epsts));
  1757. return;
  1758. }
  1759. req->req.actual = req->req.length;
  1760. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1761. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1762. complete_req(ep, req, 0);
  1763. req->dma_going = 0;
  1764. if (!list_empty(&ep->queue)) {
  1765. pch_udc_wait_ep_stall(ep);
  1766. pch_udc_ep_clear_nak(ep);
  1767. pch_udc_enable_ep_interrupts(ep->dev,
  1768. PCH_UDC_EPINT(ep->in, ep->num));
  1769. } else {
  1770. pch_udc_disable_ep_interrupts(ep->dev,
  1771. PCH_UDC_EPINT(ep->in, ep->num));
  1772. }
  1773. }
  1774. /**
  1775. * pch_udc_complete_receiver() - This function completes a receiver
  1776. * @ep: Reference to the endpoint structure
  1777. */
  1778. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1779. {
  1780. struct pch_udc_request *req;
  1781. struct pch_udc_dev *dev = ep->dev;
  1782. unsigned int count;
  1783. struct pch_udc_data_dma_desc *td;
  1784. dma_addr_t addr;
  1785. if (list_empty(&ep->queue))
  1786. return;
  1787. /* next request */
  1788. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1789. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1790. pch_udc_ep_set_ddptr(ep, 0);
  1791. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
  1792. PCH_UDC_BS_DMA_DONE)
  1793. td = req->td_data_last;
  1794. else
  1795. td = req->td_data;
  1796. while (1) {
  1797. if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
  1798. dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
  1799. "epstatus=0x%08x\n",
  1800. (req->td_data->status & PCH_UDC_RXTX_STS),
  1801. (int)(ep->epsts));
  1802. return;
  1803. }
  1804. if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
  1805. if (td->status | PCH_UDC_DMA_LAST) {
  1806. count = td->status & PCH_UDC_RXTX_BYTES;
  1807. break;
  1808. }
  1809. if (td == req->td_data_last) {
  1810. dev_err(&dev->pdev->dev, "Not complete RX descriptor");
  1811. return;
  1812. }
  1813. addr = (dma_addr_t)td->next;
  1814. td = phys_to_virt(addr);
  1815. }
  1816. /* on 64k packets the RXBYTES field is zero */
  1817. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  1818. count = UDC_DMA_MAXPACKET;
  1819. req->td_data->status |= PCH_UDC_DMA_LAST;
  1820. td->status |= PCH_UDC_BS_HST_BSY;
  1821. req->dma_going = 0;
  1822. req->req.actual = count;
  1823. complete_req(ep, req, 0);
  1824. /* If there is a new/failed requests try that now */
  1825. if (!list_empty(&ep->queue)) {
  1826. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1827. pch_udc_start_rxrequest(ep, req);
  1828. }
  1829. }
  1830. /**
  1831. * pch_udc_svc_data_in() - This function process endpoint interrupts
  1832. * for IN endpoints
  1833. * @dev: Reference to the device structure
  1834. * @ep_num: Endpoint that generated the interrupt
  1835. */
  1836. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  1837. {
  1838. u32 epsts;
  1839. struct pch_udc_ep *ep;
  1840. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  1841. epsts = ep->epsts;
  1842. ep->epsts = 0;
  1843. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1844. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1845. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  1846. return;
  1847. if ((epsts & UDC_EPSTS_BNA))
  1848. return;
  1849. if (epsts & UDC_EPSTS_HE)
  1850. return;
  1851. if (epsts & UDC_EPSTS_RSS) {
  1852. pch_udc_ep_set_stall(ep);
  1853. pch_udc_enable_ep_interrupts(ep->dev,
  1854. PCH_UDC_EPINT(ep->in, ep->num));
  1855. }
  1856. if (epsts & UDC_EPSTS_RCS) {
  1857. if (!dev->prot_stall) {
  1858. pch_udc_ep_clear_stall(ep);
  1859. } else {
  1860. pch_udc_ep_set_stall(ep);
  1861. pch_udc_enable_ep_interrupts(ep->dev,
  1862. PCH_UDC_EPINT(ep->in, ep->num));
  1863. }
  1864. }
  1865. if (epsts & UDC_EPSTS_TDC)
  1866. pch_udc_complete_transfer(ep);
  1867. /* On IN interrupt, provide data if we have any */
  1868. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  1869. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  1870. pch_udc_start_next_txrequest(ep);
  1871. }
  1872. /**
  1873. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  1874. * @dev: Reference to the device structure
  1875. * @ep_num: Endpoint that generated the interrupt
  1876. */
  1877. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  1878. {
  1879. u32 epsts;
  1880. struct pch_udc_ep *ep;
  1881. struct pch_udc_request *req = NULL;
  1882. ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
  1883. epsts = ep->epsts;
  1884. ep->epsts = 0;
  1885. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  1886. /* next request */
  1887. req = list_entry(ep->queue.next, struct pch_udc_request,
