amd5536udc.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. */
  12. /*
  13. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  14. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  15. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  16. *
  17. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  18. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  19. * by BIOS init).
  20. *
  21. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  22. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  23. * can be used with gadget ether.
  24. */
  25. /* debug control */
  26. /* #define UDC_VERBOSE */
  27. /* Driver strings */
  28. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  29. #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
  30. /* system */
  31. #include <linux/module.h>
  32. #include <linux/pci.h>
  33. #include <linux/kernel.h>
  34. #include <linux/delay.h>
  35. #include <linux/ioport.h>
  36. #include <linux/sched.h>
  37. #include <linux/slab.h>
  38. #include <linux/errno.h>
  39. #include <linux/init.h>
  40. #include <linux/timer.h>
  41. #include <linux/list.h>
  42. #include <linux/interrupt.h>
  43. #include <linux/ioctl.h>
  44. #include <linux/fs.h>
  45. #include <linux/dmapool.h>
  46. #include <linux/moduleparam.h>
  47. #include <linux/device.h>
  48. #include <linux/io.h>
  49. #include <linux/irq.h>
  50. #include <linux/prefetch.h>
  51. #include <asm/byteorder.h>
  52. #include <asm/system.h>
  53. #include <asm/unaligned.h>
  54. /* gadget stack */
  55. #include <linux/usb/ch9.h>
  56. #include <linux/usb/gadget.h>
  57. /* udc specific */
  58. #include "amd5536udc.h"
  59. static void udc_tasklet_disconnect(unsigned long);
  60. static void empty_req_queue(struct udc_ep *);
  61. static int udc_probe(struct udc *dev);
  62. static void udc_basic_init(struct udc *dev);
  63. static void udc_setup_endpoints(struct udc *dev);
  64. static void udc_soft_reset(struct udc *dev);
  65. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  66. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  67. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  68. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  69. unsigned long buf_len, gfp_t gfp_flags);
  70. static int udc_remote_wakeup(struct udc *dev);
  71. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  72. static void udc_pci_remove(struct pci_dev *pdev);
  73. /* description */
  74. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  75. static const char name[] = "amd5536udc";
  76. /* structure to hold endpoint function pointers */
  77. static const struct usb_ep_ops udc_ep_ops;
  78. /* received setup data */
  79. static union udc_setup_data setup_data;
  80. /* pointer to device object */
  81. static struct udc *udc;
  82. /* irq spin lock for soft reset */
  83. static DEFINE_SPINLOCK(udc_irq_spinlock);
  84. /* stall spin lock */
  85. static DEFINE_SPINLOCK(udc_stall_spinlock);
  86. /*
  87. * slave mode: pending bytes in rx fifo after nyet,
  88. * used if EPIN irq came but no req was available
  89. */
  90. static unsigned int udc_rxfifo_pending;
  91. /* count soft resets after suspend to avoid loop */
  92. static int soft_reset_occured;
  93. static int soft_reset_after_usbreset_occured;
  94. /* timer */
  95. static struct timer_list udc_timer;
  96. static int stop_timer;
  97. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  98. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  99. * all OUT endpoints. So we have to handle race conditions like
  100. * when OUT data reaches the fifo but no request was queued yet.
  101. * This cannot be solved by letting the RX DMA disabled until a
  102. * request gets queued because there may be other OUT packets
  103. * in the FIFO (important for not blocking control traffic).
  104. * The value of set_rde controls the correspondig timer.
  105. *
  106. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  107. * set_rde 0 == do not touch RDE, do no start the RDE timer
  108. * set_rde 1 == timer function will look whether FIFO has data
  109. * set_rde 2 == set by timer function to enable RX DMA on next call
  110. */
  111. static int set_rde = -1;
  112. static DECLARE_COMPLETION(on_exit);
  113. static struct timer_list udc_pollstall_timer;
  114. static int stop_pollstall_timer;
  115. static DECLARE_COMPLETION(on_pollstall_exit);
  116. /* tasklet for usb disconnect */
  117. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  118. (unsigned long) &udc);
  119. /* endpoint names used for print */
  120. static const char ep0_string[] = "ep0in";
  121. static const char *ep_string[] = {
  122. ep0_string,
  123. "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
  124. "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
  125. "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
  126. "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
  127. "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
  128. "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
  129. "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
  130. };
  131. /* DMA usage flag */
  132. static int use_dma = 1;
  133. /* packet per buffer dma */
  134. static int use_dma_ppb = 1;
  135. /* with per descr. update */
  136. static int use_dma_ppb_du;
  137. /* buffer fill mode */
  138. static int use_dma_bufferfill_mode;
  139. /* full speed only mode */
  140. static int use_fullspeed;
  141. /* tx buffer size for high speed */
  142. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  143. /* module parameters */
  144. module_param(use_dma, bool, S_IRUGO);
  145. MODULE_PARM_DESC(use_dma, "true for DMA");
  146. module_param(use_dma_ppb, bool, S_IRUGO);
  147. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  148. module_param(use_dma_ppb_du, bool, S_IRUGO);
  149. MODULE_PARM_DESC(use_dma_ppb_du,
  150. "true for DMA in packet per buffer mode with descriptor update");
  151. module_param(use_fullspeed, bool, S_IRUGO);
  152. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  153. /*---------------------------------------------------------------------------*/
  154. /* Prints UDC device registers and endpoint irq registers */
  155. static void print_regs(struct udc *dev)
  156. {
  157. DBG(dev, "------- Device registers -------\n");
  158. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  159. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  160. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  161. DBG(dev, "\n");
  162. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  163. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  164. DBG(dev, "\n");
  165. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  166. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  167. DBG(dev, "\n");
  168. DBG(dev, "USE DMA = %d\n", use_dma);
  169. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  170. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  171. "WITHOUT desc. update)\n");
  172. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  173. } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
  174. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  175. "WITH desc. update)\n");
  176. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  177. }
  178. if (use_dma && use_dma_bufferfill_mode) {
  179. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  180. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  181. }
  182. if (!use_dma) {
  183. dev_info(&dev->pdev->dev, "FIFO mode\n");
  184. }
  185. DBG(dev, "-------------------------------------------------------\n");
  186. }
  187. /* Masks unused interrupts */
  188. static int udc_mask_unused_interrupts(struct udc *dev)
  189. {
  190. u32 tmp;
  191. /* mask all dev interrupts */
  192. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  193. AMD_BIT(UDC_DEVINT_ENUM) |
  194. AMD_BIT(UDC_DEVINT_US) |
  195. AMD_BIT(UDC_DEVINT_UR) |
  196. AMD_BIT(UDC_DEVINT_ES) |
  197. AMD_BIT(UDC_DEVINT_SI) |
  198. AMD_BIT(UDC_DEVINT_SOF)|
  199. AMD_BIT(UDC_DEVINT_SC);
  200. writel(tmp, &dev->regs->irqmsk);
  201. /* mask all ep interrupts */
  202. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  203. return 0;
  204. }
  205. /* Enables endpoint 0 interrupts */
  206. static int udc_enable_ep0_interrupts(struct udc *dev)
  207. {
  208. u32 tmp;
  209. DBG(dev, "udc_enable_ep0_interrupts()\n");
  210. /* read irq mask */
  211. tmp = readl(&dev->regs->ep_irqmsk);
  212. /* enable ep0 irq's */
  213. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  214. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  215. writel(tmp, &dev->regs->ep_irqmsk);
  216. return 0;
  217. }
  218. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  219. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  220. {
  221. u32 tmp;
  222. DBG(dev, "enable device interrupts for setup data\n");
  223. /* read irq mask */
  224. tmp = readl(&dev->regs->irqmsk);
  225. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  226. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  227. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  228. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  229. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  230. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  231. writel(tmp, &dev->regs->irqmsk);
  232. return 0;
  233. }
  234. /* Calculates fifo start of endpoint based on preceding endpoints */
  235. static int udc_set_txfifo_addr(struct udc_ep *ep)
  236. {
  237. struct udc *dev;
  238. u32 tmp;
  239. int i;
  240. if (!ep || !(ep->in))
  241. return -EINVAL;
  242. dev = ep->dev;
  243. ep->txfifo = dev->txfifo;
  244. /* traverse ep's */
  245. for (i = 0; i < ep->num; i++) {
  246. if (dev->ep[i].regs) {
  247. /* read fifo size */
  248. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  249. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  250. ep->txfifo += tmp;
  251. }
  252. }
  253. return 0;
  254. }
  255. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  256. static u32 cnak_pending;
  257. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  258. {
  259. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  260. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  261. cnak_pending |= 1 << (num);
  262. ep->naking = 1;
  263. } else
  264. cnak_pending = cnak_pending & (~(1 << (num)));
  265. }
  266. /* Enables endpoint, is called by gadget driver */
  267. static int
  268. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  269. {
  270. struct udc_ep *ep;
  271. struct udc *dev;
  272. u32 tmp;
  273. unsigned long iflags;
  274. u8 udc_csr_epix;
  275. unsigned maxpacket;
  276. if (!usbep
  277. || usbep->name == ep0_string
  278. || !desc
  279. || desc->bDescriptorType != USB_DT_ENDPOINT)
  280. return -EINVAL;
  281. ep = container_of(usbep, struct udc_ep, ep);
  282. dev = ep->dev;
  283. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  284. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  285. return -ESHUTDOWN;
  286. spin_lock_irqsave(&dev->lock, iflags);
  287. ep->desc = desc;
  288. ep->halted = 0;
  289. /* set traffic type */
  290. tmp = readl(&dev->ep[ep->num].regs->ctl);
  291. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  292. writel(tmp, &dev->ep[ep->num].regs->ctl);
  293. /* set max packet size */
  294. maxpacket = usb_endpoint_maxp(desc);
  295. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  296. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  297. ep->ep.maxpacket = maxpacket;
  298. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  299. /* IN ep */
  300. if (ep->in) {
  301. /* ep ix in UDC CSR register space */
  302. udc_csr_epix = ep->num;
  303. /* set buffer size (tx fifo entries) */
  304. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  305. /* double buffering: fifo size = 2 x max packet size */
  306. tmp = AMD_ADDBITS(
  307. tmp,
  308. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  309. / UDC_DWORD_BYTES,
  310. UDC_EPIN_BUFF_SIZE);
  311. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  312. /* calc. tx fifo base addr */
  313. udc_set_txfifo_addr(ep);
  314. /* flush fifo */
  315. tmp = readl(&ep->regs->ctl);
  316. tmp |= AMD_BIT(UDC_EPCTL_F);
  317. writel(tmp, &ep->regs->ctl);
  318. /* OUT ep */
  319. } else {
  320. /* ep ix in UDC CSR register space */
  321. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  322. /* set max packet size UDC CSR */
  323. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  324. tmp = AMD_ADDBITS(tmp, maxpacket,
  325. UDC_CSR_NE_MAX_PKT);
  326. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  327. if (use_dma && !ep->in) {
  328. /* alloc and init BNA dummy request */
  329. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  330. ep->bna_occurred = 0;
  331. }
  332. if (ep->num != UDC_EP0OUT_IX)
  333. dev->data_ep_enabled = 1;
  334. }
  335. /* set ep values */
  336. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  337. /* max packet */
  338. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  339. /* ep number */
  340. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  341. /* ep direction */
  342. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  343. /* ep type */
  344. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  345. /* ep config */
  346. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  347. /* ep interface */
  348. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  349. /* ep alt */
  350. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  351. /* write reg */
  352. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  353. /* enable ep irq */
  354. tmp = readl(&dev->regs->ep_irqmsk);
  355. tmp &= AMD_UNMASK_BIT(ep->num);
  356. writel(tmp, &dev->regs->ep_irqmsk);
  357. /*
  358. * clear NAK by writing CNAK
  359. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  360. */
  361. if (!use_dma || ep->in) {
  362. tmp = readl(&ep->regs->ctl);
  363. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  364. writel(tmp, &ep->regs->ctl);
  365. ep->naking = 0;
  366. UDC_QUEUE_CNAK(ep, ep->num);
  367. }
  368. tmp = desc->bEndpointAddress;
  369. DBG(dev, "%s enabled\n", usbep->name);
  370. spin_unlock_irqrestore(&dev->lock, iflags);
  371. return 0;
  372. }
  373. /* Resets endpoint */
  374. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  375. {
  376. u32 tmp;
  377. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  378. ep->desc = NULL;
  379. ep->ep.ops = &udc_ep_ops;
  380. INIT_LIST_HEAD(&ep->queue);
  381. ep->ep.maxpacket = (u16) ~0;
  382. /* set NAK */
  383. tmp = readl(&ep->regs->ctl);
  384. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  385. writel(tmp, &ep->regs->ctl);
  386. ep->naking = 1;
  387. /* disable interrupt */
  388. tmp = readl(&regs->ep_irqmsk);
  389. tmp |= AMD_BIT(ep->num);
  390. writel(tmp, &regs->ep_irqmsk);
  391. if (ep->in) {
  392. /* unset P and IN bit of potential former DMA */
  393. tmp = readl(&ep->regs->ctl);
  394. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  395. writel(tmp, &ep->regs->ctl);
  396. tmp = readl(&ep->regs->sts);
  397. tmp |= AMD_BIT(UDC_EPSTS_IN);
  398. writel(tmp, &ep->regs->sts);
  399. /* flush the fifo */
  400. tmp = readl(&ep->regs->ctl);
  401. tmp |= AMD_BIT(UDC_EPCTL_F);
  402. writel(tmp, &ep->regs->ctl);
  403. }
  404. /* reset desc pointer */
  405. writel(0, &ep->regs->desptr);
  406. }
  407. /* Disables endpoint, is called by gadget driver */
  408. static int udc_ep_disable(struct usb_ep *usbep)
  409. {
  410. struct udc_ep *ep = NULL;
  411. unsigned long iflags;
  412. if (!usbep)
  413. return -EINVAL;
  414. ep = container_of(usbep, struct udc_ep, ep);
  415. if (usbep->name == ep0_string || !ep->desc)
  416. return -EINVAL;
  417. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  418. spin_lock_irqsave(&ep->dev->lock, iflags);
  419. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  420. empty_req_queue(ep);
  421. ep_init(ep->dev->regs, ep);
  422. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  423. return 0;
  424. }
  425. /* Allocates request packet, called by gadget driver */
  426. static struct usb_request *
  427. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  428. {
  429. struct udc_request *req;
  430. struct udc_data_dma *dma_desc;
  431. struct udc_ep *ep;
  432. if (!usbep)
  433. return NULL;
  434. ep = container_of(usbep, struct udc_ep, ep);
  435. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  436. req = kzalloc(sizeof(struct udc_request), gfp);
  437. if (!req)
  438. return NULL;
  439. req->req.dma = DMA_DONT_USE;
  440. INIT_LIST_HEAD(&req->queue);
  441. if (ep->dma) {
  442. /* ep0 in requests are allocated from data pool here */
  443. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  444. &req->td_phys);
  445. if (!dma_desc) {
  446. kfree(req);
  447. return NULL;
  448. }
  449. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  450. "td_phys = %lx\n",
  451. req, dma_desc,
  452. (unsigned long)req->td_phys);
  453. /* prevent from using desc. - set HOST BUSY */
  454. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  455. UDC_DMA_STP_STS_BS_HOST_BUSY,
  456. UDC_DMA_STP_STS_BS);
  457. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  458. req->td_data = dma_desc;
  459. req->td_data_last = NULL;
  460. req->chain_len = 1;
  461. }
  462. return &req->req;
  463. }
  464. /* Frees request packet, called by gadget driver */
  465. static void
  466. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  467. {
  468. struct udc_ep *ep;
  469. struct udc_request *req;
  470. if (!usbep || !usbreq)
  471. return;
  472. ep = container_of(usbep, struct udc_ep, ep);
  473. req = container_of(usbreq, struct udc_request, req);
  474. VDBG(ep->dev, "free_req req=%p\n", req);
  475. BUG_ON(!list_empty(&req->queue));
  476. if (req->td_data) {
  477. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  478. /* free dma chain if created */
  479. if (req->chain_len > 1) {
  480. udc_free_dma_chain(ep->dev, req);
  481. }
  482. pci_pool_free(ep->dev->data_requests, req->td_data,
  483. req->td_phys);
  484. }
  485. kfree(req);
  486. }
  487. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  488. static void udc_init_bna_dummy(struct udc_request *req)
  489. {
  490. if (req) {
  491. /* set last bit */
  492. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  493. /* set next pointer to itself */
  494. req->td_data->next = req->td_phys;
  495. /* set HOST BUSY */
  496. req->td_data->status
  497. = AMD_ADDBITS(req->td_data->status,
  498. UDC_DMA_STP_STS_BS_DMA_DONE,
  499. UDC_DMA_STP_STS_BS);
  500. #ifdef UDC_VERBOSE
  501. pr_debug("bna desc = %p, sts = %08x\n",
  502. req->td_data, req->td_data->status);
  503. #endif
  504. }
  505. }
  506. /* Allocate BNA dummy descriptor */
  507. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  508. {
  509. struct udc_request *req = NULL;
  510. struct usb_request *_req = NULL;
  511. /* alloc the dummy request */
  512. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  513. if (_req) {
  514. req = container_of(_req, struct udc_request, req);
  515. ep->bna_dummy_req = req;
  516. udc_init_bna_dummy(req);
  517. }
  518. return req;
  519. }
  520. /* Write data to TX fifo for IN packets */
  521. static void
  522. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  523. {
  524. u8 *req_buf;
  525. u32 *buf;
  526. int i, j;
  527. unsigned bytes = 0;
  528. unsigned remaining = 0;
  529. if (!req || !ep)
  530. return;
  531. req_buf = req->buf + req->actual;
  532. prefetch(req_buf);
  533. remaining = req->length - req->actual;
  534. buf = (u32 *) req_buf;
  535. bytes = ep->ep.maxpacket;
  536. if (bytes > remaining)
  537. bytes = remaining;
  538. /* dwords first */
  539. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  540. writel(*(buf + i), ep->txfifo);
  541. }
  542. /* remaining bytes must be written by byte access */
  543. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  544. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  545. ep->txfifo);
  546. }
  547. /* dummy write confirm */
  548. writel(0, &ep->regs->confirm);
  549. }
  550. /* Read dwords from RX fifo for OUT transfers */
  551. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  552. {
  553. int i;
  554. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  555. for (i = 0; i < dwords; i++) {
  556. *(buf + i) = readl(dev->rxfifo);
  557. }
  558. return 0;
  559. }
  560. /* Read bytes from RX fifo for OUT transfers */
  561. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  562. {
  563. int i, j;
  564. u32 tmp;
  565. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  566. /* dwords first */
  567. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  568. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  569. }
  570. /* remaining bytes must be read by byte access */
  571. if (bytes % UDC_DWORD_BYTES) {
  572. tmp = readl(dev->rxfifo);
  573. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  574. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  575. tmp = tmp >> UDC_BITS_PER_BYTE;
  576. }
  577. }
  578. return 0;
  579. }
  580. /* Read data from RX fifo for OUT transfers */
  581. static int
  582. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  583. {
  584. u8 *buf;
  585. unsigned buf_space;
  586. unsigned bytes = 0;
  587. unsigned finished = 0;
  588. /* received number bytes */
  589. bytes = readl(&ep->regs->sts);
  590. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  591. buf_space = req->req.length - req->req.actual;
  592. buf = req->req.buf + req->req.actual;
  593. if (bytes > buf_space) {
  594. if ((buf_space % ep->ep.maxpacket) != 0) {
  595. DBG(ep->dev,
  596. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  597. ep->ep.name, bytes, buf_space);
  598. req->req.status = -EOVERFLOW;
  599. }
  600. bytes = buf_space;
  601. }
  602. req->req.actual += bytes;
  603. /* last packet ? */
  604. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  605. || ((req->req.actual == req->req.length) && !req->req.zero))
  606. finished = 1;
  607. /* read rx fifo bytes */
  608. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  609. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  610. return finished;
  611. }
  612. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  613. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  614. {
  615. int retval = 0;
  616. u32 tmp;
  617. VDBG(ep->dev, "prep_dma\n");
  618. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  619. ep->num, req->td_data);
  620. /* set buffer pointer */
  621. req->td_data->bufptr = req->req.dma;
  622. /* set last bit */
  623. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  624. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  625. if (use_dma_ppb) {
  626. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  627. if (retval != 0) {
  628. if (retval == -ENOMEM)
  629. DBG(ep->dev, "Out of DMA memory\n");
  630. return retval;
  631. }
  632. if (ep->in) {
  633. if (req->req.length == ep->ep.maxpacket) {
  634. /* write tx bytes */
  635. req->td_data->status =
  636. AMD_ADDBITS(req->td_data->status,
  637. ep->ep.maxpacket,
  638. UDC_DMA_IN_STS_TXBYTES);
  639. }
  640. }
  641. }
  642. if (ep->in) {
  643. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  644. "maxpacket=%d ep%d\n",
  645. use_dma_ppb, req->req.length,
  646. ep->ep.maxpacket, ep->num);
  647. /*
  648. * if bytes < max packet then tx bytes must
  649. * be written in packet per buffer mode
  650. */
  651. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  652. || ep->num == UDC_EP0OUT_IX
  653. || ep->num == UDC_EP0IN_IX) {
  654. /* write tx bytes */
  655. req->td_data->status =
  656. AMD_ADDBITS(req->td_data->status,
  657. req->req.length,
  658. UDC_DMA_IN_STS_TXBYTES);
  659. /* reset frame num */
  660. req->td_data->status =
  661. AMD_ADDBITS(req->td_data->status,
  662. 0,
  663. UDC_DMA_IN_STS_FRAMENUM);
  664. }
  665. /* set HOST BUSY */
  666. req->td_data->status =
  667. AMD_ADDBITS(req->td_data->status,
  668. UDC_DMA_STP_STS_BS_HOST_BUSY,
  669. UDC_DMA_STP_STS_BS);
  670. } else {
  671. VDBG(ep->dev, "OUT set host ready\n");
  672. /* set HOST READY */
  673. req->td_data->status =
  674. AMD_ADDBITS(req->td_data->status,
  675. UDC_DMA_STP_STS_BS_HOST_READY,
  676. UDC_DMA_STP_STS_BS);
  677. /* clear NAK by writing CNAK */
  678. if (ep->naking) {
  679. tmp = readl(&ep->regs->ctl);
  680. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  681. writel(tmp, &ep->regs->ctl);
  682. ep->naking = 0;
  683. UDC_QUEUE_CNAK(ep, ep->num);
  684. }
  685. }
  686. return retval;
  687. }
  688. /* Completes request packet ... caller MUST hold lock */
  689. static void
  690. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  691. __releases(ep->dev->lock)
  692. __acquires(ep->dev->lock)
  693. {
  694. struct udc *dev;
  695. unsigned halted;
  696. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  697. dev = ep->dev;
  698. /* unmap DMA */
  699. if (req->dma_mapping) {
  700. if (ep->in)
  701. pci_unmap_single(dev->pdev,
  702. req->req.dma,
  703. req->req.length,
  704. PCI_DMA_TODEVICE);
  705. else
  706. pci_unmap_single(dev->pdev,
  707. req->req.dma,
  708. req->req.length,
  709. PCI_DMA_FROMDEVICE);
  710. req->dma_mapping = 0;
  711. req->req.dma = DMA_DONT_USE;