  1888. queue);
  1889. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1890. PCH_UDC_BS_DMA_DONE) {
  1891. if (!req->dma_going)
  1892. pch_udc_start_rxrequest(ep, req);
  1893. return;
  1894. }
  1895. }
  1896. if (epsts & UDC_EPSTS_HE)
  1897. return;
  1898. if (epsts & UDC_EPSTS_RSS) {
  1899. pch_udc_ep_set_stall(ep);
  1900. pch_udc_enable_ep_interrupts(ep->dev,
  1901. PCH_UDC_EPINT(ep->in, ep->num));
  1902. }
  1903. if (epsts & UDC_EPSTS_RCS) {
  1904. if (!dev->prot_stall) {
  1905. pch_udc_ep_clear_stall(ep);
  1906. } else {
  1907. pch_udc_ep_set_stall(ep);
  1908. pch_udc_enable_ep_interrupts(ep->dev,
  1909. PCH_UDC_EPINT(ep->in, ep->num));
  1910. }
  1911. }
  1912. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1913. UDC_EPSTS_OUT_DATA) {
  1914. if (ep->dev->prot_stall == 1) {
  1915. pch_udc_ep_set_stall(ep);
  1916. pch_udc_enable_ep_interrupts(ep->dev,
  1917. PCH_UDC_EPINT(ep->in, ep->num));
  1918. } else {
  1919. pch_udc_complete_receiver(ep);
  1920. }
  1921. }
  1922. if (list_empty(&ep->queue))
  1923. pch_udc_set_dma(dev, DMA_DIR_RX);
  1924. }
  1925. /**
  1926. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  1927. * @dev: Reference to the device structure
  1928. */
  1929. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  1930. {
  1931. u32 epsts;
  1932. struct pch_udc_ep *ep;
  1933. struct pch_udc_ep *ep_out;
  1934. ep = &dev->ep[UDC_EP0IN_IDX];
  1935. ep_out = &dev->ep[UDC_EP0OUT_IDX];
  1936. epsts = ep->epsts;
  1937. ep->epsts = 0;
  1938. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1939. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1940. UDC_EPSTS_XFERDONE)))
  1941. return;
  1942. if ((epsts & UDC_EPSTS_BNA))
  1943. return;
  1944. if (epsts & UDC_EPSTS_HE)
  1945. return;
  1946. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
  1947. pch_udc_complete_transfer(ep);
  1948. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1949. ep_out->td_data->status = (ep_out->td_data->status &
  1950. ~PCH_UDC_BUFF_STS) |
  1951. PCH_UDC_BS_HST_RDY;
  1952. pch_udc_ep_clear_nak(ep_out);
  1953. pch_udc_set_dma(dev, DMA_DIR_RX);
  1954. pch_udc_ep_set_rrdy(ep_out);
  1955. }
  1956. /* On IN interrupt, provide data if we have any */
  1957. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  1958. !(epsts & UDC_EPSTS_TXEMPTY))
  1959. pch_udc_start_next_txrequest(ep);
  1960. }
  1961. /**
  1962. * pch_udc_svc_control_out() - Routine that handle Control
  1963. * OUT endpoint interrupts
  1964. * @dev: Reference to the device structure
  1965. */
  1966. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  1967. {
  1968. u32 stat;
  1969. int setup_supported;
  1970. struct pch_udc_ep *ep;
  1971. ep = &dev->ep[UDC_EP0OUT_IDX];
  1972. stat = ep->epsts;
  1973. ep->epsts = 0;
  1974. /* If setup data */
  1975. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1976. UDC_EPSTS_OUT_SETUP) {
  1977. dev->stall = 0;
  1978. dev->ep[UDC_EP0IN_IDX].halted = 0;
  1979. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  1980. dev->setup_data = ep->td_stp->request;
  1981. pch_udc_init_setup_buff(ep->td_stp);
  1982. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1983. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  1984. dev->ep[UDC_EP0IN_IDX].in);
  1985. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  1986. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  1987. else /* OUT */
  1988. dev->gadget.ep0 = &ep->ep;
  1989. spin_unlock(&dev->lock);
  1990. /* If Mass storage Reset */
  1991. if ((dev->setup_data.bRequestType == 0x21) &&
  1992. (dev->setup_data.bRequest == 0xFF))
  1993. dev->prot_stall = 0;
  1994. /* call gadget with setup data received */
  1995. setup_supported = dev->driver->setup(&dev->gadget,
  1996. &dev->setup_data);
  1997. spin_lock(&dev->lock);
  1998. if (dev->setup_data.bRequestType & USB_DIR_IN) {
  1999. ep->td_data->status = (ep->td_data->status &
  2000. ~PCH_UDC_BUFF_STS) |
  2001. PCH_UDC_BS_HST_RDY;
  2002. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2003. }
  2004. /* ep0 in returns data on IN phase */
  2005. if (setup_supported >= 0 && setup_supported <
  2006. UDC_EP0IN_MAX_PKT_SIZE) {
  2007. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  2008. /* Gadget would have queued a request when
  2009. * we called the setup */
  2010. if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
  2011. pch_udc_set_dma(dev, DMA_DIR_RX);
  2012. pch_udc_ep_clear_nak(ep);
  2013. }
  2014. } else if (setup_supported < 0) {
  2015. /* if unsupported request, then stall */
  2016. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  2017. pch_udc_enable_ep_interrupts(ep->dev,
  2018. PCH_UDC_EPINT(ep->in, ep->num));
  2019. dev->stall = 0;
  2020. pch_udc_set_dma(dev, DMA_DIR_RX);
  2021. } else {
  2022. dev->waiting_zlp_ack = 1;
  2023. }
  2024. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2025. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  2026. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2027. pch_udc_ep_set_ddptr(ep, 0);
  2028. if (!list_empty(&ep->queue)) {
  2029. ep->epsts = stat;
  2030. pch_udc_svc_data_out(dev, PCH_UDC_EP0);
  2031. }
  2032. pch_udc_set_dma(dev, DMA_DIR_RX);
  2033. }
  2034. pch_udc_ep_set_rrdy(ep);
  2035. }
  2036. /**
  2037. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  2038. * and clears NAK status
  2039. * @dev: Reference to the device structure
  2040. * @ep_num: End point number
  2041. */
  2042. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  2043. {
  2044. struct pch_udc_ep *ep;
  2045. struct pch_udc_request *req;
  2046. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2047. if (!list_empty(&ep->queue)) {
  2048. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2049. pch_udc_enable_ep_interrupts(ep->dev,
  2050. PCH_UDC_EPINT(ep->in, ep->num));
  2051. pch_udc_ep_clear_nak(ep);
  2052. }
  2053. }
  2054. /**
  2055. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2056. * @dev: Reference to the device structure
  2057. * @ep_intr: Status of endpoint interrupt
  2058. */
  2059. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2060. {
  2061. int i;
  2062. struct pch_udc_ep *ep;
  2063. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2064. /* IN */
  2065. if (ep_intr & (0x1 << i)) {
  2066. ep = &dev->ep[UDC_EPIN_IDX(i)];
  2067. ep->epsts = pch_udc_read_ep_status(ep);
  2068. pch_udc_clear_ep_status(ep, ep->epsts);
  2069. }
  2070. /* OUT */
  2071. if (ep_intr & (0x10000 << i)) {
  2072. ep = &dev->ep[UDC_EPOUT_IDX(i)];
  2073. ep->epsts = pch_udc_read_ep_status(ep);
  2074. pch_udc_clear_ep_status(ep, ep->epsts);
  2075. }
  2076. }
  2077. }
  2078. /**
  2079. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2080. * for traffic after a reset
  2081. * @dev: Reference to the device structure
  2082. */
  2083. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2084. {
  2085. struct pch_udc_ep *ep;
  2086. u32 val;
  2087. /* Setup the IN endpoint */
  2088. ep = &dev->ep[UDC_EP0IN_IDX];
  2089. pch_udc_clear_ep_control(ep);
  2090. pch_udc_ep_fifo_flush(ep, ep->in);
  2091. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2092. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2093. /* Initialize the IN EP Descriptor */
  2094. ep->td_data = NULL;
  2095. ep->td_stp = NULL;
  2096. ep->td_data_phys = 0;
  2097. ep->td_stp_phys = 0;
  2098. /* Setup the OUT endpoint */
  2099. ep = &dev->ep[UDC_EP0OUT_IDX];
  2100. pch_udc_clear_ep_control(ep);
  2101. pch_udc_ep_fifo_flush(ep, ep->in);
  2102. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2103. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2104. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2105. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2106. /* Initialize the SETUP buffer */
  2107. pch_udc_init_setup_buff(ep->td_stp);
  2108. /* Write the pointer address of dma descriptor */
  2109. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2110. /* Write the pointer address of Setup descriptor */
  2111. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2112. /* Initialize the dma descriptor */
  2113. ep->td_data->status = PCH_UDC_DMA_LAST;
  2114. ep->td_data->dataptr = dev->dma_addr;
  2115. ep->td_data->next = ep->td_data_phys;
  2116. pch_udc_ep_clear_nak(ep);
  2117. }
  2118. /**
  2119. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2120. * @dev: Reference to driver structure
  2121. */
  2122. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2123. {
  2124. struct pch_udc_ep *ep;
  2125. int i;
  2126. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2127. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2128. /* Mask all endpoint interrupts */
  2129. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2130. /* clear all endpoint interrupts */
  2131. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2132. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2133. ep = &dev->ep[i];
  2134. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2135. pch_udc_clear_ep_control(ep);
  2136. pch_udc_ep_set_ddptr(ep, 0);
  2137. pch_udc_write_csr(ep->dev, 0x00, i);
  2138. }
  2139. dev->stall = 0;
  2140. dev->prot_stall = 0;
  2141. dev->waiting_zlp_ack = 0;
  2142. dev->set_cfg_not_acked = 0;
  2143. /* disable ep to empty req queue. Skip the control EP's */