  712. }
  713. halted = ep->halted;
  714. ep->halted = 1;
  715. /* set new status if pending */
  716. if (req->req.status == -EINPROGRESS)
  717. req->req.status = sts;
  718. /* remove from ep queue */
  719. list_del_init(&req->queue);
  720. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  721. &req->req, req->req.length, ep->ep.name, sts);
  722. spin_unlock(&dev->lock);
  723. req->req.complete(&ep->ep, &req->req);
  724. spin_lock(&dev->lock);
  725. ep->halted = halted;
  726. }
  727. /* frees pci pool descriptors of a DMA chain */
  728. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  729. {
  730. int ret_val = 0;
  731. struct udc_data_dma *td;
  732. struct udc_data_dma *td_last = NULL;
  733. unsigned int i;
  734. DBG(dev, "free chain req = %p\n", req);
  735. /* do not free first desc., will be done by free for request */
  736. td_last = req->td_data;
  737. td = phys_to_virt(td_last->next);
  738. for (i = 1; i < req->chain_len; i++) {
  739. pci_pool_free(dev->data_requests, td,
  740. (dma_addr_t) td_last->next);
  741. td_last = td;
  742. td = phys_to_virt(td_last->next);
  743. }
  744. return ret_val;
  745. }
  746. /* Iterates to the end of a DMA chain and returns last descriptor */
  747. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  748. {
  749. struct udc_data_dma *td;
  750. td = req->td_data;
  751. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  752. td = phys_to_virt(td->next);
  753. }
  754. return td;
  755. }
  756. /* Iterates to the end of a DMA chain and counts bytes received */
  757. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  758. {
  759. struct udc_data_dma *td;
  760. u32 count;
  761. td = req->td_data;
  762. /* received number bytes */
  763. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  764. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  765. td = phys_to_virt(td->next);
  766. /* received number bytes */
  767. if (td) {
  768. count += AMD_GETBITS(td->status,
  769. UDC_DMA_OUT_STS_RXBYTES);
  770. }
  771. }
  772. return count;
  773. }
  774. /* Creates or re-inits a DMA chain */
  775. static int udc_create_dma_chain(
  776. struct udc_ep *ep,
  777. struct udc_request *req,
  778. unsigned long buf_len, gfp_t gfp_flags
  779. )
  780. {
  781. unsigned long bytes = req->req.length;
  782. unsigned int i;
  783. dma_addr_t dma_addr;
  784. struct udc_data_dma *td = NULL;
  785. struct udc_data_dma *last = NULL;
  786. unsigned long txbytes;
  787. unsigned create_new_chain = 0;
  788. unsigned len;
  789. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  790. bytes, buf_len);
  791. dma_addr = DMA_DONT_USE;
  792. /* unset L bit in first desc for OUT */
  793. if (!ep->in) {
  794. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  795. }
  796. /* alloc only new desc's if not already available */
  797. len = req->req.length / ep->ep.maxpacket;
  798. if (req->req.length % ep->ep.maxpacket) {
  799. len++;
  800. }
  801. if (len > req->chain_len) {
  802. /* shorter chain already allocated before */
  803. if (req->chain_len > 1) {
  804. udc_free_dma_chain(ep->dev, req);
  805. }
  806. req->chain_len = len;
  807. create_new_chain = 1;
  808. }
  809. td = req->td_data;
  810. /* gen. required number of descriptors and buffers */
  811. for (i = buf_len; i < bytes; i += buf_len) {
  812. /* create or determine next desc. */
  813. if (create_new_chain) {
  814. td = pci_pool_alloc(ep->dev->data_requests,
  815. gfp_flags, &dma_addr);
  816. if (!td)
  817. return -ENOMEM;
  818. td->status = 0;
  819. } else if (i == buf_len) {
  820. /* first td */
  821. td = (struct udc_data_dma *) phys_to_virt(
  822. req->td_data->next);
  823. td->status = 0;
  824. } else {
  825. td = (struct udc_data_dma *) phys_to_virt(last->next);
  826. td->status = 0;
  827. }
  828. if (td)
  829. td->bufptr = req->req.dma + i; /* assign buffer */
  830. else
  831. break;
  832. /* short packet ? */
  833. if ((bytes - i) >= buf_len) {
  834. txbytes = buf_len;
  835. } else {
  836. /* short packet */
  837. txbytes = bytes - i;
  838. }
  839. /* link td and assign tx bytes */
  840. if (i == buf_len) {
  841. if (create_new_chain) {
  842. req->td_data->next = dma_addr;
  843. } else {
  844. /* req->td_data->next = virt_to_phys(td); */
  845. }
  846. /* write tx bytes */
  847. if (ep->in) {
  848. /* first desc */
  849. req->td_data->status =
  850. AMD_ADDBITS(req->td_data->status,
  851. ep->ep.maxpacket,
  852. UDC_DMA_IN_STS_TXBYTES);
  853. /* second desc */
  854. td->status = AMD_ADDBITS(td->status,
  855. txbytes,
  856. UDC_DMA_IN_STS_TXBYTES);
  857. }
  858. } else {
  859. if (create_new_chain) {
  860. last->next = dma_addr;
  861. } else {
  862. /* last->next = virt_to_phys(td); */
  863. }
  864. if (ep->in) {
  865. /* write tx bytes */
  866. td->status = AMD_ADDBITS(td->status,
  867. txbytes,
  868. UDC_DMA_IN_STS_TXBYTES);
  869. }
  870. }
  871. last = td;
  872. }
  873. /* set last bit */
  874. if (td) {
  875. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  876. /* last desc. points to itself */
  877. req->td_data_last = td;
  878. }
  879. return 0;
  880. }
  881. /* Enabling RX DMA */
  882. static void udc_set_rde(struct udc *dev)
  883. {
  884. u32 tmp;
  885. VDBG(dev, "udc_set_rde()\n");
  886. /* stop RDE timer */
  887. if (timer_pending(&udc_timer)) {
  888. set_rde = 0;
  889. mod_timer(&udc_timer, jiffies - 1);
  890. }
  891. /* set RDE */
  892. tmp = readl(&dev->regs->ctl);
  893. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  894. writel(tmp, &dev->regs->ctl);
  895. }
  896. /* Queues a request packet, called by gadget driver */
  897. static int
  898. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  899. {
  900. int retval = 0;
  901. u8 open_rxfifo = 0;
  902. unsigned long iflags;
  903. struct udc_ep *ep;
  904. struct udc_request *req;
  905. struct udc *dev;
  906. u32 tmp;
  907. /* check the inputs */
  908. req = container_of(usbreq, struct udc_request, req);
  909. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  910. || !list_empty(&req->queue))
  911. return -EINVAL;
  912. ep = container_of(usbep, struct udc_ep, ep);
  913. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  914. return -EINVAL;
  915. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  916. dev = ep->dev;
  917. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  918. return -ESHUTDOWN;
  919. /* map dma (usually done before) */
  920. if (ep->dma && usbreq->length != 0
  921. && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
  922. VDBG(dev, "DMA map req %p\n", req);
  923. if (ep->in)
  924. usbreq->dma = pci_map_single(dev->pdev,
  925. usbreq->buf,
  926. usbreq->length,
  927. PCI_DMA_TODEVICE);
  928. else
  929. usbreq->dma = pci_map_single(dev->pdev,
  930. usbreq->buf,
  931. usbreq->length,
  932. PCI_DMA_FROMDEVICE);
  933. req->dma_mapping = 1;
  934. }
  935. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  936. usbep->name, usbreq, usbreq->length,
  937. req->td_data, usbreq->buf);
  938. spin_lock_irqsave(&dev->lock, iflags);
  939. usbreq->actual = 0;
  940. usbreq->status = -EINPROGRESS;
  941. req->dma_done = 0;
  942. /* on empty queue just do first transfer */
  943. if (list_empty(&ep->queue)) {
  944. /* zlp */
  945. if (usbreq->length == 0) {
  946. /* IN zlp's are handled by hardware */
  947. complete_req(ep, req, 0);
  948. VDBG(dev, "%s: zlp\n", ep->ep.name);
  949. /*
  950. * if set_config or set_intf is waiting for ack by zlp
  951. * then set CSR_DONE
  952. */
  953. if (dev->set_cfg_not_acked) {
  954. tmp = readl(&dev->regs->ctl);
  955. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  956. writel(tmp, &dev->regs->ctl);
  957. dev->set_cfg_not_acked = 0;
  958. }
  959. /* setup command is ACK'ed now by zlp */
  960. if (dev->waiting_zlp_ack_ep0in) {
  961. /* clear NAK by writing CNAK in EP0_IN */
  962. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  963. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  964. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  965. dev->ep[UDC_EP0IN_IX].naking = 0;
  966. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  967. UDC_EP0IN_IX);
  968. dev->waiting_zlp_ack_ep0in = 0;
  969. }
  970. goto finished;
  971. }
  972. if (ep->dma) {
  973. retval = prep_dma(ep, req, gfp);
  974. if (retval != 0)
  975. goto finished;
  976. /* write desc pointer to enable DMA */
  977. if (ep->in) {
  978. /* set HOST READY */
  979. req->td_data->status =
  980. AMD_ADDBITS(req->td_data->status,
  981. UDC_DMA_IN_STS_BS_HOST_READY,
  982. UDC_DMA_IN_STS_BS);
  983. }
  984. /* disabled rx dma while descriptor update */
  985. if (!ep->in) {
  986. /* stop RDE timer */
  987. if (timer_pending(&udc_timer)) {
  988. set_rde = 0;
  989. mod_timer(&udc_timer, jiffies - 1);
  990. }
  991. /* clear RDE */
  992. tmp = readl(&dev->regs->ctl);
  993. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  994. writel(tmp, &dev->regs->ctl);
  995. open_rxfifo = 1;
  996. /*
  997. * if BNA occurred then let BNA dummy desc.
  998. * point to current desc.
  999. */
  1000. if (ep->bna_occurred) {
  1001. VDBG(dev, "copy to BNA dummy desc.\n");
  1002. memcpy(ep->bna_dummy_req->td_data,
  1003. req->td_data,
  1004. sizeof(struct udc_data_dma));
  1005. }
  1006. }
  1007. /* write desc pointer */
  1008. writel(req->td_phys, &ep->regs->desptr);
  1009. /* clear NAK by writing CNAK */
  1010. if (ep->naking) {
  1011. tmp = readl(&ep->regs->ctl);
  1012. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1013. writel(tmp, &ep->regs->ctl);
  1014. ep->naking = 0;
  1015. UDC_QUEUE_CNAK(ep, ep->num);
  1016. }
  1017. if (ep->in) {
  1018. /* enable ep irq */
  1019. tmp = readl(&dev->regs->ep_irqmsk);
  1020. tmp &= AMD_UNMASK_BIT(ep->num);
  1021. writel(tmp, &dev->regs->ep_irqmsk);
  1022. }
  1023. } else if (ep->in) {
  1024. /* enable ep irq */
  1025. tmp = readl(&dev->regs->ep_irqmsk);
  1026. tmp &= AMD_UNMASK_BIT(ep->num);
  1027. writel(tmp, &dev->regs->ep_irqmsk);
  1028. }
  1029. } else if (ep->dma) {
  1030. /*
  1031. * prep_dma not used for OUT ep's, this is not possible
  1032. * for PPB modes, because of chain creation reasons
  1033. */
  1034. if (ep->in) {
  1035. retval = prep_dma(ep, req, gfp);
  1036. if (retval != 0)
  1037. goto finished;
  1038. }
  1039. }
  1040. VDBG(dev, "list_add\n");
  1041. /* add request to ep queue */
  1042. if (req) {
  1043. list_add_tail(&req->queue, &ep->queue);
  1044. /* open rxfifo if out data queued */
  1045. if (open_rxfifo) {
  1046. /* enable DMA */
  1047. req->dma_going = 1;
  1048. udc_set_rde(dev);
  1049. if (ep->num != UDC_EP0OUT_IX)
  1050. dev->data_ep_queued = 1;
  1051. }
  1052. /* stop OUT naking */
  1053. if (!ep->in) {
  1054. if (!use_dma && udc_rxfifo_pending) {
  1055. DBG(dev, "udc_queue(): pending bytes in "
  1056. "rxfifo after nyet\n");
  1057. /*
  1058. * read pending bytes afer nyet:
  1059. * referring to isr
  1060. */
  1061. if (udc_rxfifo_read(ep, req)) {
  1062. /* finish */
  1063. complete_req(ep, req, 0);
  1064. }
  1065. udc_rxfifo_pending = 0;
  1066. }
  1067. }
  1068. }
  1069. finished:
  1070. spin_unlock_irqrestore(&dev->lock, iflags);
  1071. return retval;
  1072. }
  1073. /* Empty request queue of an endpoint; caller holds spinlock */
  1074. static void empty_req_queue(struct udc_ep *ep)
  1075. {
  1076. struct udc_request *req;
  1077. ep->halted = 1;
  1078. while (!list_empty(&ep->queue)) {
  1079. req = list_entry(ep->queue.next,
  1080. struct udc_request,
  1081. queue);
  1082. complete_req(ep, req, -ESHUTDOWN);
  1083. }
  1084. }
  1085. /* Dequeues a request packet, called by gadget driver */
  1086. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1087. {
  1088. struct udc_ep *ep;
  1089. struct udc_request *req;
  1090. unsigned halted;
  1091. unsigned long iflags;
  1092. ep = container_of(usbep, struct udc_ep, ep);
  1093. if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
  1094. && ep->num != UDC_EP0OUT_IX)))
  1095. return -EINVAL;
  1096. req = container_of(usbreq, struct udc_request, req);
  1097. spin_lock_irqsave(&ep->dev->lock, iflags);
  1098. halted = ep->halted;
  1099. ep->halted = 1;
  1100. /* request in processing or next one */
  1101. if (ep->queue.next == &req->queue) {
  1102. if (ep->dma && req->dma_going) {
  1103. if (ep->in)
  1104. ep->cancel_transfer = 1;
  1105. else {
  1106. u32 tmp;
  1107. u32 dma_sts;
  1108. /* stop potential receive DMA */
  1109. tmp = readl(&udc->regs->ctl);
  1110. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1111. &udc->regs->ctl);
  1112. /*
  1113. * Cancel transfer later in ISR
  1114. * if descriptor was touched.