  2144. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2145. ep = &dev->ep[i];
  2146. pch_udc_ep_set_nak(ep);
  2147. pch_udc_ep_fifo_flush(ep, ep->in);
  2148. /* Complete request queue */
  2149. empty_req_queue(ep);
  2150. }
  2151. if (dev->driver && dev->driver->disconnect)
  2152. dev->driver->disconnect(&dev->gadget);
  2153. }
  2154. /**
  2155. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2156. * done interrupt
  2157. * @dev: Reference to driver structure
  2158. */
  2159. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2160. {
  2161. u32 dev_stat, dev_speed;
  2162. u32 speed = USB_SPEED_FULL;
  2163. dev_stat = pch_udc_read_device_status(dev);
  2164. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2165. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2166. switch (dev_speed) {
  2167. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2168. speed = USB_SPEED_HIGH;
  2169. break;
  2170. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2171. speed = USB_SPEED_FULL;
  2172. break;
  2173. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2174. speed = USB_SPEED_LOW;
  2175. break;
  2176. default:
  2177. BUG();
  2178. }
  2179. dev->gadget.speed = speed;
  2180. pch_udc_activate_control_ep(dev);
  2181. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2182. pch_udc_set_dma(dev, DMA_DIR_TX);
  2183. pch_udc_set_dma(dev, DMA_DIR_RX);
  2184. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2185. }
  2186. /**
  2187. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2188. * interrupt
  2189. * @dev: Reference to driver structure
  2190. */
  2191. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2192. {
  2193. u32 reg, dev_stat = 0;
  2194. int i, ret;
  2195. dev_stat = pch_udc_read_device_status(dev);
  2196. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2197. UDC_DEVSTS_INTF_SHIFT;
  2198. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2199. UDC_DEVSTS_ALT_SHIFT;
  2200. dev->set_cfg_not_acked = 1;
  2201. /* Construct the usb request for gadget driver and inform it */
  2202. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2203. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2204. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2205. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2206. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2207. /* programm the Endpoint Cfg registers */
  2208. /* Only one end point cfg register */
  2209. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2210. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2211. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2212. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2213. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2214. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2215. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2216. /* clear stall bits */
  2217. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2218. dev->ep[i].halted = 0;
  2219. }
  2220. dev->stall = 0;
  2221. spin_unlock(&dev->lock);
  2222. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2223. spin_lock(&dev->lock);
  2224. }
  2225. /**
  2226. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2227. * interrupt
  2228. * @dev: Reference to driver structure
  2229. */
  2230. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2231. {
  2232. int i, ret;
  2233. u32 reg, dev_stat = 0;
  2234. dev_stat = pch_udc_read_device_status(dev);
  2235. dev->set_cfg_not_acked = 1;
  2236. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2237. UDC_DEVSTS_CFG_SHIFT;
  2238. /* make usb request for gadget driver */
  2239. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2240. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2241. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2242. /* program the NE registers */
  2243. /* Only one end point cfg register */
  2244. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2245. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2246. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2247. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2248. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2249. /* clear stall bits */
  2250. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2251. dev->ep[i].halted = 0;
  2252. }
  2253. dev->stall = 0;
  2254. /* call gadget zero with setup data received */
  2255. spin_unlock(&dev->lock);
  2256. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2257. spin_lock(&dev->lock);
  2258. }
  2259. /**
  2260. * pch_udc_dev_isr() - This function services device interrupts
  2261. * by invoking appropriate routines.