  1115. */
  1116. dma_sts = AMD_GETBITS(req->td_data->status,
  1117. UDC_DMA_OUT_STS_BS);
  1118. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1119. ep->cancel_transfer = 1;
  1120. else {
  1121. udc_init_bna_dummy(ep->req);
  1122. writel(ep->bna_dummy_req->td_phys,
  1123. &ep->regs->desptr);
  1124. }
  1125. writel(tmp, &udc->regs->ctl);
  1126. }
  1127. }
  1128. }
  1129. complete_req(ep, req, -ECONNRESET);
  1130. ep->halted = halted;
  1131. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1132. return 0;
  1133. }
  1134. /* Halt or clear halt of endpoint */
  1135. static int
  1136. udc_set_halt(struct usb_ep *usbep, int halt)
  1137. {
  1138. struct udc_ep *ep;
  1139. u32 tmp;
  1140. unsigned long iflags;
  1141. int retval = 0;
  1142. if (!usbep)
  1143. return -EINVAL;
  1144. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1145. ep = container_of(usbep, struct udc_ep, ep);
  1146. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1147. return -EINVAL;
  1148. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1149. return -ESHUTDOWN;
  1150. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1151. /* halt or clear halt */
  1152. if (halt) {
  1153. if (ep->num == 0)
  1154. ep->dev->stall_ep0in = 1;
  1155. else {
  1156. /*
  1157. * set STALL
  1158. * rxfifo empty not taken into acount
  1159. */
  1160. tmp = readl(&ep->regs->ctl);
  1161. tmp |= AMD_BIT(UDC_EPCTL_S);
  1162. writel(tmp, &ep->regs->ctl);
  1163. ep->halted = 1;
  1164. /* setup poll timer */
  1165. if (!timer_pending(&udc_pollstall_timer)) {
  1166. udc_pollstall_timer.expires = jiffies +
  1167. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1168. / (1000 * 1000);
  1169. if (!stop_pollstall_timer) {
  1170. DBG(ep->dev, "start polltimer\n");
  1171. add_timer(&udc_pollstall_timer);
  1172. }
  1173. }
  1174. }
  1175. } else {
  1176. /* ep is halted by set_halt() before */
  1177. if (ep->halted) {
  1178. tmp = readl(&ep->regs->ctl);
  1179. /* clear stall bit */
  1180. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1181. /* clear NAK by writing CNAK */
  1182. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1183. writel(tmp, &ep->regs->ctl);
  1184. ep->halted = 0;
  1185. UDC_QUEUE_CNAK(ep, ep->num);
  1186. }
  1187. }
  1188. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1189. return retval;
  1190. }
  1191. /* gadget interface */
  1192. static const struct usb_ep_ops udc_ep_ops = {
  1193. .enable = udc_ep_enable,
  1194. .disable = udc_ep_disable,
  1195. .alloc_request = udc_alloc_request,
  1196. .free_request = udc_free_request,
  1197. .queue = udc_queue,
  1198. .dequeue = udc_dequeue,
  1199. .set_halt = udc_set_halt,
  1200. /* fifo ops not implemented */
  1201. };
  1202. /*-------------------------------------------------------------------------*/
  1203. /* Get frame counter (not implemented) */
  1204. static int udc_get_frame(struct usb_gadget *gadget)
  1205. {
  1206. return -EOPNOTSUPP;
  1207. }
  1208. /* Remote wakeup gadget interface */
  1209. static int udc_wakeup(struct usb_gadget *gadget)
  1210. {
  1211. struct udc *dev;
  1212. if (!gadget)
  1213. return -EINVAL;
  1214. dev = container_of(gadget, struct udc, gadget);
  1215. udc_remote_wakeup(dev);
  1216. return 0;
  1217. }
  1218. static int amd5536_start(struct usb_gadget_driver *driver,
  1219. int (*bind)(struct usb_gadget *));
  1220. static int amd5536_stop(struct usb_gadget_driver *driver);
  1221. /* gadget operations */
  1222. static const struct usb_gadget_ops udc_ops = {
  1223. .wakeup = udc_wakeup,
  1224. .get_frame = udc_get_frame,
  1225. .start = amd5536_start,
  1226. .stop = amd5536_stop,
  1227. };
  1228. /* Setups endpoint parameters, adds endpoints to linked list */
  1229. static void make_ep_lists(struct udc *dev)
  1230. {
  1231. /* make gadget ep lists */
  1232. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1233. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1234. &dev->gadget.ep_list);
  1235. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1236. &dev->gadget.ep_list);
  1237. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1238. &dev->gadget.ep_list);
  1239. /* fifo config */
  1240. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1241. if (dev->gadget.speed == USB_SPEED_FULL)
  1242. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1243. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1244. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1245. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1246. }
  1247. /* init registers at driver load time */
  1248. static int startup_registers(struct udc *dev)
  1249. {
  1250. u32 tmp;
  1251. /* init controller by soft reset */
  1252. udc_soft_reset(dev);
  1253. /* mask not needed interrupts */
  1254. udc_mask_unused_interrupts(dev);
  1255. /* put into initial config */
  1256. udc_basic_init(dev);
  1257. /* link up all endpoints */
  1258. udc_setup_endpoints(dev);
  1259. /* program speed */
  1260. tmp = readl(&dev->regs->cfg);
  1261. if (use_fullspeed) {
  1262. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1263. } else {
  1264. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1265. }
  1266. writel(tmp, &dev->regs->cfg);
  1267. return 0;
  1268. }
  1269. /* Inits UDC context */
  1270. static void udc_basic_init(struct udc *dev)
  1271. {
  1272. u32 tmp;
  1273. DBG(dev, "udc_basic_init()\n");
  1274. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1275. /* stop RDE timer */
  1276. if (timer_pending(&udc_timer)) {
  1277. set_rde = 0;
  1278. mod_timer(&udc_timer, jiffies - 1);
  1279. }
  1280. /* stop poll stall timer */
  1281. if (timer_pending(&udc_pollstall_timer)) {
  1282. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1283. }
  1284. /* disable DMA */
  1285. tmp = readl(&dev->regs->ctl);
  1286. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1287. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1288. writel(tmp, &dev->regs->ctl);
  1289. /* enable dynamic CSR programming */
  1290. tmp = readl(&dev->regs->cfg);
  1291. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1292. /* set self powered */
  1293. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1294. /* set remote wakeupable */
  1295. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1296. writel(tmp, &dev->regs->cfg);
  1297. make_ep_lists(dev);
  1298. dev->data_ep_enabled = 0;
  1299. dev->data_ep_queued = 0;
  1300. }
  1301. /* Sets initial endpoint parameters */
  1302. static void udc_setup_endpoints(struct udc *dev)
  1303. {
  1304. struct udc_ep *ep;
  1305. u32 tmp;
  1306. u32 reg;
  1307. DBG(dev, "udc_setup_endpoints()\n");
  1308. /* read enum speed */
  1309. tmp = readl(&dev->regs->sts);
  1310. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1311. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
  1312. dev->gadget.speed = USB_SPEED_HIGH;
  1313. } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
  1314. dev->gadget.speed = USB_SPEED_FULL;
  1315. }
  1316. /* set basic ep parameters */
  1317. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1318. ep = &dev->ep[tmp];
  1319. ep->dev = dev;
  1320. ep->ep.name = ep_string[tmp];
  1321. ep->num = tmp;
  1322. /* txfifo size is calculated at enable time */
  1323. ep->txfifo = dev->txfifo;
  1324. /* fifo size */
  1325. if (tmp < UDC_EPIN_NUM) {
  1326. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1327. ep->in = 1;
  1328. } else {
  1329. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1330. ep->in = 0;
  1331. }
  1332. ep->regs = &dev->ep_regs[tmp];
  1333. /*
  1334. * ep will be reset only if ep was not enabled before to avoid
  1335. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1336. * not enabled by gadget driver
  1337. */
  1338. if (!ep->desc) {
  1339. ep_init(dev->regs, ep);
  1340. }
  1341. if (use_dma) {
  1342. /*
  1343. * ep->dma is not really used, just to indicate that
  1344. * DMA is active: remove this
  1345. * dma regs = dev control regs
  1346. */
  1347. ep->dma = &dev->regs->ctl;
  1348. /* nak OUT endpoints until enable - not for ep0 */
  1349. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1350. && tmp > UDC_EPIN_NUM) {
  1351. /* set NAK */
  1352. reg = readl(&dev->ep[tmp].regs->ctl);
  1353. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1354. writel(reg, &dev->ep[tmp].regs->ctl);
  1355. dev->ep[tmp].naking = 1;
  1356. }
  1357. }
  1358. }
  1359. /* EP0 max packet */
  1360. if (dev->gadget.speed == USB_SPEED_FULL) {
  1361. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
  1362. dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
  1363. UDC_FS_EP0OUT_MAX_PKT_SIZE;
  1364. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1365. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  1366. dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  1367. }
  1368. /*
  1369. * with suspend bug workaround, ep0 params for gadget driver
  1370. * are set at gadget driver bind() call
  1371. */
  1372. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1373. dev->ep[UDC_EP0IN_IX].halted = 0;
  1374. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1375. /* init cfg/alt/int */
  1376. dev->cur_config = 0;
  1377. dev->cur_intf = 0;
  1378. dev->cur_alt = 0;
  1379. }
  1380. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1381. static void usb_connect(struct udc *dev)
  1382. {
  1383. dev_info(&dev->pdev->dev, "USB Connect\n");
  1384. dev->connected = 1;
  1385. /* put into initial config */
  1386. udc_basic_init(dev);
  1387. /* enable device setup interrupts */
  1388. udc_enable_dev_setup_interrupts(dev);
  1389. }
  1390. /*
  1391. * Calls gadget with disconnect event and resets the UDC and makes
  1392. * initial bringup to be ready for ep0 events
  1393. */
  1394. static void usb_disconnect(struct udc *dev)
  1395. {
  1396. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1397. dev->connected = 0;
  1398. /* mask interrupts */
  1399. udc_mask_unused_interrupts(dev);
  1400. /* REVISIT there doesn't seem to be a point to having this
  1401. * talk to a tasklet ... do it directly, we already hold
  1402. * the spinlock needed to process the disconnect.
  1403. */
  1404. tasklet_schedule(&disconnect_tasklet);
  1405. }
  1406. /* Tasklet for disconnect to be outside of interrupt context */
  1407. static void udc_tasklet_disconnect(unsigned long par)
  1408. {
  1409. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1410. u32 tmp;
  1411. DBG(dev, "Tasklet disconnect\n");
  1412. spin_lock_irq(&dev->lock);
  1413. if (dev->driver) {
  1414. spin_unlock(&dev->lock);
  1415. dev->driver->disconnect(&dev->gadget);
  1416. spin_lock(&dev->lock);
  1417. /* empty queues */
  1418. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1419. empty_req_queue(&dev->ep[tmp]);
  1420. }
  1421. }
  1422. /* disable ep0 */
  1423. ep_init(dev->regs,
  1424. &dev->ep[UDC_EP0IN_IX]);
  1425. if (!soft_reset_occured) {
  1426. /* init controller by soft reset */
  1427. udc_soft_reset(dev);
  1428. soft_reset_occured++;
  1429. }
  1430. /* re-enable dev interrupts */
  1431. udc_enable_dev_setup_interrupts(dev);
  1432. /* back to full speed ? */
  1433. if (use_fullspeed) {
  1434. tmp = readl(&dev->regs->cfg);
  1435. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1436. writel(tmp, &dev->regs->cfg);
  1437. }
  1438. spin_unlock_irq(&dev->lock);
  1439. }
  1440. /* Reset the UDC core */
  1441. static void udc_soft_reset(struct udc *dev)
  1442. {
  1443. unsigned long flags;
  1444. DBG(dev, "Soft reset\n");
  1445. /*
  1446. * reset possible waiting interrupts, because int.
  1447. * status is lost after soft reset,
  1448. * ep int. status reset
  1449. */
  1450. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1451. /* device int. status reset */
  1452. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1453. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1454. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1455. readl(&dev->regs->cfg);
  1456. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1457. }
  1458. /* RDE timer callback to set RDE bit */
  1459. static void udc_timer_function(unsigned long v)
  1460. {
  1461. u32 tmp;
  1462. spin_lock_irq(&udc_irq_spinlock);
  1463. if (set_rde > 0) {
  1464. /*
  1465. * open the fifo if fifo was filled on last timer call
  1466. * conditionally
  1467. */
  1468. if (set_rde > 1) {
  1469. /* set RDE to receive setup data */
  1470. tmp = readl(&udc->regs->ctl);
  1471. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1472. writel(tmp, &udc->regs->ctl);
  1473. set_rde = -1;
  1474. } else if (readl(&udc->regs->sts)
  1475. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1476. /*
  1477. * if fifo empty setup polling, do not just
  1478. * open the fifo
  1479. */
  1480. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1481. if (!stop_timer) {
  1482. add_timer(&udc_timer);
  1483. }
  1484. } else {
  1485. /*
  1486. * fifo contains data now, setup timer for opening
  1487. * the fifo when timer expires to be able to receive
  1488. * setup packets, when data packets gets queued by
  1489. * gadget layer then timer will forced to expire with
  1490. * set_rde=0 (RDE is set in udc_queue())
  1491. */
  1492. set_rde++;
  1493. /* debug: lhadmot_timer_start = 221070 */
  1494. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1495. if (!stop_timer) {
  1496. add_timer(&udc_timer);
  1497. }
  1498. }
  1499. } else
  1500. set_rde = -1; /* RDE was set by udc_queue() */
  1501. spin_unlock_irq(&udc_irq_spinlock);
  1502. if (stop_timer)
  1503. complete(&on_exit);
  1504. }
  1505. /* Handle halt state, used in stall poll timer */
  1506. static void udc_handle_halt_state(struct udc_ep *ep)
  1507. {
  1508. u32 tmp;
  1509. /* set stall as long not halted */
  1510. if (ep->halted == 1) {
  1511. tmp = readl(&ep->regs->ctl);
  1512. /* STALL cleared ? */
  1513. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1514. /*
  1515. * FIXME: MSC spec requires that stall remains
  1516. * even on receivng of CLEAR_FEATURE HALT. So
  1517. * we would set STALL again here to be compliant.