  2262. * @dev: Reference to the device structure
  2263. * @dev_intr: The Device interrupt status.
  2264. */
  2265. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2266. {
  2267. /* USB Reset Interrupt */
  2268. if (dev_intr & UDC_DEVINT_UR)
  2269. pch_udc_svc_ur_interrupt(dev);
  2270. /* Enumeration Done Interrupt */
  2271. if (dev_intr & UDC_DEVINT_ENUM)
  2272. pch_udc_svc_enum_interrupt(dev);
  2273. /* Set Interface Interrupt */
  2274. if (dev_intr & UDC_DEVINT_SI)
  2275. pch_udc_svc_intf_interrupt(dev);
  2276. /* Set Config Interrupt */
  2277. if (dev_intr & UDC_DEVINT_SC)
  2278. pch_udc_svc_cfg_interrupt(dev);
  2279. /* USB Suspend interrupt */
  2280. if (dev_intr & UDC_DEVINT_US)
  2281. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2282. /* Clear the SOF interrupt, if enabled */
  2283. if (dev_intr & UDC_DEVINT_SOF)
  2284. dev_dbg(&dev->pdev->dev, "SOF\n");
  2285. /* ES interrupt, IDLE > 3ms on the USB */
  2286. if (dev_intr & UDC_DEVINT_ES)
  2287. dev_dbg(&dev->pdev->dev, "ES\n");
  2288. /* RWKP interrupt */
  2289. if (dev_intr & UDC_DEVINT_RWKP)
  2290. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2291. }
  2292. /**
  2293. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2294. * @irq: Interrupt request number
  2295. * @dev: Reference to the device structure
  2296. */
  2297. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2298. {
  2299. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2300. u32 dev_intr, ep_intr;
  2301. int i;
  2302. dev_intr = pch_udc_read_device_interrupts(dev);
  2303. ep_intr = pch_udc_read_ep_interrupts(dev);
  2304. if (dev_intr)
  2305. /* Clear device interrupts */
  2306. pch_udc_write_device_interrupts(dev, dev_intr);
  2307. if (ep_intr)
  2308. /* Clear ep interrupts */
  2309. pch_udc_write_ep_interrupts(dev, ep_intr);
  2310. if (!dev_intr && !ep_intr)
  2311. return IRQ_NONE;
  2312. spin_lock(&dev->lock);
  2313. if (dev_intr)
  2314. pch_udc_dev_isr(dev, dev_intr);
  2315. if (ep_intr) {
  2316. pch_udc_read_all_epstatus(dev, ep_intr);
  2317. /* Process Control In interrupts, if present */
  2318. if (ep_intr & UDC_EPINT_IN_EP0) {
  2319. pch_udc_svc_control_in(dev);
  2320. pch_udc_postsvc_epinters(dev, 0);
  2321. }
  2322. /* Process Control Out interrupts, if present */
  2323. if (ep_intr & UDC_EPINT_OUT_EP0)
  2324. pch_udc_svc_control_out(dev);
  2325. /* Process data in end point interrupts */
  2326. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2327. if (ep_intr & (1 << i)) {
  2328. pch_udc_svc_data_in(dev, i);
  2329. pch_udc_postsvc_epinters(dev, i);
  2330. }
  2331. }
  2332. /* Process data out end point interrupts */
  2333. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2334. PCH_UDC_USED_EP_NUM); i++)
  2335. if (ep_intr & (1 << i))
  2336. pch_udc_svc_data_out(dev, i -
  2337. UDC_EPINT_OUT_SHIFT);
  2338. }
  2339. spin_unlock(&dev->lock);
  2340. return IRQ_HANDLED;
  2341. }
  2342. /**
  2343. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2344. * @dev: Reference to the device structure
  2345. */
  2346. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2347. {
  2348. /* enable ep0 interrupts */
  2349. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2350. UDC_EPINT_OUT_EP0);
  2351. /* enable device interrupts */
  2352. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2353. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2354. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2355. }
  2356. /**
  2357. * gadget_release() - Free the gadget driver private data
  2358. * @pdev reference to struct pci_dev
  2359. */
  2360. static void gadget_release(struct device *pdev)
  2361. {
  2362. struct pch_udc_dev *dev = dev_get_drvdata(pdev);
  2363. kfree(dev);
  2364. }
  2365. /**
  2366. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2367. * @dev: Reference to the driver structure
  2368. */
  2369. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2370. {
  2371. const char *const ep_string[] = {
  2372. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2373. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2374. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2375. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2376. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2377. "ep15in", "ep15out",
  2378. };