  1518. * But with current mass storage drivers this does
  1519. * not work (would produce endless host retries).
  1520. * So we clear halt on CLEAR_FEATURE.
  1521. *
  1522. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1523. tmp |= AMD_BIT(UDC_EPCTL_S);
  1524. writel(tmp, &ep->regs->ctl);*/
  1525. /* clear NAK by writing CNAK */
  1526. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1527. writel(tmp, &ep->regs->ctl);
  1528. ep->halted = 0;
  1529. UDC_QUEUE_CNAK(ep, ep->num);
  1530. }
  1531. }
  1532. }
  1533. /* Stall timer callback to poll S bit and set it again after */
  1534. static void udc_pollstall_timer_function(unsigned long v)
  1535. {
  1536. struct udc_ep *ep;
  1537. int halted = 0;
  1538. spin_lock_irq(&udc_stall_spinlock);
  1539. /*
  1540. * only one IN and OUT endpoints are handled
  1541. * IN poll stall
  1542. */
  1543. ep = &udc->ep[UDC_EPIN_IX];
  1544. udc_handle_halt_state(ep);
  1545. if (ep->halted)
  1546. halted = 1;
  1547. /* OUT poll stall */
  1548. ep = &udc->ep[UDC_EPOUT_IX];
  1549. udc_handle_halt_state(ep);
  1550. if (ep->halted)
  1551. halted = 1;
  1552. /* setup timer again when still halted */
  1553. if (!stop_pollstall_timer && halted) {
  1554. udc_pollstall_timer.expires = jiffies +
  1555. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1556. / (1000 * 1000);
  1557. add_timer(&udc_pollstall_timer);
  1558. }
  1559. spin_unlock_irq(&udc_stall_spinlock);
  1560. if (stop_pollstall_timer)
  1561. complete(&on_pollstall_exit);
  1562. }
  1563. /* Inits endpoint 0 so that SETUP packets are processed */
  1564. static void activate_control_endpoints(struct udc *dev)
  1565. {
  1566. u32 tmp;
  1567. DBG(dev, "activate_control_endpoints\n");
  1568. /* flush fifo */
  1569. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1570. tmp |= AMD_BIT(UDC_EPCTL_F);
  1571. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1572. /* set ep0 directions */
  1573. dev->ep[UDC_EP0IN_IX].in = 1;
  1574. dev->ep[UDC_EP0OUT_IX].in = 0;
  1575. /* set buffer size (tx fifo entries) of EP0_IN */
  1576. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1577. if (dev->gadget.speed == USB_SPEED_FULL)
  1578. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1579. UDC_EPIN_BUFF_SIZE);
  1580. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1581. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1582. UDC_EPIN_BUFF_SIZE);
  1583. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1584. /* set max packet size of EP0_IN */
  1585. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1586. if (dev->gadget.speed == USB_SPEED_FULL)
  1587. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1588. UDC_EP_MAX_PKT_SIZE);
  1589. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1590. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1591. UDC_EP_MAX_PKT_SIZE);
  1592. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1593. /* set max packet size of EP0_OUT */
  1594. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1595. if (dev->gadget.speed == USB_SPEED_FULL)
  1596. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1597. UDC_EP_MAX_PKT_SIZE);
  1598. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1599. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1600. UDC_EP_MAX_PKT_SIZE);
  1601. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1602. /* set max packet size of EP0 in UDC CSR */
  1603. tmp = readl(&dev->csr->ne[0]);
  1604. if (dev->gadget.speed == USB_SPEED_FULL)
  1605. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1606. UDC_CSR_NE_MAX_PKT);
  1607. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1608. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1609. UDC_CSR_NE_MAX_PKT);
  1610. writel(tmp, &dev->csr->ne[0]);
  1611. if (use_dma) {
  1612. dev->ep[UDC_EP0OUT_IX].td->status |=
  1613. AMD_BIT(UDC_DMA_OUT_STS_L);
  1614. /* write dma desc address */
  1615. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1616. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1617. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1618. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1619. /* stop RDE timer */
  1620. if (timer_pending(&udc_timer)) {
  1621. set_rde = 0;
  1622. mod_timer(&udc_timer, jiffies - 1);
  1623. }
  1624. /* stop pollstall timer */
  1625. if (timer_pending(&udc_pollstall_timer)) {
  1626. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1627. }
  1628. /* enable DMA */
  1629. tmp = readl(&dev->regs->ctl);
  1630. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1631. | AMD_BIT(UDC_DEVCTL_RDE)
  1632. | AMD_BIT(UDC_DEVCTL_TDE);
  1633. if (use_dma_bufferfill_mode) {
  1634. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1635. } else if (use_dma_ppb_du) {
  1636. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1637. }
  1638. writel(tmp, &dev->regs->ctl);
  1639. }
  1640. /* clear NAK by writing CNAK for EP0IN */
  1641. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1642. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1643. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1644. dev->ep[UDC_EP0IN_IX].naking = 0;
  1645. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1646. /* clear NAK by writing CNAK for EP0OUT */
  1647. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1648. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1649. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1650. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1651. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1652. }
  1653. /* Make endpoint 0 ready for control traffic */
  1654. static int setup_ep0(struct udc *dev)
  1655. {
  1656. activate_control_endpoints(dev);
  1657. /* enable ep0 interrupts */
  1658. udc_enable_ep0_interrupts(dev);
  1659. /* enable device setup interrupts */
  1660. udc_enable_dev_setup_interrupts(dev);
  1661. return 0;
  1662. }
  1663. /* Called by gadget driver to register itself */
  1664. static int amd5536_start(struct usb_gadget_driver *driver,
  1665. int (*bind)(struct usb_gadget *))
  1666. {
  1667. struct udc *dev = udc;
  1668. int retval;
  1669. u32 tmp;
  1670. if (!driver || !bind || !driver->setup
  1671. || driver->speed != USB_SPEED_HIGH)
  1672. return -EINVAL;
  1673. if (!dev)
  1674. return -ENODEV;
  1675. if (dev->driver)
  1676. return -EBUSY;
  1677. driver->driver.bus = NULL;
  1678. dev->driver = driver;
  1679. dev->gadget.dev.driver = &driver->driver;
  1680. retval = bind(&dev->gadget);
  1681. /* Some gadget drivers use both ep0 directions.
  1682. * NOTE: to gadget driver, ep0 is just one endpoint...
  1683. */
  1684. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1685. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1686. if (retval) {
  1687. DBG(dev, "binding to %s returning %d\n",
  1688. driver->driver.name, retval);
  1689. dev->driver = NULL;
  1690. dev->gadget.dev.driver = NULL;
  1691. return retval;
  1692. }
  1693. /* get ready for ep0 traffic */
  1694. setup_ep0(dev);
  1695. /* clear SD */
  1696. tmp = readl(&dev->regs->ctl);
  1697. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1698. writel(tmp, &dev->regs->ctl);
  1699. usb_connect(dev);
  1700. return 0;
  1701. }
  1702. /* shutdown requests and disconnect from gadget */
  1703. static void
  1704. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1705. __releases(dev->lock)
  1706. __acquires(dev->lock)
  1707. {
  1708. int tmp;
  1709. if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
  1710. spin_unlock(&dev->lock);
  1711. driver->disconnect(&dev->gadget);
  1712. spin_lock(&dev->lock);
  1713. }
  1714. /* empty queues and init hardware */
  1715. udc_basic_init(dev);
  1716. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1717. empty_req_queue(&dev->ep[tmp]);
  1718. udc_setup_endpoints(dev);
  1719. }
  1720. /* Called by gadget driver to unregister itself */
  1721. static int amd5536_stop(struct usb_gadget_driver *driver)
  1722. {
  1723. struct udc *dev = udc;
  1724. unsigned long flags;
  1725. u32 tmp;
  1726. if (!dev)
  1727. return -ENODEV;
  1728. if (!driver || driver != dev->driver || !driver->unbind)
  1729. return -EINVAL;
  1730. spin_lock_irqsave(&dev->lock, flags);
  1731. udc_mask_unused_interrupts(dev);
  1732. shutdown(dev, driver);
  1733. spin_unlock_irqrestore(&dev->lock, flags);
  1734. driver->unbind(&dev->gadget);
  1735. dev->gadget.dev.driver = NULL;
  1736. dev->driver = NULL;
  1737. /* set SD */
  1738. tmp = readl(&dev->regs->ctl);
  1739. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1740. writel(tmp, &dev->regs->ctl);
  1741. DBG(dev, "%s: unregistered\n", driver->driver.name);
  1742. return 0;
  1743. }
  1744. /* Clear pending NAK bits */
  1745. static void udc_process_cnak_queue(struct udc *dev)
  1746. {
  1747. u32 tmp;
  1748. u32 reg;
  1749. /* check epin's */
  1750. DBG(dev, "CNAK pending queue processing\n");
  1751. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1752. if (cnak_pending & (1 << tmp)) {
  1753. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1754. /* clear NAK by writing CNAK */
  1755. reg = readl(&dev->ep[tmp].regs->ctl);
  1756. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1757. writel(reg, &dev->ep[tmp].regs->ctl);
  1758. dev->ep[tmp].naking = 0;
  1759. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1760. }
  1761. }
  1762. /* ... and ep0out */
  1763. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1764. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1765. /* clear NAK by writing CNAK */
  1766. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1767. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1768. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1769. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1770. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1771. dev->ep[UDC_EP0OUT_IX].num);
  1772. }
  1773. }
  1774. /* Enabling RX DMA after setup packet */
  1775. static void udc_ep0_set_rde(struct udc *dev)
  1776. {
  1777. if (use_dma) {
  1778. /*
  1779. * only enable RXDMA when no data endpoint enabled
  1780. * or data is queued
  1781. */
  1782. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1783. udc_set_rde(dev);
  1784. } else {
  1785. /*
  1786. * setup timer for enabling RDE (to not enable
  1787. * RXFIFO DMA for data endpoints to early)
  1788. */
  1789. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1790. udc_timer.expires =
  1791. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1792. set_rde = 1;
  1793. if (!stop_timer) {
  1794. add_timer(&udc_timer);
  1795. }
  1796. }
  1797. }
  1798. }
  1799. }
  1800. /* Interrupt handler for data OUT traffic */
  1801. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1802. {
  1803. irqreturn_t ret_val = IRQ_NONE;
  1804. u32 tmp;
  1805. struct udc_ep *ep;
  1806. struct udc_request *req;
  1807. unsigned int count;
  1808. struct udc_data_dma *td = NULL;
  1809. unsigned dma_done;
  1810. VDBG(dev, "ep%d irq\n", ep_ix);
  1811. ep = &dev->ep[ep_ix];
  1812. tmp = readl(&ep->regs->sts);
  1813. if (use_dma) {
  1814. /* BNA event ? */
  1815. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1816. DBG(dev, "BNA ep%dout occurred - DESPTR = %x \n",
  1817. ep->num, readl(&ep->regs->desptr));
  1818. /* clear BNA */
  1819. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1820. if (!ep->cancel_transfer)
  1821. ep->bna_occurred = 1;
  1822. else
  1823. ep->cancel_transfer = 0;
  1824. ret_val = IRQ_HANDLED;
  1825. goto finished;
  1826. }
  1827. }
  1828. /* HE event ? */
  1829. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1830. dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
  1831. /* clear HE */
  1832. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1833. ret_val = IRQ_HANDLED;
  1834. goto finished;
  1835. }
  1836. if (!list_empty(&ep->queue)) {
  1837. /* next request */
  1838. req = list_entry(ep->queue.next,
  1839. struct udc_request, queue);
  1840. } else {
  1841. req = NULL;
  1842. udc_rxfifo_pending = 1;
  1843. }
  1844. VDBG(dev, "req = %p\n", req);
  1845. /* fifo mode */
  1846. if (!use_dma) {
  1847. /* read fifo */
  1848. if (req && udc_rxfifo_read(ep, req)) {
  1849. ret_val = IRQ_HANDLED;
  1850. /* finish */
  1851. complete_req(ep, req, 0);
  1852. /* next request */
  1853. if (!list_empty(&ep->queue) && !ep->halted) {
  1854. req = list_entry(ep->queue.next,
  1855. struct udc_request, queue);
  1856. } else
  1857. req = NULL;
  1858. }
  1859. /* DMA */
  1860. } else if (!ep->cancel_transfer && req != NULL) {
  1861. ret_val = IRQ_HANDLED;
  1862. /* check for DMA done */
  1863. if (!use_dma_ppb) {
  1864. dma_done = AMD_GETBITS(req->td_data->status,
  1865. UDC_DMA_OUT_STS_BS);
  1866. /* packet per buffer mode - rx bytes */
  1867. } else {
  1868. /*
  1869. * if BNA occurred then recover desc. from
  1870. * BNA dummy desc.