  2379. int i;
  2380. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2381. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2382. /* Initialize the endpoints structures */
  2383. memset(dev->ep, 0, sizeof dev->ep);
  2384. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2385. struct pch_udc_ep *ep = &dev->ep[i];
  2386. ep->dev = dev;
  2387. ep->halted = 1;
  2388. ep->num = i / 2;
  2389. ep->in = ~i & 1;
  2390. ep->ep.name = ep_string[i];
  2391. ep->ep.ops = &pch_udc_ep_ops;
  2392. if (ep->in)
  2393. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2394. else
  2395. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2396. UDC_EP_REG_SHIFT;
  2397. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2398. ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
  2399. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2400. INIT_LIST_HEAD(&ep->queue);
  2401. }
  2402. dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  2403. dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  2404. /* remove ep0 in and out from the list. They have own pointer */
  2405. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2406. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2407. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2408. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2409. }
  2410. /**
  2411. * pch_udc_pcd_init() - This API initializes the driver structure
  2412. * @dev: Reference to the driver structure
  2413. *
  2414. * Return codes:
  2415. * 0: Success
  2416. */
  2417. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2418. {
  2419. pch_udc_init(dev);
  2420. pch_udc_pcd_reinit(dev);
  2421. return 0;
  2422. }
  2423. /**
  2424. * init_dma_pools() - create dma pools during initialization
  2425. * @pdev: reference to struct pci_dev
  2426. */
  2427. static int init_dma_pools(struct pch_udc_dev *dev)
  2428. {
  2429. struct pch_udc_stp_dma_desc *td_stp;
  2430. struct pch_udc_data_dma_desc *td_data;
  2431. /* DMA setup */
  2432. dev->data_requests = pci_pool_create("data_requests", dev->pdev,
  2433. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2434. if (!dev->data_requests) {
  2435. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2436. __func__);
  2437. return -ENOMEM;
  2438. }
  2439. /* dma desc for setup data */
  2440. dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
  2441. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2442. if (!dev->stp_requests) {
  2443. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2444. __func__);
  2445. return -ENOMEM;
  2446. }
  2447. /* setup */
  2448. td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2449. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2450. if (!td_stp) {
  2451. dev_err(&dev->pdev->dev,
  2452. "%s: can't allocate setup dma descriptor\n", __func__);
  2453. return -ENOMEM;
  2454. }
  2455. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2456. /* data: 0 packets !? */
  2457. td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
  2458. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2459. if (!td_data) {
  2460. dev_err(&dev->pdev->dev,
  2461. "%s: can't allocate data dma descriptor\n", __func__);
  2462. return -ENOMEM;
  2463. }
  2464. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2465. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2466. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2467. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2468. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2469. dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
  2470. if (!dev->ep0out_buf)
  2471. return -ENOMEM;
  2472. dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
  2473. UDC_EP0OUT_BUFF_SIZE * 4,
  2474. DMA_FROM_DEVICE);
  2475. return 0;
  2476. }
  2477. static int pch_udc_start(struct usb_gadget_driver *driver,
  2478. int (*bind)(struct usb_gadget *))
  2479. {
  2480. struct pch_udc_dev *dev = pch_udc;
  2481. int retval;
  2482. if (!driver || (driver->speed == USB_SPEED_UNKNOWN) || !bind ||
  2483. !driver->setup || !driver->unbind || !driver->disconnect) {
  2484. dev_err(&dev->pdev->dev,
  2485. "%s: invalid driver parameter\n", __func__);
  2486. return -EINVAL;
  2487. }
  2488. if (!dev)
  2489. return -ENODEV;
  2490. if (dev->driver) {
  2491. dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
  2492. return -EBUSY;
  2493. }
  2494. driver->driver.bus = NULL;
  2495. dev->driver = driver;
  2496. dev->gadget.dev.driver = &driver->driver;
  2497. /* Invoke the bind routine of the gadget driver */
  2498. retval = bind(&dev->gadget);
  2499. if (retval) {
  2500. dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
  2501. __func__, driver->driver.name, retval);
  2502. dev->driver = NULL;
  2503. dev->gadget.dev.driver = NULL;
  2504. return retval;
  2505. }
  2506. /* get ready for ep0 traffic */
  2507. pch_udc_setup_ep0(dev);
  2508. /* clear SD */
  2509. pch_udc_clear_disconnect(dev);
  2510. dev->connected = 1;
  2511. return 0;
  2512. }
  2513. static int pch_udc_stop(struct usb_gadget_driver *driver)
  2514. {
  2515. struct pch_udc_dev *dev = pch_udc;
  2516. if (!dev)
  2517. return -ENODEV;
  2518. if (!driver || (driver != dev->driver)) {
  2519. dev_err(&dev->pdev->dev,
  2520. "%s: invalid driver parameter\n", __func__);
  2521. return -EINVAL;
  2522. }
  2523. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2524. /* Assures that there are no pending requests with this driver */
  2525. driver->disconnect(&dev->gadget);
  2526. driver->unbind(&dev->gadget);
  2527. dev->gadget.dev.driver = NULL;
  2528. dev->driver = NULL;
  2529. dev->connected = 0;
  2530. /* set SD */
  2531. pch_udc_set_disconnect(dev);
  2532. return 0;
  2533. }
  2534. static void pch_udc_shutdown(struct pci_dev *pdev)
  2535. {
  2536. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2537. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2538. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2539. /* disable the pullup so the host will think we're gone */
  2540. pch_udc_set_disconnect(dev);
  2541. }
  2542. static void pch_udc_remove(struct pci_dev *pdev)
  2543. {
  2544. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2545. usb_del_gadget_udc(&dev->gadget);
  2546. /* gadget driver must not be registered */
  2547. if (dev->driver)
  2548. dev_err(&pdev->dev,
  2549. "%s: gadget driver still bound!!!\n", __func__);
  2550. /* dma pool cleanup */
  2551. if (dev->data_requests)
  2552. pci_pool_destroy(dev->data_requests);
  2553. if (dev->stp_requests) {
  2554. /* cleanup DMA desc's for ep0in */
  2555. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2556. pci_pool_free(dev->stp_requests,
  2557. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2558. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2559. }
  2560. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2561. pci_pool_free(dev->stp_requests,
  2562. dev->ep[UDC_EP0OUT_IDX].td_data,
  2563. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2564. }
  2565. pci_pool_destroy(dev->stp_requests);
  2566. }
  2567. if (dev->dma_addr)
  2568. dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
  2569. UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
  2570. kfree(dev->ep0out_buf);
  2571. pch_udc_exit(dev);
  2572. if (dev->irq_registered)
  2573. free_irq(pdev->irq, dev);
  2574. if (dev->base_addr)
  2575. iounmap(dev->base_addr);
  2576. if (dev->mem_region)
  2577. release_mem_region(dev->phys_addr,
  2578. pci_resource_len(pdev, PCH_UDC_PCI_BAR));
  2579. if (dev->active)
  2580. pci_disable_device(pdev);
  2581. if (dev->registered)
  2582. device_unregister(&dev->gadget.dev);
  2583. kfree(dev);
  2584. pci_set_drvdata(pdev, NULL);
  2585. }
  2586. #ifdef CONFIG_PM
  2587. static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
  2588. {
  2589. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2590. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2591. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2592. pci_disable_device(pdev);
  2593. pci_enable_wake(pdev, PCI_D3hot, 0);
  2594. if (pci_save_state(pdev)) {
  2595. dev_err(&pdev->dev,
  2596. "%s: could not save PCI config state\n", __func__);
  2597. return -ENOMEM;
  2598. }
  2599. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2600. return 0;
  2601. }
  2602. static int pch_udc_resume(struct pci_dev *pdev)
  2603. {
  2604. int ret;
  2605. pci_set_power_state(pdev, PCI_D0);
  2606. pci_restore_state(pdev);
  2607. ret = pci_enable_device(pdev);
  2608. if (ret) {
  2609. dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
  2610. return ret;
  2611. }
  2612. pci_enable_wake(pdev, PCI_D3hot, 0);