  1871. */
  1872. if (ep->bna_occurred) {
  1873. VDBG(dev, "Recover desc. from BNA dummy\n");
  1874. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1875. sizeof(struct udc_data_dma));
  1876. ep->bna_occurred = 0;
  1877. udc_init_bna_dummy(ep->req);
  1878. }
  1879. td = udc_get_last_dma_desc(req);
  1880. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1881. }
  1882. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1883. /* buffer fill mode - rx bytes */
  1884. if (!use_dma_ppb) {
  1885. /* received number bytes */
  1886. count = AMD_GETBITS(req->td_data->status,
  1887. UDC_DMA_OUT_STS_RXBYTES);
  1888. VDBG(dev, "rx bytes=%u\n", count);
  1889. /* packet per buffer mode - rx bytes */
  1890. } else {
  1891. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1892. VDBG(dev, "last desc = %p\n", td);
  1893. /* received number bytes */
  1894. if (use_dma_ppb_du) {
  1895. /* every desc. counts bytes */
  1896. count = udc_get_ppbdu_rxbytes(req);
  1897. } else {
  1898. /* last desc. counts bytes */
  1899. count = AMD_GETBITS(td->status,
  1900. UDC_DMA_OUT_STS_RXBYTES);
  1901. if (!count && req->req.length
  1902. == UDC_DMA_MAXPACKET) {
  1903. /*
  1904. * on 64k packets the RXBYTES
  1905. * field is zero
  1906. */
  1907. count = UDC_DMA_MAXPACKET;
  1908. }
  1909. }
  1910. VDBG(dev, "last desc rx bytes=%u\n", count);
  1911. }
  1912. tmp = req->req.length - req->req.actual;
  1913. if (count > tmp) {
  1914. if ((tmp % ep->ep.maxpacket) != 0) {
  1915. DBG(dev, "%s: rx %db, space=%db\n",
  1916. ep->ep.name, count, tmp);
  1917. req->req.status = -EOVERFLOW;
  1918. }
  1919. count = tmp;
  1920. }
  1921. req->req.actual += count;
  1922. req->dma_going = 0;
  1923. /* complete request */
  1924. complete_req(ep, req, 0);
  1925. /* next request */
  1926. if (!list_empty(&ep->queue) && !ep->halted) {
  1927. req = list_entry(ep->queue.next,
  1928. struct udc_request,
  1929. queue);
  1930. /*
  1931. * DMA may be already started by udc_queue()
  1932. * called by gadget drivers completion
  1933. * routine. This happens when queue
  1934. * holds one request only.
  1935. */
  1936. if (req->dma_going == 0) {
  1937. /* next dma */
  1938. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1939. goto finished;
  1940. /* write desc pointer */
  1941. writel(req->td_phys,
  1942. &ep->regs->desptr);
  1943. req->dma_going = 1;
  1944. /* enable DMA */
  1945. udc_set_rde(dev);
  1946. }
  1947. } else {
  1948. /*
  1949. * implant BNA dummy descriptor to allow
  1950. * RXFIFO opening by RDE
  1951. */
  1952. if (ep->bna_dummy_req) {
  1953. /* write desc pointer */
  1954. writel(ep->bna_dummy_req->td_phys,
  1955. &ep->regs->desptr);
  1956. ep->bna_occurred = 0;
  1957. }
  1958. /*
  1959. * schedule timer for setting RDE if queue
  1960. * remains empty to allow ep0 packets pass
  1961. * through
  1962. */
  1963. if (set_rde != 0
  1964. && !timer_pending(&udc_timer)) {
  1965. udc_timer.expires =
  1966. jiffies
  1967. + HZ*UDC_RDE_TIMER_SECONDS;
  1968. set_rde = 1;
  1969. if (!stop_timer) {
  1970. add_timer(&udc_timer);
  1971. }
  1972. }
  1973. if (ep->num != UDC_EP0OUT_IX)
  1974. dev->data_ep_queued = 0;
  1975. }
  1976. } else {
  1977. /*
  1978. * RX DMA must be reenabled for each desc in PPBDU mode
  1979. * and must be enabled for PPBNDU mode in case of BNA
  1980. */
  1981. udc_set_rde(dev);
  1982. }
  1983. } else if (ep->cancel_transfer) {
  1984. ret_val = IRQ_HANDLED;
  1985. ep->cancel_transfer = 0;
  1986. }
  1987. /* check pending CNAKS */
  1988. if (cnak_pending) {
  1989. /* CNAk processing when rxfifo empty only */
  1990. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1991. udc_process_cnak_queue(dev);
  1992. }
  1993. }
  1994. /* clear OUT bits in ep status */
  1995. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  1996. finished:
  1997. return ret_val;
  1998. }
  1999. /* Interrupt handler for data IN traffic */
  2000. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  2001. {
  2002. irqreturn_t ret_val = IRQ_NONE;
  2003. u32 tmp;
  2004. u32 epsts;
  2005. struct udc_ep *ep;
  2006. struct udc_request *req;
  2007. struct udc_data_dma *td;
  2008. unsigned dma_done;
  2009. unsigned len;
  2010. ep = &dev->ep[ep_ix];
  2011. epsts = readl(&ep->regs->sts);
  2012. if (use_dma) {
  2013. /* BNA ? */
  2014. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  2015. dev_err(&dev->pdev->dev,
  2016. "BNA ep%din occurred - DESPTR = %08lx \n",
  2017. ep->num,
  2018. (unsigned long) readl(&ep->regs->desptr));
  2019. /* clear BNA */
  2020. writel(epsts, &ep->regs->sts);
  2021. ret_val = IRQ_HANDLED;
  2022. goto finished;
  2023. }
  2024. }
  2025. /* HE event ? */
  2026. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  2027. dev_err(&dev->pdev->dev,
  2028. "HE ep%dn occurred - DESPTR = %08lx \n",
  2029. ep->num, (unsigned long) readl(&ep->regs->desptr));
  2030. /* clear HE */
  2031. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  2032. ret_val = IRQ_HANDLED;
  2033. goto finished;
  2034. }
  2035. /* DMA completion */
  2036. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  2037. VDBG(dev, "TDC set- completion\n");
  2038. ret_val = IRQ_HANDLED;
  2039. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  2040. req = list_entry(ep->queue.next,
  2041. struct udc_request, queue);
  2042. /*
  2043. * length bytes transferred
  2044. * check dma done of last desc. in PPBDU mode
  2045. */
  2046. if (use_dma_ppb_du) {
  2047. td = udc_get_last_dma_desc(req);
  2048. if (td) {
  2049. dma_done =
  2050. AMD_GETBITS(td->status,
  2051. UDC_DMA_IN_STS_BS);
  2052. /* don't care DMA done */
  2053. req->req.actual = req->req.length;
  2054. }
  2055. } else {
  2056. /* assume all bytes transferred */
  2057. req->req.actual = req->req.length;
  2058. }
  2059. if (req->req.actual == req->req.length) {
  2060. /* complete req */
  2061. complete_req(ep, req, 0);
  2062. req->dma_going = 0;
  2063. /* further request available ? */
  2064. if (list_empty(&ep->queue)) {
  2065. /* disable interrupt */
  2066. tmp = readl(&dev->regs->ep_irqmsk);
  2067. tmp |= AMD_BIT(ep->num);
  2068. writel(tmp, &dev->regs->ep_irqmsk);
  2069. }
  2070. }
  2071. }
  2072. ep->cancel_transfer = 0;
  2073. }
  2074. /*
  2075. * status reg has IN bit set and TDC not set (if TDC was handled,
  2076. * IN must not be handled (UDC defect) ?
  2077. */
  2078. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2079. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2080. ret_val = IRQ_HANDLED;
  2081. if (!list_empty(&ep->queue)) {
  2082. /* next request */
  2083. req = list_entry(ep->queue.next,
  2084. struct udc_request, queue);
  2085. /* FIFO mode */
  2086. if (!use_dma) {
  2087. /* write fifo */
  2088. udc_txfifo_write(ep, &req->req);
  2089. len = req->req.length - req->req.actual;
  2090. if (len > ep->ep.maxpacket)
  2091. len = ep->ep.maxpacket;
  2092. req->req.actual += len;
  2093. if (req->req.actual == req->req.length
  2094. || (len != ep->ep.maxpacket)) {
  2095. /* complete req */
  2096. complete_req(ep, req, 0);
  2097. }
  2098. /* DMA */
  2099. } else if (req && !req->dma_going) {
  2100. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2101. req, req->td_data);
  2102. if (req->td_data) {
  2103. req->dma_going = 1;
  2104. /*
  2105. * unset L bit of first desc.
  2106. * for chain
  2107. */
  2108. if (use_dma_ppb && req->req.length >
  2109. ep->ep.maxpacket) {
  2110. req->td_data->status &=
  2111. AMD_CLEAR_BIT(
  2112. UDC_DMA_IN_STS_L);
  2113. }
  2114. /* write desc pointer */
  2115. writel(req->td_phys, &ep->regs->desptr);
  2116. /* set HOST READY */
  2117. req->td_data->status =
  2118. AMD_ADDBITS(
  2119. req->td_data->status,
  2120. UDC_DMA_IN_STS_BS_HOST_READY,
  2121. UDC_DMA_IN_STS_BS);
  2122. /* set poll demand bit */
  2123. tmp = readl(&ep->regs->ctl);
  2124. tmp |= AMD_BIT(UDC_EPCTL_P);
  2125. writel(tmp, &ep->regs->ctl);
  2126. }
  2127. }
  2128. } else if (!use_dma && ep->in) {
  2129. /* disable interrupt */
  2130. tmp = readl(
  2131. &dev->regs->ep_irqmsk);
  2132. tmp |= AMD_BIT(ep->num);
  2133. writel(tmp,
  2134. &dev->regs->ep_irqmsk);
  2135. }
  2136. }
  2137. /* clear status bits */
  2138. writel(epsts, &ep->regs->sts);
  2139. finished:
  2140. return ret_val;
  2141. }
  2142. /* Interrupt handler for Control OUT traffic */
  2143. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2144. __releases(dev->lock)
  2145. __acquires(dev->lock)
  2146. {
  2147. irqreturn_t ret_val = IRQ_NONE;
  2148. u32 tmp;
  2149. int setup_supported;
  2150. u32 count;
  2151. int set = 0;
  2152. struct udc_ep *ep;
  2153. struct udc_ep *ep_tmp;
  2154. ep = &dev->ep[UDC_EP0OUT_IX];
  2155. /* clear irq */
  2156. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2157. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2158. /* check BNA and clear if set */
  2159. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2160. VDBG(dev, "ep0: BNA set\n");
  2161. writel(AMD_BIT(UDC_EPSTS_BNA),
  2162. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2163. ep->bna_occurred = 1;
  2164. ret_val = IRQ_HANDLED;
  2165. goto finished;
  2166. }
  2167. /* type of data: SETUP or DATA 0 bytes */
  2168. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2169. VDBG(dev, "data_typ = %x\n", tmp);
  2170. /* setup data */
  2171. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2172. ret_val = IRQ_HANDLED;
  2173. ep->dev->stall_ep0in = 0;
  2174. dev->waiting_zlp_ack_ep0in = 0;
  2175. /* set NAK for EP0_IN */
  2176. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2177. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2178. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2179. dev->ep[UDC_EP0IN_IX].naking = 1;
  2180. /* get setup data */
  2181. if (use_dma) {
  2182. /* clear OUT bits in ep status */
  2183. writel(UDC_EPSTS_OUT_CLEAR,
  2184. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2185. setup_data.data[0] =
  2186. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2187. setup_data.data[1] =
  2188. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2189. /* set HOST READY */
  2190. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2191. UDC_DMA_STP_STS_BS_HOST_READY;
  2192. } else {
  2193. /* read fifo */
  2194. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2195. }
  2196. /* determine direction of control data */
  2197. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2198. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2199. /* enable RDE */
  2200. udc_ep0_set_rde(dev);
  2201. set = 0;
  2202. } else {
  2203. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2204. /*
  2205. * implant BNA dummy descriptor to allow RXFIFO opening
  2206. * by RDE
  2207. */
  2208. if (ep->bna_dummy_req) {
  2209. /* write desc pointer */
  2210. writel(ep->bna_dummy_req->td_phys,
  2211. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2212. ep->bna_occurred = 0;
  2213. }
  2214. set = 1;
  2215. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2216. /*
  2217. * setup timer for enabling RDE (to not enable
  2218. * RXFIFO DMA for data to early)
  2219. */
  2220. set_rde = 1;
  2221. if (!timer_pending(&udc_timer)) {
  2222. udc_timer.expires = jiffies +
  2223. HZ/UDC_RDE_TIMER_DIV;
  2224. if (!stop_timer) {
  2225. add_timer(&udc_timer);
  2226. }
  2227. }
  2228. }
  2229. /*
  2230. * mass storage reset must be processed here because
  2231. * next packet may be a CLEAR_FEATURE HALT which would not
  2232. * clear the stall bit when no STALL handshake was received
  2233. * before (autostall can cause this)
  2234. */
  2235. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2236. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2237. DBG(dev, "MSC Reset\n");
  2238. /*
  2239. * clear stall bits
  2240. * only one IN and OUT endpoints are handled
  2241. */
  2242. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2243. udc_set_halt(&ep_tmp->ep, 0);
  2244. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2245. udc_set_halt(&ep_tmp->ep, 0);
  2246. }
  2247. /* call gadget with setup data received */
  2248. spin_unlock(&dev->lock);
  2249. setup_supported = dev->driver->setup(&dev->gadget,
  2250. &setup_data.request);
  2251. spin_lock(&dev->lock);
  2252. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2253. /* ep0 in returns data (not zlp) on IN phase */
  2254. if (setup_supported >= 0 && setup_supported <
  2255. UDC_EP0IN_MAXPACKET) {
  2256. /* clear NAK by writing CNAK in EP0_IN */
  2257. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2258. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2259. dev->ep[UDC_EP0IN_IX].naking = 0;
  2260. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2261. /* if unsupported request then stall */
  2262. } else if (setup_supported < 0) {
  2263. tmp |= AMD_BIT(UDC_EPCTL_S);
  2264. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2265. } else
  2266. dev->waiting_zlp_ack_ep0in = 1;
  2267. /* clear NAK by writing CNAK in EP0_OUT */
  2268. if (!set) {
  2269. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2270. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2271. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2272. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2273. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2274. }
  2275. if (!use_dma) {
  2276. /* clear OUT bits in ep status */
  2277. writel(UDC_EPSTS_OUT_CLEAR,
  2278. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2279. }
  2280. /* data packet 0 bytes */
  2281. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2282. /* clear OUT bits in ep status */
  2283. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2284. /* get setup data: only 0 packet */
  2285. if (use_dma) {
  2286. /* no req if 0 packet, just reactivate */
  2287. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2288. VDBG(dev, "ZLP\n");
  2289. /* set HOST READY */
  2290. dev->ep[UDC_EP0OUT_IX].td->status =
  2291. AMD_ADDBITS(
  2292. dev->ep[UDC_EP0OUT_IX].td->status,
  2293. UDC_DMA_OUT_STS_BS_HOST_READY,
  2294. UDC_DMA_OUT_STS_BS);
  2295. /* enable RDE */
  2296. udc_ep0_set_rde(dev);
  2297. ret_val = IRQ_HANDLED;
  2298. } else {
  2299. /* control write */
  2300. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2301. /* re-program desc. pointer for possible ZLPs */
  2302. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2303. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2304. /* enable RDE */
  2305. udc_ep0_set_rde(dev);
  2306. }
  2307. } else {
  2308. /* received number bytes */
  2309. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2310. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2311. /* out data for fifo mode not working */
  2312. count = 0;
  2313. /* 0 packet or real data ? */
  2314. if (count != 0) {
  2315. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2316. } else {
  2317. /* dummy read confirm */
  2318. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2319. ret_val = IRQ_HANDLED;
  2320. }
  2321. }
  2322. }
  2323. /* check pending CNAKS */
  2324. if (cnak_pending) {
  2325. /* CNAk processing when rxfifo empty only */
  2326. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  2327. udc_process_cnak_queue(dev);
  2328. }
  2329. }
  2330. finished:
  2331. return ret_val;
  2332. }
  2333. /* Interrupt handler for Control IN traffic */
  2334. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2335. {
  2336. irqreturn_t ret_val = IRQ_NONE;
  2337. u32 tmp;
  2338. struct udc_ep *ep;
  2339. struct udc_request *req;
  2340. unsigned len;
  2341. ep = &dev->ep[UDC_EP0IN_IX];
  2342. /* clear irq */
  2343. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2344. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2345. /* DMA completion */
  2346. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2347. VDBG(dev, "isr: TDC clear \n");
  2348. ret_val = IRQ_HANDLED;
  2349. /* clear TDC bit */
  2350. writel(AMD_BIT(UDC_EPSTS_TDC),
  2351. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2352. /* status reg has IN bit set ? */
  2353. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2354. ret_val = IRQ_HANDLED;
  2355. if (ep->dma) {
  2356. /* clear IN bit */
  2357. writel(AMD_BIT(UDC_EPSTS_IN),
  2358. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2359. }
  2360. if (dev->stall_ep0in) {
  2361. DBG(dev, "stall ep0in\n");
  2362. /* halt ep0in */
  2363. tmp = readl(&ep->regs->ctl);
  2364. tmp |= AMD_BIT(UDC_EPCTL_S);
  2365. writel(tmp, &ep->regs->ctl);
  2366. } else {
  2367. if (!list_empty(&ep->queue)) {
  2368. /* next request */
  2369. req = list_entry(ep->queue.next,
  2370. struct udc_request, queue);
  2371. if (ep->dma) {
  2372. /* write desc pointer */
  2373. writel(req->td_phys, &ep->regs->desptr);
  2374. /* set HOST READY */
  2375. req->td_data->status =
  2376. AMD_ADDBITS(
  2377. req->td_data->status,
  2378. UDC_DMA_STP_STS_BS_HOST_READY,
  2379. UDC_DMA_STP_STS_BS);
  2380. /* set poll demand bit */
  2381. tmp =
  2382. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2383. tmp |= AMD_BIT(UDC_EPCTL_P);
  2384. writel(tmp,
  2385. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2386. /* all bytes will be transferred */
  2387. req->req.actual = req->req.length;
  2388. /* complete req */
  2389. complete_req(ep, req, 0);
  2390. } else {
  2391. /* write fifo */
  2392. udc_txfifo_write(ep, &req->req);
  2393. /* lengh bytes transferred */
  2394. len = req->req.length - req->req.actual;
  2395. if (len > ep->ep.maxpacket)
  2396. len = ep->ep.maxpacket;
  2397. req->req.actual += len;
  2398. if (req->req.actual == req->req.length
  2399. || (len != ep->ep.maxpacket)) {
  2400. /* complete req */
  2401. complete_req(ep, req, 0);
  2402. }
  2403. }
  2404. }
  2405. }
  2406. ep->halted = 0;
  2407. dev->stall_ep0in = 0;
  2408. if (!ep->dma) {
  2409. /* clear IN bit */
  2410. writel(AMD_BIT(UDC_EPSTS_IN),
  2411. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2412. }
  2413. }
  2414. return ret_val;
  2415. }
  2416. /* Interrupt handler for global device events */
  2417. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2418. __releases(dev->lock)
  2419. __acquires(dev->lock)
  2420. {
  2421. irqreturn_t ret_val = IRQ_NONE;
  2422. u32 tmp;
  2423. u32 cfg;
  2424. struct udc_ep *ep;
  2425. u16 i;
  2426. u8 udc_csr_epix;
  2427. /* SET_CONFIG irq ? */
  2428. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2429. ret_val = IRQ_HANDLED;
  2430. /* read config value */
  2431. tmp = readl(&dev->regs->sts);
  2432. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2433. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2434. dev->cur_config = cfg;
  2435. dev->set_cfg_not_acked = 1;
  2436. /* make usb request for gadget driver */
  2437. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2438. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2439. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2440. /* programm the NE registers */
  2441. for (i = 0; i < UDC_EP_NUM; i++) {
  2442. ep = &dev->ep[i];
  2443. if (ep->in) {
  2444. /* ep ix in UDC CSR register space */
  2445. udc_csr_epix = ep->num;
  2446. /* OUT ep */
  2447. } else {
  2448. /* ep ix in UDC CSR register space */
  2449. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2450. }
  2451. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2452. /* ep cfg */
  2453. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2454. UDC_CSR_NE_CFG);
  2455. /* write reg */
  2456. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2457. /* clear stall bits */
  2458. ep->halted = 0;
  2459. tmp = readl(&ep->regs->ctl);
  2460. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2461. writel(tmp, &ep->regs->ctl);
  2462. }
  2463. /* call gadget zero with setup data received */
  2464. spin_unlock(&dev->lock);
  2465. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2466. spin_lock(&dev->lock);
  2467. } /* SET_INTERFACE ? */
  2468. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2469. ret_val = IRQ_HANDLED;
  2470. dev->set_cfg_not_acked = 1;
  2471. /* read interface and alt setting values */
  2472. tmp = readl(&dev->regs->sts);
  2473. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2474. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2475. /* make usb request for gadget driver */
  2476. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2477. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2478. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2479. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2480. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2481. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2482. dev->cur_alt, dev->cur_intf);
  2483. /* programm the NE registers */
  2484. for (i = 0; i < UDC_EP_NUM; i++) {
  2485. ep = &dev->ep[i];
  2486. if (ep->in) {
  2487. /* ep ix in UDC CSR register space */
  2488. udc_csr_epix = ep->num;
  2489. /* OUT ep */
  2490. } else {
  2491. /* ep ix in UDC CSR register space */
  2492. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2493. }
  2494. /* UDC CSR reg */
  2495. /* set ep values */
  2496. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2497. /* ep interface */
  2498. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2499. UDC_CSR_NE_INTF);
  2500. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2501. /* ep alt */
  2502. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2503. UDC_CSR_NE_ALT);
  2504. /* write reg */
  2505. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2506. /* clear stall bits */
  2507. ep->halted = 0;
  2508. tmp = readl(&ep->regs->ctl);
  2509. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2510. writel(tmp, &ep->regs->ctl);
  2511. }
  2512. /* call gadget zero with setup data received */
  2513. spin_unlock(&dev->lock);
  2514. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2515. spin_lock(&dev->lock);
  2516. } /* USB reset */
  2517. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2518. DBG(dev, "USB Reset interrupt\n");
  2519. ret_val = IRQ_HANDLED;
  2520. /* allow soft reset when suspend occurs */
  2521. soft_reset_occured = 0;
  2522. dev->waiting_zlp_ack_ep0in = 0;
  2523. dev->set_cfg_not_acked = 0;
  2524. /* mask not needed interrupts */
  2525. udc_mask_unused_interrupts(dev);
  2526. /* call gadget to resume and reset configs etc. */
  2527. spin_unlock(&dev->lock);
  2528. if (dev->sys_suspended && dev->driver->resume) {
  2529. dev->driver->resume(&dev->gadget);
  2530. dev->sys_suspended = 0;
  2531. }
  2532. dev->driver->disconnect(&dev->gadget);
  2533. spin_lock(&dev->lock);
  2534. /* disable ep0 to empty req queue */
  2535. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2536. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2537. /* soft reset when rxfifo not empty */
  2538. tmp = readl(&dev->regs->sts);
  2539. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2540. && !soft_reset_after_usbreset_occured) {
  2541. udc_soft_reset(dev);
  2542. soft_reset_after_usbreset_occured++;
  2543. }
  2544. /*
  2545. * DMA reset to kill potential old DMA hw hang,
  2546. * POLL bit is already reset by ep_init() through
  2547. * disconnect()
  2548. */
  2549. DBG(dev, "DMA machine reset\n");
  2550. tmp = readl(&dev->regs->cfg);
  2551. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2552. writel(tmp, &dev->regs->cfg);
  2553. /* put into initial config */
  2554. udc_basic_init(dev);
  2555. /* enable device setup interrupts */
  2556. udc_enable_dev_setup_interrupts(dev);
  2557. /* enable suspend interrupt */
  2558. tmp = readl(&dev->regs->irqmsk);
  2559. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2560. writel(tmp, &dev->regs->irqmsk);
  2561. } /* USB suspend */
  2562. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2563. DBG(dev, "USB Suspend interrupt\n");
  2564. ret_val = IRQ_HANDLED;
  2565. if (dev->driver->suspend) {
  2566. spin_unlock(&dev->lock);
  2567. dev->sys_suspended = 1;
  2568. dev->driver->suspend(&dev->gadget);
  2569. spin_lock(&dev->lock);
  2570. }
  2571. } /* new speed ? */
  2572. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2573. DBG(dev, "ENUM interrupt\n");
  2574. ret_val = IRQ_HANDLED;
  2575. soft_reset_after_usbreset_occured = 0;
  2576. /* disable ep0 to empty req queue */
  2577. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2578. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2579. /* link up all endpoints */
  2580. udc_setup_endpoints(dev);
  2581. dev_info(&dev->pdev->dev, "Connect: %s\n",
  2582. usb_speed_string(dev->gadget.speed));
  2583. /* init ep 0 */
  2584. activate_control_endpoints(dev);