  2613. return 0;
  2614. }
  2615. #else
  2616. #define pch_udc_suspend NULL
  2617. #define pch_udc_resume NULL
  2618. #endif /* CONFIG_PM */
  2619. static int pch_udc_probe(struct pci_dev *pdev,
  2620. const struct pci_device_id *id)
  2621. {
  2622. unsigned long resource;
  2623. unsigned long len;
  2624. int retval;
  2625. struct pch_udc_dev *dev;
  2626. /* one udc only */
  2627. if (pch_udc) {
  2628. pr_err("%s: already probed\n", __func__);
  2629. return -EBUSY;
  2630. }
  2631. /* init */
  2632. dev = kzalloc(sizeof *dev, GFP_KERNEL);
  2633. if (!dev) {
  2634. pr_err("%s: no memory for device structure\n", __func__);
  2635. return -ENOMEM;
  2636. }
  2637. /* pci setup */
  2638. if (pci_enable_device(pdev) < 0) {
  2639. kfree(dev);
  2640. pr_err("%s: pci_enable_device failed\n", __func__);
  2641. return -ENODEV;
  2642. }
  2643. dev->active = 1;
  2644. pci_set_drvdata(pdev, dev);
  2645. /* PCI resource allocation */
  2646. resource = pci_resource_start(pdev, 1);
  2647. len = pci_resource_len(pdev, 1);
  2648. if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
  2649. dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
  2650. retval = -EBUSY;
  2651. goto finished;
  2652. }
  2653. dev->phys_addr = resource;
  2654. dev->mem_region = 1;
  2655. dev->base_addr = ioremap_nocache(resource, len);
  2656. if (!dev->base_addr) {
  2657. pr_err("%s: device memory cannot be mapped\n", __func__);
  2658. retval = -ENOMEM;
  2659. goto finished;
  2660. }
  2661. if (!pdev->irq) {
  2662. dev_err(&pdev->dev, "%s: irq not set\n", __func__);
  2663. retval = -ENODEV;
  2664. goto finished;
  2665. }
  2666. pch_udc = dev;
  2667. /* initialize the hardware */
  2668. if (pch_udc_pcd_init(dev))
  2669. goto finished;
  2670. if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
  2671. dev)) {
  2672. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2673. pdev->irq);
  2674. retval = -ENODEV;
  2675. goto finished;
  2676. }
  2677. dev->irq = pdev->irq;
  2678. dev->irq_registered = 1;
  2679. pci_set_master(pdev);
  2680. pci_try_set_mwi(pdev);
  2681. /* device struct setup */
  2682. spin_lock_init(&dev->lock);
  2683. dev->pdev = pdev;
  2684. dev->gadget.ops = &pch_udc_ops;
  2685. retval = init_dma_pools(dev);
  2686. if (retval)
  2687. goto finished;
  2688. dev_set_name(&dev->gadget.dev, "gadget");
  2689. dev->gadget.dev.parent = &pdev->dev;
  2690. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2691. dev->gadget.dev.release = gadget_release;
  2692. dev->gadget.name = KBUILD_MODNAME;
  2693. dev->gadget.is_dualspeed = 1;
  2694. retval = device_register(&dev->gadget.dev);
  2695. if (retval)
  2696. goto finished;
  2697. dev->registered = 1;
  2698. /* Put the device in disconnected state till a driver is bound */
  2699. pch_udc_set_disconnect(dev);
  2700. retval = usb_add_gadget_udc(&pdev->dev, &dev->gadget);
  2701. if (retval)
  2702. goto finished;
  2703. return 0;
  2704. finished:
  2705. pch_udc_remove(pdev);
  2706. return retval;
  2707. }
  2708. static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
  2709. {
  2710. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2711. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2712. .class_mask = 0xffffffff,
  2713. },
  2714. {
  2715. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
  2716. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2717. .class_mask = 0xffffffff,
  2718. },
  2719. { 0 },
  2720. };
  2721. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2722. static struct pci_driver pch_udc_driver = {
  2723. .name = KBUILD_MODNAME,
  2724. .id_table = pch_udc_pcidev_id,
  2725. .probe = pch_udc_probe,
  2726. .remove = pch_udc_remove,
  2727. .suspend = pch_udc_suspend,
  2728. .resume = pch_udc_resume,
  2729. .shutdown = pch_udc_shutdown,
  2730. };
  2731. static int __init pch_udc_pci_init(void)
  2732. {
  2733. return pci_register_driver(&pch_udc_driver);
  2734. }
  2735. module_init(pch_udc_pci_init);
  2736. static void __exit pch_udc_pci_exit(void)
  2737. {
  2738. pci_unregister_driver(&pch_udc_driver);
  2739. }
  2740. module_exit(pch_udc_pci_exit);
  2741. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  2742. MODULE_AUTHOR("OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>");
  2743. MODULE_LICENSE("GPL");