  2585. /* enable ep0 interrupts */
  2586. udc_enable_ep0_interrupts(dev);
  2587. }
  2588. /* session valid change interrupt */
  2589. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2590. DBG(dev, "USB SVC interrupt\n");
  2591. ret_val = IRQ_HANDLED;
  2592. /* check that session is not valid to detect disconnect */
  2593. tmp = readl(&dev->regs->sts);
  2594. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2595. /* disable suspend interrupt */
  2596. tmp = readl(&dev->regs->irqmsk);
  2597. tmp |= AMD_BIT(UDC_DEVINT_US);
  2598. writel(tmp, &dev->regs->irqmsk);
  2599. DBG(dev, "USB Disconnect (session valid low)\n");
  2600. /* cleanup on disconnect */
  2601. usb_disconnect(udc);
  2602. }
  2603. }
  2604. return ret_val;
  2605. }
  2606. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2607. static irqreturn_t udc_irq(int irq, void *pdev)
  2608. {
  2609. struct udc *dev = pdev;
  2610. u32 reg;
  2611. u16 i;
  2612. u32 ep_irq;
  2613. irqreturn_t ret_val = IRQ_NONE;
  2614. spin_lock(&dev->lock);
  2615. /* check for ep irq */
  2616. reg = readl(&dev->regs->ep_irqsts);
  2617. if (reg) {
  2618. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2619. ret_val |= udc_control_out_isr(dev);
  2620. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2621. ret_val |= udc_control_in_isr(dev);
  2622. /*
  2623. * data endpoint
  2624. * iterate ep's
  2625. */
  2626. for (i = 1; i < UDC_EP_NUM; i++) {
  2627. ep_irq = 1 << i;
  2628. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2629. continue;
  2630. /* clear irq status */
  2631. writel(ep_irq, &dev->regs->ep_irqsts);
  2632. /* irq for out ep ? */
  2633. if (i > UDC_EPIN_NUM)
  2634. ret_val |= udc_data_out_isr(dev, i);
  2635. else
  2636. ret_val |= udc_data_in_isr(dev, i);
  2637. }
  2638. }
  2639. /* check for dev irq */
  2640. reg = readl(&dev->regs->irqsts);
  2641. if (reg) {
  2642. /* clear irq */
  2643. writel(reg, &dev->regs->irqsts);
  2644. ret_val |= udc_dev_isr(dev, reg);
  2645. }
  2646. spin_unlock(&dev->lock);
  2647. return ret_val;
  2648. }
  2649. /* Tears down device */
  2650. static void gadget_release(struct device *pdev)
  2651. {
  2652. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2653. kfree(dev);
  2654. }
  2655. /* Cleanup on device remove */
  2656. static void udc_remove(struct udc *dev)
  2657. {
  2658. /* remove timer */
  2659. stop_timer++;
  2660. if (timer_pending(&udc_timer))
  2661. wait_for_completion(&on_exit);
  2662. if (udc_timer.data)
  2663. del_timer_sync(&udc_timer);
  2664. /* remove pollstall timer */
  2665. stop_pollstall_timer++;
  2666. if (timer_pending(&udc_pollstall_timer))
  2667. wait_for_completion(&on_pollstall_exit);
  2668. if (udc_pollstall_timer.data)
  2669. del_timer_sync(&udc_pollstall_timer);
  2670. udc = NULL;
  2671. }
  2672. /* Reset all pci context */
  2673. static void udc_pci_remove(struct pci_dev *pdev)
  2674. {
  2675. struct udc *dev;
  2676. dev = pci_get_drvdata(pdev);
  2677. usb_del_gadget_udc(&udc->gadget);
  2678. /* gadget driver must not be registered */
  2679. BUG_ON(dev->driver != NULL);
  2680. /* dma pool cleanup */
  2681. if (dev->data_requests)
  2682. pci_pool_destroy(dev->data_requests);
  2683. if (dev->stp_requests) {
  2684. /* cleanup DMA desc's for ep0in */
  2685. pci_pool_free(dev->stp_requests,
  2686. dev->ep[UDC_EP0OUT_IX].td_stp,
  2687. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2688. pci_pool_free(dev->stp_requests,
  2689. dev->ep[UDC_EP0OUT_IX].td,
  2690. dev->ep[UDC_EP0OUT_IX].td_phys);
  2691. pci_pool_destroy(dev->stp_requests);
  2692. }
  2693. /* reset controller */
  2694. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2695. if (dev->irq_registered)
  2696. free_irq(pdev->irq, dev);
  2697. if (dev->regs)
  2698. iounmap(dev->regs);
  2699. if (dev->mem_region)
  2700. release_mem_region(pci_resource_start(pdev, 0),
  2701. pci_resource_len(pdev, 0));
  2702. if (dev->active)
  2703. pci_disable_device(pdev);
  2704. device_unregister(&dev->gadget.dev);
  2705. pci_set_drvdata(pdev, NULL);
  2706. udc_remove(dev);
  2707. }
  2708. /* create dma pools on init */
  2709. static int init_dma_pools(struct udc *dev)
  2710. {
  2711. struct udc_stp_dma *td_stp;
  2712. struct udc_data_dma *td_data;
  2713. int retval;
  2714. /* consistent DMA mode setting ? */
  2715. if (use_dma_ppb) {
  2716. use_dma_bufferfill_mode = 0;
  2717. } else {
  2718. use_dma_ppb_du = 0;
  2719. use_dma_bufferfill_mode = 1;
  2720. }
  2721. /* DMA setup */
  2722. dev->data_requests = dma_pool_create("data_requests", NULL,
  2723. sizeof(struct udc_data_dma), 0, 0);
  2724. if (!dev->data_requests) {
  2725. DBG(dev, "can't get request data pool\n");
  2726. retval = -ENOMEM;
  2727. goto finished;
  2728. }
  2729. /* EP0 in dma regs = dev control regs */
  2730. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2731. /* dma desc for setup data */
  2732. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2733. sizeof(struct udc_stp_dma), 0, 0);
  2734. if (!dev->stp_requests) {
  2735. DBG(dev, "can't get stp request pool\n");
  2736. retval = -ENOMEM;
  2737. goto finished;
  2738. }
  2739. /* setup */
  2740. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2741. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2742. if (td_stp == NULL) {
  2743. retval = -ENOMEM;
  2744. goto finished;
  2745. }
  2746. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2747. /* data: 0 packets !? */
  2748. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2749. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2750. if (td_data == NULL) {
  2751. retval = -ENOMEM;
  2752. goto finished;
  2753. }
  2754. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2755. return 0;
  2756. finished:
  2757. return retval;
  2758. }
  2759. /* Called by pci bus driver to init pci context */
  2760. static int udc_pci_probe(
  2761. struct pci_dev *pdev,
  2762. const struct pci_device_id *id
  2763. )
  2764. {
  2765. struct udc *dev;
  2766. unsigned long resource;
  2767. unsigned long len;
  2768. int retval = 0;
  2769. /* one udc only */
  2770. if (udc) {
  2771. dev_dbg(&pdev->dev, "already probed\n");
  2772. return -EBUSY;
  2773. }
  2774. /* init */
  2775. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2776. if (!dev) {
  2777. retval = -ENOMEM;
  2778. goto finished;
  2779. }
  2780. /* pci setup */
  2781. if (pci_enable_device(pdev) < 0) {
  2782. kfree(dev);
  2783. dev = NULL;
  2784. retval = -ENODEV;
  2785. goto finished;
  2786. }
  2787. dev->active = 1;
  2788. /* PCI resource allocation */
  2789. resource = pci_resource_start(pdev, 0);
  2790. len = pci_resource_len(pdev, 0);
  2791. if (!request_mem_region(resource, len, name)) {
  2792. dev_dbg(&pdev->dev, "pci device used already\n");
  2793. kfree(dev);
  2794. dev = NULL;
  2795. retval = -EBUSY;
  2796. goto finished;
  2797. }
  2798. dev->mem_region = 1;
  2799. dev->virt_addr = ioremap_nocache(resource, len);
  2800. if (dev->virt_addr == NULL) {
  2801. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2802. kfree(dev);
  2803. dev = NULL;
  2804. retval = -EFAULT;
  2805. goto finished;
  2806. }
  2807. if (!pdev->irq) {
  2808. dev_err(&dev->pdev->dev, "irq not set\n");
  2809. kfree(dev);
  2810. dev = NULL;
  2811. retval = -ENODEV;
  2812. goto finished;
  2813. }
  2814. spin_lock_init(&dev->lock);
  2815. /* udc csr registers base */
  2816. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2817. /* dev registers base */
  2818. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2819. /* ep registers base */
  2820. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2821. /* fifo's base */
  2822. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2823. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2824. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2825. dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2826. kfree(dev);
  2827. dev = NULL;
  2828. retval = -EBUSY;
  2829. goto finished;
  2830. }
  2831. dev->irq_registered = 1;
  2832. pci_set_drvdata(pdev, dev);
  2833. /* chip revision for Hs AMD5536 */
  2834. dev->chiprev = pdev->revision;
  2835. pci_set_master(pdev);
  2836. pci_try_set_mwi(pdev);
  2837. /* init dma pools */
  2838. if (use_dma) {
  2839. retval = init_dma_pools(dev);
  2840. if (retval != 0)
  2841. goto finished;
  2842. }
  2843. dev->phys_addr = resource;
  2844. dev->irq = pdev->irq;
  2845. dev->pdev = pdev;
  2846. dev->gadget.dev.parent = &pdev->dev;
  2847. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2848. /* general probing */
  2849. if (udc_probe(dev) == 0)
  2850. return 0;
  2851. finished:
  2852. if (dev)
  2853. udc_pci_remove(pdev);
  2854. return retval;
  2855. }
  2856. /* general probe */
  2857. static int udc_probe(struct udc *dev)
  2858. {
  2859. char tmp[128];
  2860. u32 reg;
  2861. int retval;
  2862. /* mark timer as not initialized */
  2863. udc_timer.data = 0;
  2864. udc_pollstall_timer.data = 0;
  2865. /* device struct setup */
  2866. dev->gadget.ops = &udc_ops;
  2867. dev_set_name(&dev->gadget.dev, "gadget");
  2868. dev->gadget.dev.release = gadget_release;
  2869. dev->gadget.name = name;
  2870. dev->gadget.is_dualspeed = 1;
  2871. /* init registers, interrupts, ... */
  2872. startup_registers(dev);
  2873. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2874. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2875. dev_info(&dev->pdev->dev,
  2876. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2877. tmp, dev->phys_addr, dev->chiprev,
  2878. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2879. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2880. if (dev->chiprev == UDC_HSA0_REV) {
  2881. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2882. retval = -ENODEV;
  2883. goto finished;
  2884. }
  2885. dev_info(&dev->pdev->dev,
  2886. "driver version: %s(for Geode5536 B1)\n", tmp);
  2887. udc = dev;
  2888. retval = usb_add_gadget_udc(&udc->pdev->dev, &dev->gadget);
  2889. if (retval)
  2890. goto finished;
  2891. retval = device_register(&dev->gadget.dev);
  2892. if (retval) {
  2893. usb_del_gadget_udc(&dev->gadget);
  2894. put_device(&dev->gadget.dev);
  2895. goto finished;
  2896. }
  2897. /* timer init */
  2898. init_timer(&udc_timer);
  2899. udc_timer.function = udc_timer_function;
  2900. udc_timer.data = 1;
  2901. /* timer pollstall init */
  2902. init_timer(&udc_pollstall_timer);
  2903. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2904. udc_pollstall_timer.data = 1;
  2905. /* set SD */
  2906. reg = readl(&dev->regs->ctl);
  2907. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2908. writel(reg, &dev->regs->ctl);
  2909. /* print dev register info */
  2910. print_regs(dev);
  2911. return 0;
  2912. finished:
  2913. return retval;
  2914. }
  2915. /* Initiates a remote wakeup */
  2916. static int udc_remote_wakeup(struct udc *dev)
  2917. {
  2918. unsigned long flags;
  2919. u32 tmp;
  2920. DBG(dev, "UDC initiates remote wakeup\n");
  2921. spin_lock_irqsave(&dev->lock, flags);
  2922. tmp = readl(&dev->regs->ctl);
  2923. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2924. writel(tmp, &dev->regs->ctl);
  2925. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2926. writel(tmp, &dev->regs->ctl);
  2927. spin_unlock_irqrestore(&dev->lock, flags);
  2928. return 0;
  2929. }
  2930. /* PCI device parameters */
  2931. static const struct pci_device_id pci_id[] = {
  2932. {
  2933. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2934. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2935. .class_mask = 0xffffffff,
  2936. },
  2937. {},
  2938. };
  2939. MODULE_DEVICE_TABLE(pci, pci_id);
  2940. /* PCI functions */
  2941. static struct pci_driver udc_pci_driver = {
  2942. .name = (char *) name,
  2943. .id_table = pci_id,
  2944. .probe = udc_pci_probe,
  2945. .remove = udc_pci_remove,
  2946. };
  2947. /* Inits driver */
  2948. static int __init init(void)
  2949. {
  2950. return pci_register_driver(&udc_pci_driver);
  2951. }
  2952. module_init(init);
  2953. /* Cleans driver */
  2954. static void __exit cleanup(void)
  2955. {
  2956. pci_unregister_driver(&udc_pci_driver);
  2957. }
  2958. module_exit(cleanup);
  2959. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2960. MODULE_AUTHOR("Thomas Dahlmann");
  2961. MODULE_LICENSE("GPL");